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Q-WELL-POSEDNESS OF AN Aβ-PROTEIN POLYMERIZATION
MODEL

Cheikh Gueye1, 2, Sorin I. Ciuperca3, Laurent Pujo-Menjouet1,2 and
Léon Matar Tine1,2

Abstract. In this work, we consider a Becker-Döring-like mathematical interaction model
between Aβ-monomers and Aβ proto-oligomers playing an important role in Alzheimer’s
disease. In this context, the clustering process where two or more Aβ-monomers spon-
taneously aggregate and form a seed of proto-oligomers is highlighted. We prove the
quadratic well-posedness [4] of the problem associated with the estimation of clustering
rate µ from measured data at different times.
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.

1. Introduction: a focus on the Aβ protein

Alzheimer’s disease (AD) is an age-related neurodegenerative disease that consists of gradual
neuron loss. It is characterized by the presence of neurofibrillary tangles and neuritic plaques
in postmortem brain tissue [26]. On the one hand, tangles are intraneuronal accumulations due
to a microtubule-binding protein called Tau protein, which is insoluble and hyperphosphorylated.
Plaques, on the other hand, are extracellular aggregates of Aβ-peptides derived from the cleavage of
the amyloid precursor protein (APP) with inflammation and astrogliosis phenomena [13, 27]. From
these two main hypotheses explaining the cause and mechanism of AD, we consider only here the
Aβ activity, leaving the even more complex coupling interactions with the Tau protein for future
work. We remind here that Aβ proteins can adopt various stable conformations. When pathological,
these misconformations lead to the creation of structured assemblies that can be used as biological
markers of the disease [11,17,18]. Other mechanisms like oxidative stress, inflammation and altered
cholesterol homeostasis are also involved in AD. We do not consider them either in our mathematical
modelling approach. However, more details on the amyloid cascade hypothesis can be found in [25]
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(Part I, Chapter 2).

Figure 1. Production of Aβ oligomers from the neurons (1), their polymerization
into proto-oligomers (2) and eventually to Aβ oligomers (3) able to regulate the
neuronal activity or kill them (4).

It is well known now that the Aβ self-assembly leads to different types of structures: first, the
proto-oligomers that may create two types of elements. On the one hand, the fibrils, long lin-
ear polymeric structures that can coalesce, break or depolymerize to form the so-called amyloid
plaques which constitute the visible deposits observed in most of the latest stages of AD patients.
Oligomers, on the other hand, appear like smaller structures than fibrils during the early stages of
AD [6, 11, 21, 24, 32]. They are also able to join the amyloid plaque but this is not their major role
in the pathology. Indeed, oligomers are the most armful characters. They can stress the neuron by
stopping its activity. This process, called UPR (unfolded protein response) [1], is a way to save it
temporarily (see Fig. 1). But with a repeated amount of stress, this latter may be killed. Repeated
millions of times in the brain, this mechanism is at the origin of the memory impairment of the
patient but also the fatal issue of the disease.

Here also, to simplify our model, we focus our attention on the early stage when only oligomers,
the most dangerous elements of the disease, are formed. Indeed, even if fibrils play an important
role in the disease, they appear not to be as dangerous as oligomers.

One of the most essential phenomena described and studied in this work relies on the ability
of misfolded Aβ monomer to accidentally form clusters of proto-oligomers of any size lower than
oligomers. Triggering this event in normal conditions is often highly stochastic, eventually driven
by mutations or co-factors. However, during the laboratory experiments, it can be initiated by
inoculation of pathological Aβ seeding and then accelerate the natural process, transforming it into
a highly deterministic mechanism. The mechanism can be described as follows: Aβ-monomers can
spontaneously change conformation and assemble into small structures called proto-oligomers. Once
a proto-oligomer is formed, it has the ability to change size either by aggregating other monomers
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(polymerizing) or releasing a monomer(depolymerizing). Repeating this alternating gain and loss
of monomers, the proto-oligomers can reach a certain given size and then become oligomers (stable
structure, that is unable to polymerize or depolymerize) [2, 7].

Recent discoveries show that oligomers play a very determining role in the progression of Alzheimer’s
disease, more precisely in neuronal death. Indeed, the membrane of neurons is believed to be dam-
aged by the presence of amyloid protein aggregates.

So, the propagation of Aβ-oligomers in the brain results from a combination of several factors at
different scales. Thus, understanding the complex formation and replication of Aβ-oligomers from
Aβ-monomers, especially at the initial stage of the disease, is of paramount importance for us to
develop therapeutic strategies before the first symptoms of dementia appear [9, 11,22,23,26,28].
In this paper, we focus then our modelling approach to this initial stage of the disease, by describing
and analysing the polymerization mechanism of Aβ-monomers leading to Aβ proto-oligomers. This
polymerization mechanism is based on a gain and loss competition of Aβ monomers with given
kinetic rates. Consequently, when there are no proto-oligomers, the polymerization process cannot
start. In experimental conditions, one needs at least a seed of Aβ proto-oligomer to trigger the
disease that is when two or more monomers suddenly aggregate and forms a proto-oligomer of size
i ( i is the number of aggregated monomers).

The real cause from the clinical point of view of this triggering event is for the moment unknown,
but once the very first nuclei of proto-oligomers are formed, then the process of proto-oligomerization
starts. With a size-dependent rate, a proto-oligomer goes from size i to size i + 1 by a gain of a
monomer {i}+ {1} → {i+ 1}. On the other hand, it can depolymerize, that is going from size i to
size i− 1 by loss of a monomer with a constant (size-independent) rate {i} → {i− 1}+ 1}.

This mechanism of gain and loss of monomers causes the appearance of proto-oligomer size
distribution. By progressively lengthening, each of the oligomers reaches its maximum size and
then becomes Aβ oligomers very harmful to neurons [12] and one of the causes of neuronal death
[3, 16, 30, 31]. Many mathematical models have already studied polymerization leading to the for-
mation of oligomers and also their strong relationship with the development of Alzheimer’s disease.
For more details, one can refer to [5, 8, 10,14,15,19,20,29].

This paper is part of this momentum. With a simple size-structured model we highlight the very
beginning of the polymerization process where monomers interact with proto-oligomers. So, we con-
sider a population of Aβ monomers characterized by its concentration u1(t) that can interact with
a population of Aβ proto-oligomers characterized by its concentration ui(t) where i ∈ {2, · · · , N},
N ∈ N (see Fig. 2). The interest in taking into account the effect of spontaneous clustering is to be
able to estimate its rate using temporal data on the concentrations of monomers and proto-oligomers.
Indeed, this rate is an essential parameter in the early stage of the disease. Consequently, analyzing
a model able to estimate appears to us as a big step in understanding AD.

The paper is organized as follows, section 2 is devoted to the description of the model and the
importance of the spontaneous clustering process in the context of Alzheimer’s disease. In section
3, we analyze the quadratic well-posedness of the model. Section 4 is left for the conclusion and
perspectives.

2. Model description

Our model describes the interaction dynamics between a population of Aβ-monomers and a popu-
lation of Aβ proto-oligomers. This interaction is governed by a process of gain and loss of monomers
which we refer to as the polymerization/depolymerization process. By polymerization we mean the
gain of monomers by proto-oligomers and by depolymerization we mean the loss of monomers from
proto-oligomers. The system is assumed to occur in a homogeneous domain and the main variables
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Figure 2. Detail of Fig.1 when Aβ oligomers u1 can form spontaneous clusters,
of size i named ui with a rate µi to start proto-oligomer dynamics. These proto-
oligomers can polymerize with a size-dependent rate ri or depolymerize with a
constant rate b.

of the system are given in Table 1.

Variable Definition
u1(t) Concentration of Aβ monomers at time t
ui(t), Concentration of Aβproto-oligomers of size i = 2, · · ·N at time t

µi, i = 2, · · · , N Nucleation rate for proto-oligomers of size i
ri ≥ 0, i = 1, ..., N Polymerization rate for proto-oligomers of size i

b > 0 Depolymerization rate (taken as a constant) for proto-oligomers
t ≥ 0 the time

Table 1. Description of the model variables and parameters.

(1) Monomers: Aβ-monomers population by gain and loss of a single or a group of monomers
is described as follows

du1(t)

dt
= −u1(t)

N∑
i=1

riui(t) + b(2u2(t) +

N∑
i=3

ui(t))− u1(t)

N∑
i=2

iµi.

The first term on the right-hand side stands for the loss of monomers when Aβ proto-
oligomers of all sizes polymerize. The second term on the right-hand side describes the gain
of monomers when two or more proto-oligomers depolymerize. The last term stands for
the multi-monomeric nucleation when i-monomers merge and spontaneously form a proto-
oligomer of size i with the rate µi. The couple (ri, b), i ∈ {2, · · · , N} is called kinetic
coefficients of the model.
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(2) Proto-oligomers: Aβ proto-oligomers are structured in size ranging from i = 2 to i = N
and their dynamics is given by

du2(t)

dt
= −(b+ r2u1(t))u2(t) + bu3(t) + u1(t)µ2,

dui(t)

dt
= ri−1u1(t)ui−1(t)− (b+ riu1(t))ui(t) + bui+1(t) + u1(t)µi, i = 3, .., N − 1,

duN (t)

dt
= rN−1u1(t)uN−1(t)− (b+ rNu1(t))uN (t) + u1(t)µN .

The first equation of the system is for the dynamics of proto-oligomers of size i = 2. So,
the model loses the proto-oligomers that either depolymerize and become monomers or
polymerize to give proto-oligomer of size i = 3. The second equation is for proto-oligomers
of size 2 < i > N . It balances between what is gained or lost by the polymerization of
proto-oligomers of size i− 1 and i itself and by depolymerization of proto-oligomers of size
i + 1 and i itself. The third equation models the dynamics of the proto-oligomers of the
maximal size N . For these proto-oligomers of size N , the concentration increases when those
of size N − 1 gain monomers by polymerization while it decreases when they polymerize or
depolymerize.

Either for monomers or proto-oligomers, the nucleation process is integrated into each equation
of the model with a rate µ depending on the size of the proto-oligomers.
Let us denote u(t) = (u1(t), · · · , uN (t))T the vector of unknowns. Knowing a sequence of measures
(approximations) of u(t) at given times t1, · · · , tp, p ∈ N, we would like to estimate the nucle-
ation parameter µ = (µ2, · · · , µN )T ∈ RN−1. Thus, for 0 < t1 < · · · < tp ≤ T and measures
(Y (1), · · · , Y (p)) ∈ RNp we look for µ ∈ RN−1

+ such that

u(tk) = Y (k), ∀k = 1, · · · , p, (2.1)

with u(tk) the solution evaluated at time tk.
Let us denote Y = (Y (1), · · · , Y (p))T and we define F : RN−1 −→ RNp such that F (µ) =

(u(t1), · · · , u(tp))T ∈ RNp, then we are looking for µ ∈ RN−1
+ such that F (µ) = Y .

We introduce the function G = (G1, · · · , GN )T : RN −→ RN such that for all v = (v1, · · · , vN )T ∈
RN we put

G1(v) = −v1

N∑
i=1

rivi + b(2v2 +

N∑
i=3

vi)− v1

N∑
i=2

iµi

G2(v) = −bv2 + bv3 + µ2v1
...

...
GN−1(v) = v1(rN−2vN−2 − rN−1vN−1 + µN−1) + b(vN − vN−1)

GN (v) = v1(rN−1vN−1 − rNvN + µN )− bvN ),

and rewrite the interaction model between Aβ-monomers and Aβ proto-oligomers as follow{
du(t)

dt
= G(u(t)), t ∈ (0, Tf ],

u(0) = u0,
(2.2)

where u0 = (u0
1, · · · , u0

N )T ∈ RN
+ .
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Equality in (2.1) is needed to be true in the least squares sense, which means we are looking for
µ∗ = (µ∗

2, · · · , µ∗
N )T ∈ RN−1 that minimizes the function J : RN−1 −→ R defined for all µ ∈ RN−1

by J(µ) =
1

2

p∑
k=1

|u(tk)− Y (k)|2 with u solution of (2.2).

Denoting Y = (Y (1), · · · , Y (p) ∈ RNp we can write J as follow

J(µ) =
1

2
∥F (µ)− Y ∥2,

where ∥ · ∥ stands for the Euclidean norm in RNp.
In the following, we recall the general framework of what is called “Q well-posed” problems.

2.1. Reminder on Q well-posed problems (see [4])

Let E1 be a Banach space, E2 an Hilbert one, Ω an open subset of E1 and φ : Ω −→ E2 a C2

regular function. Let U ⊂ Ω be a convex and closed set. For all Z ∈ E2, we introduce the function
JZ : Ω −→ R such that

JZ(µ) =
1

2
∥φ(µ)− Z∥2E2

, ∀µ ∈ Ω. (2.3)

We are looking for µ̂ ∈ U that minimizes JZ means{
µ̂ ∈ U

JZ(µ̂) ≤ JZ(µ) ∀µ ∈ Ω.
(2.4)

This is the identification problem of µ from a measure, Z, of φ(µ).
We have the following definitions (for more details see [4])

Definition 1. The problem (2.4) is said to be “Q well-posed” (Quadradically well-posed) if there
exists a neighborhood V0 of φ(µ) in E2 such that

(1) For all Z ∈ V0 the problem (2.4) has a unique solution û ∈ U .
(2) For all Z ∈ V0 the function JZ has no parasitic stationary points.
(3) The function Z ∈ V0 −→ µ̂ ∈ U is locally Lipschitz continuous.

Definition 2. The problem (2.4) is said to be identifiable on a subset U1 of Ω if φ is injective on
U1.

Let µ0, µ1 ∈ Ω such that the segment {(1− s)µ0+ sµ1, s ∈ [0, 1]} is included Ω. We introduce the
function Pµ0,µ1 : [0, 1] −→ E2 such that Pµ0,µ1(s) = φ((1 − s)µ0 + sµ1) ∀s ∈ [0, 1]. For simplicity
we denote Pµ0,µ1 by P .
We can see the function P as a curve in E2; the tangent to P at s is given by P ′(s). We have

P ′(s) = Dφ((1− s)µ0 + sµ1)(µ1 − µ0) ∈ E2.

Definition 3. The problem (2.4) is said to be linearly identifiable (L.I) on a subset U1 ⊂ Ω if for
all µ0, µ1 ∈ U1, for all s ∈ [0, 1] we have P ′(s) = 0 ⇒ µ0 = µ1.
In the case where φ is linear and continuous then the identifiability is equivalent to the L.I

Definition 4. The problem (2.4) is said to be linearly stable on a subset U1 ⊂ Ω if there exists
αm > 0 such that

αm∥µ0 − µ1∥ ≤
∫ 1

0

∥P ′(s)∥ ds, ∀ µ0, µ1 ∈ U1.
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Definition 5. Suppose that the problem (2.4) is L.I. on U1 ⊂ Ω and consider µ0, µ1 ∈ U1 with
µ0 ̸= µ1.
i) We call deflection on P between s0 and s1 with s0, s1 ∈ [0, 1] the number

Θ(P, s0, s1) = arccos

(
⟨ P ′(s0)

∥P ′(s0)∥
,

P ′(s1)

∥P ′(s1)∥
⟩
)

∈ [0, π]

where ⟨·, ·⟩ is the scalar product on E2 (this number is the angle between tangent vectors on P in s0
and s1 respectively).
ii) We call deflection on P the number

Θ(P ) = sup
s0,s1∈[0,1]

Θ(P, s0, s1)

Definition 6. Suppose that the problem (2.4) is L.I. on U1 ⊂ Ω. We call deflection on (φ,U) the
number Θ(φ,U1) ∈ [0, π] given by

Θ(φ,U1) = sup
µ0,µ1∈U1,µ0 ̸=µ1

Θ(Pµ0,µ1)

Definition 7. The problem (2.4) is said to be a FC problem (finitely curvature problem) on U1 ⊂ Ω
if there exist R > 0 such that

∥P ′′(s)∥ ≤ 1

R
∥P ′(s)∥2, ∀ s ∈ [0, 1], ∀ µ0, µ1 ∈ U1, µ

0 ̸= µ1. (2.5)

Definition 8. Let U1 ⊂ Ω and suppose that the problem (2.4) is L.I. and FC on U1. Then we say
that (2.4) is a FC/LD problem (finite curvature/limited deflected problem) on U1 if

Θ(φ,U1) ≤
π

2
.

For simplicity we recall here the following result which is in fact Theorem 4.4.1 page 177 of [4]:

Proposition 1. Suppose that the problem (2.4) is linearly stable and FC/LD on U . Then it is Q -
well posed with the neighbourhood V0 given by

V0 = {z ∈ E2, dist(z, φ(U)) < R}

where R > 0 satisfies the inequality (2.5) and

dist(z, φ(U)) = inf
y∈φ(U)

∥z − y∥.

Now we can state the main result of this section:

Theorem 1. Let assume
(1) dim(E1) < +∞
(2) U is bounded (which implies that U is convex and compact)
(3) The problem (2.4) is (L.I) on an open neighborhood U1 of U
(4) For all µ0, µ1 ∈ U with µ0 ̸= µ1, we have

⟨P ′(s1), P
′(s2)⟩ ≥ 0, ∀s1, s2 ∈ [0, 1]. (2.6)

Then the problem (2.4) is Q well-posed.

Proof. From Theorem 4.5.1 page 180 of [4] we deduce that the problem (2.4) is linearly stable and
a FC problem on U . Moreover from (2.6) we deduce that Θ(φ,U) ≤ π

2 which implies that (2.4) is a
FC/LD problem on U . Then Proposition 1 gives us the result. □
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2.2. Main result of the paper

For our problem of parameter identification, let assume p = 1. So, the function F is recasted as
follow

F : RN−1 −→ RN

µ −→ F (µ) = u(t1)

where u is the unique solution of the interaction system between monomers and proto-oligomers.
We apply the general framework described in Section 2.1 with E1 = RN−1, E2 = RN , φ = F and
Z = Y (1).
We consider U as a convex and compact subset of RN−1. We split the G function in (2.2) in two
parts: one not depending on µ denoted G0 and another one depending on µ. So, G(v1, · · · , vN ) =
G0(v1, · · · , vN ) + [Mµ]v1 with G0 : RN −→ RN

G0(v1, · · · , vN ) =


G01(v1, · · · , vN )
G02(v1, · · · , vN )

...
G0N (v1, · · · , vN )

 ,

where

G01(v1, · · · , vN ) = −v1

N∑
i=1

rivi + b(2v2 +

N∑
i=3

vi)

G02(v1, · · · , vN ) = −bv2 + bv3

G03(v1, · · · , vN ) = −r3v1v3 − bv3 + bv4
...

...
...

G0N−1(v1, ..., vN ) = v1(rN−2vN−2 − rN−1vN−1) + b(vN − vN−1)

G0N (v1, ..., vN ) = v1(rN−1vN−1 − rNvN )− bvN

and the matrix M ∈ MN,N−1(R) is given by

M =



−2 −3 −4 −5 · · · −(N − 1) −N

1 0 0 0 · · · 0 0

0 1 0 0 · · · 0 0

...
...

...
... · · ·

...
...

0 0 0 0 · · · 1 0


.

From this, we rewrite our system (2.2) as follow
∂u

∂t
= G0(u(t)) + [Mµ]u1(t),

u(0) = u0
(2.7)

and we state the main result of this paper

Theorem 2. Let U ⊂ RN−1 a compact and convex subset of (]0,+∞[)
N−1 and let assume u0

1 > 0.
Then there exits r > 0 depending on U and u0 such that for all t1 satisfying 0 < t1 < r, the problem
(2.4) is Q−well posed.
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To prove this result we just need to fulfill the hypothesis 3 and 4 of Theorem 1.

2.2.1. Proof of hypothesis 3 of Theorem 1
We consider an open and bounded neighborhood U1 of U with U1 ⊂ Ω and we prove the expected

result by contradiction method, means we assume µ0 ∈ U1, µ1 ∈ U1 with µ0 ̸= µ1 and s ∈ [0, 1] such
that P ′(s) = 0 and we will end up with a contradiction.

We have P (s) = F ((1− s)µ0 + sµ1) = u(t1, s), where u(t1, s) is solution of
∂u

∂t
= G0(u(t1, s)) + u1(t1, s)M((1− s)µ0 + sµ1),

u(0, s) = u0.
(2.8)

We have P ′(s) =
∂u

∂s
(t1, s). Let put V (t, s) =

∂u

∂s
(t, s) that satisfies the following system obtained

by derivation with respect to s of system (2.8)
∂V

∂t
(t, s) =

N∑
k=1

∂G0

∂uk
(u(t, s))

∂uk

∂s
+ V1(t, s)M((1− s)µ0 + sµ1) + u1(t, s)M(µ1 − µ0),

V (0, s) = 0.

(2.9)

Denoting δ = M(µ1 − µ0) then the system (2.9) becomes thanks to the relation P ′(s) = 0,
∂V

∂t
(t, s) = DG0(u(t, s))V (t, s) + V1(t, s)M((1− s)µ0 + sµ1) + u1(t, s)δ,

V (0, s) = 0,
V (t1, s) = 0.

(2.10)

The hypothesis µ(0) ̸= µ(1) implies that δ ̸= 0 because the rank of matrix M is N − 1.
Now let divides by ∥δ∥ the system (2.10) then we get

∂V

∂t

1

∥δ∥∞
= DG0(u)

V

∥δ∥∞
+

V1

∥δ∥∞
M((1− s)µ0 + sµ1) + u1

1

∥δ∥∞
δ,

V (0, s) = 0,

V (t1, s) = 0.

Let use again the notation δ for
δ

∥δ∥∞
and V for

V

∥δ∥∞
. We can then assume that V and δ satisfy

(2.10) with ∥δ∥∞ = 1.
The proof of our result will follow several steps.

Step 1 Let state that u,
∂u

∂t
and DG0(u) are bounded

Proposition 2. There exists C1 ≥ 0, C2 ≥ 0, L ≥ 0 depending on u0 such that

0 ≤ ui(t) ≤ C1,∀i = 1, · · · , N ; ∥∂u
∂t

(t, s)∥ ≤ L ; ∥DG0(u(t))∥ ≤ C2 ∀t ∈ [0, T ], ∀s ∈ [0, 1].

Proof. The total mass of the interaction system between monomers and proto-oligomers is given by

ρ(t) =
N∑
i=1

iui(t) = u1(t) +
N∑
i=2

iui(t). We have ρ(t) ≤ ρ(0), ∀t ≥ 0. This inequality, that we prove

in the appendix, is due to the fact that oligomers of size N are not longer considered in the model
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when they gain monomers. So, denoting K =
∑N

i=1 iu
0
i we can write ∀t ∈ [0, T ], ∀s ∈ [0, 1],

0 ≤ ui(t, s) ≤
K

i
≤ C1.

Knowing that u belongs to a bounded subset, we deduce that there exists L ≥ 0 such that

∥∂u
∂t

(t, s)∥ ≤ L ∀t ∈ [0, T ],∀s ∈ [0, 1]. (2.11)

From the continuity of DG0 and the fact that u belongs to a compact of RN we deduce the existence
of C2 ≥ 0 such that

∥DG0(u(t))∥ ≤ C2, ∀ t ∈ [0, T ],∀ s ∈ [0, 1]. (2.12)
□

Step 2 Let state that V and
∂V

∂t
are bounded

Proposition 3. There exists C3 ≥ 0, C4 ≥ 0 such that ∥V ∥ ≤ C3 and ∥∂V
∂t

∥ ≤ C4 ∀t ∈ [0, T ],
∀s ∈ [0, 1].

Proof. Let multiply the equation (2.10) by V and get the relation

1

2

∂(∥V ∥2)
∂t

= DG0(u)V · V +M((1− s)µ0 + sµ1)V1 · V + u1δ · V.

From the estimations ∥DG0(u(t))∥ ≤ C2; ∥M((1−s)µ0+sµ1)∥ ≤ A0 with A0 constant; ∥V1∥ ≤ ∥V ∥;
∥u1∥ ≤ C1 and ∥δ∥∞ = 1, we deduce the inéquality

1

2

∂(∥V ∥2)
∂t

≤ (C2 +A0)∥V ∥2 + C1∥V ∥, pour tout t ∈]0, T ].

Applying Young inequality to the last term at the left hand side of the previous relation, we deduce
the estimate

∂(∥V ∥2)
∂t

≤ (2C2 + 2A0 + 1)∥V ∥2 + C2
1 , pour tout t ∈]0, T ], (2.13)

Using Gronwall lemma we deduce in one hand

∥V ∥2 ≤ ∥V (0, s)∥2e(2C2+2A0+1)t +
C2

1

2C2 + 2A0 + 1
e(2C2+2A0+1)t =

C2
1

2C2 + 2A0 + 1
e(2C2+2A0+1)t.

So, denoting C3 = C1

√
e(2C2+2A0+1)T

2C2 + 2A0 + 1
we get ∥V ∥ ≤ C3.

In other hand, from the time evolution equation of V we have

∥∂V
∂t

∥ ≤ ∥DG0(u)∥∥V ∥+ ∥V1∥∥M((1− s)µ0 + sµ1)∥+ ∥u1∥∥δ∥, ∀ t ∈]0, T ].

Knowing that ∥DG0(u)∥ ≤ C2, ∥M((1 − s)µ0 + sµ1)∥ ≤ A0, ∥u1∥ ≤ C1, ∥δ∥∞ = 1 and ∥V ∥ ≤ C3,
then we deduce

∥∂V
∂t

∥ ≤ C4 (2.14)

with C4 = (C2 +A0)C3 + C1. □



TITLE WILL BE SET BY THE PUBLISHER 11

Step 3
In one hand for small time interval [0, t1], it is easy to see that V is under linear in time. Indeed, we

have V (t) = V (0, s) +
∫ t

0

∂V

∂t
dτ =

∫ t

0

∂V

∂t
dτ which gives us, thanks to (2.14), the expected result

∥V ∥ ≤ C4t, ∀ t ∈ [0, t1]. (2.15)

In other hand, we have u1(t, s) = u0
1 +

∫ t

0

∂u1

∂t
dτ , then u1(t, s) ≥ u0

1 −
∫ t

0

|∂u1

∂t
|dτ .

Using the result proved in Proposition 2 we deduce u1(t, s) ≥ u0
1 − Lt, ∀ t > 0. Choosing τ1 > 0

such that τ1 <
u0
1

2L we write the estimation

u1(t, s) ≥
u0
1

2
, ∀ t ∈ [0, τ1]. (2.16)

We consider 0 < t1 ≤ τ1 and assume there exists an index i0 such that |δi0 | = 1. Then the component
i0 of equation (2.10) is

∂Vi0

dt
= [DG0(u)V ]i0 + [[M((1− s)µ0 + sµ1)]V1]i0 + u1δi0 . t ∈]0, T ].

From Rolle’s theorem and knowing that Vi0(0) = Vi0(t1), then there exists at least τ ∈ (0, t1)

such that ∂vi0 (τ)

dt = 0. So,

u1(τ, s)δi0 = −([DG0(u(τ, s))V (τ, s)]i0 + [M((1− s)µ0 + sµ1)]i0V1(τ, s)).

The hypothesis |δi0 | = 1 implies
u0
1

2
≤ |[DG0(u)V (τ)]i0 + [M((1 − s)µ0 + sµ1)]i0V1(τ)|. Thanks to

(2.15), we deduce the existence of C5 > 0 such that
u0
1

2
|δi0 | < C5t1. Then |δi0 | ≤

2C5

u0
1

t1.

One can choose r =
1

2
min(

u0
1

L
,
u0
1

2C5
), then if 0 < t1 < r we have |δi0 | < 1 which contradicts the

fact that |δi0 | = 1. That achieves the proof of the linear identifiability of our problem.

2.2.2. Proof of hypothesis 4 of Theorem 1
Let consider E(t) = V (t, s1)V (t, s2). We then obtain in one hand E(0) = V (0, s1)V (0, s2) = 0

and in other hand, from the expansion

E′(t) =
∂V (t, s1)

∂t
V (t, s2) +

∂V (t, s2)

∂t
V (t, s1)

we deduce at t = 0 the relation E′(0) = 0 because V (0, s1) = V (0, s2) = 0. Now we need to evaluate
E′′(0). For this let use notations V ′, V ′′ and v′′′ as respectively the first, second and third derivatives
with respect to t. So we have

E′′(t) = V ′′(t, s1)V (t, s2) + V ′′(t, s2)V (t, s1) + 2V ′(t, s2)V
′(t, s1).

Taking t = 0 we get E′′(0) = 2V ′(0, s2)V
′(0, s1),. From this, we can state the following result on

E′′(0)

Lemma 1. There is λM > 0 such that

E′′(0) ≥ 2λM (u0
1)

2∥α∥2, where α = µ1 − µ0
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Proof. Let remind the equation satisfied by V (t, s1):

∂V

∂t
(t, s1) = DG0(u(t, s1))V (t, s1)+V1(t, s1)M((1−s1)µ

0+s1µ
1)+u1(t, s1)M(µ1−µ0) ∀ s1 ∈ [0, 1].

Taking t = 0, we obtain

V ′(0, s1) = u1(0, s1)(µ
1 − µ0) = u0

1M(µ1 − µ0).

Doing the same with s2 we obtain

V ′(0, s2) = u1(0, s2)(µ
1 − µ0) = u0

1M(µ1 − µ0).

Since E′′(0) = 2V ′(0, s1)V
′(0, s2) we have

E′′(0) = 2(u0
1)

2(M · α)(M · α) = 2(u0
1)

2(MTMα · α).

The matrix MTM is a positive defined and symmetric matrix because the rank(M) = N − 1.
So there exists λM > 0 (the smallest eigenvalue of MTM) such that MTMα · α ≥ λM∥α∥2 which
achieves the proof of the lemma. □

Now assume that u0
1 > 0 and α ̸= 0, then E′′(0) > 0. Since E is of class C2 so we have the Taylor

expansion E(t) = E(0)+E′(0)t+ t2

2 E
′′(0)+o(t2). As E(0) = E′(0) = 0 then E(t) = t2

2 E
′′(0)+o(t2).

So, if t is small enough we get E(t) ≥ 0, but the interval for which E(t) ≥ 0 depends on α and
we need an non-dependent interval. So the key point is to use the Taylor expansion with integral
remainder

E(t) = E(0) + E′(0)t+
t2

2
E′′(0) +

t3

2

∫ 1

0

(1− r)2E(3)(rt)dr.

Since E(0) = E′(0) = 0 then the previous expansion becomes

E(t) =
t2

2
E′′(0) +

t3

2

∫ 1

0

(1− r)2E(3)(rt)dr. (2.17)

From (2.17) we can state the following result

Lemma 2. There exists a constant C5 that does not depend on α such that

|E(3)(t)| ≤ C5∥α∥2, ∀ t ∈ [0, 1].

Proof. We have

E(3)(t) = V ′′′(t, s1) · V (t, s2) + 3V ′′(t, s1) · V ′(t, s2) + 3V ′(t, s1) · V ′′(t, s2) + V (t, s1) · V ′′′(t, s2).

So, it is sufficient to show that

|V (k)(t, sj)| ≤ C∥α∥, ∀ k = 0, 1, 2, 3, . . . and ∀ j = 1, 2. (2.18)

Since µ0 and µ1 are in the bounded set U , then there exists a constant µ̄ > 0 such that |µ0| ≤ µ̄
and |µ1| ≤ µ̄. So we have |(1− s)µ0 + sµ1| ≤ µ̄ and |α| ≤ 2µ̄. We will prove (2.18) in the case j = 1
and it will be the same reasoning for j = 2.
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Step 1 : k = 0 or k = 1
We have{

V ′(t, s1) = DG0(u(t, s1))V (t, s1) + V1(t, s1)M((1− s1)µ
0 + s1µ

1) + u1(t, s1)Mα, ∀ s1 ∈ [0, 1]

V (0, s1) = 0.

(2.19)
Dropping the arguments to simplify notation, we then multiply (2.19) by V and get

1

2

∂(∥V ∥2)
∂t

= DG0(u)V · V +M((1− s1)µ
0 + s1µ

1)V1 · V + u1Mα · V,

V (0, s1) = 0,

which gives


1

2

∂(∥V ∥2)
∂t

≤ ∥DG0(u)∥∥V ∥2 + ∥M((1− s1)µ
0 + s1µ

1)∥∥V1∥∥V ∥+ ∥u1∥∥Mα∥∥V ∥,

V (0, s1) = 0,

as ∥DG0(u)∥C2, ∥M((1 − s1)µ
0 + s1µ

1)∥ ≤ ∥M∥µ̄, ∥V1∥ ≤ ∥V ∥, ∥u1∥ ≤ C1 and ∥Mα∥ ≤ ∥M∥∥α∥
then the previous inequality becomes

1

2

∂(∥V ∥2)
∂t

≤ C2∥V ∥2 + ∥M∥µ̄∥V ∥2 + C1∥M∥∥α∥∥V ∥,

V (0, s1) = 0,
(2.20)

By setting α0 = C1∥M∥∥α∥ we get
1

2

∂(∥V ∥2)
∂t

≤ (C2 + ∥M∥µ̄)∥V ∥2 + α0∥V ∥,

V (0, s1) = 0.
(2.21)

Applying Young’s inequality to the last term at the right hand side we write α0∥V ∥ ≤ α2
0

2 + ∥V ∥2

2 .
Hence the inequality (2.21) becomes

∂(∥V ∥2)
∂t

≤ (2C2 + 2∥M∥µ̄+ 1)∥V ∥2 + α2
0,

V (0, s1) = 0.
(2.22)

From Gronwall’s lemma one deduces

∥V ∥2 ≤ ∥V (0, s1)∥e(2C2+2∥M∥µ̄+1)t +
α2
0(e

(2C2+2∥M∥µ̄+1)t)

2C2 + 2∥M∥µ̄+ 1
≤ α2

0(e
(2C2+2∥M∥µ̄+1)t)

2C2 + 2∥M∥µ̄+ 1
∀ t ∈ [0, T ].

We set C6 = C1∥M∥

√
e(2C2+2∥M∥µ̄+1)t

2C2 + 2∥M∥µ̄+ 1
, hence the estimate of V (t, s1) is given by

∥V (t, s1)∥ ≤ C6∥α∥ ∀ t ∈ [0, T ]. (2.23)

Now, from (2.19) one deduces

∥V ′(t, s1)∥ ≤ ∥DG0(u)∥∥V ∥+ ∥V1∥∥M((1− s1)µ
0 + s1µ

1)∥+ ∥u1∥∥Mα∥,
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which gives
∥V ′(t, s1)∥ ≤ C2∥V (t, s1)∥+ ∥V (t, s1)∥∥M∥µ̄+ C1∥M∥∥α∥.

We then obtain
∥V ′(t, s1)∥ ≤ C7∥α∥ ∀ t ∈ [0, T ], (2.24)

with C7 = C2C6 + C6∥M∥µ̄+ C1∥M∥.

Step 2 : k = 2

Deriving the equation (2.19) with respect to time variable t, we get

V ′′(t, s1) = D2G0(u)u
′V +DG0(u)V

′ + V ′
1M((1− s1)µ

0 + s1µ
1) + u′

1Mα. (2.25)

This previous relation implies

∥V ′′(t, s1)∥ ≤ ∥D2G0(u)∥∥u′∥∥V ∥+ ∥DG0(u)∥∥V ′∥+ ∥V ′
1∥∥M((1− s1)µ

0 + s1µ
1)∥+ ∥u′

1∥∥Mα∥.

From (2.11), (2.23), (2.24), ∥M((1− s1)µ
0 + s1µ

1)∥ ≤ ∥M∥µ̄ and ∥D2G0(u)∥ ≤ C21 (see (2.10) we
obtain

∥V ′′(t, s1)∥ ≤ C9∥α∥ ∀t ∈ [0, T ], (2.26)
with C9 = C2LC6 + C2C6 + C7∥M∥µ̄+ C1∥M∥.

Step 3 : k = 3

We derive the equation (2.25) with respect of t and get

V ′′′(t, s1) = D3G0(u(t, s1))u
′(t, s1)u

′(t, s1)V (t, s1) +D2G0(u(t, s1))u
′′(t, s1)V (t, s1)

+ 2D2G0(u(t, s1))u
′(t, s1)V

′(t, s1) +DG0(u(t, s1))V
′′(t, s1) (2.27)

+ V ′′
1 (t, s1)M((1− s1)µ

0 + s1µ
1) + u′′

1(t, s1)Mα.

We also derive the equation (2.8) with respect of t and get

u′′(t, s1) = DG0(u(t, s1))u
′(t, s1) + u′

1(t, s1)M((1− s1)µ
0 + s1µ

1)

Triangular inequality yields

∥u′′(t, s1)∥ ≤ ∥DG0(u(t, s1))∥∥u′(t, s1)∥+ ∥u′
1(t, s1)∥∥M((1− s1)µ

0 + s1µ
1)∥. (2.28)

Using (2.12), ∥M((1−s1)µ
0+s1µ

1)∥ ≤ ∥M∥µ̄, ∥u′∥ ≤ C8 and ∥u′
1∥ ≤ C1 the previous relation reads

∥u′′(t, s1)∥ ≤ C10, (2.29)

with C10 = C2L+ L∥M∥µ̄.

Let us apply the triangular inequality to (2.27),

∥V ′′′(t, s1)∥ ≤ ∥D3G0(u(t, s1))∥∥u′(t, s1)∥∥u′(t, s1)∥∥V (t, s1)∥+ ∥D2G0(u(t, s1))∥∥u′′(t, s1)∥∥V (t, s1)∥
+ ∥2D2G0(u(t, s1))∥∥u′(t, s1)∥∥V ′(t, s1)∥+ ∥D2G0(u(t, s1))∥∥V ′′(t, s1)∥ (2.30)

+ ∥V ′′
1 (t, s1)∥∥M((1− s1)µ

0 + s1µ
1)∥+ ∥u′′

1(t, s1)∥∥Mα∥.
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We now have ∥D3G0(u)∥ ≤ C22 from (2.12), then using (2.22), (2.29), (2.11), (2.23), (2.24), (2.26)
we easily get

∥V ′′′(t, s1)∥ ≤ C11∥α∥ (2.31)

with C11 = C22L
2C6 + C21C10C6 + 2C21LC7 + C21C9 + C9∥M∥µ̄+ C10∥M∥.

Using the same reasoning, we finally obtain the same inequalities with s2 in place of s1 which
gives the result of Lemma 2.

□

Now, to end the proof of Theorem 2, let recall the equation (2.17)

E(t) =
t2

2
E′′(0) +

t3

2

∫ 1

0

(1− r)2E(3)(rt)dr.

From Lemma 2 we have

|
∫ 1

0

(1− r)E(3)(rt)dr| ≤
∫ 1

0

(1− r)2C5∥α∥2dr =
1

3
C5∥α∥2

which gives

t3

2

∫ 1

0

(1− r)E(3)(rt)dr ≥ − t3

6
C5∥α∥2. (2.32)

According to Lemma 1 we get

t2

2
E′′(0) ≥ t2λM (u0

1)
2∥α∥2. (2.33)

From (2.32) and (2.33) we deduce

E(t) =
t2

2
E′′(0) +

t3

2

∫ 1

0

(1− r)2E(3)(rt)dr ≥ (λM (u0
1)

2 − C5
t

6
)t2∥α∥2. (2.34)

We choose t1 > 0 such that C5t1
6 ≤ λM (u0

1)
2 (for instance we set t1 =

6λM (u0
1)

2

C5
) and this gives from

(2.34)

E(t) ≥ 0, ∀ t ∈ (0, t1).

Then the hypothesis of Theorem 1 are verified which ends the proof of Theorem 2.

3. Numerical illustrations

To illustrate numerically the identification of the nucleation parameter µ ∈ RN−1 from a given
measurement of u at one small time t1 ∈ (0, T ), we transform the inverse problem into an optimiza-
tion problem by means of a function whose only minimum is µ∗.
We recall below the considered structured model with maximal size N where u = (u1, · · · , uN )T ∈
RN

+ is the unknowns vector.
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du1(t)

dt
= −u1(t)

N∑
i=1

riui(t) + b(2u2(t) +

N∑
i=3

ui(t))− u1(t)

N∑
i=2

iµi,

dui(t)

dt
= ri−1u1(t)ui−1(t)− (b+ riu1(t))ui(t) + bui+1(t) + u1(t)µi,

i = 2, . . . , N − 1,

duN (t)

dt
= rN−1u1(t)uN−1(t)− (b+ rNu1(t))uN (t) + u1(t)µN ,

u(0) = u0,

(3.35)

where u0 = (u0
1, . . . , u

0
N )

T ∈ RN
+ .

For the notation, the nucleation parameter µ = (µ2, . . . , µN )T ∈ RN−1
+ begin with the index 2 be-

cause one single monomer cannot form by nucleation a proto-oligomer.

Now we assume that we have û ∈ RN
+ a vector measurement of the solution u of the system

(3.35) at the given small time t1 ∈ (0, T ). We propose to find numerically the vector of parameters
µ ∈ RN−1. To do this, we use the non-linear least squares method by introducing a function

φ : RN−1 −→ R
µ 7−→ φ(µ) = 1

2 ||u− û||2,
with u depending on µ i.e. u = F (µ) solution of (3.35) taken at t1. So we write

φ(µ) =
1

2
∥F (µ)− û∥2RN , (3.36)

where

F (µ)=


uµ
1 (t1)

uµ
2 (t1)
...

uµ
N (t1)

 ∈ RN and û =


û1(t1)
û2(t1)

...
ûN (t1)

 ∈ RN .

We seek to solve the problem (3.36) in the least squares sense.

Our problem is to minimize φ(µ):

min
µ∈RN−1

(
φ(µ) =

1

2
∥F (µ)− û∥2

)
,

where F (µ) = u is the solution of the ordinary differential equation for a fixed µ.

In table 2 below we put the summary table of the parameters and unknowns of our model

3.1. Simulation of the direct problem

We simulate the direct problem (3.35) for a given vector of the nucleation parameter. Figure 3.1
shows the time evolution for monomers u1 and for proto-oligomers ui, i ∈ {2, · · · , 7}. The simulation
is done with Matlab.

3.2. Simulations involving the estimation of the nucleation parameter

To estimate the nucleation parameter µ involved in system (3.35) we assume as measured data, û
(synthesized here) the solution of the direct problem at time t1 ∈ (0, T ). This synthesized solution
is obtained with the nucleation parameter µf . The objective of the following tests is to forget this
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Parameter Definition
b = 1 Depolymerization rate for proto-oligomers
N = 7 The maximum size of proto-oligomers
µi, i = 2, . . . , N Nucleation rate for proto-oligomers of size i
T Final time
r0 = 0.75 and b0 = 0.5 Kinetic constants
ri = r0 × i1/3, i = 1, . . . , N Polymerisation rate
ui(0) = (0.5/

√
2π)e(−0.5×(i−1)2) The initial condition

µf = µi =
b0×i
i+1 , i = 2, . . . , N The given nucleation rate

µr The estimated or reconstructed nucleation rate
Er =

∥µr−µf∥
∥µf∥ Relative error for the estimation of µ

û The measured data at a given time for the solution of (3.35)
εp The perturbation parameter of the solution of the direct problem
ε The perturbation parameter of the nucleation rate µf

ûp The perturbed solution

Table 2. Description of the parameters and unknowns of the model.

Figure 3. Solution at time T = 1 obtained with parameters taken from Table 2
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dependency in µf and to try to estimate this parameter through a minimization problem. We solve
the minimization problem with the tool fminsearch of Matlab.

3.2.1. Estimation with a constant perturbation of µf .
We are interested in the case where we subtract a constant vector of value ε from the reference

nucleation parameter µf . So, starting from this initial condition

µin,0 = µf − ε×Ones(N − 1, 1), where Ones(N − 1, 1) = (1, · · · , 1)T

we find an estimation µr (value of µ reconstructed) using our minimization strategy. Of course if
the algorithm converge then µr is expected to estimate µf .

For various values of ε and measured data taken at time t1 = 0.2 we obtain

µf µr with ε = 0.1 µr with ε = 1 µr with ε = 10

0.333333333333333 0.333349883502746 0.333368158686978 0.333360071687941

0.375000000000000 0.374975802656048 0.375014918722041 0.374976994055416

0.400000000000000 0.399966000229233 0.400001811533451 0.399990665024704

0.416666666666667 0.416676239871635 0.416670054947340 0.416641629407721

0.428571428571429 0.428571397045192 0.428567016101712 0.428533628763940

0.437500000000000 0.437532262391694 0.437477091332681 0.437552055817063

Table 3. Values of reconstructed nucleation parameter compared to the referenced one

For this test, in the particular case where ε = 0.1, the tool fminsearch converge after 430 it-
erations and gives the value φ(µr) = 1.53774e − 12. The corresponding relative error is Er =
5.725048933047261e− 05.

3.3. Estimation with a random perturbation of µf

Here we are interested in the case where a random perturbation is added to µf . So, from initial
conditions of the form:

µin,0 = µf − ε× rand(N, 1),

where rand(n,m): returns a matrix of n rows and m columns of random entries with values between
0 and 1.
For various values of ε and measured data taken at time t1 = 0.2 we obtain the results in the table
4 below

For this test, in the particular case where ε = 0.1, the tool fminsearch converge after 223 it-
erations and gives the value φ(µr) = 1.35969e − 12. The corresponding relative error is Er =
6.689300069247282e− 05.
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µf µr with ε = 0.1 µr with ε = 1 µr with ε = 10

0.333333333333333 0.333305573630657 0.333333560732965 0.333334656165570

0.375000000000000 0.374988369081162 0.374999369462275 0.375000270956315

0.400000000000000 0.399964121775021 0.400000352426655 0.400000373413034

0.416666666666667 0.416686257711450 0.416666436408618 0.416667773479836

0.428571428571429 0.428610791605128 0.428571181230545 0.428571293138055

0.437500000000000 0.437486915154826 0.437500239323424 0.437498890474966

Table 4. Values of reconstructed nucleation parameter compared to the referenced one

3.4. Estimation with data taken as a constant perturbation of the solution

We are interested here in the case where we add a constant noise to the solution of the direct
problem (3.35). So we consider as data the vector ûp defined by

ûp = û− εp ×Ones(N − 1, 1).

Thus, from a given initial condition µin,0 = µf −0.1×Ones(N−1, 1) we find an estimation sequence
µr of µf using the our algorithm with the Matlab tool fminsearch.

For various constant noise εp and û taken at time t1 = 0.2 we obtain the following reconstructions

µf µr with εp = 10−4 µr with εp = 10−3 µr with εp = 10−2

0.333333333333333 0.328640727168973 0.286286286618157 0.170758856257970

0.375000000000000 0.371815361198109 0.342858661869607 0.030984543696027

0.400000000000000 0.398490219045264 0.385120811338224 0.242704708094556

0.416666666666667 0.416757711871747 0.418023053611640 0.431381608326305

0.428571428571429 0.430279382129130 0.445560076787198 0.611233378024042

0.437500000000000 0.441501679429658 0.477483478408652 0.866321589124976

Table 5. Values of reconstructed nucleation parameter compared to the referenced one

For this test, in the particular case where εp = 10−4, the tool fminsearch converges after
271 iterations and gives the value φ(µr) = 8.42995e − 08. The corresponding relative error is
Er = 0.007455214811766.
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3.5. Estimation with data taken as a random perturbation of the solution

We consider the case where a random noise is added to the solution of the direct problem at time
t1 as follows

ûp = û− rand(N − 1, 1)

where the function rand(N − 1, 1) gives a random vector of size (N − 1) × 1 and whose values are
chosen in [0, 1]. Thus from the initial condition µin,0 = µf − 0.02×Ones(N − 1, 1) we obtain

µf µr

0.333333333333333 0.279499359432756

0.375000000000000 0.335029771112940

0.400000000000000 0.381304281712023

0.416666666666667 0.424035552157708

0.428571428571429 0.444535756902563

0.437500000000000 0.4565625455003123

Table 6. Values of reconstructed nucleation parameter compared to the referenced
one for εp = rand(N − 1, 1)

For this test, the tool fminsearch converge after 63 iterations and give the value φ(µr) =
1.11814e− 05. The relative error is Er = 0.087991219361796.

4. Conclusion

In this paper we have investigated the inverse problem involved in the estimation of the nucleation
parameter arising in a simplified model for early stage of Alzheimer’s disease modeling. This simpli-
fied model describes the dynamics of formation of Aβ proto-oligomers of any size i ∈ {2, · · · , N} by
aggregating monomers or by a nucleation process where two or more Aβ monomers spontaneously
merge a form a proto-oligomer.
We analytically prove the Q well-posed of our identification parameter problem from a sequence
of approximations of the expected solutions. We also provide some numerical illustrations by con-
sidering synthesized data as being the solutions at a given time of our direct problem (means the
problem when the nucleation parameter is a priori known). The obtained results from different
scenarios show a good consistency of our parameter reconstruction method.
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Appendix

Proof of the inequality ρ(t) ≤ ρ0 ∀ t > 0

The total mass of the interaction system between monomers and proto-oligomers is

ρ(t) =

N∑
i=1

iui(t) = u1(t) +

N∑
i=2

iui(t), t ≥ 0. (4.37)

Deriving (4.37) with respect to t we write

ρ′(t) = u′
1(t) +

N−1∑
i=2

iu′
i(t) +Nu′

N (t). (4.38)

From the differential equations governing the considered system, the relation (4.38) is recasted as
follow

ρ′(t) = −u1(t)

N∑
i=1

riui(t) + b(2u2(t) +

N∑
i=3

ui(t))− u1(t)

N∑
i=2

iµi + u1(t)

N−1∑
i=2

i(ri−1ui−1(t)− riui(t))

+b

N−1∑
i=2

i(ui+1(t)− ui(t)) + u1(t)

N−1∑
i=2

iµi +NrN−1u1(t)uN−1(t)−NbuN (t)−NrNu1(t)uN (t) +Nu1(t)µN .

Rearranging the terms leads to

ρ′(t) = −u1

N∑
i=1

riui + b(2u2 +

N∑
i=3

ui) + u1A+ bB −NbuN , (4.39)

where A =
N∑
i=2

i(ri−1ui−1 − riui) and B =
N−1∑
i=2

i(ui+1 − ui).

Computing A and B we obtain in one hand

A =

N∑
i=2

i(ri−1ui−1 − riui) =

N∑
i=2

iri−1ui−1 −
N∑
i=2

iriui

=

N−1∑
i=1

(i+ 1)riui −
N∑
i=2

iriui =

N−1∑
i=1

iriui +

N−1∑
i=1

riui −
N∑
i=2

iriui

= r1u1 +

N−1∑
i=2

iriui +

N−1∑
i=1

riui −
N−1∑
i=2

iriui −NrNuN

=

N−1∑
i=2

riui −NrNuN
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and in other hand

B =

N−1∑
i=2

i(ui+1 − ui) =

N−1∑
i=2

iui+1 −
N−1∑
i=2

iui =

N∑
i=3

(i− 1)ui −
N−1∑
i=2

iui

=

N−1∑
i=3

(i− 1)ui + (N − 1)uN −
N−1∑
i=2

iui

=

N−1∑
i=3

iui − 2u2 −
N−1∑
i=3

iui −
N−1∑
i=3

ui + (N − 1)uN

= (N − 1)uN − 2u2 −
N−1∑
i=3

ui

Injecting the computed values of A and B in (4.39) we get

ρ′(t) = −u1

N∑
i=1

riui + b(2u2 +

N∑
i=3

ui) + u1(

N−1∑
i=2

riui −NrNuN ) + b((N − 1)uN − 2u2 −
N−1∑
i=3

ui)−NbuN

= −u1

N∑
i=1

riui + b

N∑
i=3

ui + u1

N−1∑
i=2

riui −NrNu1uN − b

N∑
i=3

ui

= −u1

N∑
i=1

riui + u1

N−1∑
i=2

riui −NrNu1uN

= −u1r1u1 − u1

N−1∑
i=2

riui − rNu1uN + u1

N−1∑
i=2

riui −NrNu1uN

= −u1r1u1 − rNu1uN −NrNu1uN

= −(r1u1 + rNuN +NrNuN )u1,

which implies ρ′(t) ≤ 0 means ρ(t) ≤ ρ(0) = ρ0 ∀ t > 0.
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oligomer-induced neuronal death by EGTA, estradiol, and endocytosis inhibitor. Medicina, 47(2):15, 2011.

[7] Samuel IA Cohen, Sara Linse, Leila M Luheshi, Erik Hellstrand, Duncan A White, Luke Rajah, Daniel E
Otzen, Michele Vendruscolo, Christopher M Dobson, and Tuomas PJ Knowles. Proliferation of Amyloid-β42
aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences,
110(24):9758–9763, 2013.

[8] Manfred Eigen. Prionics or the kinetic basis of prion diseases. Biophysical chemistry, 63(1):A1–A18, 1996.
[9] Simona Eleuteri, Saviana Di Giovanni, Edward Rockenstein, Mike Mante, Antony Adame, Margarita Trejo,

Wolf Wrasidlo, Fang Wu, Patrick C Fraering, Eliezer Masliah, et al. Blocking Aβ seeding-mediated aggregation



TITLE WILL BE SET BY THE PUBLISHER 23

and toxicity in an animal model of Alzheimer’s Disease: A novel therapeutic strategy for neurodegeneration.
Neurobiology of disease, 74:144, 2015.

[10] Meredith L Greer, Laurent Pujo-Menjouet, and Glenn F Webb. A mathematical analysis of the dynamics of prion
proliferation. Journal of theoretical biology, 242(3):598–606, 2006.

[11] Christian Haass and Dennis J Selkoe. Soluble protein oligomers in neurodegeneration: lessons from the
Alzheimer’s amyloid β-peptide. Nature reviews Molecular cell biology, 8(2):101, 2007.

[12] John Hardy and Dennis J. Selkoe. The amyloid hypothesis of alzheimer’s disease: Progress and problems on the
road to therapeutics. Science, 297(5580):353–356, 2002.

[13] John A Hardy and Gerald A Higgins. Alzheimer’s disease: the amyloid cascade hypothesis. Science,
256(5054):184–186, 1992.

[14] James D Harper and Peter T Lansbury Jr. Models of amyloid seeding in alzheimer’s disease and scrapie: mecha-
nistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annual review
of biochemistry, 66(1):385–407, 1997.

[15] Mohammed Helal, Abdelkader Lakmeche, Pauline Mazzocco, Angélique Perrillat-Mercerot, Laurent Pujo-
Menjouet, Human Rezaei, and Léon M. Tine. Stability Analysis of a Steady State of a Model Describing
Alzheimer’s Disease and Interactions with Prion Proteins. Journal of Mathematical Biology, in press.

[16] Craig Hughes, Minee-Liane Choi, Jee Yi, Seung Chan Kim, Anna Drews, Peter George-Hyslop, Clare Bryant,
Sonia Gandhi, Kwangwook Cho, and David Klenerman. Beta amyloid aggregates induce sensitised tlr4 signalling
causing long-term potentiation deficit and rat neuronal cell death. Communications Biology, 3, 02 2020.

[17] Lars M Ittner and Jürgen Götz. Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nature Reviews
Neuroscience, 12(2):67, 2011.

[18] Clifford R Jack Jr, David S Knopman, William J Jagust, Ronald C Petersen, Michael W Weiner, Paul S Aisen,
Leslie M Shaw, Prashanthi Vemuri, Heather J Wiste, Stephen D Weigand, et al. Tracking pathophysiological
processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology,
12(2):207–216, 2013.

[19] Franziska Matthäus. Diffusion versus network models as descriptions for the spread of prion diseases in the brain.
Journal of theoretical biology, 240(1):104–113, 2006.

[20] Martin A Nowak, David C Krakauer, Aron Klug, and Robert M May. Prion infection dynamics. Integrative
Biology: Issues, News, and Reviews: Published in Association with The Society for Integrative and Comparative
Biology, 1(1):3–15, 1998.

[21] T. Oda, G.M. Pasinetti, H.H. Osterburg, C. Anderson, S.A. Johnson, and C.E. Finch. Purification and Char-
acterization of Brain Clusterin. Biochemical and Biophysical Research Communications, 204(3):1131 – 1136,
1994.

[22] TG Ohm, H Müller, H Braak, and J Bohl. Close-meshed prevalence rates of different stages as a tool to uncover
the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience, 64(1):209–217, 1995.

[23] Richard J Perrin, Anne M Fagan, and David M Holtzman. Multimodal techniques for diagnosis and prognosis of
Alzheimer’s disease. Nature, 461(7266):916, 2009.

[24] Urmi Sengupta, Ashley N Nilson, and Rakez Kayed. The role of amyloid-β oligomers in toxicity, propagation,
and immunotherapy. EBioMedicine, 6:42–49, 2016.

[25] R.D.E. Sewell. Protein Misfolding in Neurodegenerative Diseases: Mechanisms and Therapeutic Strategies. En-
zyme Inhibitors Series. CRC Press, 2007.

[26] A David Smith. Imaging the progression of Alzheimer pathology through the brain. Proceedings of the National
Academy of Sciences, 99(7):4135–4137, 2002.

[27] Claudio Soto. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuro-
science, 4(1):49, 2003.

[28] Martha Storandt, Elizabeth A Grant, J Philip Miller, and John C Morris. Rates of progression in mild cognitive
impairment and early Alzheimer?s disease. Neurology, 59(7):1034–1041, 2002.

[29] Michael PH Stumpf and David C Krakauer. Mapping the parameters of prion-induced neuropathology. Proceed-
ings of the National Academy of Sciences, 97(19):10573–10577, 2000.

[30] Reisuke H. Takahashi, Toshitaka Nagao, and Gunnar K. Gouras. Plaque formation and the intraneuronal accu-
mulation of β-amyloid in alzheimer’s disease. Pathology International, 67(4):185–193, 2017.

[31] Tomohiro Umeda, Takami Tomiyama, Naomi Sakama, Saya Tanaka, Mary P. Lambert, William L. Klein,
and Hiroshi Mori. Intraneuronal amyloid β-oligomers cause cell death via endoplasmic reticulum stress,
endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. Journal of Neuroscience Research,
89(7):1031–1042, 2011.

[32] Li Na Zhao, Hon Wai Long, Yuguang Mu, and Lock Yue Chew. The toxicity of amyloid ß oligomers. International
journal of molecular sciences, 13(6):7303–7327, 2012.


	1. Introduction: a focus on the A protein
	2. Model description
	2.1. Reminder on Q well-posed problems (see chavent2010nonlinear)
	2.2. Main result of the paper

	3. Numerical illustrations 
	3.1. Simulation of the direct problem
	3.2. Simulations involving the estimation of the nucleation parameter
	3.3. Estimation with a random perturbation of f
	3.4. Estimation with data taken as a constant perturbation of the solution
	3.5. Estimation with data taken as a random perturbation of the solution

	4. Conclusion
	Acknowledgments
	Appendix
	Proof of the inequality (t)0   t >0 

	References

