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Reduced-Order Observer Design for Time-Delay Systems using Partial
Pole Placement

Ahlem Sassi1 and Islam Boussaada2,3 and Silviu-Iulian Niculescu3

Abstract— This paper develops a functional reduced-order
observer for a class of Linear Time-Invariant (LTI) systems
with time-delay in the state. The proposed observer provides
exponentially stable estimation errors. The unbiasedness condi-
tions on the nominal part of the error dynamics of the reduced-
order observer were given by employing an algebraic frame-
work. Under such conditions, we propose the use of a partial
pole placement of the error dynamical equations to handle
sufficient conditions for the existence of the proposed observer.
Specifically, we make use of the multiplicity-induced-dominancy
property of the characteristic function corresponding to the
system’s error. The performance and the effectiveness of the
developed observer is highlighted through two examples: first,
the estimation of the HIV-1 infection dynamics, and second,
the improvement of the environmental performance through
the study of a diesel engine system.

I. INTRODUCTION

Delay-differential equations are one of the simplest ways
to represent time heterogeneity. Transportation, propagation
and communication represent the simplest phenomena where
the delay appears naturally. As expected, due to its infinite
dimensional character, the presence of time delay in a system
model renders the control/observer design more difficult.
However, it should be mentioned that if such a delay is
properly taken into account, it may bring advantages in
controlling system dynamics as emphasized by [1] [2].

Over the past decades, several significant advances have
been done in stability analysis and feedback control of time-
delay systems, [3], [4] and the references therein. In the
sequel, we are interested on the observation of time-delay
systems under the assumption that the delay is known, and, in
particular, reduced-order observers. Roughly speaking, since
the number of state variables in a reduced-order observer
is less than the order of the considered system, the reduced-
order observer is parsimonious, often a desirable engineering
quality. But, in addition, a reduced-order observer may have
better properties than a full-order observer, especially with
respect to robustness of a control system which uses an
observer to implement the control algorithm in an “observer-
based” control design. Reduced-order observers are well
recognized for having faster convergence rates and lower
computational burden, as the only state variables to be
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estimated are the ones which are actually not measured (see,
for example, [5], [6], [7], [8], [9].

It is well known that the aim of observer design is to
reconstruct the trajectory of states of a dynamic system. An
observer is an auxiliary system such that the error between
the observer state and the system state decreases asymptot-
ically towards zero. As a result, stability analysis tools are
crucial in the design of observers. Among the existing meth-
ods, eigenvalue-based methods have become popular in the
stabilization of linear time-invariant (LTI) time-delay systems
[10] and recently in observers design [11], [12]. A recent pole
placement approach, called Partial Poles Placement (PPP),
has been introduced in [13]. It derives from two properties
called respectively multiplicity-induced-dominancy (MID)
and coexistent-real-roots-inducing-dominancy (CRRID), see
for instance [14].

In a previous work [11], we propose the design of a full-
order observer using the pole placement approach based on
the MID property. Here, we propose a more general observer
with reduced order to estimate a function of the states or
the unmeasured ones. For the design, we call the generic
multiplicity-induced-dominancy (GMID) which is a more
general result for Delay Differential Equations (DDE) of
order n with delayed polynomial term of order n−1, which
allows us to avoid assumption of the real rootedness of the
non-delayed polynomial corresponding to the characteristic
function. To the best of the authors’ knowledge, such a
construction represents a novelty in the open literature.

In this paper, we investigate the design of a reduced
order observer for delay systems which employs the pole
placement approach, for stabilization of the error systems
involving a known time-delay. Some prerequisites and the
problem formulation are presented in Section II. In Section
III, the main results on the existence of the observer and
stability analysis of the error system are given. In Section
IV, the proposed observer is applied to the linear model of
HIV-1 infection dynamics and the diesel engine which both
involves known time-delay. Some concluding remarks end
the paper. The notations are standard.

II. PREREQUISITES AND PROBLEM STATEMENT

Consider a generic dynamical system with a single delay
described by the DDE:

ξ̇(t) = Aξ(t) +Adξ(t− τ), (1)

under appropriate initial conditions, where ξ ∈ Rn is the
state vector, τ is a positive constant delay. The matrices:
A ∈ Rn×n and Ad ∈ Rn×n are known constant matrices.



It is well known that the asymptotic behavior of the
solutions of (1) is determined from its spectrum (see, e.g.
[15]), that is the set of the (characteristic) roots of the
associated characteristic function (denoted ∆(s, τ) in the
sequel).

The characteristic function ∆ : C×R+ → C correspond-
ing to (1) writes as follows:

∆(s, τ) = det(sIn −A−Ade
−τs) (2)

A generic result on the location of spectral values corre-
sponding to (2) is given by the following:

Proposition 1: [16] If s is a characteristic root of system
(1), then it satisfies

|s| ≤ ||A+Ade
−τs||2 (3)

This result combined with the triangular inequality pro-
vides a generic envelope curve around the characteristic roots
corresponding to system (1).

In the sequel, we are interested in the study of a class
of LTI delay systems characterized by the quasipolynomial
function of the form:

∆(s, τ) = P0(s) + P1(s)e
−τs (4)

where deg(P0) > deg(P1). The question of analytical
characterization of its rightmost root will be a key in the
resolution of our problem.

A. Partial pole placement in delay systems

One of the most natural and classical ways to stabilize a
dynamical LTI delay system is to select the free parameters
of the controller in order to choose the location of finitely
many roots while also guaranteeing that the dominant root1

is among the chosen ones. This has been the subject of
several recent works, such as [17], [14], [13]. Contrary
to the strategy of FPP used, e.g., in [18], the controllers
designed calling these approaches do not make the closed-
loop system finite-dimensional, instead, control its rightmost
spectral value. These methods also extend to some partial
differential equations, as detailed, for example, in [19]. In
particular, we shall use the MID property as described
in [20]. For LTI systems including delays in their model
representation, spectral methods can be used to understand
the asymptotic behavior of solutions by considering the roots
of some characteristic function (see, e.g., [21], [22], [15],
[23], [24], [25]) which, for (1), is the function ∆ : C → C
defined for s ∈ C by

∆(s) = sn +

n−1∑
k=0

aks
k + e−sτ

m∑
k=0

αks
k. (5)

More precisely, the exponential behavior of solutions of (5)
is given by the real number γ0 = sup{ℜ(s)/s ∈ C, ∆(s) =
0}, called the spectral abscissa of ∆, in the sense that, for
every ε > 0, there exists C > 0 such that, for every solution
e of (10), one has |e(t)| ≤ Ce(γ0+ε)t maxθ∈[−τ,0] |e(θ)| [21].
Moreover, all solutions of (5) converge exponentially to 0 if

1the rightmost characteristic root in the complex plane

and only if γ0 < 0. An important difficulty in the analysis of
the asymptotic behavior of (5) is that, contrary to the delay-
free case, the corresponding characteristic function ∆ has
infinitely many roots.

Theorem 1 ([26]): Consider the qua-sipolynomial ∆
given by (5). Let s0 ∈ R be a root of ∆ with maximal
multiplicity i.e. M(s0) = deg(∆), then,

1) (Retarded) If m < n, then s0 is a strictly dominant
root of ∆.

2) (Neutral) If m = n, then s0 is a dominant root of
∆ and, for every other complex root s of ∆, one has
ℜ(s) = s0.

Notice that the GMID consists in forcing a root to reach
its maximal multiplicity, which does not allow any degree of
freedom in assigning s0. In order to allow for some additional
freedom when assigning s0, one can relax such a contraint
by forcing the root s0 to have a multiplicity lower than the
maximal.

B. Problem formulation

1) Studied Class of systems: The class of system inves-
tigated in this work is defined by the following state space
model,

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t) (6a)
y(t) = Cx(t) (6b)
x(t) = ϕ(t) t ∈ [0, τ ] (6c)
z(t) = Lx(t) (6d)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the states vector, the
control input and the measurements vector respectively. z ∈
Rr is the vector to be estimated where r ≤ n. τ is a known
constant delay. Finally, ϕ(t) is a continuous function defining
the corresponding initial condition. The matrices: A ∈ Rn×n,
Ad ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are known constant
matrices of appropriate dimensions. It is assumed that:

rank(L) = r (7)

In order to estimate the states z(t), we consider the
following structure of functional observer

η̇(t) = Nη(t) +Ndη(t− τ) +My(t) +Mdy(t− τ) (8a)
+ Fu(t) (8b)

ẑ(t) = η(t) + Ey(t) (8c)

where η ∈ Rr. ẑ ∈ Rr is the estimate of z. The matrices
N , M , Nd, Md, F and E are unknown, which should be
determined later such that the estimation of the states ẑ
converge to its real values z.

2) The error equation: Let us note e(t) = z(t)− ẑ(t) =
Ψx(t) − η(t), where Ψ = L − EC. The estimation error
dynamics is described by the following system

ė(t) = Ne(t) +Nde(t− τ) + (ΨA−NΨ−MC)x(t)

+ (ΨAd −NdΨ−MdC)x(t− τ) + (F −ΨB)u(t)
(9)



Proposition 2: The dynamical system (8) represents a
reduced funtional observer for system (6), if and only if the
dynamic error system given by

ė(t) = Ne(t) +Nde(t− τ) (10)

is asymptotically stable and the following equation hold

F −ΨB = 0

ΨA−NΨ−MC = 0

ΨAd −NdΨ−MdC = 0
Proof 1: Let us compute the dynamics of the estimation

error, as follows:

ė(t) = Ψẋ(t)− η̇(t)

= ΨAx(t) + ΨAdx(t− τ) + ΨBu(t)−Nη(t)

−Ndη(t− τ)−My(t)−Mdy(t− τ)− Fu(t)

By adding and substracting the term ±NΨx(t)±NdΨx(t−
τ), system (9) is obtained. Thus, in order to ensure the
unbiasedness of the proposed observer, the dynamics of the
error estimation must be independant of the state vector x
and the input vector u. So, we need to put the terms which do
not depend on these errors equal to zero. The convergence
of the proposed observer require the stability of the error
system (10).□

The first step for the stability analysis of the estimation
error is to guarantee the unbiasedness of system (9). In other
words,we have to put the terms which do not depend on the
error equal to zero. Thus, the matrix F had to be chosen as

F = ΨB (11)

and the following Sylvester equations must hold

ΨA−NΨ−MC = 0 (12a)
ΨAd −NdΨ−MdC = 0 (12b)

Then, for the second step, we need to ensure the stability
of the error dynamics, i.e. to choose the matrices N and Nd

in order to guarantee the stability of the error dynamics.

III. MAIN RESULTS

A. Resolution of the Sylvester equations

To ensure the unbiasedness of the observer, the Sylvester
equations described by (12) should be verified.

Using the expression Ψ = L−EC, the Sylvester equations
are rewritten as

LA = NL+KC + ECA (13a)
LAd = NdL+KdC + ECAd (13b)

where K = M −NE, and Kd = Md −NdE.
It’s clear that these Sylvester equations (13) can be written

in the following compact form

V = XW (14)

where V and W contain the known matrices such as

V = [LA,LAd]

WT =


L 0
0 L
C 0
0 C

CA CAd


and X is the matrix of the unknown observer’s matrices to
be designed, described as follows

X = [N,Nd,K,Kd, E]

Equation (14) admits a solution if and only if the following
rank condition is satisfied

rank(W ) = rank([V T ,WT ]T ) (15)

and, by defining ℓ = 2(r + p) + p, the general solution is
given by

X = VW † + Z(Iℓ −WW †) (16)

where Z is an arbitrary matrix with appropriate dimension,
which will be chosen in order to satisfy the convergence of
the estimation errors and W † is any generalised inverse of
W , which fulfils the following equation [27]

W = WW †W (17)

Then, the observers matrices can be expressed through a
single gain matrix Z as

N
Nd

K
Kd

E


︸ ︷︷ ︸

X

=


N1

Nd1

K1

Kd1

E1


︸ ︷︷ ︸
VW †

+Z


N2

Nd2

K2

Kd2

E2


︸ ︷︷ ︸
Iℓ−WW †

(18)

In other words:

N = VW †RN + Z(Iℓ −WW †)RN (19a)

Nd = VW †RNd
+ Z(Iℓ −WW †)RNd

(19b)

K = VW †RK + Z(Iℓ −WW †)RK (19c)

Kd = VW †RKd
+ Z(Iℓ −WW †)RKd

(19d)

E = VW †RE + Z(Iℓ −WW †)RE (19e)

with

RT
N = [Ir 0r×r 0p×r 0p×r 0p×r]

RT
Nd

= [0r×r Ir 0p×r 0p×r 0p×r]

RT
K = [0r×p 0r×p Ip 0p×p 0p×p]

RT
Kd

= [0r×p 0r×p 0p×p Ip 0p×p]

RT
E = [0r×p 0r×p 0p×p 0p×p Ip]

B. Stability and attenuation analysis of the estimation error

Since the unbiasedness conditions given in section III-A
are satisfied, the dynamic of the estimation error is written
as in equation (10). Let us consider the estimation error
dynamic written in the following form

ė(t)−Ne(t)−Nde(t− τ) = 0 (20)



So that the characteristic function associated ∆ : C ×
R+ → C is given by

∆(s, τ) = |sIn −N −Nde
−τs| (21)

Hence, the error system is characterised by the quasipoly-
nomial function with the form of equation (4) where the
polynomial P0 is given by:

P0(s) = |sIn −N | = nns
n + nn−1s

n−1 + . . .+ n1s+ n0

In order to check the stability of the estimation error, the
following assumption is necessary:

Assumption 1: rank(Nd) = 1.
In a previous work [11] the intermediate MID property

has been exploited through the result of [20] restricting the
observer design to the following additional assumption:

Assumption 2: The polynomial P0 to be realrooted.
The use of the GMID property allows to relax such an

assumption by using the result from [26]. In the following
theorem, we state sufficient condition that ensures the stabil-
ity of the error estimation and thus the convergence of the
proposed observer.

Theorem 2: Consider that Assumption 1 holds and let a
negative s0 be a multiple root of (21) with the maximal
multiplicity. The error system (10) is exponentially stable
with s0 as decay rate and the estimated states vector converge
to its real value.

Proof 2: Since condition 15 holds, the error dynamics
is written under equation (10). Under the assumption 1,
the quasipolynomial (21) is a particular case of (5). Thus,
following Theorem 1, a root s0 of ∆ is necessarily dominant.
So that, it corresponds to the exponential decay of (20). □

IV. ILLUSTRATIVE EXAMPLES

In this section, two case studies are proposed and dis-
cussed.

A. HIV-1 Infection Model

In HIV-1 infection, the virus life cycle plays a crucial role
in disease progression. The binding of a viral particle to a
receptor on a target cell initiates a cascade of events that
can ultimately lead to the target cell becoming productively
infected, i.e. producing new virus. Some models [28], [29]
assumed this process to occur instantaneously. In other
words, it is assumed that as soon as virus contacts a target
cell, the cell begins producing the virus. However, in reality
there is a time delay between initial viral entry into a cell and
subsequent viral production. This delay needs to be taken
into account to accurately determine the half life of free
virus from drug perturbation experiments. The intracellular
delay is incorporated in the system model by assuming that
the generation of virus producing cells at time t is due
to the infection of target cells at time (t − τ), where τ
is a constant delay. The HIV-1 dynamics is given by the
following equations

dT ∗(t)

dt
= kT0VI(t− τ)− δT ∗(t) (22a)

dVI(t)

dt
= (1− np)NδT ∗(t)− cVI(t) (22b)

dVNI(t)

dt
= npNδT ∗(t)− cVNI(t) (22c)

where T ∗ is the concentration of productively infected T-
cells, VI and VNI represent the plasma concentrations of
virions in the infectious pool (produced before the drug
effect) and in the noninfectious pool (produced after the drug
effect), respectively. For detailed study, refer to [28] on the
experiment and the data.

A detailed list of variable is given below.

Definition Value
np Protease inhibitor efficacy 0.7
k Viral infectivity rate c

NT0

τ 0.91 days
T0 Target T-cell concentration 408 cells.mm−3

N Bursting term for viral produc- 480 virions/cells
tion after lysis 480 virions

δ Death rate of an infected T-cell 1,57 / day
c Clearance rate of virus 4,3/day

To apply the proposed approach, it is convenient to
transform system (22) into the form of system (6), where
x(t) = [T ∗(t) VI(t) VNI(t)]

T , and the matrices A and Ad

are given by

A =

 −δ 0 0
(1− np)Nδ −c 0

npNδ 0 −c

 Ad =

0 kT0 0
0 0 0
0 0 0


(23)

The level of virions circulating in plasma for both in-
fectious and non infectious pool can be mesaured. So, we
assume that the vector of measurement is given by

y(t) = Cx(t) =

[
0 1 0
0 1 1

]
x(t) =

[
VI(t)

VI(t) + VNI(t)

]
and we propose to estimate the concentration of productively
infected T-cells denoted T ∗. In other words, we propose to
estimate z(t) = T ∗(t), with L = [1 0 0]. For this aim, we
consider an observer in the form (8). So the error dynamics
is given by (9). For this application, the rank condition (15)
holds. As the observer order is r = 1, so assumption 1 is
already considered and just need to tune the matrix Z to
obtain a stable error system. The quasipolynomial function
is with the following form

∆(s, τ) = (s−N)− e−τsNd

= (s− (N1 + ZN2))− e−τs(Nd1 + ZNd2) (24)

Where Z ∈ Rr×ℓ. The spectrum of the quasipolynomial is
computed for a matrix Z =

[
z1 z2 0 0 0 0 0 0

]
and is shown in Figure 1. By setting the initial condition to
x(0) = [1 180 0]T and η(0) = [0] and with a suitable choice
of the matrix Z =

[
−1.57 1 0 0 0 0 0 0

]
, the



Fig. 1. Spectrum distribution of the quasipolynomials (24)

estimation of the concentration of productively infected T-
cells z(t) converges to its real values T ∗(t) (see Figure 2).
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Fig. 2. Evolution of concentration of productively infected T-cells T ∗(t)(–
) and its estimation z(t)(- -).

B. Diesel Engine Model

A diesel engine with an exhaust gas recirculation (EGR)
valve and a turbo-compressor with a variable geometry
turbine (VGT) was modeled in [30]. The system is subjected
to intake-to-exhaust transport delay. A LTI time-delay model
is obtained by linearizing the original non-linear model under
the assumption that the engine operates at a constant speed
N = 1500 RPM. This model is described as

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t) (25a)
y(t) = Cx(t) = [0 1 0]x(t) (25b)

where A0 =

−27 3.6 6
9.6 −12.5 0
0 9 −5

, A1 =

 0 0 0
21 0 0
0 0 0


and B =

0.26 0
−0.9 −0.8
0 0.18

 and τ is given as 0.06s at this

particular operating point. The state variables are defined
as intake manifold pressure (x1), exhaust manifold pressure

(x2), and compressor power (x3). Furthermore, the system
has two control inputs in which u1 is an input for the EGR
valve openning and u2 is an input for the VGT mass flow
rate.

The model includes intake-to-exhaust transport delay τ =
60ms when engine speed is 1500 RPM. Due to the time-
delay assignable to the transport time of the gas from intake
to exhaust manifold, the system is represented a DDE as in
Equation (25). Since the observability matrix is full rank
matrix, system (25) is observable and the corresponding
quasipolynomial function is given by

∆(s, τ) = det(sIr −N −Nde
−τs)

= det(sIr − (N1 + ZN2))− (Nd1 + ZNd2)e
−τs

(26)

where r = 2, P0(s) is with order 2 and P1(s) is with order
1. The matrix Z is tuned to get assumption 1.

For instance, choosing Z as :

Z =

[
x 0 0 0 0 0 0
0 0 y 0 0 0 z

]
one can define the rightmost root s0 of (26), with a maximal
multiplicity 4, as a function of the delay τ as shown in
Figure 3. To show the convergence of the states estimation to

Fig. 3. The spectral abcissa of (26) as a function of the delay τ .

their real values, we choose Z with the following numerical
values:

Z =

[
−170 0 0 0 0 0 0
0 0 −150 0 0 0 100

]
For the simulation, the initial states are chosen as x(0) =[
0.3 0.2 −0.3

]T
and z(0) =

[
0 0

]T
. As shown in

Figure 4, the error e(t) of the states and their estimation
converge to zero in a short span of time. Thus, the observer
reveals satisfactory performance.
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Fig. 4. Evolution of the errors between the system’s states and their
estimations.

V. CONCLUDING REMARKS

In this paper, a reduced-order observer was developed
for a class of LTI systems described by delay-differential
equations, including a known delay in the system state-
space representation. By using a pole placement approach
derived from the GMID property, we present some sufficient
conditions for the existence of the observer, which guarantee
that the estimation error converges asymptotically towards
zero. The efficiency of the proposed method is illustrated
through two examples.
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belsi, “Multiplicity-induced-dominancy in parametric second-order de-
lay differential equations: Analysis and application in control design,”
ESAIM Control Optim. Calc. Var., vol. 26, p. Paper No. 57, 2020.

[15] R. Bellman and K. L. Cooke, Differential-difference equations. Aca-
demic Press: New York, 1963.

[16] W. Michiels and S. Niculescu, Stability and stabilization of time-dely
systems. SIAM, 2007, vol. 12.

[17] F. Bedouhene, I. Boussaada, and S.-I. Niculescu, “Real spectral values
coexistence and their effect on the stability of time-delay systems:
Vandermonde matrices and exponential decay,” Comptes Rendus.
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