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ABSTRACT:  Laser-Induced Breakdown Spectroscopy (LIBS) has become a powerful imag-

ing technique for elemental characterization in analytical chemistry due to its advantages over 

other techniques. Major, minor, and trace elements are detected with high measurement dy-

namic, a low limit of detection and a high acquisition rate, allowing for the quick analysis of 

large sample surfaces. Today, chemometric tools are commonly used to ensure the most com-

prehensive and unbiased exploration of such spectroscopic data. However, the integration of 

the signal from a wavelength assumed to be specific to the element of interest remains the basic 
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tool for generating a chemical distribution map from a hyperspectral dataset. This classical ap-

proach is based on a strong assumption, the specificity of the chemical information on the spec-

tral domain being considered. Any spectral interference inevitably result in the generation of a 

biased distribution image. In this publication, we demonstrate how Principal Component Anal-

ysis (PCA) can diagnose the potential presence of a spectral interference and how Multivariate 

Curve Resolution-Alternating Least Squares (MCR-ALS) can ultimately correct it if necessary 

using a LIBS imaging dataset obtained from the analysis of a complex rock sample. The pro-

posed approach combines the simplicity and effectiveness of the integration method with the 

diagnostic and correction capabilities of chemometric tools, providing a comprehensive solu-

tion for spectral interference in LIBS imaging.  

1. INTRODUCTION 

 Laser-Induced Breakdown Spectroscopy (LIBS) is increasingly establishing itself as a 

powerful imaging technique for the elemental characterization of complex materials in analyt-

ical chemistry [1]. This is due to a set of advantages that few analytical techniques can match 

today. Beyond a relatively simple sample preparation, this technique allows for the detection 

of major, minor, and even trace elements (from % to ppm for many elements). In addition to 

this high measurement dynamic and the low limit of dectection, its acquisition rate can now 

reach up to 1000 Hz, i.e. 1000 LIBS spectra acquired in one second. As a consequence, multiple 

square centimeters of a sample surface is possible to analyse in few hours, while maintaining a 

spatial resolution of approximately 10 microns. Under these conditions, we can easily end up 

with over a million spectra acquired on a sample, and it is only natural that chemometric tools 

are more and more exploited to ensure the most comprehensive and unbiased exploration. This 

includes unsupervised methods such as Principal Component Analysis (PCA) [2,3], clustering 
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(such as k-means) [4,5], and signal unmixing (such as Multivariate Curve Resolution -  Alter-

nating Least Squares, MCR-ALS) [6,7] to name just a few. The last two references cited is also 

an opportunity to highlight another advantage of LIBS imaging, namely its multimodality 

through fully optical instrumentation on a single microscope. The LIBS community is well 

aware today that the use of multivariate tools derived from chemometrics allows for simultane-

ous exploitation of all the wavelengths in the spectral domain with the least possible prior as-

sumptions. However, it should be remembered that, as any spectroscopic imaging technique, 

the basic tool for generating a chemical distribution map from a hyperspectral dataset is the 

integration of the signal from a wavelength (or a small spectral range around it) assumed to be 

specific to the element in question [8,9]. It is an opportunity to emphasize that we should not 

oppose chemometric tools and this classical approach, but instead use them in parallel during 

an exploration as they provide different perspectives on our complex samples. On the other 

hand, the simplicity of the integration method should not make us forget that it is based on a 

strong assumption, which is the specificity of the chemical information on the spectral domain 

being considered. This assumption is all the more important in spectroscopic imaging, since 

any spectral interference, i.e., the presence of any unwanted chemical species in the considered 

spectral range, will inevitably result in the generation of a biased distribution image. Such an 

image could, for example, show overconcentrations of the element of interest or even, in the 

worst case, areas that appear to contain it when it is not present. This highlights the crucial role 

of spectral specificity in this imaging context. Based on the richness of emission lines contained 

in a LIBS spectrum and their low bandwidth, it would be a mistake to believe that an isolated 

and characteristic wavelength of the element of interest is always possible to find. Indeed, we 

remind here the excellent detection limits of LIBS but also the chemical complexity of the 

samples we analyze. Moreover, even if we always have a preconceived notion about the pres-

ence of certain elements in a given sample, it is difficult to know all the elements present within 
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it. In fact, our goal is to strive for this objective when we implement such a spectroscopic tech-

nique. This does not mean that we should abandon this signal integration method for generating 

our elemental maps. Indeed, it remains fast and most of the time effective and relevant, but we 

should combine a diagnostic method to detect the presence of any interference in the investi-

gated spectral domain. Based on a positive diagnosis, it will then be necessary to propose a 

correction strategy for this interference in order to obtain a corrected image for the element of 

interest. The entire purpose of this publication is to address these two points, namely the diag-

nosis and correction of spectral interferences. The main interest of our approach lies in the fact 

that we do not develop new chemometric algorithms to address this issue. We propose to use 

only PCA and MCR-ALS, not over the whole spectral  domain as it is usually done, but only 

over a restricted spectral range around the wavelength of the element of interest. Based on a 

LIBS imaging dataset obtained from the analysis of a complex rock sample composed of ger-

manium and gallium zoned sphalerite, we will demonstrate how PCA can be used to diagnose 

the potential presence of spectral interference, as well as how MCR-ALS can ultimately correct 

it. 

2. MATERIAL AND METHODS 

2.1 Origin of the sample and its preparation 

The rock sample studied was collected in the Pyrenean Axial Zone, in the Arre Pb-Zn vein 

deposit which was investigated to understand the concentration of associated critical elements 

such as Ge and Ga [10]. This rock contains sphalerite (ZnS) minerals deformed by regional 

metamorphism, which show heterogeneous distribution and zonation in Ge and Ga. The rock 

sample was prepared as a 30 µm polished thin section. It is mostly composed of quartz, meta-

morphic micas and light-, to dark-brown sphalerite mineral enriched in germanium (up to 

~ 600 ppm Ge) and gallium (up to ~ 150 ppm Ga; LA-ICP-MS analyses [11]). The zoning in 



 

 

5 

germanium and gallium appears very complex with microscale Ge-Ga rich patches, and a recent 

micro-, to nano-scale study shows the ubiquitous occurrence of Ge-Cu minerals in sphalerite, 

hosting most of the germanium (i.e., briartite; [12]). 

2.2 LIBS instrumental setup and spectral acquisition 

The used LIBS experimental setup has already been described in several papers [13–15]. 

Briefly, the experiment was conducted by using a Nd:YAG laser with a 8 ns pulse duration, 

operating at 100 Hz  at the fundamental wavelength (Centurion GRM, Quantel). A typical en-

ergy of 0.6 mJ per pulse was used. The laser beam was focused onto the sample by a 15x mag-

nification objective. In this configuration, the crater size was typically 7 µm in diameter for one 

shot. The measurements were performed at room temperature, under ambient pressure, and with 

an argon gas flowing the plasma region (0.8 l/min). The laser scanning was performed line by 

line in raster scan mode with the use of a motorized XYZ stage. The step size between two 

consecutive acquisitions was 13 µm. The light emitted by the plasma was collected by a quartz 

lens and focused onto the entrance of a round-to-linear fiber bundle (composed of 19 fibers, 

each with a 200 μm core diameter) connected to the spectrometer.  The spectrometer model was 

a Shamrock 500 spectrometer (Andor Technology) coupled with an intensified charge-coupled 

device (ICCD) camera (iStar, Andor Technology). This spectrometer was equipped with a 1200 

l/mm grating to cover (blazed at 300 nm) the 260-300 nm spectral range with a resolution 

around 0.08 nm. This range was selected for detecting in priority germanium (Ge), gallium 

(Ga), zinc (Zn), iron (Fe), silicon (Si) and aluminum (Al). The ICCD cameras was synchronized 

to the Q-switch of the laser. The LIBS acquisition was performed with a delay of 700 ns and a 

gate of 5000 ns. Finally, a homemade software developed in the LabVIEW environment was 

used to control the entire setup, allowing automatic sequences of any selected regions of interest 

with a preset lateral resolution. The spectral dataset considered in the following represent 1.2 

million of spectra (sequence of 2400x500) and was recorded in less than 4 hours.  
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2.3 Interference diagnosis and correction 

In order to address the proposed issue, we suggest using PCA and MCR-ALS sequentially. 

Thus, PCA will be used to determine whether there is a spectral interference present in the 

considered spectral domain, and if so, the MCR-ALS method will enable us to separate the 

spectral contribution of the interferent and the element of interest. The goal here is not to de-

velop these two very classical chemometric approaches in detail, but rather to reintroduce them 

briefly and focus on specific aspects of this diagnostis and interference correction. 

PCA was first developed by Pearson in 1901 [16] and later by Hotelling in 1933 [17]. It  is 

a widely used statistical method that aims to simplify the complexity of a high-dimensional data 

by transforming it into a lower-dimensional space. It is a technique for identifying patterns and 

relationships in data by reducing the dimensionality of the dataset while retaining the most 

important information. PCA achieves this by extracting the principal components, which are 

linear combinations of the original variables that capture the maximum amount of variance in 

the data. The resulting components are orthogonal and uncorrelated, making it easier to analyze 

and interpret the data. The singular value decomposition (SVD) [18], which was developed in 

the 1960s, is undoubtedly the most widely used method for PCA today. Given D, an n  m 

matrix containing n spectra, each defined by m wavelengths, its singular value decomposition 

is calculated as follow: 

D = U.S.Vt                                     (eq. 1) 

The matrix U (of size n  p) contains the p scores of each spectrum, which are their new coor-

dinates in the PCA space. The maximum value that p can take is simply the minimum between 

the values of n and m. In particular, if we chose this maximum value for p, we could express 

100% of the total variance of the matrix D. However, we will see later why we never want to 
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extract 100% of the total variance and thus this maximum allowed number of components. In 

the context of spectroscopic imaging, the scores are usually represented as scores maps in order 

to observe their spatial distributions over the sample region of interest [2]. However, this is not 

really the information that we will be exploiting in this work. Actually, the diagnosis of a po-

tential spectral interference will focus on the utilization of matrices S and V. The matrix S (of 

size p  p)  contains the singular values arranged in decreasing order along its diagonal. Then, 

squaring the first singular value gives the variance expressed by the first principal component. 

The same apply to the successive eigenvalues associated with their principal component. Our 

goal, when we use PCA, is to find the number of significant principal components that best 

describe our original data. Thus, we are searching for the intrinsic dimension of our dataset, 

known as the rank of matrix D, which actually corresponds to the number of independent spec-

tral sources present in it. This rank is obtained through the observation of all the calculated 

eigenvalues, as represented in what is called a scree plot. If the matrix D contained noiseless 

data, the evaluation of its rank would be trivial since it would simply correspond to the number 

of non-zero eigenvalues. This specific situation is depicted in the eigenvaluaes scree plot of 

Figure 1a, for which we clearly have an observable rank of 2.  

 

Figure 1: Eigenvalues scree plots considering different levels of noise: a) noiseless data, b) a good sig-

nal to noise ratio, c) a lower signal to noise ratio. 
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As part of a PCA applied to a small wavelength range, this would indicate here the presence of 

two spectral contributions and thus a potential interference between two signals. When we ex-

plore experimental data, they inevitably contain noise. This noise accounts for a certain ex-

plained variance that will be associated with its own eigenvalues. This situation is shown in 

Figure 1b, for which we have relatively low noise on our spectral data, indicating a good signal-

to-noise ratio. In these actual conditions, there are no longer any zero eigenvalues, and we must 

find a threshold eigenvalue below which we will consider that the principal components are no 

longer significant. This task remains fairly simple here since the eigenvalues associated with 

the noise are found on a distinct plateau separated from the first two significant singular values. 

When the signal-to-noise ratio further decreases, the eigenvalues associated with the noise will 

increase to approach those corresponding to the chemical information. The plateau will no 

longer be observed as shown in Figure 1c but the "elbow" of the graph where the eigenvalues 

seem to level off will help us to select the threshold. As we can see, this technique allows us to 

estimate the rank of a matrix and therefore the number of spectral contributions present in the 

explored spectral domain. The final choice of this rank will of course not be based solely on 

this observation of eigenvalues, but also on a consistent spectral confirmation found in the prin-

cipal components contained in the Vt matrix (of size p  m). So to summarize, if the estimated 

rank of the D matrix is 1, there will be no interference and we can proceed directly and unam-

biguously with signal integration for generating an elemental map. Otherwise, interference will 

occur and we will need to apply a source separation method (such as MCR-ALS) to generate a 

corrected elemental map free from this perturbation, which we describe in the next section. 

 The MCR-ALS method was developed in the 90s to unmix complex signals acquired in 

analytical chemistry [19,20]. The goal of a signal unmixing technique is quite simple as from 

only a set spectra (potentially containing mixtures), it is possible to simultaneously extract all 
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spectra of pure species present in the chemical system being studied and their relative contri-

butions in each spectrum. It should be emphasized here that this unmixing is achieved without 

any prior knowledge of the chemical system or even the particular shape of the spectra. So 

based on the previous rank estimation k > 1, this source separation method allows to decompose 

the data matrix D (of size n  m) considering a bilinear model:  

 D = C.St                                     (eq. 2) 

with C (of size n  k) the pure contribution matrix and St (of size k  m) the matrix containing 

pure spectra. MCR uses constrained alternating regressions to obtain this decomposition. Only 

the non-negativity constrain on C and S is used during the calculations, which is natural for 

LIBS spectral data. For instance, if we had an element that could potentially interfere with 

another element (i.e., a rank equal to 2), matrix C would allow us to obtain specific distribution 

images for each element, while matrix St would help us confirm the consistency of the spectral 

information taken into account. The computations necessary for PCA and MCR-ALS were ex-

ecuted using the MATLAB environment. However, readers who are intrigued by this method-

ology can readily explore other programming languages since these algorithms are classical in 

nature. It should be noted that only raw data will be used in proposed chemometric pipeline.  

3. RESULTS AND DISCUSSION 

We have selected this complex rock sample here to illustrate different interference situations 

that can be observed on both major and minor elements, as well as different signal structures. 

The mean spectrum of the dataset in question is shown in Figure 2a, where we can see the 

elements Si, Zn, Fe, Mg, Al, and Ge. The first element of interest in this study is silicon, whose 

most intense emission line is located around 288.158 nm. 
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Figure 2: A first exploration of the dataset. a) The mean spectrum of the dataset over the whole spectral range and the two spectral integration regions consid-

ered for silicon. b) The Si distribution map obtained from the signal integration over the 288.0721 – 288. 2621 nm spectral range. c) The Si distribution map 

obtained from the signal integration over the 263.0432 - 263.1922 nm spectral range. 
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Unfortunately, from the mean spectrum, it is apparent that numerous spectra in the dataset are 

certainly saturated at this wavelength. This saturation is related to the detector's dynamic range, 

and therefore to the maximum value it can effectively measure under these given acquisition 

conditions. It is, of course, unacceptable to use a saturated signal since the acquired value is no 

longer proportional to the concentration of the element in question. We could of course imple-

ment a correction procedure for this saturation, as we have done in our previous work by con-

sidering a statistical imputation [21], but that is not the strategy that interests us here. Figure 2b 

provides an integration image obtained by considering a spectral domain from 288.0721 to 

288.2621 nm (i.e. the most intense line of Si). Although the spectra may be saturated, such an 

image allows observation of the areas of the sample that contain silicon and mostly correspond 

in our case to quartz and micas. However, this saturation phenomenon breaks the concentration 

dynamic that we should potentially observe with a representation that is quite binary, meaning 

without too much detail that doesn't really account for the fine variations in Si concentration 

between the pixels of the image. Just like in photography, we could also say that the image is 

saturated. Of course, such a situation is unsuitable if our goal is to accurately report the full 

complexity of our sample, and it is only natural that we need to work on another emission line 

of silicon, specifically centered at 263 nm. We can zoom in on this spectral region in the mean 

spectrum of Figure 2a. It can be observed that the average intensity of the silicon emission line 

is much lower, which avoids the previous saturation problem. As a consequence, the new Si 

distribution map obtained from the signal integration over the 263.0432 - 263.1922 nm spectral 

range (Figure 2c) seems to highlight more details in the Si-rich mineral phases. On the other 

hand, a new observation of the mean spectrum in Figure 2a shows that we might have another 

issue because numerous iron contributions are observed in this spectral sub-domain, and there 

is a probability that it could interfere with the considered silicon line. This hypothesis is far 

from unfounded, as shown in Figure 2c where a certain concentration of Si, outside the Si-rich 
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mineral phases seems now to be observed, whereas it was almost absent in the same area in 

Figure 2b. So, let's get to the heart of the matter of this publication as we need to diagnose this 

potential interference between Fe and Si. The goal here is not to perform a PCA on the entire 

spectral domain as usual, but only on a range from 261.2526 nm to 263.9793 nm that encom-

passes the contribution of silicon which is of interest to us. Figure 3 shows the eigenvalues scree 

plot resulting from this analysis.  

 

Figure 3: The eigenvalues scree plot obtained from PCA applied on the 261.2526 - 263.9793 nm spec-

tral range.  

Distinguishing the eigenvalues related to noise from the first two that represent chemical infor-

mation is a straightforward task. This rank of 2 indicates that there is indeed an interference 

between two signals in this reduced spectral domain. This information is corroborated by the 

information contained in the first two principal components and their associated scores maps 

(Figure 4). Firstly, it should be noted that the first two principal components effectively capture 

the chemical information contained within the dataset, as they together account for approxi-

mately 99.68 % of the total variance. Overall, the first principal component highlights the areas 
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of the sample where there is relatively more Si and at the same time less Fe. The second prin-

cipal component, on the other hand, highlights the phenomenon of interference with a derivative 

shape observed around 263 nm, and more specifically a positive contribution located at 

263.0858 nm and another negative one at 263.1709 nm. Based on this diagnosis of interference 

between Si and Fe in this spectral domain, it is now appropriate to attempt to separate their 

respective spectral contributions in order to obtain an image of Si distribution that is consistent 

with the analytical reality of the sample. It is certainly a task that cannot be performed by PCA 

since by construction the principal components are perpendicular, which is never the case be-

tween two elemental spectra. This is how we will use a spectral unmixing method in the next 

step, specifically the MCR-ALS method based on a rank equal to two and a non-negativity 

constraint on the profiles during the decomposition optimization. Moreover, default values for 

the number of iterations and convergence criterion have been considered in this work because 

they are suitable for the vast majority of LIBS spectral datasets. Figure 5 displays the two pure 

spectra extracted from matrix St and the two asscociated distribution maps extracted from ma-

trix C. The pure component 1 corresponds perfectly to the spectrum of silicon, which indeed 

exhibits a single emission line in this spectral range centered around 263.13 nm. The pure com-

ponent 2, on the other hand, perfectly extracts the spectrum of iron with its numerous emission 

lines, the most intense one being located around 263.11 nm. It is obvious that the interference 

between these two elements could not be more important, since there is an almost complete 

overlap between this last emission line and that of silicon, the two being separated by 0.0212 

nm in these measurement conditions. This result is all the more remarkable as we make no 

assumptions about the shape of the pure spectra or even the profile of the emission lines during 

this decomposition of the data set. There should be no ambiguity on this point, as MCR-ALS is 

a data-driven analysis that has nothing to do with a spectral fitting procedure. Thus, the extrac-
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tion of the first pure map allows us to see the distribution of silicon without the spectral inter-

ference of iron. By comparing this map to that of Figure 2c, it is easy to understand that in the 

latter we were simultaneously observing the contributions of both elements, while we thought 

we were only observing silicon.  
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Figure 4: The first two principal components and the associated scores maps 

 

 



 

 

16 

 

 

 

 

Figure 5: Extractions of the two pure spectral profiles and the two associated distribution maps.  
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Finally, if we revisit the Si distribution map extracted by MCR-ALS, we can still observe that 

there is a low concentration of Si outside the Si-rich mineral phases, which corresponds to trace 

amounts of Si in sphalerite minerals (i.e., the Fe-rich areas), and which could not have been 

detected otherwise than by this procedure. From this first example, we can thus see the simplic-

ity and effectiveness of the proposed methodology, first in diagnosing interference and also in 

its correction, as well.  

Let us now turn our attention to a second scenario focused on the search for a minor 

element in this same sample, namely gallium. Actually, based on the knowledge that geologists 

have about this particular sample, gallium is an element that could potentially be present in 

small quantities. This element is known to have an emission line around 394.42 nm, but it po-

tentially interferes with iron which is particularly present in this sample. Figure 6a shows the 

mean spectrum of the dataset between 294.3042 nm and 294.6399 nm, on which a single line 

appears to be observed. Figure 6b provides a distribution map obtained by integrating the signal 

on this spectral range. We notice that this distribution map is quite similar to the iron one ex-

tracted by MCR-ALS, as depicted in Figure 5. At first glance, everything suggests that only 

iron is present on this spectral window.  

 

 Figure 6: a) The mean spectrum of the dataset between 294.3 and 294.65 nm and, b) , nm and 

the integration map over the salme spectral range.   

In order to perform a more thorough diagnosis, we conduct a PCA on this spectral domain, with 

Figure 7a displaying the calculated eigenvalues. 
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Figure 7: a) The eigenvalues scree plot obtained from PCA applied on 294.3042 - 294.6399 nm spec-

tral range and, b) the two first principal components.    

In this scenario, only one eigenvalue appears to be significant, which seems to support our 

previous observations. However, this is not consistent with the first two principal components 

shown in Figure 7b. In fact, if the rank was indeed 1, the second component should only show 

noise and certainly not be structured as it is here. Moreover, we can see the specific derivative 

shape characteristic of an interference between two peaks in the second principal component. 

The rank is therefore once again equal to 2. At first glance, one might think that using the scree 

plot is not a good strategy for evaluating the rank of the spectral data matrix. Actually, this 

technique is very effective when the variance of the chemical species is much greater than the 

noise one. It was particularly the case in the first scenario between Si and Fe, where principal 

components 1 and 2 expressed 76.55 and 23.12 % of the variance, respectively, with 0.33 % of 

residual variance associated with noise. In this new case, components 1 and 2 expressed 82.37 

and 5.12 % of the variance, respectively, with 7.51 % of residual variance associated with noise. 

Actually, we do have a contribution from gallium expressed in the second principal component, 

but its low concentration results in a very small variance compared to the noise, making it im-

possible to detect it solely from the scree plot. In summary, rank evaluation has therefore to be 
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done by associating the observation of the eigenvalues scree plot and principal components. As 

a final step, the MCR-ALS extractions considering this rank of 2 are given in Figure 8. So the 

first pure component extracts an iron emission line, while the second extracts the gallium one, 

both separated by only 0.063 nm. The first extracted map effectively shows the distribution of 

iron as already seen before. More interestingly here, we can observe the distribution of gallium 

in the second extracted map even though its concentration is very low but nevertheless well 

localized in certain areas of the mineral phase considered. By observing the extracted spectra, 

it could be surprising to have emission lines for Fe and Ga that are quite comparable in intensity. 

In fact when using the MCR-ALS method, there is naturally what is called an intensity ambi-

guity on the extracted pure spectra. In order to remove it, we enforce the extracted spectral 

profiles to have a norm equal to 1 during the optimization. That is why the extracted intensities 

for Fe and Ga in Figure 8 appear very close. This is not very serious in this specific context, as 

the main goal is to identify emission lines by their maximum. However, if we wanted to give a 

quantitative character for a comparison of the two maps, we would need to rescale them as these 

two emission lines have different spectroscopic properties.  The latter result further highlights 

the value of the proposed approach, as it is impossible to generate an unbiased distribution map 

of gallium using the classical integration method.
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Figure 8: Extractions of the two pure spectral profiles for Fe and Ga, and the two associated distribution maps.  

 

 



 

 

21 

4. CONCLUSIONS 

LIBS imaging, thanks to its high acquisition speed and sensitivity, is now an elemental 

imaging technique that has its place among the analytical characterization tools for complex 

materials. Similar to other spectroscopic imaging techniques, its fundamental principle is based 

on integrating the signal at a particular wavelength of the element to be imaged. Although a 

LIBS emission line has a limited bandwidth, the complexity of the explored samples and the 

richness of LIBS spectral information inevitably induce interference problems. In order to be 

able to generate representative compound distribution images that are consistent with analytical 

reality, it is therefore necessary to check if such interference is present, and if so, propose an 

appropriate signal correction. Through two different scenarios, we first demonstrated how to 

use PCA to estimate the rank of a spectral matrix, which is the number of independent signals 

it can contain. The rank was then used to diagnose the presence of interference around the 

emission line that we wanted to exploit. We also observed that an effective evaluation of this 

rank can only be achieved through simultaneous interpretation of the eigenvalues scree plot and 

the principal components, especially when the compound of interest has a low concentration 

and/or the signal-to-noise ratio is limited. It was subsequently demonstrated that based on con-

firmed interference, the MCR-ALS method could resolve this issue by separating the contribu-

tions of the target element and the interferent both spectrally and spatially. 
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