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Gif-sur-Yvette, France

riccardo.bonalli@centralesupelec.fr

Jean Auriol
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Abstract—In this paper, we introduce a novel ap-
proach to solve the (mean-covariance) steering prob-
lem for a fairly general class of linear continuous-time
stochastic systems subject to input delays. Specifically,
we aim at steering delayed linear stochastic differential
equations to a final desired random variable with given
mean and covariance. We first establish a controlla-
bility result for these control systems, revealing the
existence of a lower bound under which the covariance
of the control system cannot be steered. This structural
threshold covariance stems from a unique combined
effect due to stochastic diffusions and delays. Next, we
propose a numerically cheap approach to reach any
neighbor of this threshold covariance in finite time.
Via an optimal control-based strategy, we enhance
the aforementioned approach to keep the system co-
variance small at will in the whole control horizon.
Under some additional assumptions on the dynamics,
we give theoretical guarantees on the efficiency of our
method. Finally, numerical simulations are provided to
ground our theoretical findings, showcasing the ability
of our methods in optimally approaching the covariance
threshold.

Index Terms—Stochastic systems, Delay systems,
Linear systems, Covariance steering.

I. Introduction
Dynamical processes are often affected by disturbances

stemming from various factors, such as imprecise mea-
surements, parameter uncertainties, and external distur-
bances. Such disturbances may considerably alter the
dynamics, as in several applications such as automated
vehicle steering, traffic network control, or building heat
regulation. Therefore, effectively mitigating these uncer-
tainties is crucial to establish the reliability and security of
such controlled systems. Stochastic Differential Equations
(SDEs) provide broad and accurate modelization of a
large class of uncertain systems. Stochastic control enables
the effective design of stabilizing controllers for SDEs,
which are also robust against random fluctuations. In
particular, such robustness may be reliably achieved by
seeking controllers that keep the state variance relatively
small, see [1]–[3] , and references therein.

Another crucial consideration in the modeling of dynam-
ical systems is the integration of delays into the dynamics.
Delays in the system state or the control input stem from
various sources, including physical constraints or transmis-
sion times [4]. When delays take large values, neglecting
them may lead to critical stability issues, hindering robust
control of the system dynamics. For deterministic systems,
the generation of predictive state models has been sug-
gested to handle delays [5], [6]. However, these methods
often depend on prior knowledge of the system dynam-
ics, a challenging limitation when dealing with stochastic
systems. Certain methods have been proposed to handle
systems with unknown perturbations [7], [8]. However,
their implementation still requires some prior knowledge
of the noise structure. Consequently, such approaches can
hardly be adjusted to stabilize delayed SDEs.

All the aforementioned hindrances show the urgency
in developing novel methods to efficiently and robustly
control stochastic systems with delays. In this regard,
some stabilization methods have been proposed [9], [10].
Yet, state covariance minimization, often key to mitigating
uncertainty, is generally disregarded. To effectively com-
pute strategies seeking minimal covariance, optimal con-
trol methods have been alternatively investigated. These
approaches are supported by necessary conditions for op-
timality, which are however efficiently implementable only
in specific settings [11]–[13]. Notably, in Linear Quadratic
(LQ) settings, i.e., linear dynamics and quadratic costs,
conditions for optimality may be efficiently solved by seek-
ing solutions to Riccati-type ordinary differential equa-
tions [14]–[16], a numerically cheap method. Nevertheless,
to the best of our knowledge, as efficient as they may be,
these approaches do not support final state constraints.
Importantly, estimates bounding the state covariance are
generally underrated and not investigated, although these
are crucial to establish the system’s overall safety [17].

In this paper, by merging methodologies from deter-
ministic delayed control and stochastic control, we start
bridging these gaps. Specifically, for the first time, we

ar
X

iv
:2

31
1.

14
12

1v
1 

 [
m

at
h.

O
C

] 
 2

3 
N

ov
 2

02
3



introduce a novel approach to control linear SDEs with
delays under guarantees ensuring the state covariance is
kept small throughout the control horizon. Our controls
are uniquely cheap to numerically implement. Our contri-
bution is threefold:

1) First, we investigate the controllability, in mean and
covariance, of delayed SDEs. For this, we extend
Arstein-type transformations [5], [18]. Unlike non-
delayed settings, our analysis shows the covariance
of linear delayed SDEs can not be steered to any
symmetric definite positive matrix. Instead, due to
the combined presence of diffusions and delays, the
system can never be sterred beyond some minimal
covariance1. This is a structural obstruction exclu-
sive to delayed SDEs. Still, under classical rank-
type controllability conditions, we prove an open-
loop control exists enabling to steer delayed SDEs
close to this minimal covariance at will.

2) The implementation of open-loop controllers is no-
tably impractical in the stochastic framework. To
achieve the design of numerically tractable control
laws, we leverage covariance steering techniques [1],
[3]. This will enable computing feedback controls
that steer linear delayed SDEs from an initial co-
variance to any final covariance as close as wanted
to the aforementioned minimal covariance while min-
imizing the control effort.

3) The previous class of controllers does not guarantee
the covariance remains small throughout the whole
control horizon. To bridge this gap, we leverage
optimal control techniques to minimize both the
final state covariance and the covariance along the
whole trajectory. Importantly, under some additional
assumptions on the dynamics, we provide estimates
of these minimal covariances in the autonomous case.
These bounds show the covariance of delayed SDEs
can be forced to evolve within any neighbor of the
minimal covariance.

The paper is organized as follows. In Section II, we
outline the problem formulation. Our first controllability
result is stated and proved in Section III. In Section IV,
we introduce a numerically efficient methodology to steer
the system covariance. Upon these results, in Section V we
develop a technique to minimize the covariance throughout
the control horizon, developing error estimates. Finally,
in Section VI, we present numerical simulations on a
real-world system model for building temperature control,
subject to realistic temperature transmission delays and
random external temperature fluctuations.

1with respect to the partial order in the space of symmetric definite
matrices.

II. Problem formulation

A. Notations

Let us consider n and m two positive integers. We as-
sume state variables take values in Rn, while control vari-
ables take values in Rm. We assume we are given a filtered
probability space (Ω, F ≜ (Ft)t∈[0,∞),P). For the sake of
clarity in the exposition and without loss of generality,
from now on, we assume stochastic perturbations are due
to a one-dimensional Wiener process Wt, which is adapted
to the filtration F . Let T > 0 be some given time horizon,
while 0 < h < T is some fixed delay. For any r ∈ N,
we denote by L2

F ([0, T ],Rr) the set of square integrable
processes P : [0, T ] × Ω → Rr that are adapted to F .
The spaces of semi-definite and definite positive symmetric
matrices in Rn are denoted by S+

n and S++
n , respectively.

If M(t) is an L∞([0, T ],Rn×n) matrix function, we denote
ΦM (t, s) the fundamental matrix associated to it, which is
by definition the unique solution to the system{

dΦM

dt
(t, s) = M(t)ΦM (t, s),

ΦM (s, s) = I.

If X ∈ L2
F ([0, T ],Rr), we denote by ΣX(·) its covariance

(matrix), which is defined as

ΣX(t) ≜ E[(X(t) − E[X(t)])(X(t) − E[X(t)])T ] ∈ S+
n .

B. Control system and assumptions

In this paper, we consider delayed-input SDEs of the
form

dX(t) = (A(t)X(t) + B(t)U(t − h) + r(t)) dt
+σ(t)dWt,

X(0) = X0,
U(s) = 0 for s ∈ [−h, 0[,

(1)
where X0 ∈ Rn is a fixed initial condition, whereas the
control U lies in the control space U ≜ L2

F ([0, T ],Rm).
The constant h > 0 is a positive delay acting on the control
input. Given XT ∈ Rn and ΣT ∈ S++

n , our goal is to find
U ∈ U that steers the corresponding solution X of (1) to(

E[X(T )]
ΣX(T )

)
=
(

XT

ΣT

)
.

We call this problem the (mean-covariance) steering prob-
lem. It boils down to finding the control that displaces
the initial probability distribution of the state to a more
desirable final distribution. To fulfil this control objective,
we make the following assumption.

Assumption 1. Throughout the paper, we assume the
following properties hold true:

• A ∈ L∞([0, T ],Rn×n), B ∈ L∞([0, T ],Rn×m), r ∈
L∞([0, T ],Rn) and σ ∈ L∞([0, T ],Rn). In particular,
these mappings are deterministic.



• The Grammian associated with the non-delayed deter-
ministic system, defined as

GT +h
τ ≜

∫ T +h

τ

ΦA(T + h, s)B(s)B(s)T ΦA(s, T + h)T dt,

(2)
is invertible for all 0 < τ < T + h.

The first assumption on the dynamics is classical as
it guarantees the well-posedness of the system [19]. The
second assumption allows for the total controllability of
the deterministic non-delayed system, meaning it can be
controlled in any sub-interval of [0, T + h] [20]. Further-
more, we assume that the initial state X0 is deterministic.
While our approach can be extended straightforwardly to
Gaussian random variables (as in [1]), we maintain a null
initial covariance for the sake of simplicity. The above
assumptions are generic and usually satisfied by a wide
class of systems.

C. System reduction
We can reduce the steering problem to an easier one,

where X0 and XT are both 0 and where the drift r(t) is
the zero function. For this, let Xr(t) ≜ XT

t
T + X0

T −t
T

and X(t) ≜ X(t) − Xr(t). The difference X(t) follows the
dynamic:

dX(t) =
(
A(t)X(t) + B(t)U(t − h) + r(t)

)
dt

+ σ(t)dWt,
X(0) = 0,
U(s) = 0 for s ∈ [−h, 0[.

(3)
where r(t) ≜ r(t) + Ẋr(t) − A(t)Xr(t). Steering the mean
and the covariance of X from

(
X0
0

)
to
(

XT

ΣT

)
is thus

equivalent to steering the mean and covariance of X(t)
from

(
0
0

)
to
(

0
ΣT

)
. Indeed, adding a deterministic

term to the controller compensates for the effect induced
by the drift and the change of variables [3]. More precisely,
we consider

U(t) = Ufeedback(t) + Udrift(t),

with

Udrift(t) = −B(t + h)T ΦA(t + h)T G−1

×

(∫ T

0
ΦA(T, s)r(s)ds

)
.

By leveraging similar computations to the ones detailed
in [20], it can be verified that controlling system (3)
as required above boils down to steering the mean and
covariance of the reduced system

dX(t) = (A(t)X(t) + B(t)Ufeedback(t − h)) dt
+σ(t)dWt,

X(0) = 0,
U(s) = 0 for s ∈ [−h, 0[,

(4)

from
(

0
0

)
to
(

0
ΣT

)
with a control U = Ufeedback ∈ U

of zero mean. Therefore, from now on, we only focus on
this latter problem. Of particular interest is the case where
ΣT is the smallest possible.

III. Covariance steering: open-loop controls

In this section, we study which state covariances can be
reached by the solution of (4) within a finite time frame.
In particular, we show that there exists a lower bound on
the state covariance under which (4) can not be steered.
We then establish the existence of open-loop controls that
achieve state covariances that are arbitrarily close to this
lower bound.

A. Extending the Artstein transformation

We achieve the aforementioned goal by leveraging the
Artstein transformation [5] to our stochastic setting.

Definition 2 (Artstein transform). Let X be the process
solving equation (3). The Artstein transform of X is the
following process, which is adapted to F ,

Y (t) ≜ X(t) +
∫ t

t−h

ΦA(t, s + h)B(s + h)U(s)ds. (5)

It can be easily checked that the Artstein transform
solves the following non-delayed stochastic equation{

dY (t) =
(
A(t)Y (t) + BU(t)

)
dt + σ(t)dWt,

Y (0) = 0,
(6)

where B(t) ≜ ΦA(t, t + h)B(t + h). We can now apply
known results from non-delayed stochastic control from
[3], [19] to the Artstein transform Y to steer (6) as desired.
However, it is unclear how to compute the covariance of
X, which we aim to estimate once the covariance of Y is
available. For this, we make use of the following:

Lemma 3. Let X be the process solving equation (3), and
Y its Artstein transform. Then for all t ∈ [h, T ]

X(t) = ΦA(t, t − h)Y (t − h) +
∫ t

t−h

ΦA(t, s)σ(s)dWs. (7)

Proof. Using the analytic formula for linear SDEs [19],
we can establish the following relation between X(t) and
X(t − h):

X(t) =ΦA(t, t − h)X(t − h)

+
∫ t

t−h

ΦA(t, s)B(s)U(s − h)ds

+
∫ t

t−h

ΦA(t, s)σ(s)dWs.



By expressing X(t − h) in terms of Y (t − h), a change of
variable in the regular integral yields

X(t) = ΦA(t, t − h)Y (t − h) +
∫ t

t−h

ΦA(t, s)σ(s)dWs

− ΦA(t, t − h)
∫ t−h

t−2h

ΦA(t − h, s + h)B(s + h)U(s)ds

+
∫ t−h

t−2h

ΦA(t, s + h)B(s + h)U(s)ds,

from which we infer the conclusion thanks to the identity
ΦA(t, t − h)ΦA(t − h, s + h) = ΦA(t, s + h).

Equation (7) provides important insights for the control-
lability of the process X. In particular, it states X(t) can
only be controlled through Y (t−h), in that the additional
noise term

∫ t

t−h
ΦA(t, s)σ(s)dWs can not be controlled.

Let ΣY (t) ≜ E[(Y (t) − E[Y (t)])(Y (t) − E[Y (t)])T ] denote
the covariance of the process Y . Equation (7) can be
further manipulated to express ΣX as a function of ΣY

as explained in the following lemma.

Lemma 4. Let X be the process solving equation (3), and
let Y be its Artstein transform. For all t ∈ [h, T ],

ΣX(t) =ΦA(t, t − h)ΣY (t − h)ΦA(t, t − h)T

+ Σmin(t),
(8)

where

Σmin(t) ≜
∫ t

t−h

ΦA(t, s)σ(s)σ(s)T ΦA(t, s)T ds.

Proof. Fix t ∈ [h, T ]. We first utilize a standard result
from stochastic calculus that states that, if γ1 and γ2 two
deterministic functions in L2([0, T ],R), then :

E
[(∫ t

0
γ1(s)dWs

)(∫ t

0
γ2(s)dWs

)]
=
∫ t

0
γ1(s)γ2(s)ds

(9)

From this result, we have that

E

[(∫ t

0
ΦA(t, s)σ(s)dWs

)(∫ t

0
ΦA(t, s)σ(s)dWs

)T
]

=
∫ t

0
ΦA(t, s)σ(s)σ(s)T ΦA(t, s)T ds = Σmin(t)

Since the covariance of the sum of two independent ran-
dom variables is the sum of their covariances, what is
left to prove is that ΦA(t, t − h)Y (t − h) is independent
of
∫ t

t−h
ΦA(t, s)σ(s)dWs. Since X is adapted to F , by

definition Y is also adapted to F , and in particular Y (t−h)
is σ(Ws : 0 ≤ s ≤ t−h)-measurable. To conclude, it is suf-
ficient to prove that

∫ t

t−h
ΦA(t, s)σ(s)dWs is independent

from Wr, for r in [0, t−h]. Now, if t−h = s0 < ... < sN = t
is a sequence of partitions of [t − h, t] whose size tends

to zero, thanks to the properties of the Îto integral and
Assumption 1 we have that∫ t

t−h

ΦA(t, s)σ(s)dWs =

lim
N→∞

N−1∑
i=0

ΦA(t, si)σ(si)(Wsi+1 − Wsi), in L2.

For every r ∈ [0, t − h], it thus follows that

E
[
Wr

∫ t

t−h

ΦA(t, s)σ(s)dWs

]
=

= lim
N→∞

N−1∑
i=0

ΦA(t, si)σ(si)E
[
Wr(Wsi+1 − Wsi)

]
= 0,

due to the independence properties of Wiener processes.
This concludes the proof.

The covariance of the state X comprises two compo-
nents: one determined by the covariance of Y , which
is under our complete control, and another determined
by the covariance of

∫ t

t−h
ΦA(t, s)σ(s)dWs which remains

unaffected by the control term. Consequently, the state
covariance is inherently greater than the latter covariance,
presenting a limitation as there is no means to reduce it.

B. Controllability of the Artstein transform

Our goal is now to minimize the covariance as much as
possible and propose control strategies that can approach
the lower covariance bound as closely as wanted. The
following result is classical [21, Theorem 13]:

Theorem 5 (Controllability of non-delayed SDEs). If
the Grammian G

T

τ associated to the deterministic part of
equation (6), defined as

G
T

τ ≜
∫ T

τ

ΦA(T, s)B(s)B(s)T ΦA(T, s)T ds (10)

is invertible for all τ in [0, T ], then for every ΣT ∈ S++
n

there exists U ∈ U such that the solution Y to (6) associated
with U is such that E[Y (T − h)] = 0 and ΣY (T − h) = ΣT .

We may combine Lemma 4 with Theorem 5 to infer
open-loop controllability of the original control system (4).

Theorem 6 (Controllability of delayed SDEs). Let ΣT ∈
S++

n . Under Assumption 1, there exists U ∈ U such that the
solution X to (3) associated with U verifies E[X(T )] = 0
and ΣX(T ) = ΣT + Σmin(T ).

Proof. To apply Theorem 5, we need to prove that As-
sumption 1 guarantees the invertibility of the modified



Grammian G
T

τ . For this, we may compute

G
T

τ =
∫ T

τ

ΦA(T, s)B(s)B(s)T ΦA(T, s)T ds

=
∫ T

τ

ΦA(T, s)ΦA(s, s + h)B(s + h)B(s + h)T

(ΦA(T, s)ΦA(s, s + h))T ds

=
∫ T

τ

ΦA(T, s + h)B(s + h)B(s + h)T ΦA(T, s + h)T ds

= ΦA(T, T + h)GT +h
τ+h ΦA(T, T + h)T ,

which is invertible thanks to Assumption 1. Therefore,
there exists U ∈ U such that the solution Y to (6)
associated with U is such that E[Y (T )] = 0 and ΣY (T −
h) = ΦA(t, t−h)−1ΣT ΦA(t, t−h)−T , and we conclude.

Thanks to Theorem 6, we can steer the state X to a
final covariance that can be arbitrarily close to the limit
Σmin(T ), by selecting ΣT arbitrarily small. The control
derived in this section to guide the system is an open-
loop stochastic control, posing challenges for numerical
implementation [22]. Consequently, we need to explore
the possibility of addressing the steering problem using
a feedback controller.

IV. Covariance steering: close-loop controls

In the previous section, we solved the steering problem
by means of open-loop controls. Such control laws are
known to be very expensive to compute. To fix this hin-
drance, we show in this section, the existence of tractable
feedback controls that solve the steering problem. We
achieve this result by leveraging and combining recent
advances in covariance steering techniques, e.g., [1]–[3],
with the previous Artstein transformation. In particular,
the covariance of solutions to equation (4) can be steered
to ΣT + Σmin, with ΣT ∈ S++

n , via feedback controls.
In [3], the authors prove that under the controllability

conditions of Theorem 5, there exists a unique feedback
control U ∈ U that steers the covariance of Y solution
to (6) to a desired covariance, while minimizing the func-
tional cost

J(U) ≜ E

[∫ T

0
U(t)T RU(t)dt

]
,

where R ∈ S++
m . We can show the existence of tractable

feedback controls that solve the steering problem by com-
bining [3] with our previous results as follows:

Theorem 7. Let ΣT ∈ S++
n and Y denote solutions to

(6). Under Assumption 1, there exists a unique feedback
control U∗ of the form

U∗(t) = −R(t)−1B(t)T Π(t)Y (t), (11)

that minimizes the functional cost J under the constraint
ΣY (T − h) = ΣT . Moreover the gain Π(t) is the solution
to the following Riccati-type ordinary differential equation{

Π̇ = −AT Π − ΠA + ΠBR−1BT Π
Π(0) = Π0,

(12)

where Π0 is the unique solution of the system

ΣT = f(Π0), (13)

where f is a homeomorphism2.

Proof. The proof of this theorem is a direct consequence
of [3, Lemma 6], whose assumptions are satisfied thanks
to Theorem 6.

Similarly to what has been done in the previous section,
once we can control the state covariance of the process Y ,
we can leverage the relation given by lemma 4 and steer the
state covariance of X to any symmetric positive definite
matrix above the lower bound ΣM .

This method still presents some limitations, mainly:
• Computing the controller requires solving equation

(13), which, although it can be done through root-
finding algorithms, can be expensive as the function
f is not easy to compute.

• There are no guarantees on the value of the covariance
along the trajectory.

In the next section, we therefore introduce an optimal
control-based approach to minimizing the covariance along
the trajectory.

V. Global-in-time covariance steering via
close-loop controls

In the previous section, we showed the existence of
tractable feedback controls that solve the steering prob-
lem. Such control laws may not guarantee that the covari-
ance remains small during the whole control horizon [0, T ].
In this section, our objective is to establish an efficiently
implementable control strategy that keeps the state covari-
ance consistently low along its trajectory, and not just at
the final time. For this, we propose to compute controllers
that enable approaching any neighbor of the the covari-
ance threshold via techniques from Linear Quadratic (LQ)
control [19]. The goal consists of minimizing the quadratic
functional cost JR, defined as

JR(U, X) ≜E

[∫ T

h

X(t)T Q(t)X(t)dt + X(T )T GX(T )
]

+ E

[∫ T −h

0
U(t)T R(t)U(t)dt

]
,

(14)

2For conciseness, we do not provide the full formula of f , see [3]
for more details.



where Q ∈ L∞([0, T ], S+
n ), G ∈ S+

n and R ∈
L∞([0, T ], S++

n ). This functional cost penalizes the covari-
ance along the trajectory, the final covariance, as well as
the control effort. Our problem thus states:

min
U∈U

JR(U, X), X solves SDE (3). (15)

To effectively solve (15), using equation (7) we replace
the process X with the process Y in JR. The benefit of
this transformation is that optimal control techniques for
non-delayed systems may be leveraged, e.g., [19]. Under
some additional assumptions on the dynamics, we claim
that, when the penalization on the control effort via R
approaches zero, the controls solutions to (15) enable the
covariance of the delayed SDE to track any neighbor of
the threshold covariance.

A. Optimal control for delayed SDEs.
We may change variable in (15) as follows. For t > h,

let us denote Vmin,Q(t) the following positive real number:

Vmin,Q(t) ≜
∫ t

t−h

σ(s)T ΦA(t, s)T Q(t)ΦA(t, s)σ(s)ds.

Lemma 8. The cost function JR can be written in terms
of the state Y as follows:

JR(U, X) = E

[∫ T −h

0
Y (t)T Q(t)Y (t)dt

]
+ E

[
Y (T − h)T GY (T − h)

]
+ E

[∫ T −h

0
U(t)T R(t)U(t)dt

]

+
∫ T

h

Vmin,Q(t)dt + Vmin,G(T ),

(16)

where

Q(t) ≜ ΦA(t + h, t)T Q(t + h)ΦA(t + h, t)

and
G ≜ ΦA(T + h, T )T GΦA(T + h, T )

are symmetric positive matrices.

Proof. Since the processes ΦA(t, t − h)Y (t − h) and∫ t

t−h
ΦA(t, s)σ(s)dWs are independent, similar computa-

tions to the ones in the proof of Lemma 4 yield, for t > h

E
[
X(t)T Q(t)X(t)

]
=

E
[
Y (t − h)T ΦA(t, t − h)T Q(t)ΦA(t, t − h)Y (t − h)

]
+ E

[(∫ t

t−h

σ(s)ΦA(t, s)dWs

)T

Q(t)·(∫ t

t−h

σ(s)ΦA(t, s)dWs

)]
.

Therefore, by leveraging (9) we may compute

E
[
X(t)T Q(t)X(t)

]
= E

[
Y (t − h)T Q(t − h)Y (t − h)

]
+ Vmin,Q(t).

Replacing the latter formula in (14) finally yields (16).

At this step, we can apply the results from [19, Chapter
6.2] to obtain optimal controls that minimize (14) in the
form of feedback controls:

Theorem 9. The control U∗ solution to(15) is given by

U∗ = −R(t)−1B(t)T P (t)Y (t),

with P (·) solution to the deterministic Riccati equation{
Ṗ = −AT P − PA − Q + PBR−1B

T
P

P (0) = G.
(17)

Proof. Since Vmin,Q(t) is independent from the control
variable, Lemma 8 shows that the minimization problem
(15) is equivalent to the following:

min
u∈U

JR(U, Y ), X solves SDE (6). (18)

where JR is defined as

JR(U, Y ) ≜E

[∫ T −h

0
Y (t)T Q(t)Y (t)dt

]
+ E

[
Y (T − h)T GY (T − h)

]
+ E

[∫ T −h

0
U(t)T R(t)U(t)dt

]
.

(19)

This problem is LQ, and thus we may apply the results in
[19, Chapter 6.2] to conclude.

Thanks to Lemma 8, we may note that (14) is lower-
bounded by the following quantity:

Vmin ≜
∫ T

h

Vmin,Q(t)dt + Vmin,G(T ), (20)

We will prove that, under some additional assumptions,
when R tends to zero it holds that

min
U∈U

JR(U, X) →
R→0

Vmin,

meeting our desired goal.

B. Convergence equivalence
From now on, we select the specific control weight

R(t) = ρI, where ρ > 0 is a user-defined parameter that
characterizes the control effort in (14). We accordingly
denote the associated cost functional JR by Jρ, which
corresponds to

Jρ(U, X) ≜E

[∫ T

h

X(t)T Q(t)X(t)dt + X(T )T GX(T )
]

+ ρ E

[∫ T −h

0
U(t)T U(t)dt

]
.

(21)
We denote by Uρ the corresponding optimal control, whose
existence is granted by Theorem 9. Finally, we denote
Xρ the corresponding state trajectory. Our objective is



to give some conditions on the dynamics under which the
weighted variance of Xρ approaches the threshold quantity
(20) as ρ approaches zero. The following lemma plays a
crucial role in achieving this goal:

Lemma 10. Let Un be a sequence of controls in U such
that, for any matrix S in S+

n , the associated state Yn

obtained through equation (6) verifies

∀t ∈ [0, T − h], E
[
Yn(t)T SYn(t)

]
→

n→∞
0. (22)

Then,

Jρ(Uρ) →
ρ→0

∫ T

h

Vmin,Q(t)dt + Vmin,G(T ). (23)

Proof. Let us first note that the function ρ 7→ Jρ(Uρ) is
an increasing function of ρ. Indeed, if 0 < ρ1 < ρ2 are two
positive real numbers, by optimality it holds that

Jρ2(Uρ2) ≥ Jρ1(Uρ2) ≥ Jρ1(Uρ1).

Let us select a sequence (ρn)n∈N ⊆ (0, ∞) such that ρnE
[∫ T −h

0 Un(t)T Un(t) dt
]

→
n→∞

0
ρn →

n→∞
0.

Due to (16), we have that

Jρn(Un) = E

[∫ T −h

0
Yn(t)T Q(t)Yn(t)dt

]
+ E

[
Yn(T − h)T GYn(T − h)

]
+ ρnE

[∫ T −h

0
Un(t)T Un(t)dt

]

+
∫ T

h

Vmin,Q(t)dt + Vmin,G(T ).

By definition of ρn and using the assumptions made on
Yn, we obtain

Jρn
(Un) →

n→∞

∫ T

h

Vmin,Q(t)dt + Vmin,G(T ).

The optimality of Uρn
yields∫ T

h

Vmin,Q(t)dt + Vmin,G(T ) ≤ Jρn(Uρn) ≤ Jρn(Un),

which implies that

Jρn(Uρn) →
n→∞

∫ T

h

Vmin,Q(t)dt + Vmin,G(T ).

To conclude the proof, note that since ρ 7→ Jρ(Uρ) is an
increasing function of ρ, then the above limit is unique for
any sequence (ρn)n∈N ⊆ (0, ∞) that converges to zero.

Establishing the convergence (23) consists of proving
the existence of a sequence of controls that drives the
state variance toward the minimum threshold. However,
achieving this existence is not straightforward, as larger
controllers may force the integral of the weighted variance
to divergence. Below, we provide examples of SDEs for
which finding such a sequence of controls is feasible.

C. Sufficient conditions for convergence equivalence
1) Pole placement with a normal matrix: Let us con-

sider the following assumption:

Assumption 11. The followings hold true:
1) The matrices A and B are time independent.
2) There exists a sequence of matrices Kn ∈ Rm×n such

that every Hn ≜ A − BKn is normal, and

max(ℜ(Sp(Hn))) ≤ −n. (24)

Lemma 12. Let S ∈ S+
n . Under Assumption 11, the

sequence of controls Un(t) = KnYn(t) satisfies

E
[
Yn(t)T SYn(t)

]
≤ ∥S∥∥σ∥2

∞
2n

. (25)

Proof. The solution Yn to (6) with feedback control Un

can be explicitly computed as

Yn(t) =
∫ t

0
eHn(t−s)σ(s)dWs.

By applying Ito’s quadratic variation formula to Yn, we
may therefore compute

E
[
Yn(t)T SYn(t)

]
=∫ t−h

0
σ(s)T eHT

n (t−h−s)SeHn(t−h−s)σ(s)ds

=
∫ t−h

0
∥
√

SeHn(t−h−s)σ(s)∥2ds

≤ ∥S∥
∫ t−h

0
∥eHn(t−h−s)σ(s)∥2ds.

Since Hn is normal and (t − h − s) > 0, it holds that

∥eHn(t−h−s)σ(s)∥2 ≤ max(Sp(eHn(t−h−s)))2∥σ(s)∥2,

from which we finally infer that

E
[
Yn(t)T SYn(t)

]
≤

≤ ∥S∥∥σ∥2
∞

∫ t−h

0
e−2n(t−h−s)ds ≤ ∥S∥∥σ∥2

∞
2n

.

Characterizing systems that satisfy Assumption 11 can
be difficult. Yet, (25) is in particular satisfied by the fairly
large class of fully actuated systems, see the next section.
Note that assuming fully actuation is not particularly
restricting, in that, if this assumption is not satisfied, one
can prove the existence of random states that can not be
reached by any open-loop control, see, e.g., [23].

2) Fully actuated systems:

Assumption 13. B(t), t ∈ [0, T − h], has rank n.

Lemma 14. Let S ∈ S+
n . Under Assumption 13, there

exists a matrix K(t) ∈ Rm×n such that

B(t)K(t) = I.



In particular, the control sequence defined by

Un(t) = −K(t)(A(t) + nI)Yn(t)

yields the estimate (25).

Proof. Thanks to Assumptions 1 and 13, B(t) has rank n
for all t ∈ [0, T − h], and therefore it admits a stable right
inverse. Each process Yn, stemming from each feedback
control Un as defined above, satisfies

dYn(t) = (A(t)Yn(t) + B(t)Un(t))dt + σ(t)dWt

= −nYn(t) + σ(t)dWt,

and we can therefore follow the same arguments as in the
proof of Lemma 12 to obtain the estimate (25).

Summing up, thanks to Theorem 9, we come up with
a closed-loop-control-based method to steer the delayed
stochastic system, while keeping the state variance close
to the threshold variance at will. We demonstrate the
efficiency of this method via numerical simulations next.

VI. Numerical results
To validate our theoretical findings, we implemented our

optimal control-based method to regulate the temperature
of a building in realistic settings, where the heat source
deliver thermal energy up to some delay. We leveraged
and enhanced the dynamical models outlined in [24]. In
particular, we made these models more realistic by adding
noise. This originates from various sources: 1) the stochas-
tic nature of external temperature fluctuations (modeled
using an Ornstein-Uhlenbeck process, see, e.g., [25]), and
2) the unpredictable usage of the building (modeled via
the coefficient σi below). Then, the dynamics are given by

dT (t) =
[(

−Re Re

0 −θ

)
T (t) +

(
Ru

0

)
U(t − h)

]
dt

+
(

−ReTeq

θTp(t) + Ṫp(t)

)
dt +

(
σi

σe

)
dWt,

where Re = 5 10−4, Ru = 2 10−4, θ = 3.5 10−4, Teq =
20, σe = 0.1, σi = 0.05, and with baseline (i.e., “pre-
dicted”) external temperature Tp(t) = 5 + 5 cos(0.004t).
These dynamic are two dimensional. The first variable
models the evolution of the temperature of the building (to
control), while the second one models the evolution of the
external temperature (that we can not control), which has
mean Tp(t) and quadratic variation

∫ t

0 e−2θ(t−s)σ(s)2ds.
The simulation horizon is five days. This enables to stress
test our control strategy in mitigating the fluctuations of
the external temperature, that are induced by the day-
night cycle. The threshold variance of the temperature of
the building amounts to Vmin = 1.76.

Figure 1 shows the trajectory of the system using
our optimal control-based feedback. The temperature is
efficiently stabilized even under poor knowledge of the
external temperature. Figure 2 shows the evolution of the
variance of the temperature of the building. Our method

enables to successfully track the threshold variance under
controls with high gains, as granted by Theorem 6.

Fig. 1. A trajectory with an optimal control-based feedback with
high gain.

Fig. 2. State variance through time compared to the theoretical
lower bound.

VII. Conclusion
In this paper, we solved the (mean-covariance) steering

problem for a general class of linear SDEs subject to an
input delay. Our objective consisted of steering in finite
time the state of the system to a final state with some given
final probability distribution. In particular, we proposed a
method to minimize the final state covariance. We did so
by leveraging the Artstein transformation, thanks to which
we derived a ”predictor” of the state that tracks a non-
delayed SDE. We then established a linear relationship
between the predictor covariance and the original state
covariance. In particular, this relationship revealed the
existence of an structural minimal covariance below which
the system can not be steered, and which is essentially due
to the presence of the delay. Nevertheless, we proved the
system can be steered to any covariance that is greater
than this minimal covariance. Finally, we introduced an
optimal control-based approach to minimize the system



covariance throughout the whole control horizon, comput-
ing upper bounds for this minimal variance. We assessed
the efficiency of this control strategy via numerical simu-
lations on realistic stochastic systems affected by delays.

Several exciting research directions are listed hereafter.
Extending our approach to linear SDEs with multiplicative
noise would enable the modeling of more sophisticated,
though relevant systems. However, due to the possible lack
of the Artstein transformation, it could be challenging to
derive an explicit expression for the variance threshold
as we did in the present work. Additionally, it would be
interesting to explore systems with multiple input delays.
One could build upon previous studies on optimal control
of ODEs with multiple input delays [26], and then try to
extend suchn results to more general SDEs.
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