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Abstract
In this paper, we consider continuous-time stochastic optimal control prob-
lems where the cost is evaluated through a coherent risk measure. We pro-
vide an explicit gradient descent-ascent algorithm which applies to problems
subject to non-linear stochastic differential equations. More specifically, we
leverage duality properties of coherent risk measures to relax the problem via
a smooth min-max reformulation which induces artificial strong concavity in
the max subproblem. We then formulate necessary conditions of optimality
for this relaxed problem which we leverage to prove convergence of the gradi-
ent descent-ascent algorithm to candidate solutions of the original problem.
Finally, we showcase the efficiency of our algorithm through numerical sim-
ulations involving trajectory tracking problems and highlight the benefit of
favoring risk measures over classical expectation.
Keywords: Gradient descent-ascent, Coherent risk measures, Stochastic
optimal control, Non-linear control, Risk-averse control

1. Introduction

Risk-averse stochastic optimal control is a powerful tool for designing
control laws that feature robustness against uncertainties. Relevant appli-
cations of this theory range from safe financial investment to safe control
of autonomous systems, as evidenced by the monographs [1, 2] and refer-
ences therein. For example, when controlling non-linear stochastic systems
in robotics or space applications, robustness against uncertainties is often
leveraged to ensure safety during motion. The problem also arises in finance,
where, to mitigate unrecoverable losses, an agent may want to invest safe as-
sets uniquely, even in exchange for a smaller average gain. This is in contrast
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with “classical” stochastic optimal control, which rather aims at minimizing
the expectation of a stochastic cost. Although high reward on average might
be attained, these risk-neutral methods result in optimal controls that may
generate trajectories that may cause catastrophic losses with small, though
non-zero, probability. As such, these solutions are considered unacceptable
in terms of safety in many applications [3].

To safely control systems whose dynamics are subject to uncertainties,
various methods have been developed. A first possible approach is robust
control, where optimal control problems are directly solved in the worst-case
scenarios [4]. Although robust control theoretically guarantees resilience to
unfavorable situations, it can be over-conservative and does not apply to dy-
namics with unbounded uncertainties, e.g., stochastic differential equations
[3]. A more flexible approach is risk-averse control, which aims at minimiz-
ing a suitable risk measure of the stochastic cost, offering a good trade-off
between minimizing the expected cost and mitigating catastrophic scenarios.
Many risk-averse control methods involve discretizing the dynamics before
proceeding with optimization [2]. For discrete problems, risk-averse Model
Predictive Control (MPC) is a popular choice [5, 6]. It operates similarly to
standard MPC but optimizes a risk measure instead of the expectation of
the cost. Continuous-time risk-averse control methods are less common. Al-
though risk-averse analogs of the Hamilton-Jacobi-Bellman (HJB) equation
[7] and the Pontryagin Maximum Principle (PMP) [8] have been established,
these methods do not directly provide tractable numerical schemes.

Designing a risk-averse method that scales with many different risk mea-
sures is a challenging task. Therefore, the focus has mostly been on devel-
oping methods that minimize specific risk measures. A significant hindrance
of risk measures is their lack of time consistency, meaning that the optimal
solution at the current time may not solely depend on the current state’s
values [9]. A class of time-consistent risk measures exists for which dynamic
programming can be employed to solve the associated Markov Decision Pro-
cess (MDP) [10, 11]. Nevertheless, such methods do not apply to the widely
adopted Conditional Value at Risk (CV@R), a risk measure that is not time
consistent [1]. To address this issue, a state-space lifting approach has been
proposed in [12]. Although effective, these approaches are limited to discrete-
time and finite discrete space MDP. A continuous-time and continuous space
approach for the CV@R has been proposed in [13], where a representation of
the CV@R is used to re-write the problem into a double minimization that
is solved with a gradient descent approach. Another important class of risk
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measures is the family of risk measures that can be expressed as a linear
function of the state’s probability distribution [1, Chapter 6]. To minimize
these risk measures, a mean field game approach can be applied. In [14]
and [15], the Frank-Wolf algorithm is used to solve the problem, with proof
of convergence properties to a necessary optimality condition. Yet, these
approaches work with very specific risk measures.

In this paper, we propose a gradient-based method to solve continuous-
time, non-convex risk-averse control problems where the corresponding risk
measure is only coherent, a fairly general requirement encompassing all the
aforementioned risk measures. We will only consider the case of a diffusion in-
dependent of the control to keep the computation of gradients tractable. This
is a reasonable assumption for applications such as aerospace and robotics,
where the diffusion process often models external perturbations (e.g., gusts
of wind on a robot), which are then uncorrelated from the control. The
motivation to pursue this research direction came from the fact that gradi-
ent descent methods have already seen a lot of success in the more classical
setting of average-oriented minimization [16], non-stochastic control [17], as
well as some risk-averse methods [13, 15, 18]. Minimizing directly the risk
measure is challenging. We, therefore, leverage the duality properties of co-
herent risk measures to transform the minimization problem into a min-max
problem of a smooth, non-convex/linear function. Min-max optimization has
been widely studied in the convex-concave setting [19]. Still, recent appli-
cations to machine learning (particularly Generative Adversarial Networks)
have pushed studies toward the non-convex / strongly concave setting [20].
The gradient descent-ascent method has proven to be a successful technique
for addressing these problems in finite-dimensional spaces. In [21], the pro-
posed algorithm reaches an ϵ distance from a critical point within a finite
time frame. In [22], the algorithm’s convergence to the critical point is guar-
anteed, given a specific geometric property of the cost function.

Our contribution consists of applying gradient descent ascent to solve
the min-max problem, which stems from dual representations of coherent
risk measures, by extending the work in [22]. This is not an easy task in
that our problem is not smooth nor strongly concave. To address such an
issue, we propose to apply gradient descent-ascent to a modified version of
the problem which is smooth, non-convex / strongly concave, and arbitrarily
“close” to the original formulation. Via appropriate proofs of convergence,
we then show that the gradient of the cost converges to 0. By requiring more
regularity in the dynamics of the system, we can also prove that the sequence

3



of controls generated by our algorithm converges (in an appropriate sense)
to the set of critical points of the original problem. We finally implement the
algorithm on a realistic robotic application to showcase the efficiency of our
easy-to-use method.

The paper is organized as follows. In Section 2, we begin by provid-
ing a brief summary of some basic concepts of stochastic calculus and risk
measures. Section 3 outlines the specific settings of dynamics and control
strategies under consideration. Next, we present in Section 4 our algorithm,
providing details for the computation of the gradient. In Section 5, we prove
various convergence properties under different assumptions on the dynamics.
Finally, we analyze in Section 6 numerical convergence, and we showcase the
effectiveness of our approach through a series of simulations.

2. Notations and Preliminary Results

In this section, we briefly present some basic concepts and results of
stochastic calculus we need in our work. More details can be found in [23]
and [24, Chapter 1.6]. From now on, we fix n, m, d ∈ N, a finite time horizon
T > 0, and p ∈ [1, +∞). Let E be a vector space. We denote E∗ its dual. As
a result of Riesz theorem, if E is also a Hilbert space, then it is isomorphic
to its dual space E∗. Consequently, throughout the paper, elements in (L2)∗

are implicitly assumed as elements in L2. We denote ∥ · ∥ as the Euclidian
norm. Other norms will be properly introduced as they are needed. We
consider random variables in a probability space (Ω, G,P). For any sub-
sigma algebra S ⊂ G, we denote by Lp

S(Ω,Rn) the Banach space of random
variables z : Ω → Rn that are S-measurable and satisfy:

∥z∥Lp ≜ E [∥z∥p]1/p < ∞.

It is a standard consequence of Riesz theorem that Lp
S(Ω,Rn)∗ ∼= Lq

S(Ω,Rn),
with q the conjugate exponent of p. Let (Wt)t∈[0,T ] be a d-dimensional Wiener
process, generating a filtration

F ≜ (Ft)t∈[0,T ] = (σ(Ws, 0 ≤ s ≤ t))t∈[0,T ].

We denote by Lp
F([0, T ]×Ω,Rn) the Banach space of processes x : [0, T ]×Ω →

Rn which are progressive with respect to F and such that:

∥x∥Lp
F
≜ E

[∫ T

0
∥x∥p(t)dt

]1/p

< ∞.

4



In addition, we denote by Cp
F([0, T ] × Ω,Rn) the Banach space of F -adapted

processes x which have continuous sample paths and finite sup norm

∥x∥Cp
F
≜ E

[
sup

0≤t≤T
∥x∥p(t)

]1/p

< ∞.

In particular, Cp
F([0, T ] × Ω,Rn) ⊂ Lp

F([0, T ] × Ω,Rn). In what follows, we
often use the notation x(t), t ∈ [0, T ] to denote progressive processes. A F -
adapted process x : [0, T ] × Ω → Rn such that x(t) ∈ L1

FT
for every t ∈ [0, T ]

is called a martingale provided that

E[x(t)|Fs] = x(s),

for all 0 ≤ s ≤ t ≤ T . We then say that a martingale x : [0, T ] × Ω → Rn

is uniformly bounded in Lp
F([0, T ] × Ω,Rn) if there exists a constant C > 0

such that
sup

t∈[0,T ]
∥x(t)∥Lp ≤ C.

For every x = (x1| . . . |xd) ∈ Lp
F([0, T ] × Ω,Rn×d), we write

y(t) =
∫ T

0
x(t)dWt ≜

d∑
i=1

∫ T

0
xi(t)dW i

t ,

for the Itô integral of x with respect to W , and recall that y is then a
martingale in Cp

F([0, T ]×Ω,Rn). We also recall the Burkholder-Davis-Gundy
inequality for stochastic integrals:

E
[

sup
0≤t≤T

∥y(t)∥p

]
≤ CpE

(∫ T

0
∥x(t)∥2dt

)p/2
 , (1)

where Cp is a constant which depends on p uniquely.
As outlined in the introduction, our work is centered on controlling the

extreme values or tail of the distribution of a stochastic cost rather than
controlling its expectation uniquely. To estimate these extreme values, we
leverage risk measures. Unlike expectation, risk measures are not always
linear or Fréchet-differentiable. However, they possess several interesting
properties we discuss below. We refer to [1, Chapter 6] for all the results
presented below on risk measures.

5



Definition 2.1. A finite risk measure ρ is a mapping from a space Z =
Lp(Ω,R) with p ∈ [1, +∞) to R. A finite risk measure is said to be coherent
if it verifies the following properties:

Convexity:

∀(Z, Z ′) ∈ Z ∀λ ∈ [0, 1], ρ(λZ + (1 − λ)Z ′) ≤ λρ(Z) + (1 − λ)ρ(Z ′).

Monotonicity1:

∀(Z, Z ′) ∈ Z, Z ≤ Z ′ ⇒ ρ(Z) ≤ ρ(Z ′).

Translation equivariance:

∀Z ∈ Z, ∀a ∈ R, ρ(Z + a) = ρ(Z) + a.

Positive homogeneity:

∀Z ∈ Z, ∀t ∈ R+, ρ(tZ) = tρ(Z).

Definition 2.1 yields some interesting properties that are used throughout
our work.

Theorem 2.2 ([1]). A finite coherent risk measure ρ : Z → R verifies the
following properties:

1. The convex subdifferential of ρ at 0, denoted by ∂ρ(0), is a nonempty
closed and bounded subset of Z∗. It is, in particular, weakly-* compact.

2. For every Z ∈ Z, the risk measure can be represented as

ρ(Z) = max
ζ∈∂ρ(0)

E[ζZ].

3. For every Z ∈ Z, ∂ρ(Z) is a nonempty closed and bounded subset of
Z∗, and it can be expressed as

∂ρ(Z) = arg max
ζ∈∂ρ(0)

E[ζZ].

1for (Z, Z ′) ∈ Z, it is said that Z ≤ Z ′ if P({ω : Z(ω) ≤ Z ′(ω)}) = 1.
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4. For every Z, H ∈ Z, the mapping ρ is Hadamard directionally (sub-)
differentiable at Z along H, and the differential can be expressed as

ρ′(Z, H) = max
ζ∈∂ρ(Z)

E[ζH].

The most commonly adopted risk measure is the Conditional-Value-at-
Risk, denoted by CV@R, which we will regularly consider in our examples.
Intuitively, CV@R represents the average of the highest values that a random
variable can attain. Consequently, it is a highly valuable metric for assessing
potential losses in a worst-case scenario.
Definition 2.3. For Z in L2(Ω,R) and α ∈ (0, 1], the Conditional-Value-
at-Risk of parameter α of Z is given by:

CV@Rα[Z] = inf
{

t + E[max(0, Z − t)]
α

: t ∈ R
}

.

The parameter α sets up the number of “worst-case scenarios”. For in-
stance, setting α = 0.05 means that CV@Rα[Z] corresponds to the average
of the top 5% values that Z can attain. Note that the subdifferential at 0
of the Conditional-Value-at-Risk can be explicitly calculated, which is ex-
tremely helpful for numerical simulations.
Proposition 2.4. The subdifferential of CV@Rα at 0 is given by:

∂(CV@Rα)(0) = {ζ ∈ L2(Ω,R) : E[ζ] = 1, ζ ∈ [0, α−1] a.s.}. (2)

3. Problem Formulation

In what follows, we detail the settings in which we study the controlled
stochastic dynamics. We then devise the optimization problem and present
some necessary conditions for optimality an optimal solution must satisfy.
As already mentioned, we focus on two different stochastic dynamics:

1. Setting A. A general non-linear stochastic system with no control
term in the diffusion, which is coherent with our framework of model-
ing exterior perturbations affecting a mechanical system. The proposed
algorithm can be run when considering such dynamics, although only
partial theoretical guarantees of convergence may be derived. Never-
theless, through numerical simulations, we show that reliable solutions
are often generated.
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2. Setting B. A control affine stochastic system with no control term in
the diffusion. This system is a particular case of the general dynamics
which are often encountered in many applications, such as aerospace
and robotics [25, 26, 27, 28]. Importantly, under such dynamics, it is
possible to theoretically prove the convergence of our algorithm.

From now on, we assume state variables take values in Rn, whereas con-
trol variables take values in Rm . For the sake of clarity in the exposition
and without loss of generality, from now on, we assume the dynamics are
perturbed through a weighted one-dimensional Wiener process W , as below.

3.1. Setting A: The general non-linear control system
In this general setting, we consider non-linear stochastic dynamics in the

form {
dXu(t) = b(t, Xu(t), u(t))dt + σ(t, Xu(t))dWt,
Xu(0) = X0,

(3)

where X0 ∈ Rn is a deterministic initial condition (note that extending our
results where the initial condition is a random variable is straightforward).
In particular, we consider diffusion terms σ independent from the control
input. This is generally the case in many applications such as aerospace and
robotics [29]. We also consider the following classical assumptions on the
mappings b : [0, T ] × Rn × Rm → Rn and σ : [0, T ] × Rn → Rn to hold true:

1. The mappings

b(·, x, u) : [0, T ] → Rn σ(·, x) : [0, T ] → Rn

are continuous for every (x, u) ∈ Rn × Rm.
2. For all t in [0,T], the mappings

b(t, ·, ·) : Rn × Rm → Rn σ(t, ·) : Rn → Rn

are differentiable with bounded L-Lipschitz gradient. That is, there
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exists a constant L > 0 such that∥∥∥∥∥ ∂b

∂x
(t, x, u)

∥∥∥∥∥+
∥∥∥∥∥ ∂b

∂u
(t, x, u)

∥∥∥∥∥+
∥∥∥∥∥∂σ

∂x
(t, x)

∥∥∥∥∥ ≤ L,∥∥∥∥∥ ∂b

∂x
(t, x, u) − ∂b

∂x
(t, y, v)

∥∥∥∥∥ ≤ L(|x − y| + |u − v|),∥∥∥∥∥ ∂b

∂u
(t, x, u) − ∂b

∂u
(t, y, v)

∥∥∥∥∥ ≤ L(|x − y| + |u − v|),∥∥∥∥∥∂σ

∂x
(t, x) − ∂σ

∂x
(t, y)

∥∥∥∥∥ ≤ L|x − y|.

In particular, given a progressive control input u ∈ L2
F([0, T ] × Ω,Rm),

the assumptions above guarantee the existence and uniqueness of a solution
Xu ∈ C2

F([0, T ] × Ω,Rn) to (3), see, e.g., [24, Chapter 1.6]. The additional
assumption on Lipschitz gradients, in particular, will be required to compute
the Fréchet derivative of Xu with respect to u (see Section 4.2).

We consider cost functions of the form

J(u) ≜
∫ T

0
f(t, Xu(t), u(t))dt + g(T, Xu(T )), with Xu solution of (3),

where f and g are positive continuous functions, such that f(t, ·, ·) and g(t, .)
are C1 with Lipschitz gradient in the state and control variables for all t in
[0, T ]. Note that these functions cover a variety of costs that are commonly
used in many applications. For instance, in trajectory tracking f consists
of the quadratic difference between a reference trajectory and the output
trajectory [25].

3.2. Setting B: control affine non-linear systems
In this setting, we consider the particular case of dynamics of the form{
dXu(t) = [b0(t, Xu(t)) +∑m

i=0 ui(t)bi(t, Xu(t))] dt + σ(t, Xu(t))dWt,
Xu(0) = X0,

(4)
where the mappings bi : [0, T ] × Rn → Rn and σ : [0, T ] × Rn → Rn are C1

with Lipschitz gradient in the state variables for all t in [0, T ]. Again, these
assumptions ensure existence and uniqueness of Xu ∈ C2

F([0, T ] × Ω,Rn)
solution to (4). We additionally require the functions bi to be uniformly
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bounded, which still allows for a wide variety of dynamics. Finally, for this
setting, we consider slightly less generic stochastic cost functions of the form

J(u) ≜ Cu∥u∥2
U +

∫ T

0
f(t, Xu(t))dt + g(T, Xu(T )),

with Xu solution of (4),

where f and g follow the same assumptions as above. Additionally, we require
that f and g satisfy∥∥∥∥∥∂(f, g)

∂x
(t, x) − ∂(f, g)

∂x
(t, y)

∥∥∥∥∥ ≤ L∥x − y∥,

∥∥∥∥∥∂(f, g)
∂x

(t, 0)
∥∥∥∥∥ ≤ L,

for some constant L > 0. These assumptions, for instance, enable the use
of quadratic functionals. Note that such cost functions are still relevant for
many applications, including trajectory tracking-type problems [25].

3.3. Optimization problem
We seek optimal controls in the space U = L2([0, T ],Rm) × Rq for some

fixed q ∈ N, which parametrizes feedback controls in L2
F([0, T ] × Ω,Rm).

More specifically, to each control parameter u = (v, λ) ∈ U we associate a
feedback control in the following manner:

uv,λ(t, x) = v(t) + Kλ(x), (5)

where Kλ : Rn → Rm is a vector-valued function that is smoothly parametrized
by the vector λ. We assume that

∀x, y ∈ Rn, ∀λ ∈ Rq, ∥Kλ(x) − Kλ(y)∥ ≤ C(1 + ∥λ∥)∥x − y∥
∀x ∈ Rn, ∀λ, µ ∈ Rq, ∥Kλ(x) − Kµ(x)∥ ≤ C(1 + ∥x∥)∥λ − µ∥.

(6)

We also assume the function (x, λ) 7→ Kλ(x) has a lipschitz gradient, meaning

∥∇λ,xKλ(x) − ∇λ,xKµ(y)∥ ≤ L(∥x − y∥ + ∥λ − µ∥) (7)

for some constant L > 0. In our implementations, we use a feedback law
that is linear in λ and x, which therefore automatically verifies both as-
sumptions, but more generic choices are clearly possible. We denote by
Xv,λ ∈ C2

F([0, T ] × Ω,Rn) the unique solution to (3) (or (4)) which is gener-
ated by the control uv,λ. These control laws will be composed of a determin-
istic term to steer the trajectory and a stochastic term to compensate for the
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diffusion. This choice of controls is motivated by the fact that feedback-type
controls are easy to implement and are widely used in practice for risk-averse
control [3]2. One easily verifies that under (6), the controlled systems under
these controls still satisfy the assumptions of Setting A or Setting B. In what
follows, we endow the space U with the scalar product

⟨(v1, λ1), (v2, λ2)⟩U ≜
∫ T

0
v1(t) · v2(t)dt + λ1 · λ2.

From now on, since clear from the context we equivalently denote u =
(v, λ) = uv,λ and Xu = Xv,λ = Xuv,λ

for simplicity.
Let us now state and reformulate our optimal control problem as an

infinite-dimensional min-max optimization problem using the coherent mea-
sure properties described in Theorem 2.2. In particular, let ρ be a finite
coherent risk measure defined on L1

FT
(Ω,R). The main objective of this

paper is to find a local optimum of the problem

min
u∈U

ρ(J(u)). (8)

This problem is not easily solvable as ρ is not always Fréchet differentiable.
Given the properties of coherent risk measures we listed previously, we can
rewrite (8) via the following min-max formulation:

min
u∈U

max
ζ∈∂ρ(0)

E[ζJ(u)]. (9)

Let us remark that ∂ρ(0) is a subset of L∞
FT

(Ω,R) ⊂ L2
FT

(Ω,R). Using
this formulation, we can leverage saddle point algorithms to solve problem
(8). Saddle point algorithms have been extensively investigated for min-max
optimization, motivating our approach [19, 20, 21, 22].

Before introducing our method to solve (9) (and therefore (8)), we char-
acterize its optimal solutions through appropriate necessary conditions for
optimality.

3.4. Necessary conditions for optimality
In what follows, we assume our problem is in the most general Setting

A. As of common use in min-max optimization settings, we propose to solve

2Note that in this work, we assume that the state variables are completely observable,
leaving the investigation of a more general setting as a future research direction.
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Problem (9) by finding extremal points [30]. For this, let us first introduce
appropriate first-order necessary conditions for optimality which are satisfied
by any optimal solution u∗ to (8). These conditions involve the differential
of the cost function J that we first need to establish clearly.

Lemma 3.1. The cost function J : U → L2
FT

is Fréchet differentiable. More-
over, let ω ∈ Ω and u ∈ U . Thanks to the Riesz representation theorem in the
Hilbert space U , we can represent the differential DuJ(u, ω) by an element of
U denoted ∇J(u, ω) such that

∀h ∈ U , DuJ(u, ω) · h = ⟨∇J(u, ω), h⟩U .

The proof can be found in Appendix A.1, along with an explicit formula
of ∇J .

Additional notations: In what follows, we call gradient of J the
function ∇J(·, ·), that we see as a mapping ∇J : U → L2

FT
(Ω, U). We

may need to differentiate the two components for clarity, in which case we
will write ∇J = (∇vJ, ∇λJ), with ∇vJ(u) ∈ L2

FT
(Ω, L2([0, T ],Rm)) and

∇λJ(u) ∈ L2
FT

(Ω,Rq). Additionally, for an element z in L2
FT

(Ω, U) and u in
U , we will denote by ⟨z, u⟩U the random variable in L2

FT
(Ω,R) such that

∀ω ∈ Ω, ⟨z, u⟩U(ω) = ⟨z(ω), u⟩U .

In particular, we can “invert” the expectation and the scalar product as
follows:

E[⟨z, u⟩U ] = ⟨E[z], u⟩U . (10)
With these properties in mind, we can establish a necessary condition any
optimal solution to (9) must verify as follows:

Proposition 3.2. Let ρ be a finite coherent risk measure and let u∗ be an
optimal solution to (8). There exists ζ∗ ∈ ∂ρ(0) such that

⟨E[ζ∗∇J(u∗)], h⟩U = 0, for every h ∈ U . (11)

The proof of Proposition 3.2 is quite similar to the proof given in [31]
or [8]. Nevertheless, we report the full proof of Proposition 3.2 in Appendix
A.2 for the sake of completeness.
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3.5. The modified problem
Seeking extremals of min-max problems is generally a hard task, and not

that many algorithms which enjoy convergence guarantees exist in the liter-
ature. Notably, for finite-dimensional problems with strongly concave costs,
some convergence results are provided in [22]. Inspired by this latter work,
we propose an algorithm that works on a modified version of problem (9)
whose cost is strongly concave and whose solutions are arbitrarily close to
the solutions of the original problem. More specifically, the modified problem
takes the following form:

min
u∈U

max
ζ∈∂ρ(0)

E[(ζ − γζ2)J(u)], (12)

where γ > 0 is a “concavifying” parameter, which controls how close (12)
is to the original problem. Note that the term E[ζ2J(u)] is well defined as
ζ ∈ ∂ρ(0) ⊂ L∞

FT
(Ω,R). In Section 5, we discuss in what sense the solutions

to (12) converge to solutions to (9) for γ → 0, endowing our methodology
with guarantees of success. Also, from a numerical point of view, we show
later that γ > 0 may be chosen in the order of the machine precision.

4. Ascent-Descent Algorithm

To solve the min-max problem (9), we first introduce in this section a
gradient descent-ascent-based approach to solve the modified problem (12).
A gradient descent-ascent is an iterative optimization algorithm that can
be used to find saddle points. Descent-ascent algorithms represent arguably
sound paradigms to seek extremals for general min-max problems. Impor-
tantly, under appropriate assumptions, convergence to extremals may be
theoretically proven, as we will show later. Until further notice, we start by
considering the setting of general non-linear dynamics (Setting A).

4.1. Update rule
The gradient descent-ascent algorithm is an iterative optimization algo-

rithm for min-max problems. At each iteration, it computes the Riesz repre-
sentation of the gradient of the function being maximized and the gradient
of the function being minimized. It then updates the estimates by moving
in the direction of their respective gradients. With obvious notations, our
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gradient descent-ascent algorithm updates at each iteration n our estimates
ζn and (vn, Kλn) with the following rule:

vn+1 = vn − ηE[ζn∇vJ(vn, Kλn)],
λn+1 = λn − ηE [ζn∇λJ(vn, Kλn)] ,

ζn+1 = P∂ρ(0)(ζn + βJ(vn, Kλn)),
(13)

where P∂ρ(0) is the projection on the closed convex set ∂ρ(0), and η and β
are two positive constants that represent the step size of the gradient. To
increase convergence speed, one could make these steps vary from iteration
to iteration based on the change of direction of the gradient [32]. We will
keep them constant for the sake of simplicity. All convergence results should
be valid for a range of step sizes that are both upper and lower bounded,
although proof of this improvement is left for future work.We recall that
∂ρ(0) can be viewed as a subset of L∞

FT
(Ω,R), which justifies the above

mathematical operations between ζn and the other terms. Note that it is
important to project ζn +βJ(un) onto ∂ρ(0), as there is no a priori guarantee
that ζn + βJ(un) stays inside ∂ρ(0).

Unfortunately, through the scheme (13), no clear convergence result is
available. To develop theoretical guarantees of convergence, we propose to
rather leverage the following alternative rule, which essentially represents an
update rule for Problem (12):

vn+1 = vn − ηE[ζn(1 − γζn)∇vJ(vn, Kλn)],
λn+1 = λn − ηE [ζn(1 − γζn)∇λJ(vn, Kλn)] ,

ζn+1 = P∂ρ(0)(ζn + β(1 − 2γζn)J(vn, Kλn)).
(14)

The algorithms described by (13) and (14) offer the advantage of being easily
implementable, provided explicit expressions of the gradient ∇J are available.
We provide such expressions in the following section.

4.2. Computation of gradients
The practical implementation of (13) and (14) requires computing the

gradient of the cost, and in particular of the trajectory, with respect to both
the variables ζ and u. Below, we summarize the expressions of this gradient,
referring the reader to Appendix A.1 for their proof. Let us clarify that we
denote K ′

λ(x) the derivative of Kλ(x) with respect to x.
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Proposition 4.1. Fix a control u = (v, λ) ∈ U . Under the assumptions of
Setting A, the Riesz representation of the gradient of J at u = (v, λ) is

∇vJ(v, λ)(t) = Iu(t)ϕ−1
u (t)∂ub(t, Xu(t), u(t))

∇λJ(v, λ) =
∫ T

0
Iu(s)ϕ−1

u (s)∂ub(s, Xu(s), u(s))∇λKλ(Xu(s))ds.

where

Iu(s) ≜ ∂xg(T, Xu(T ))ϕu(T )

+
∫ T

s
[∂xf(t, Xu(t), u(t)) + ∂uf(t, Xu(t), u(t))K ′

λ(Xu(t))]ϕu(t)dt.

Here, ϕu(.) is the fundamental matrix solution to the linearized problem, i.e.,
the unique solution to

dϕ(t) = [∂xb(t, Xu(t), u(t)) + ∂ub(t, Xu(t), u(t))K ′
λ(Xu(t))]ϕ(t)dt

+ ∂xσ(t, Xu(t))ϕ(t)dWt,
ϕ(0) = Idn.

(15)

Thus, the primary challenge of implementing this method lies in simu-
lating the trajectories of Xu and ϕu and computing expectations of random
variables that involve terms from those trajectories. To deal with these tech-
nical details, we used a classical approach presented in [33, Chapter 10] and
refer to it for more extensive elaboration. The contents of this section fur-
nish the necessary components to implement the algorithm and evaluate its
performance for the general Setting A.

In the next section, we establish some convergence results that may be
of particular significance for Setting B, as they provide insight into the con-
vergence of the algorithm towards a critical point that satisfies the necessary
optimality condition (11).

5. Convergence Results

We leverage the method introduced in [22] to examine the convergence
of the smooth non-convex/strong concave gradient descent-ascent algorithm
in the most general Setting A. In what follows, we adapt the approach to
an infinite-dimensional space. With some minor adjustments, we show that
the gradient of the cost converges to 0 and that the cost function converges
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to a finite value. While the study in [22] also establishes that in finite-
dimensional spaces, every converging subsequence of the control estimates
tends to a critical point, we were unable to prove this result in our general
setting. Nevertheless, in the slightly more restrictive Setting B, any weakly
converging subsequence of our control estimates converges to a point that is
a “γ-critical point.” That is, a control uγ that verifies

∃ζ, ⟨E[ζ ∇J(u)], h⟩U = ∥h∥UO(γ) ∀h ∈ U . (16)

This important result shows that by progressively selecting smaller values of
γ, we can obtain a control that verifies the necessary optimality condition
(11). In addition, taking γ → 0 yields critical points for the original problem,
as we state at the end of this section.

5.1. Convergence of the gradient in Setting A
Let (un, ζn) be the estimates given by algorithm (14), in what follows,

we prove the convergence of ∥un+1 − un∥U to 0 in Setting A, as well as the
convergence of the γ-approximated cost, denoted Φγ : U → R and defined as

Φγ(u) ≜ max
ζ∈∂ρ(0)

E[ζ(1 − γζ)J(un)].

The proof of the convergence closely follows the one presented in [22], and
we, therefore, do not explicit all of the technical details. We indicate where
changes were needed and develop the modifications in the Appendix for com-
pleteness. For the sake of clarity, we denote

ζu ≜ arg max
ζ∈∂ρ(0)

E[ζ(1 − γζ)J(u)]

which is well defined as ζ 7→ E[ζ(1 − γζ)J(u)] is a weakly continuous and
strongly concave function over a weakly compact set.

Proposition 5.1. Let L > 0 be such that J has L-Lipschitz gradient, and
µ > 0 such that ζ 7→ E[ζ(1 − γζ)∇J(un)] is µ-strongly concave. We define
K = L

µ
. If the gradient rates η and β verify η < 1

K3(L+3)2 and β < 1
L

, then
the sequences (un, ζn) given by the update rule (14) verify:

∥un+1 − un∥U → 0, ∥ζn+1 − ζn∥2
L2

FT

→ 0, ∥ζn − ζun∥2
L2

FT

→ 0,
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Proof. As mentioned above, we generalise the proof from [22, Proposition 2]
with f(u, ζ) = E[ζ(1 − γζ)J(u)], g = 0 and h = δ∂ρ(0), the convex character-
istic function of ∂ρ(0). The key argument is to consider the function

H(u, ζ) = Φγ(u) +
(

1 − 1
4K2

)
∥ζ − ζu∥2

L2
FT

(17)

and show that H(un, ζn) is decreasing over the iterations of the algorithm.
To prove it, we must show the Lipschitzianity of the functions u 7→ ζu and
u 7→ ∇Φγ(u). The first one is straightforward, as shown in [22, Proposition 1].
The second one however needs some adjustments to our infinite-dimensional
setting. Using the version of the Danskin theorem found in [34] with the
weak topology, we can first prove the following lemma.
Lemma 5.2. Φγ is Fréchet differentiable and its gradient is given by

∇Φγ = E[ζu(1 − γζu)∇J(u)].

The Lipschitzianity of ∇Φγ(u) can be deduced as follows:

∥Φ(u2) − Φ(u1)∥ = ∥∇uJγ(u2, ζu2) − ∇uJγ(u1, ζu1)∥
≤ L(∥u2 − u1∥ + ∥ζu2 − ζu1∥)
≤ L(1 + K)∥u2 − u1∥

With these two Lipschitzianity results, we can execute the same computations
as in [22, Proposition 2] and prove the inequality

H(un+1, ζn+1) ≤ H(un, ζn)−2∥un+1−un∥2
U− 1

4K2 (∥ζn+1−ζun+1∥2
L2

FT

+∥ζn−ζun∥2
L2

FT

).

From this inequality we can deduce the sequence H(un, ζn) is decreasing and
therefore converges to H∗. By summing the inequality over the iterations,
we obtain a telescoping series that yields

N∑
n=0

[
2∥un+1 − un∥2

U − 1
4K2 (∥ζn+1 − ζun+1∥2

L2
FT

+ ∥ζn − ζun∥2
L2

FT

)
]

≤
N∑

n=0
H(un, ζn) − H(un+1, ζn+1) ≤ H(u0, ζ0) − H∗.

This shows that the series on the left is convergent, meaning that its terms
tend to zero, which proves our proposition.
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This result additionally shows some other interesting properties of the
algorithm, which are of straightforward proof.

Corollary 5.3.

1. Since ∥ζn −ζun∥2
L2

FT

tends to zero and H decreases, the sequence Φγ(un)
converges to a finite limit.

2. If the cost J is coercive, the sequence un is bounded in U and is thus in
a weakly compact set.

To go further, one would wish to find a generalization of [22, Theorem 1]
by showing that all weak limit points of our sequence un are ”gamma-critical
points” and verify equation (16). Unfortunately, we could not prove this in
the general case, as a weakly converging sequence of controls un does not
necessarily yield a converging sequence of states xun . Nonetheless, we can
demonstrate the result in the slightly more restrictive setting of linear affine
controls, as shown in the next subsection.

5.2. Convergence of the gradient in Setting B
As mentioned previously, restricting to control affine systems allows us

to use important theoretical properties and improve convergence guarantees
for our gradient ascent-descent algorithm. The most important property we
take advantage of is the compacity of the input-output mapping u 7→ Xu, as
shown in the following lemma:

Lemma 5.4. Let un be a sequence controls in U , and p ≥ 2. Under the
hypothesis of Setting B, we have that

un
U
⇀ u ⇒ Xun

Cp
F→ Xu.

Consequently, if we decompose the cost J of Setting B as J(u) = Cu∥u∥2
U +

JX(Xu), we have

un
U
⇀ u ⇒ ∇u(JX(Xun)) C2

F→ ∇u(JX(Xu)).

The proof of this lemma requires some long and technical computations
that we detailed in Appendix A.3. This compacity result, in turn, allows us
to prove the following:
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Proposition 5.5. Let u be a weak limit of a subsequence of un, then for any
ζ ∈ ∂ρ(0) that is a weak limit of a subsequence of ζn we have that

⟨E[ζ ∇J(u)], h⟩U = ∥h∥U O(γ) ∀v ∈ U . (18)

Proof. Let us first use our result on the convergence of the general algorithm.
We can see that

vn+1 − vn = −ηE[(ζn − γζ2
n)∇vJ(un)],

= −ηE[ζn∇vJ(un)] + ηγE[ζ2
n∇vJ(un)].

Since ζn is bounded in L∞(Ω, R), ∇vJ(un) is bounded in L2(Ω, R), and
(vn+1, λn+1) − (vn, λn) tends to 0, there exists a constant C > 0 such that

∥E[ζn∇vJ(un)]∥L2(0,T ) ≤ Cγ = O(γ). (19)

Below, we will implicitly overload the constant C. Similarly, we have

|E[ζn∇λJ(un)]| ≤ Cγ = O(γ). (20)

We now go back to the equality we want to prove. For this, let h be a control
in U , and let u and ζ be weak limits of respectively un and ζn. We may
compute

⟨E[ζ∇J(u)], h⟩U = ⟨E[(ζ − ζn)∇J(u)], h⟩U

+ ⟨E[ζn(∇J(u) − ∇J(un))], h⟩U

+ ⟨E[ζn∇J(un)], h⟩U .

Using equations (19) and (20), we have that

|⟨E[ζn∇J(un)], h⟩U | = ∥h∥U O(γ) ∀v ∈ U .

and since ζn weakly converges to ζ, with an abuse of notation we may write

⟨E[ζ∇J(u)], h⟩U = ⟨E[ζn(∇J(u) − ∇J(un))], h⟩U + ∥h∥U O(γ).

By further decomposing J(u) = Cu∥u∥2
U + JX(Xu), we additionally compute

⟨E[ζ∇J(u)], h⟩U = 2Cu⟨E[ζn(u − un)], h⟩U

+ ⟨E[ζn(∇uJX(Xu) − ∇uJX(Xun))], h⟩U + ∥h∥U O(γ).
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Using Lemma 5.4 and the fact that u = (v, λ) is deterministic, again with an
abuse of notation, we can write

⟨E[ζ∇J(u)], h⟩U = 2CuE[ζn]⟨u − un, h⟩U + ∥h∥U O(γ),

and thanks to the weak convergence of un to u∗ we finally obtain that

⟨E[ζ∇J(u)], h⟩U = ∥h∥U O(γ).

This result implies that, as we make γ tend to 0, the solutions obtained
will get closer to our original problem, as summarized in the following corol-
lary.

Corollary 5.6. Let uγ be a weak limit of a sequence of controls uγ
n obtained

with the update rule (14) with parameter γ. For any decreasing sequence
(γk)k∈N tending to 0, we can define a sequence (uγk)k∈N of controls whose
weak limits all verify the original optimality condition (11).

This corollary indicates that if we find with our algorithm a γ-critical
point for smaller and smaller values of γ, we can find a control law that verifies
the necessary optimality condition. Theoretically, lowering γ should imply
lowering the gradient step η to satisfy the assumptions in Proposition 5.1,
implying a slower convergence in practice. However, the numerical results we
present in the next section show that the two convergences, i.e., with γ = 0
or γ ∼ 0, are essentially equivalent, thus there is no downside in taking γ > 0
very small, e.g., in the order of the epsilon machine.

6. Numerical Simulations

In this section, we present some simulation results. Our algorithm was
implemented and tested on two systems, one in Setting A, and the other
in Setting B. We respectively denote them as System A and System B. By
testing our algorithm on these two different systems, we can evaluate its effec-
tiveness and robustness in solving optimal control problems in both settings.
System A is an academic non-linear system that simulates a steering prob-
lem, where a vehicle is controlled through its angular velocity while moving
at a constant speed. It is subject to perturbations in the state which, for
instance, may model measurement errors. On the other hand, System B is
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a control affine system that models a real-world robot called AstroBee [35],
designed to operate in a zero-gravity environment, such as a space station.
The diffusion term may, for instance, model sudden gusts of air randomly
generated by onboard air purification systems, which destabilizes the robot.
For simplicity, we designed and leveraged a very simple stochastic model to
model the disturbances; note that other models exist in the literature, e.g.,
[36, 37].

6.1. System presentation
For both systems, the objective is to move from one point to another in

a corridor while following a reference trajectory and avoiding obstacles. The
reference trajectory is given by a reference control that provides a satisfying
solution to the deterministic problem. However, when we add perturbations
to the system, the trajectories resulting from the reference control often col-
lide with obstacles. To overcome this challenge, our algorithm searches for
a control strategy that minimizes a risk measure of the stochastic cost func-
tion. The cost function is composed of two terms: a trajectory-tracking term
that tracks the reference trajectory and a term Jobstacles(X) that heavily pe-
nalizes trajectories that collide with obstacles. This penalization method as
presented in [38] is a classic optimal control approach to get rid of the con-
straints and is widely used in the literature [39, 40, 41].

J(u) = ∥u∥2
U +

∫ T

0
∥Xu(t) − Xref (t)∥2dt + Jobstacles(Xu).

The term Jobstacles(X) acts as a potential that is extremely high in the obsta-
cles and thus forces the trajectories away. The risk measure significantly
weighs the worst-case scenarios, which means that the cost of a control
strategy will increase substantially if some random trajectories produced by
the control collide with an obstacle. A control minimizing the risk measure
should therefore avoid collisions with high probability.

6.2. Results
As shown in Figure 1, our algorithm converges arbitrarily close to so-

lutions for both System A and System B, as long as we use a sufficiently
small step size. Additionally, implementing the algorithm with an infinites-
imal value of γ results in the same level of convergence as when using a
non-negligible value of γ. In particular, although theoretical proofs typically
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(a) Plot of the gradient norm over the
iterations, System A, α = 0.05

(b) Plot of the gradient norm over the
iterations, System B, α = 0.05

Figure 1: Convergence rates obtained for α = 0.05 and different values of γ, for both the
steering system (left) and the AstroBee system (right).

(a) System A: 100 trajectories, α = 0.05, and
γ = 0.

(b) System B: 100 trajectories, α = 0.05, and
γ = 0.

Figure 2: 100 trajectories given by a trained control for both systems.

require γ to be strictly greater than 0, our numerical results suggest that it
may not always be necessary to achieve convergence.

In Table 1, we evaluate the effectiveness of our algorithm under three
different values of α: α = 0.05, α = 0.2, and α = 1 (the latter value corre-
sponds to the minimization of the mean). By testing our algorithm under
these different values of α, we can assess the impact of different risk levels on
the control strategy. Our main metric is the percentage of trajectories pro-
duced by the control strategy that resulted in collisions with obstacles. We
compare these percentages between strategies obtained with different values
of α to assess its impact on the level of risk in the control strategy.
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Systems α = 1 α = 0.2 α = 0.05
System A 0.353% 0.112% 0.011%
System B 0.049% 0.007% 0.004%

Table 1: Percentage of collisions with obstacles for different α and γ = 0. Control strategies
trained with higher values of α yield significantly more trajectories colliding with obstacles.

To evaluate the robustness of the control strategy, we can increase the
size of the obstacles to see how much the probability of collision increases.
We rapidly re-trained the controls in this modified problem, with obstacles
of a bigger size. This allows us to assess the ability of the control strategy to
handle more challenging and uncertain conditions. From Table 4, for both
System A and System B, we observe the control solutions that minimized the
risk measure with a low value of α are the most conservative. This results in
trajectories that keep a larger distance from obstacles but also deviate more
from the reference trajectory.

To further assess the impact of the parameter α on the trade-off between
mean scores and worst-case scenarios, we computed the probability densities
of the costs of the obtained control strategies. By comparing the probability
densities of the costs under different values of α, we can identify the optimal
level of risk for each system and obtain a control strategy that balances the
trade-off between mean scores and worst-case scenarios. As expected, density
distributions have higher means but smaller tails for lower values of α. This
suggests that a more conservative risk estimate leads to a more robust control
strategy with lower worst-case scenarios but also a lower mean score.

(a) Density of the cost for System A. (b) Density of the cost for System B.

Figure 3: Densities of the cost for different α and γ = 0.
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Obstacles bonus
size

α = 1 α = 0.2 α = 0.05

+0% 0.353% 0.112% 0.011%
+5% 0.367% 0.111% 0.011%
+10% 0.470% 0.145% 0.013%
+15% 0.600% 0.177% 0.015%
+20% 0.735% 0.225% 0.020%

Table 2: Percentage of collisions with obstacles in the steering problem.

Obstacles bonus
size

α = 1 α = 0.2 α = 0.05

+0% 0.049% 0.007% 0.004%
+5% 0.044% 0.006% 0.004%
+10% 0.048% 0.006% 0.006%
+15% 0.054% 0.006% 0.006%
+20% 0.066% 0.008% 0.006%

Table 3: Percentage of collisions with obstacles in the AstroBee system.

Table 4: Percentage of collisions with obstacles for different α in the two systems.

7. Conclusion and future directions

In this paper, we develop an algorithm to solve risk-averse stochastic op-
timal control problems subject to non-linear stochastic differential equations,
where a risk measure replaces expectation in the cost. By leveraging duality
results for coherent risk measures, we recast our minimization problem into a
min-max problem that we solve with a gradient descent-ascent approach. We
prove convergence properties for this algorithm, which we showcase through
appropriate numerical implementation on non-trivial control systems. Our
results show our algorithm genuinely converges under very general assump-
tions and settings. Importantly, our approach of minimizing the cost under
a risk measure instead of the expectation yields more robust control strate-
gies, which are capable of considerably better mitigating the uncertainties
generated by the diffusion term in the stochastic differential equation.

Several exciting avenues for further exploration and testing are listed
hereafter. One direction would consist in extending our algorithm to sys-
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tems that are modeled through more complex stochastic processes, such as
processes with control variables in the diffusion or processes with jumps.
Control-dependent diffusion would allow us to model systems where the un-
certainties are caused by inputs as well. While putting a control term in the
diffusion is already theoretically feasible, we found it to be computationally
very expensive as it requires computing conditional expectations, calling for
deeper investigation. In particular, recent techniques found in the literature
[42] may allow us to efficiently compute these conditional expectations. An-
other direction consists of testing our approach for other risk measures than
just the CV@R. Additionally, we are interested in extending our approach
to more sophisticated agents, e.g., soft robots. Soft robots have recently re-
ceived a particular surge of interest as they appear in an increasing number
of applications. An emerging model for the dynamics of soft robots hinges
upon infinite-dimensional dynamics ruled by Partial Differential Equations
(PDEs) [43]. It would be beneficial to extend our approach to handle stochas-
tic PDEs: we look forward to future developments in this area.

Appendix A. Technical proofs

Appendix A.1. Proof of Lemma 3.1
In this appendix, we give the proof of Lemma 3.1. We want to show the

differentiability of the cost function. We assume to be dealing with the cost
and dynamics in Setting A. We prove first that the function J : U → L2

FT

is Fréchet differentiable. We also retrieve a numerically tractable formula
for the Riesz representation of the differential, that we denote ∇J(u) =
(∇vJ(u), ∇λJ(u)). For the sake of clarity, we recall that if u = (v, λ) is a
control in U , we denote u(t) the value u(t) ≜ v(t) + Kλ(Xu(t)), where Xu

uniquely solves (3) with control (5). We also denote K ′
λ(x) the differential

of Kλ(x) with respect to x. We first start giving two preliminary lemmas.

Lemma Appendix A.1. Under assumptions of Setting A, let u = (vu, λu)
and h = (vh, λh) be two controls in U . There exists Cu,h a positive continuous
function of ∥u∥U and ∥h∥U such that

∥Xu − Xh∥2
C2

F
≤ Cu,h∥u − h∥2

U . (A.1)

Proof. Let u = (vu, λu) and h = (vh, λh) be two controls in U . The difference
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in the two trajectories Xu and Xh is given by

Xu(s) − Xh(s) =
∫ s

0
[b(r, Xu(r), u(r)) − b(r, Xh(r), h(r))] dr

+
∫ s

0
[σ(r, Xu(r)) − σ(r, Xh(r))] dWr.

where we denote the control value u(r) = vu(r) + Kλu(Xu(r)). If we note
C > 0 a positive constant (that will be overloaded in the rest of the proof),
we can bound the C2

F norm of the difference above by

E
[

sup
0≤s≤t

∥Xu(s) − Xh(s)∥2
]

≤ CE
[

sup
0≤s≤t

∥∥∥∥∫ s

0
[σ(r, Xu(r)) − σ(r, Xh(r))] dWr

∥∥∥∥2
]

+ CE
[

sup
0≤s≤t

∥∥∥∥∫ s

0
[b(r, Xu(r), u(r)) − b(r, Xh(r), h(r))] dr

∥∥∥∥2
]

.

Using Cauchy-Schwartz in the deterministic integral and the Burkholder-
Davis-Gundy inequality in the stochastic integral, we get:

E
[

sup
0≤s≤t

∥Xu(s) − Xh(s)∥2
]

≤ CE
[∫ t

0
∥σ(r, Xu(r)) − σ(r, Xh(r))∥2dr

]
+ CE

[∫ t

0
∥b(r, Xu(r), u(r)) − b(r, Xh(r), h(r))∥2dr

]
.

By using the lipschitzianity of the dynamics and taking the sup in the inte-
gral, we get

E
[

sup
0≤s≤t

∥Xu(s) − Xh(s)∥2
]

≤ CE
[∫ t

0
sup

0≤r≤s
∥Xu(r) − Xh(r)∥2ds

]

+ CE
[∫ t

0
∥u(s) − h(s)∥2ds

]
.

We can write
u(s) − h(s) = vu(s) − vh(s) + Kλu(Xu(s)) − Kλh

(Xu(s))
+ Kλh

(Xu(s)) − Kλh
(Xh(s)),

and therefore have

E
[

sup
0≤s≤t

∥Xu(s) − Xh(s)∥2
]

≤ CE
[∫ t

0
sup

0≤r≤s
∥Xu(r) − Xh(r)∥2ds

]

+ CE
[∫ t

0
∥vu(s) − vh(s)∥2ds

]
+ CE

[∫ t

0
∥Kλu(Xu(s)) − Kλh

(Xu(s))∥2ds
]

+ CE
[∫ t

0
∥Kλh

(Xu(s)) − Kλh
(Xh(s))∥2ds

]
.
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Using the assumptions on Kλ(X) in (6), we obtain that

E
[

sup
0≤s≤t

∥Xu(s) − Xh(s)∥2
]

≤ CE
[∫ t

0
sup

0≤r≤s
∥Xu(r) − Xh(r)∥2ds

]

+ C
∫ t

0
∥vu(s) − vh(s)∥2ds + C

(
1 + E

[∫ t

0
∥Xu(s)∥2ds

])
∥λu − λh∥2

+ C(1 + ∥λh∥2)E
[∫ t

0
∥Xu(s) − Xh(s)∥2ds

]
.

The dynamics of the SDE (3) are continuous in u = (v, λ) and the solution Xu

changes continuously with the dynamics [24], implying that E
[∫ t

0 ∥Xu(s)∥2ds
]

is a continuous function of u. We may therefore introduce Cu,h, an overloaded
constant that depends continuously on u and h. From this remark, by taking
the sup in the integral above, we may infer that

E
[

sup
0≤s≤t

∥Xu(s) − Xh(s)∥2
]

≤Cu,hE
[∫ t

0
sup

0≤r≤s
∥Xu(r) − Xh(r)∥2ds

]

+ Cu,h

[∫ t

0
∥vu(s) − vh(s)∥2ds + ∥λu − λh∥2

]
.

Finally, the Gronwall lemma applied to t 7→ sup
0≤s≤t

∥Xu(s) − Xh(s)∥2 yields

E
[

sup
0≤s≤t

∥Xu(s) − Xh(s)∥2
]

≤ Cu,h∥u(s) − h(s)∥2
U .

In what follows, we denote yu,h the unique element of L2
F(Ω × [0, T ], Rn)

that verifies the linearized SDE
Lemma Appendix A.2. Let u = (vu, λu) and h = (vh, λh) be two controls
in U , let us consider the following linear SDE with stochastic dynamics:

dY (t) = [∂xb(t, Xu(t), u(t)) + ∂ub(t, Xu(t), u(t))K ′
λu

(Xu(t))]Y (t)
+∂ub(t, Xu(t), u(t))[vh(t) + ∇λKλu(Xu(t))λh]dt
+∂xσ(t, Xu(t))Y (t)dWt,

Y (0) = 0.

This equation has a unique solution denoted yu,h ∈ L2
F(Ω × [0, T ], Rn). This

solution can be written explicitly as

yu,h(t) = ϕu(t)
∫ t

0
ϕ−1

u (s)∂ub(s, Xu(s), u(s))[vh(s) + ∇λKλ(Xu(s))λh]ds
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where ϕu, defined in (15), is the resolvant of the linear SDE (15). Consider
ϵ a positive constant and denote δXu,ϵ,h ≜ Xu+ϵh − Xu. Then,

∥δXu,ϵ,h − ϵyu,h∥C2
F

≤ C(ϵ)ϵ∥h∥L2
F

= o(ϵ)

where C(ϵ) > 0 is a real positive function of ϵ that tends to zero as ϵ → 0.

Proof. The process Y is the solution of a linear equation of the form

dY (t) = (A(t)Y (t) + r(t))dt + C(t)Y (t)dWt,

where A(t), C(t) and r(t) are Ft-adapted processes. If A(t) and C(t) are
L∞

F (Ω×[0, T ]), and r(t) is L2
F(Ω×[0, T ]), then [44] ensures us that there exists

a unique strong solution that can be written explicitly. The assumptions
made on Kλ(x) ensure us that

∥K ′
λ(x)∥ ≤ C(1 + ∥λ∥), ∥∇λKλ(x)∥ ≤ C(1 + ∥x∥),

which in turn implies

∥A∥∞ ≤ ∥∂xb∥∞ + C∥∂ub∥∞(1 + ∥λu∥)
∥C∥∞ ≤ ∥∂xσ∥∞

∥r∥L2 ≤ ∥∂ub∥∞(∥vh∥L2 + C(1 + ∥Xu∥C2
F

)∥λh∥)

The solution therefore exists and can be written explicitly.
As for the approximation, the functions δXu,ϵ,h and yu,h follow the same

SDE up to a o(ϵ) term. Therefore, the proof follows the exact same steps as
the proof of Lemma Appendix A.1, which we then avoid detailing here.

We can now move to the proof of Lemma 3.1. To prove differentiability,
we start by estimating the difference

δJu,ϵ,h = J(u + ϵh) − J(u)

=
∫ T

0
[f(t, Xu+ϵh(t), vu(t) + ϵvh(t) + Kλu+ϵλh

(Xu+ϵh(t)))

− f(t, Xu(t), vu(t) + Kλu(Xu(t)))]dt + g(T, Xu+ϵh(T )) − g(T, Xu(T ))

=
∫ T

0
∂xf(t, Xu(t), u(t))δXu,ϵ,h(t)dt

+
∫ T

0
∂uf(t, Xu(t), u(t))[ϵvh(t) + Kλu+ϵλh

(Xu+ϵh(t)) − Kλu(Xu(t))]dt

+ ∂xg(T, Xu(T ))δXu,ϵ,h(T ) + o(ϵ) + o(δXu,ϵ,h).
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where δXu,ϵ,h ≜ Xu+ϵh − Xu. Due to Lemma Appendix A.1, we have

∥Xu+ϵh − Xu∥2
C2

F
≤ Cϵ2∥h∥2

U ,

where C is a positive constant, meaning that o(δXu,ϵ,h) = o(ϵ). Using this
latter fact, and the assumption that (λ, x) 7→ Kλ(x) has lipschitz gradient,
meaning it verifies (7), we may use the Taylor expansion of Kλ(x) and write

Kλu+ϵλh
(Xu+ϵh(t))−Kλu(Xu(t)) = K ′

λu
(Xu(t))δXu,ϵ,h(t)+∇λKλu(Xu(t))ϵλh+o(ϵ),

and then finally compute

δJu,ϵ,h =
∫ T

0
[∂xf(t, Xu(t), u(t)) + ∂uf(t, Xu(t), u(t))K ′

λ(Xu(t))]δXu,ϵ,h(t)dt

+
∫ T

0
∂uf(t, Xu(t), u(t))ϵ[vh(t) + ∇λKλ(Xu(t))λh]dt

+ ∂xg(T, Xu(T ))δXu,ϵ,h(T ) + o(ϵ).

We now need an estimate for δXu,ϵ,h that is linear in ϵh. In order to obtain
this latter, we first notice that δXu,ϵ,h solves the following SDE

dδXu,ϵ,h(t) = [∂xb(t, Xu(t), u(t)) + ∂ub(t, Xu(t), u(t))K ′
λ(Xu(t))]δXu,ϵ,h(t)dt

+ ∂ub(t, Xu(t), u(t))ϵ[vh(t) + ∇λKλ(Xu(t))λh]dt + o(ϵ)dt

+ [∂xσ(t, Xu(t))δXu,ϵ,h(t) + o(ϵ)] dWt.

Lemma Appendix A.2 yields that the solution of the linearized SDE is
indeed a good approximation. The gradients of f and g are bounded, we can
therefore replace δXu,ϵ,h by the new estimate ϵyu,h and obtain

δJu,ϵ,h =
∫ T

0
[∂xf(t, Xu(t), u(t)) + ∂uf(t, Xu(t), u(t))K ′

λ(Xu(t))]ϵyu,h(t)dt

+
∫ T

0
∂uf(t, Xu(t), u(t))ϵ[vh(t) + ∇λKλ(Xu(t))λh]dt

+ ∂xg(T, Xu(T ))ϵyu,h(T ) + o(ϵ).

By injecting the explicit formula of yu,h and inverting the integral signs, we
finally obtain

δJu,ϵ,h = ϵ
∫ T

0
Iu(s)ϕ−1

u (s)∂ub(s, Xu(s), u(s))[vh(s) + ∇λKλ(Xu(s))λh]ds

+ o(ϵ),
(A.2)
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where Iu is the term

Iu(s) ≜ ∂xg(T, Xu(T ))ϕu(T )

+
∫ T

s
[∂xf(t, Xu(t), u(t)) + ∂uf(t, Xu(t), u(t))K ′

λ(Xu(t))]ϕu(t)dt.

The function u = (v, λ) 7→ J is therefore Fréchet differentiable and we can
compute the Riesz representation of its gradient, denoted ∇J(u). We recall
that ∇J(u) = (∇vJ(u), ∇λJ(u)) is the random variable such that

lim
ϵ→0

δJu,ϵ,h(ω)
ϵ

= ⟨∇J(u)(ω), h⟩U ∀h ∈ U .

From the expression of δJu,ϵ,h in (A.2) we can directly identify the gradient
as

∇vJ(v, λ)(t) = Iu(t)ϕ−1
u (t)∂ub(t, Xu(t), u(t))

∇λJ(v, λ) =
∫ T

0
Iu(s)ϕ−1

u (s)∂ub(s, Xu(s), u(s))∇λKλ(Xu(s))ds.

Appendix A.2. Proof of Proposition 3.2
Let ρ be a finite coherent risk measure, U and ∂ρ(0) are both convex

subsets of a Hilbert space. As shown in 3.1, u 7→ J(u) is also Frechet
differentiable. Additionally, the risk function is Hadamard differentiable
(H-differentiable) as stated in Theorem 2.2, and thus u 7→ ρ(J(u)) is H-
differentiable. From [45, Chapter 3.1], we obtain the following optimality
condition for H-differentiable functions:

Proposition Appendix A.3. Let X be a convex subset of a Banach space
and f : X 7→ R an H-differentiable function. If f has a minimum on X
reached at x∗, it is necessary for x∗ to verify:

f ′(x∗) · (x − x∗) ≥ 0, ∀x ∈ X.

Let u∗ be a solution to Problem (8). Therefore, the previous proposition
yields:

−ρ′(J(u∗)) · DuJ(u∗) · (u − u∗) ≤ 0, ∀u ∈ U .

In particular, from the formula of the differential of ρ given in Theorem 2.2
and from the chain rule for directional differentials, we obtain that:

inf
ζ∈∂ρ(J(u∗))

E [−ζ DuJ(u∗) · (u − u∗)] ≤ 0, ∀u ∈ U .
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By using the Riesz representation of DuJ(u∗) and using equation (10) we get
inf

ζ∈∂ρ(J(u∗))
⟨E [−ζ ∇J(u∗)] , u − u∗⟩U ≤ 0, ∀u ∈ U . (A.3)

By taking the supremum of (A.3) over u ∈ U , we infer that
sup
u∈U

inf
ζ∈∂ρ(J(u∗))

⟨E [−ζ ∇J(u∗)] , u − u∗⟩U ≤ 0. (A.4)

Now, we need to invert the sup with the inf in the above expression, and for
this, we use the following version of Sion min-max theorem [46]:
Theorem Appendix A.4. Let X and Y be two convex subsets of Hauss-
dorff topological spaces with X being compact, and consider a continuous map
f such that

• x 7→ f(x, y) is convex in X for all y ∈ Y ,

• y 7→ f(x, y) is concave in Y for all x ∈ X.
Then, it holds that

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y).

In our setting, we select Y = U , which is convex, and X = ∂ρ(J(u∗)),
which is convex, weakly-* compact and therefore weakly compact since it is
a subset of a Hilbert space. Also, by definition, the mapping

(ζ, u) 7→ ⟨E [−ζ ∇J(u∗)] , u − u∗⟩U (A.5)
is weakly continuous and concave in u, as well as weakly continuous and
convex in ζ. Therefore, Theorem Appendix A.4 can be applied to equa-
tion (A.4), yielding

inf
ζ∈∂ρ(J(u∗))

sup
u∈U

⟨E [−ζ ∇J(u∗)] , u − u∗⟩U ≤ 0. (A.6)

Since the supremum of a family of lower semi-continuous functions is also
lower semi-continuous, the mapping

ζ 7→ sup
u∈U

⟨E [−ζ ∇J(u∗)] , u − u∗⟩U

is lower semi-continuous, and therefore it attains a minimum which we denote
by ζ∗ ∈ ∂ρ(J(u∗)). Thanks to this latter remark, from (A.6) we infer that

⟨E [ζ∗ ∇J(u∗)] , u − u∗⟩U ≥ 0, ∀u ∈ U ,

and the conclusion follows from the fact that U is a vector space.
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Appendix A.3. Proof of Lemma 5.4 (compacity of the output of a control
affine system)

We recall we are under the hypothesis of Setting B.
Proof of the compacity of u 7→ Xu: Let un be a sequence of controls
in U weakly converging to u. Let p ≥ 2, we prove below the more general
convergence

∥Xun − Xu∥p
Cp

F
→ 0

The theorem of existence of strong solutions of SDEs in [24] ensures us that,
since our initial condition is deterministic, Xu ∈ Cp

F . Below, we denote by
C > 0 a constant that will be implicitly overloaded throughout the proof.
By definition, for every n ∈ N we may compute

∥Xun − Xu∥p
Cp

F
≤ CE

[
sup

0≤r≤t

∥∥∥∥∫ r

0
(b0(s, Xun(s)) − b0(s, Xu(s)))ds

∥∥∥∥p
]

+ CE
[

sup
0≤r≤t

∥∥∥∥∫ r

0
(σ(s, Xun(s)) − σ(s, Xu(s)))dWs

∥∥∥∥p
]

+ CE
[

sup
0≤r≤t

∥∥∥∥∥
∫ r

0

m∑
i=1

[
(vn)(i)(s) − (v)(i)(s)

]
bi(s, Xu(s))ds

∥∥∥∥∥
p]

+ CE
[

sup
0≤r≤t

∥∥∥∥∥
∫ r

0

m∑
i=1

[
Kλn(Xun(s))(i) − Kλ(Xu(s))(i)

]
bi(s, Xu(s))ds

∥∥∥∥∥
p]

+ CE
[

sup
0≤r≤t

∥∥∥∥∥
∫ r

0

m∑
i=1

u(i)
n (s)(bi(s, Xun(s)) − bi(s, Xu(s)))ds

∥∥∥∥∥
p]

.

Let us denote

hn(t, ω) ≜
∫ t

0

m∑
i=1

[
(vn)(i)(s) − (v)(i)(s)

]
bi(s, Xu(s, ω))ds.

We now appropriately bound the different integral terms. Hölder’s inequality
yields

sup
0≤r≤t

∥∥∥∥∫ r

0
(b0(s, Xun(s)) − b0(s, Xu(s)))ds

∥∥∥∥p

≤

≤ C
∫ t

0
∥b0(s, Xun(s)) − b0(s, Xu(s))∥p ds

≤ C
∫ t

0
∥Xun(s) − Xu(s)∥p ds ≤ C

∫ t

0
sup

0≤s′≤s
∥Xun(s′) − Xu(s′)∥p

ds.
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Using that the functions bi are bounded and the assumptions on the feed-
back (6) paired with Hölder’s inequality, we have that

E
[

sup
0≤r≤t

∥∥∥∥∥
∫ r

0

m∑
i=1

[
Kλn(Xun(s))(i) − Kλ(Xu(s))(i)

]
bi(s, Xu(s))ds

∥∥∥∥∥
p]

≤ CE
[∫ t

0

m∑
i=1

∥Kλn(Xun(s))(i) − Kλn(Xu(s))(i)∥p∥bi(s, Xu(s))∥pds

]

+ CE
[∫ t

0

m∑
i=1

∥Kλn(Xu(s))(i) − Kλ(Xu(s))(i)∥p∥bi(s, Xu(s))∥pds

]

≤ CE
[∫ t

0
(1 + ∥λn∥p)∥Xun(s) − Xu(s)∥pds

]
+ CE

[∫ t

0
(1 + ∥Xu(s)∥p)∥λn − λ∥pds

]
.

Since λn converges, it is bounded. Using the fact that Xu is in Cp
F , by

taking the sup we finally have that

E
[

sup
0≤r≤t

∥∥∥∥∥
∫ r

0

m∑
i=1

[
Kλn(Xun(s))(i) − Kλ(Xu(s))(i)

]
bi(s, Xu(s))ds

∥∥∥∥∥
p]

≤ CE
[∫ t

0
sup

0≤s′≤s
∥Xun(s′) − Xu(s′)∥pds

]
+ C∥λn − λ∥p.

For the stochastic integral, thanks to Burkholder-Davis-Gundy inequal-
ity (1) combined with Hölder we may compute

E
[

sup
0≤r≤t

∥∥∥∥∫ r

0
(σ(s, Xun(s)) − σ(s, Xu(s)))dWs

∥∥∥∥p
]

≤

≤ CE
[∫ t

0
∥σ(s, Xun(s)) − σ(s, Xu(s))∥2 ds

] p
2

≤ CE
[∫ t

0
∥Xun(s) − Xu(s)∥p ds

]
≤ C

∫ t

0
E
[

sup
0≤s′≤s

∥Xun(s′) − Xu(s′)∥p

]
ds.

Gathering all the previous bounds yields

E
[

sup
0≤s≤t

∥Xun(s) − Xu(s)∥p

]
≤ C

∫ t

0
E
[

sup
0≤s′≤s

∥Xun(s′) − Xu(s′)∥p

]
ds

+ C
∥∥∥λn − λ

∥∥∥p
+ CE

[
sup

0≤s≤t
∥hn(s, ω)∥p

]
,
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and an application of Grönwall inequality allows us to infer that

E
[

sup
0≤s≤t

∥Xun(s) − Xu(s)∥p

]
≤ C

[
E
[

sup
0≤s≤t

∥hn(s, ω)∥p

]
+
∥∥∥λn − λ

∥∥∥p
]

.

To conclude, we now need to prove that E
[

sup
0≤s≤t

∥hn(s, ω)∥p

]
tends to 0. The

following lemma gives us the convergence of sup
0≤s≤t

∥hn(s, ω)∥p for ω fixed in

Ω (see [25] for proof).
Lemma Appendix A.5. Let a, b ∈ R and let E be a normed vector space.
For all n ∈ N, let fn : [a, b] → E be uniformly α-Hölder, that is

∃α, K > 0, ∀n ∈ N, ∀x, y ∈ [a, b] ∥fn(x) − fn(y)∥ ≤ K∥x − y∥α (A.7)

If the sequence fn converges simply to an application f , then it converges
uniformly.

For ω ∈ Ω, hn(s, ω) converges to 0 by weak convergence of un. Let us
recall that the functions bi are bounded by assumption. We can now show
that the sequence hn(·, ω) is uniformly Hölder thanks to Cauchy Schwartz
and to the fact that vn is uniformly bounded in L2(0, T ) :

|hn(t2, ω)−hn(t1, ω)| =
∣∣∣∣∣
∫ t2

t1

m∑
i=1

[
(vn)(i)(s) − (v)(i)(s)

]
bi(s, Xu(s, ω))ds

∣∣∣∣∣
≤ C

m∑
i=1

(∫ t2

t1
(|(vn)(i)(s)|2 + |(v)(i)(s)|2)ds

) 1
2
(∫ t2

t1
∥bi∥∞ds

) 1
2


≤ C|t2 − t1|

1
2

Using Lemma Appendix A.5, we have that sequence of random variables
gn(ω) := sup

0≤s≤t
∥hn(s, ω)∥p converges pointwise to 0. The random variable gn

can be uniformly bounded by the deterministic value

|gn(ω)| ≤
(

Tm
∫ T

0

m∑
i=1

(Mu + ∥(v)(i)(s)∥2)∥bi∥2
∞

) p
2

with Mu a uniform bound of the sequence of controls. We therefore have by
dominated convergence that E[gn] tends to 0 , which in turn gives

∥Xun − Xu∥p
Cp

F
→ 0.
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Proof of the compacity of u 7→ ∇uJX(Xu):
For more clarity, let us consider a cost where g = 0. Let u be a control

in U , we can write the gradient as

∇uJX(Xu)(i)(t) =
[∫ T

t
∂xf(s, Xu(s))ϕu(s)ds

]
ϕ−1

u (t)∂xbi(t, Xu(t))

with ϕu satisfying for t ∈ [0, T ] the linear system
dϕu(t) = [∂xb0(t, Xu(t)) +∑m

i=1 ui(t)∂xbi(t, Xu(t))] ϕu(t)dt
+ [∑m

i=1 bi(t, Xu(t))] K ′
λu

(Xu(t))ϕu(t)dt
+∂xσ(t, Xu(t))ϕu(t)dWt,

ϕ(0) = IdN .

(A.8)

Since functions bi, ∂xbi, ∂xσi and K ′
λ are all uniformly bounded, we can prove

in a similar way as previously the compacity of u 7→ ϕu in Cp
F . We can also

prove the compacity of u 7→ ϕ−1
u as it satisfies a similar SDE.

We then conclude using the Cauchy-Schwartz inequality twice on the
expectation of the four terms and obtaining

E
[

sup
0≤t≤T

∥∇uJX(Xu)(i)(t) − ∇uJX(Xun)(i)(t)∥2
]

≤

C

(∫ T

0
E
[
∥∂xf(s, Xu(s)) − ∂xf(s, Xun(s))∥8

]
ds

)
∥ϕu∥C8

F
∥ϕ−1

u ∥C8
F

∥∂xbi∥8
∞

+ C∥∂xf(·, Xun(·))∥C8
F

∥ϕu − ϕun∥C8
F

∥ϕ−1
u ∥C8

F
∥∂xbi∥8

∞

+ C∥∂xf(·, Xun(·))∥C8
F

∥ϕun∥C8
F

∥ϕ−1
u − ϕ−1

un
∥C8

F
∥∂xbi∥8

∞

+ C∥∂xf(·, Xun(·))∥C8
F

∥ϕun∥C8
F

∥ϕ−1
un

∥C8
F

∥∂xbi(·, Xu(·)) − ∂xbi(·, Xun(·))∥C8
F

The lipschitzianity of ∂xf ensures the convergence of the first term to 0 and
implies that

∥∂xf(s, x)∥ ≤ C(1 + ∥x∥)
which in turn yields

∥∂xf(·, Xun(·))∥C8
F

≤ C(1 + ∥Xun∥C8
F

),

which is bounded thanks to the convergence of the sequence Xun . Finally,
we conclude with the lipschitzianity of ∂xbi which implies that the last term
tends to 0. We therefore have

∥∇u(JX(Xun)) − ∇u(JX(Xu))∥2
C2

F
→ 0.
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