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Abstract

Including uncertainty sources in multi-objective optimization allows more robust design decisions

at the cost of transforming the objective into an expectation. The stochastic multi-gradient algorithm

(SMGDA)[11] extends the Robbins-Monro approach to the multi-objective case, allowing for the mini-

mization of the expected objectives without having to directly calculate them. However, a bias in the

algorithm and the inherent noise in stochastic gradients cause the algorithm to converge to only a subset

of the whole Pareto front, limiting its use.

We reduce the bias of the stochastic multi-gradient calculation using an exponential smoothing tech-

nique and promote the exploration of the Pareto front by adding non-vanishing noise tangential to the

front. We prove that this algorithm, Transverse Brownian Motion, generates samples in a concentrated

set containing the whole Pareto front. Finally, we estimate the set of Pareto optimal design points using

only the sequence generated during optimization while also providing bootstrapped confidence intervals

using a nearest-neighbor model calibrated with a novel procedure based on the hypervolume metric.

Our proposed method allows for the estimation of the whole of the Pareto front using significantly

fewer evaluations of the random quantities of interest when compared to a direct sample-based estimation,

which is valuable in the context of costly model evaluations. We illustrate the efficacy of our approach

with numerical examples in increasing dimension and discuss how to apply the method to more complex

problems.
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1 Notation

Symbol Description
(Θ,A, µ) Probability space

θ Event on a probability space
F Set of functions of a random variable F = {f1(x, θ), ..., fk(x, θ)}
G Set of deterministic functions G = {E f1, ...,E fk}

∇Cx{F} minimal norm vector in convex union of Clarke sub differentials acting on set F
bold Bold font indicates a vector quantity
dH Dimension of space H.

M,N ,H Manifold.
a � b ai > bi for ai, bi entries of a,b
a � b ai ≥ bi for ai, bi entries of a,b
P6¬P Probability of being undominated
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2 Introduction

The true solution to a multi-objective optimization problem is not a single point, but rather a set of points

corresponding to the tradeoffs inherent in minimizing a collection of objective functions. Solving multi-

objective optimization problems therefore requires two steps, first, finding and collecting candidate solutions,

and then assessing their optimality, or dominance, when compared to one another. The set of solutions with

optimal trade-offs is referred to as the Pareto front. Determining the Pareto optimality of a solution in a

deterministic problem requires only a pairwise comparison between each found solution, and so determining

the Pareto front is an operation that requires cubic time.

Many problems of interest, however, are stochastic. Robust optimization, for example, incorporates

noise on the design variables, constraints, and objectives to model uncertainty about their properties. The

improved robusteness comes at a cost: the quantities of interest gain the functional form of an expectation.

In multi-objective problems the difficulties encountered in single-objective stochastic problems are com-

pounded, both the process of determining candidate points and the assessment of dominance are more

complex. Determining a minima in a stochastic multi-objective problem is challenging due to the difficulty

imposed by working with expectations. More formally, given a probability space (Θ,F , µ) and a set of k

quantities of interest {fi(x,W(θ))}i=1,...,k, fi : X ⊆ Rd×W(θ)(Θ) 7→ R, our goal is to find all x∗ such that

x∗ ∈ argmin
x∈X

{E[fi(x,W(θ))], ...,E[fk(x,W(θ))]}. (1)

Notice here that each objective function is a deterministic quantity by virtue of being the expectation of

a stochastic quantity of interest. We can treat the set {fi(x,W(θ))}i=1,...,k as a vector valued function

F (x,W(θ)) : X ×W(Θ) ⊆ Rd 7→ Y ⊆ Rk and define the vector valued function G := {gi}i=1,...,k,X ⊆ Rd 7→

Y ⊆ Rk with gi(x) = E[fi(x,W(θ))]. One can see that solving problem 1 requires finding all minima in

all dimensions of G. In the setting where we do not have direct access to G, but only F and its Jacobian

requires the calculation of the expectation of F . Calculating the expectation can be done in a variety of ways:

sampling and averaging, integration, or a reasonable surrogate are all commonly used approaches. However,

they are all computationally costly, and in the event where one has a difficult to evaluate or expensive

objective function, that cost can become prohibitive.

Assessing dominance in stochastic multi-objective optimization problems becomes increasingly complex

for similar reasons. A point, y, in a set is considered dominant if it is less than or equal to all other points

in the set, and strictly equal in at least one dimension. Succinctly, if the image of the deterministic vector

valued function G(X ) = Y, the Pareto front in objective space is the set which meets the following critera:
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Definition 1 (Pareto Front).

P (Y) = {y ∈ Y | y′ � y ∃j y′j > yj ∀y′ ∈ Y}. (2)

In design space, the set of Pareto optimal design points can be defined as:

Definition 2 (Pareto Optimal Points).

P (GX ) = {x ∈ X | G(x) ∈ P (Y)}. (3)

Together, these define a set of tuples P := {(x, y)} : x ∈ P (GX ) y ∈ P (Y). A general procedure for

determining the set of Pareto optimal points in design space is to first perform a series of minimizations of

the objective functions G, determine the Preto front in objective space using definition 1, and then examine

the preimage of the Pareto front to determine the set of Pareto optimal points. However, as in the case of

finding minima, one rarely has access to exact expectations of of the objectives functions, G(x), but rather

samples {F (x1,W(θ)1), ..., F (xn,W(θ)n)}. The task of comparison then becomes a probabilistic one.

Both heuristic and rigorous approaches have been proposed to solve multi-objective problems. The family

of heruistic approaches to multi-objective optimization, such as evolutionary strategies [5] and particle swarm

optimization [1], involve maintaining a set of undominated solutions and iteratively improving on them at

each round. While heuristic approaches are effective for finding the global minima of highly non-convex

problems and are naturally adapted to finding a set of solutions, they are computationally extremely costly

and lack theoretical guarantees. To make matters worse, applying population based approaches to stochastic

problems requires the estimation the quantities of interest for each individual in the population, potentially

increasing the computational complexity several fold. The family of rigorous approaches, to which our method

belongs, have the advantage of strong theoretical guarantees when finding the minima of well posed problems.

In addition, gradient based approaches especially, are amenable to the optimization of stochastic functions.

The class of Robbins-Monro type algorithms allows for the minimization of a quantity of interest using

only individual samples of the gradients, JF (x), avoiding calculation of the expectation entirely. Notably, the

(S)tochastic (M)ulti (G)radient (A)lgorithm (SMGDA) [11] is of the class of Robbins-Monro type algorithms

and builds on the work done in [6] to provably produces a sequence which converges to a point on the Pareto

front. However, as we shall show later, a bias in the gradient calculation causes this algorithm to converge

to a subset of the Pareto front, independent of the starting point chosen, making previous approaches to

multi-objective optimization using SMGDA incomplete.

The task at hand then has two complementary aims:
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1. One, extend the use of the SMGD algorithm to sample points from a noise ball which covers the whole

of the Pareto front.

2. Two, to use those samples generated during optimization to identify the location of the Pareto front,

and the set of Pareto optimal points, with uncertainty estimates.

For the first task, first we show that the SMGD algorithm converges only to a subset of the true Pareto front

because of a bias in the direction of descent, which is the solution to a quadratic sub-problem. We then

build on the SMGD algorithm in two complementary directions. One, we propose to debias the calculation

of the direction of descent using an online estimate of the covariance of the Jacobian. We traverse the Pareto

front by adding a novel noise term, gaussian noise perpendicular to the Pareto front, which both encourages

exploration of the Pareto front and helps to prevent the algorithm from being stuck in a local minima.

For the second task, we estimate the Pareto front using a nearest neighbor model built only with points

generated during the course of optimization and calibrated using the Hypervolume indicator. We estimate

the joint probability of each generated point being undominated and joint confidence intervals around each

point using a bootstraping approach.

3 Background: Mathematical Preliminaries, Multiple Gradient De-

scent Algorithm, and The Shift From Determinist to Stochastic

Settings

First, a brief introduction to the Multi-gradient descent algorithm (MGDA), the Stochstic multi-gradient

descent algorithm (SMGDA), and warm up with new proofs of their convergence. We note here that we

have used the notation ∇gi for the gradient of an individual objective function, gi, but all of the following

results hold if one uses a subdifferential or the Clarke subdifferential [11].

As in single-objective optimization, the minima of a multi-objective problem is the limiting point of the

sequence

xt+1 = xt − εvt (4)

where −vt is a direction of descent. Assuming that all objectives are convex, L-locally lipschitz, and given

some ε ≤ 2
L one can prove that this sequence will converge to a point on the Pareto front.

To construct vt a common strategy is to create a scalarization of the objective function. Given k

objective functions {gi(x)}i=1,...,k, gi : Rd 7→ R generate a set of weights on the k − 1 dimensional simplex
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wi :
∑k
i=1 wi = 1, wi ≥ 0 to create the pseudo-objective:

g̃w(x) =

k∑
i=1

wigi(x). (5)

Using the formulation of eq. 5, using a single objective optimization algorithm of choice will yield a sequence

of points that converges to the Pareto front. The easily imagined strategy to find the whole pareto front

using a pseudo-objective of the form 5, iteratively solving and reweighting, does not necessarily give good

resolution of the whole of the Pareto front. It is often observed that even for convex problems that an evenly

distributed set of weights will not lead to an even estimation of the Pareto front.

To avoid the problems associated with choosing weights for a pseudo-objective, the approach taken in [6]

to find a gradient direction is to maximize the minimum improvement. To find the direction of ascent, v,

one then has to solve the subproblem

v∗ = argmax
v

min
i
〈∇gi(x),v〉 − 1

2
||v||2. (6)

In the dual formulation, one finds the minimium norm convex combination of gradients (see figure 1) by first

solving for the weights α∗(x) in the k − 1 dimensional simplex ∆k−1

α∗ = argmin
α∈∆k−1

α>JG(x)JG(x)>α, (7)

which is a quadratic problem in the number of objectives, k, and calculating the the direction of ascent:

∇Cx{G}(x) :=
∑
i

α∗i (x)∇gi(x). (8)

One can then construct a
sequence

Figure 1: Examples of Calculation of Direction of Descent ∇Cx{G}(x) for two objectives.

One immediately notices the similarities between the pseudo-objective 5 and the formulation of the

direction of descent 8. However there are two important differences. One being that the direction of descent
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is recalculated at each round of optimization, meaning that there is no commitment to a particular weighting.

Additionally, it is important to remember that the terms α are functions of x and so the peseudo-objective

being minimized is not
∑
i αigi(x), as is commonly misconstrued. The stationary points of the direction of

descent as defined in eq. 8 then can be used to characterize Pareto stationarity.

Definition 3 (Pareto Stationary Point). x∗ such that

∇Cx{G}(x∗) = 0 (9)

In the case where all objective functions are convex this forms a sufficient condition for Pareto optimality

[9]. Intuitively, the pareto stationary points are the ones in which no combination of objectives can be

improved without degrading the performance of at least one. In later sections, we will use Pareto stationarity

as a tool to search for Pareto optimal points.

3.1 Warm Up: Potential Function Characterization of MOO problem and Con-

vergence of MGDA

To warm up, introduce the concept of a potential function in multi-objective optimization, and establish

useful results for later we will prove the convergence of the MGDA approach. Since multiple objectives

are difficult to work with, in contrast to previously taken approaches [11][6][7][8], we take the conceptually

simpler approach to define a pseudo-objective corresponding to the direction of descent ∇Cx{G}(x). We

define the potential, ΦG(x) : Rd 7→ R

ΦG(x) =

∫ 1

0

∇Cx{G}(sx)ds =

∫ 1

0

∑
i

α∗i (sx)∇gi(sx)ds. (10)

We can now replace claims made about the vector valued direction of descent ∇Cx{G}(x) with claims about

the scalar valued ΦG(x). ΦG(x) is C1 smooth, therefore locally lipschitz continuous, and it can be readily

seen that ∇Φ(x) = ∇Cx{G}(x) by the gradient theorem. In addition, if all of the functions {gi}i=1,...,k are

convex, ΦG(x) is also convex.

Lemma 1. If all functions in the set G are convex, ΦG(x) is also convex.
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Proof. If ΦG(x) is convex, one has the identity 〈∇ΦG(x)−∇ΦG(y),x − y〉 ≥ 0.

〈∇ΦG(x)−∇ΦG(y),x − y〉 = (11)

=
∑
i

〈α∗i (x)∇gi(x)− α∗i (x)∇gi(y) + α∗i (x)∇gi(y)− α∗i (y)∇gi(y),x − y〉 (12)

≥
∑
i

〈(α∗i (x)− α∗i (y))∇gi(y),x − y〉 (13)

≥ 0 (14)

Where in the second line we have used the convexity of the gi and in the third we have used both the

convexity of the gi and the optimality of α∗(y) to yield the result.

ΦG(x) is, however, almost never strongly convex.

Lemma 2. let G := {gi(x)}i=1,...,k be a set of convex functions, at least one of which is strongly convex,

and ΦG(x) be the potential function as defined in 10. Either the Pareto front is a singular point or ΦG(x)

is not strongly convex.

Proof. If the pareto front is nonsingular there are two points x∗1 and x∗2 in the set of Pareto optimal points.

We have then

〈∇ΦG(x∗1)− ΦG(x∗2),x∗1 − x∗2〉 = 0 (15)

by the pareto stationarity of points along the Pareto front. If, however, the pareto front is singular, the set

of Pareto optimal points consists of only one point, x∗ and one has

〈∇ΦG(x)−∇ΦG(x∗),x − x∗〉 ≥ m||x − x∗||2, (16)

for some m > 0 by the pareto stationarity of x∗ and the strong convexity of at least one member of G.

As can be seen in figure 2b, if all of the objective functions {gi(x)}i=1,...,k are convex, then the full set

of pareto stationary points defines the Pareto front. In the case that they are not all convex, as in figure 2a,

then the Pareto front is a subset of the set of Pareto stationary points.

We can now show that the minima of Φ(x) are the set of pareto stationary points, and that performing

gradient descent on Φ(x) yields pareto stationary points.

Theorem 3. Let ΦG(x) be a potential function defined as in 10. Then the sequence

xt+1 = xt − ε∇ΦG(x). (17)
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(a) g1(x) = (x− 2)2(x− 3)(x− 4), g2(x) = x2. (b) g1(x) = (x− 2)2, g2(x) = x2.

converges to a Pareto stationary point.

Proof. From the assumption that ΦG is locally L-liptshitz

ΦG(xt+1) ≤ΦG(xt) + 〈∇ΦG(xt),xt+1 − xt〉+
L

2
||xt+1 − xt||2 (18)

≤ ΦG(xt)− ε(1−
Lε

2
)||∇Cx{G}(xt)||2 (19)

Picking ε ≤ 2
L , summing, and dividing by T gives us the result

1

T

T∑
t=1

||∇Cx{G}(xt)||2 ≤
ΦG(x0)− ΦG(xT+1)

Tε
(20)

Where in the second line we have used the fact that ∇Φ(x) = ∇Cx{G}(x).

3.2 Switching Gears, Deterministic to Stochastic

We now turn our attention to the stochastic formulation of the multigradient descent algorithm, SMGDA[11].

As defined in equation 1, the set of objective functions {gi}i=1,...,k now have the functional form of an

expectation gi(x) = E[fi(x,W(θ))]. Instead of finding Pareto stationary points by calculating the ex-

pected value of the gradients of F , ∇E[fi(x,W(θ))] and using the MGDA approach as shown above, we

replace the gradient calculation with an estimate from a single sample of W(θ). Where we assume that

Objectives Gradients Potential Multi-gradient
Deterministic g(x) ∇g(x) ΦG ∇Cx{G}(x)
Stochastic E[f(x,W(θ))] ∇f(x,W(θ)i) ΦF ∇Cx{F}(x,W(θ)i)

E[∇f(x,W(θ))] = ∇E[f(x,W(θ))] and so it is an unbiased estimator of the true gradient. It was shown
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in [11] that one can make a stochastic version of MGDA, which converges to a point on the Pareto front.

However, the proof given in [11] required several strongly limiting assumptions on the behavior of the indi-

vidual objectives, which may not be met in practice. Instead, we can use an approach as defined above to

show that SMGDA converges to a pareto stationary point defined as

E[∇Cx{F}] = 0. (21)

We will first define a potential function, as before, and then show that it can be minimized using stochastic

gradient descent under limited assumptions about the behavior of ∇Cx{F}.

Assumption 3.1. V[∇Cx{F}(x)] ≤MV0 +MV ||E[∇Cx{F}(x)]||2

Theorem 4. Let there be a function ΦF (x) defined as

ΦF (x) =

∫ 1

0

E[∇Cx{F}(sx)]ds =

∫ 1

0

∑
i

E[α(sx,W(θ))∇fi(sx,W(θ))]ds (22)

such that ∇∇>Φ[F ]x � L for some L ≥ 0. And let there be a set of real numbers εt such that

∑
t ε

2
t∑

t εt
→ 0 (23)

Then the sequence defined by

xt+1 = xt − εt∇Cx{F}(xt) (24)

converges to a Pareto stationary point as defined by 21 with probability 1.

Proof. Starting from local lipschitz continuity and the mean value theorem,

ΦF (xt+1) ≤ΦF (xt) + 〈∇ΦF (xt),xt+1 − xt〉+
L

2
||xt+1 − xt||2 (25)

≤ ΦF (xt)− εt〈∇ΦF (xt),∇Cx{F}(xt)〉+
Lε2

t

2
||∇Cx{F}(xt)||2 (26)

Et[inf ΦF ] ≤ Et[ΦF (xt+1)] ≤ ΦF (xt)− εt(1−
Lεt
2

)||Et[∇Cx{F}(xt)]||2 +
Lε2

t

2
MV0 (27)

(28)

Taking the full expectation, setting εt ≤ ε0 ≤ 2
L , summing, and rearranging yields

T∑
t=1

εt||E[∇Cx{F}]||2 ≤ E[ΦF (x0)− inf ΦF ] +
LMV0

2

T∑
t=1

ε2
t (29)
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We can now define ET =
∑T
t=1 εt and treat the ratio εt

ET
as the probability of selecting iteration t from the

set 0, ..., T , then by Markov’s inequality

PET

(
||E[∇Cx{F}(xt)]||2 ≥ ε

)
≤ EET [||E[∇Cx{F}]||2]

ε
≤ E[ΦF (x0)− inf ΦF ]

εET
+
LMV0

∑T
t=1 ε

2
t

2εET
(30)

Taking the limit as T →∞ and noting that
∑
t ε

2
t∑

t εt
→ 0 gives the result.

The assumptions used in this proof are commonly used in proofs of stochastic gradient descent [2] and are

much lighter and applicable than used previously in [11]. It is also worth noting that they are automatically

fulfilled if X is a subset of Rd. However, of critical importance is the difference between the set x∗1 and x∗2

determined by

E[∇Cx{F}(x∗2)] = 0 and ∇Cx{G}(x∗1) = 0. (31)

As we will see in the next section, they are not the same. In fact, {x2} ⊂ {x1}. This is due to a bias in the

calculation of E[∇Cx{F}], and is the focus of the next section.

4 How the Bias Affects Convergence: Drawback of the SMGD Al-

gorithm

The bias in the calculation of E[∇Cx{F}(x)] prevents the SMGD algorithm from converging to the whole of

the Pareto front. Take as a motivating example the multiobjective problem

x∗ ∈ argmin
x∈X

{E[(x − 2 + W(θ))2],E[(x + W(θ))2]} (32)

with x ∈ R and W(θ) distributed one of three ways, W(θ) ∼ U [−.5, .5], W(θ) ∼ U [−1, 1], and W(θ) ∼

N (0, 1). In each case, the minima and Pareto front of the objectives E[(x−2+W(θ))2], and E[(x+W(θ))2]

remain unchanged. As can be seen in figure 3a, where the direction of descent has been calculated using the

exact expectations of the gradients, ∇gi(x) := E[∇fi(x,W(θ))] which yields ∇Cx{G}(x), the Pareto front

should be a straight line between 0 and 2 representing the trade-offs between the simple quadratic objectives.

However, limiting ourselves to the case where one must calculate E[∇Cx{F}] as in figures 3b, 3c, 3d, we see

that the noise has smoothed the calculation of the direction of descent, giving the algorithm a bias. Clearly

E[∇Cx{F}(x)] 6= ∇Cx{G}(x) in general. This effect can cause the SMGD algorithm to converge only to a single

point on the Pareto front as in the case of U [−1, 1] and N (0, 1) noise seen in figures 3c and 3d respectively.
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As was shown previously, the SMGD algorithm converges to the points in which E[∇Cx{F}] = 0. We will

(a) Direct access to the ex-
pectations E[∇fi].

(b) W(θ) ∼ U [−.5, .5] (c) W(θ) ∼ U [−1, 1] (d) W(θ) ∼ N (0, 1)

now show that the subset determined by the level set F ∗ := {x | ∇Cx{F}(x) = 0} is included in the set of

points G∗{x | ∇Cx{G}(x) = 0}. We first change our assumptions on the variance, namely we assume that

Assumption 4.1.

V[∇Cx{F}(x)] ≤MV0 +MV ||∇Cx{G}(x)||2, (33)

Theorem 5. Let the sets F ∗ = {x | ∇Cx{F}(x) = 0} and G∗{x | ∇Cx{G}(x) = 0} denote the sets of minima

found using SMGD and MGD on the same problem, where we use MGD on the expected gradients of the

objective functions {fi(x)}i=1,...,k. F ∗ ⊆ G∗.

Proof. Under assumption 33, define a sequence {εt}t∈N such that
∑T
t=1 ε

2
t∑T

t=1 εt
→ 0. Define Bt = ∇Cx{F}−∇Cx{G}

ΦG(xt+1) ≤ΦG(xt) + 〈∇ΦG(xt),xt+1 − xt〉+
L

2
||xt+1 − xt||2 (34)

= ΦG(xt) + 〈∇ΦG(xt),xt+1 − xt〉+
L

2
||xt+1 − xt||2 (35)

E[inf ΦG] ≤E[ΦG(xt+1)] ≤ ΦG(xt)− εt||∇Cx{G}(xt)||2 − εt〈∇Cx{G}(xt),E[Bt]〉+
Lε2

tMV0

2
(36)

Taking the full expectation, rearranging, and summing shows us the relation

T∑
t=0

E[||∇Cx{G}||2] ≤ E[Φ[G]x0 − inf ΦG]−
T∑
t=1

εt〈∇Cx{G}(xt),E[Bt]〉+
LMV0

2

T∑
t=1

ε2
t (37)

Where as before, defining ET =
∑T
t εt, we have

PET

(
E[||∇Cx{G}||2] ≥ ε

)
≤ E[Φ[G]x0 − inf ΦG]

εET
−
∑T
t=1 εt〈∇Cx{G}(xt),E[Bt]〉

εET︸ ︷︷ ︸
bias term

+
LMV0

2

∑T
t=1 ε

2
t

εET
. (38)

for some t′ such that Bt′ = 0 ∀t ≥ t′ we have ∇Cx{F}(x∞) = ∇Cx{G}(x∞) = 0 and so x∞ ∈ F ∗, G∗.

However, the converse is not true. Take x′∞ = argminx E[fj(x,W(θ))] for some j ∈ {1, ..., k}. Clearly,
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∇Cx{G}(x[∞]′) = 0, however E[∇Cx{F}(x′∞)] 6= 0 since ∇fj(x′∞,W(θ)) is dominated entirely by noise. So

x′∞ ∈ G∗ but x′∞ /∈ F ∗ and F ∗ ⊆ G∗.

The natural question to ask is, what is the source of this bias? By assumption we have access to

samples of the jacobian of F , JF (x,W(θ)) which is an unbiased estimator of the Jacobian of G JG(x), e.g.

E[JF (x,W(θ))] = JG(x). In such a situation it would be straightforward to assume then that the gradient es-

timation is unbiased. However, the minimizer α∗(x,W(θ)) = argminα∈∆k−1 α>JF (x,W(θ))JF (x,W(θ))>α

is a quadratic function of the Jacobian, by Jensen’s inequality

E[JF (x,W(θ))JF (x,W(θ))>] ≥ E[JF (x,W(θ))] E[JF (x,W(θ))]>, (39)

and so E[α∗(x,W(θ))] 6= α∗(x).

Debiasing the computation of α∗ could be as straightforward as resampling and averaging the Jacobian,

using ĴF (x) = 1
N

∑N
i=1 JF (x,W(θ)i) in place of JF (x) and calculating α∗ as

α̂∗ = argmin
α∈∆k−1

α>ĴF (x)ĴF (x)>α. (40)

However, not only would it be computationally taxing to compute N extra gradients at each time step,

but there would also be residual variance in our estimation rendering our computational efforts somewhat

phyrric. Instead, noting that

E[JF (x,W(θ))JF (x,W(θ))>] = ΣJF (x,W(θ)) + E[JF (x,W(θ))] E[JF (x,W(θ))]> (41)

where ΣJF (x,W(θ)) denotes the covariance matrix of the gradients of F , we estimate Σ̂JF (x,W(θ)) on-line

using individual samples of JF (x,W(θ)) and calculate α∗ using the following modified formulation.

α̃∗(x) = argmin
α∈∆k−1

α>
(
JF (x,W(θ))JF (x,W(θ))> − Σ̃JF (x,W(θ))

)
α. (42)

We can then calculate a debiased form of the stochastic gradient

∇̃Cx{F}(x,W(θ)) :=
∑
i

α̃∗i∇fi(x,W(θ)) (43)

This approach has the advantage of not requiring excess computation in individual rounds while also effec-

tively reducing the bias in the calculation of ∇Cx{F}(x,W(θ)).
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5 Proposed Approach: Transverse Brownian Motion

Our work takes two distinct lines. Firstly, the SMGD algorithm, even if run from distinct starting points,

converges to a subset of the Pareto front, which is undesirable. To ameliorate this we propose to augment the

standard gradient descent iterates from the SMGD algorithm in two ways. The debiasing strategy discussed

in section 4 to allows the algorithm to converge to the whole of the Pareto front. To explore the Pareto

front as well as overcome any remaining bias, we add a noise term which will allow the algorithm to explore

directions tangential to the Pareto front. Because of the added noise term, this approach efficiently explores

the area around the minima and will not stay stuck in a saddle point, leading to a dense characterization of

the Pareto front with less wasteful computation when compared to multiple restarts. In the second phase,

oonce we have a collection of samples from a noise ball around the Pareto front, we must determine the

set of Pareto optimal design points and estimate the location of the true Pareto front. We estimate the

Pareto front using local averages in order to give a preliminary estimation the Pareto front. Then, we

create both bootstrap confidence intervals and estimate the fitness of each potential design point to give a

characterization of the whole of the Pareto front with uncertainty. Our strategy does not require the full

objective functions or gradients to ever be evaluated, making the extra gradient descent steps worthwhile

and computationally tractable.

5.1 Transverse Brownian Motion

To find and explore the Pareto front we generate a sequence using the recurrence relation,

xt+1 = xt − εt∇̃Cx{F}(xt) +
√

2εtβ−11PTt, (44)

with Tt ∼ N (0, PP>) with P such that Tt is perpendicular to the Pareto front, ∇̃Cx{F}(xt) is the direction of

descent calculated with debiased parameters α̃∗ explained in section 4,β an inverse temperature parameter

set by the practitioner, and 1P is an indicator that x[t] is near the Pareto front.

Since in this setting we do not have a priori information, particularly about the Pareto front, we have

to estimate the direction tangent to the Pareto front. To do this, we can use the stochastic multi-gradient

information since the stochastic multi-gradient always has a component normal to the tangential direction
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of the Pareto front. At each iteration, we calculate a set of moving averages

µ̃t+1 = µ̃t + γt
(
JF (xt,W(θ)t)− µ̃t

)
(45)

Σ̃JF ,t+1 = Σ̃JF ,t + γt
(
JF (xt,W(θ)t)− µ̃t

)(
JF (xt,W(θ)t)− µ̃t

)> (46)

Π̃t+1 = Π̃t + γt
(
∇̃Cx{F}(xt,W(θ)t)− Π̃t

)
(47)

With γt ∈ (0, 1) and using the value of Σ̃JF ,t to estimate the covariance of the gradients for use in the

debiasing procedure outlined in equations 42 and 43. We then calculate the projection matrix, P

Pt,i,j = δi,j −
1

||Π̃t||2
Π̃t,iΠ̃t,j (48)

where δi,j denotes the dirac delta function. Setting Tt = PtZt with Z ∼ N (0,1d×d) allows us to take a

step forward using 44. In addition, since the gradient has been debiased, the quantity ˜∇Cx{F}(xt) to give us

more information about the pareto stationarity of the point xt, allowing us to perform a relaxation of the

indicator function, approximating it with the stand-in

1P ≈ e−||Π̃t||. (49)

This damps the random dynamics far away from stationary points while not hindering either the exploration

of the Pareto front or the ability of the algorithm to escape saddle points. The goal of this approach is to

explore the whole of the Pareto front, and allowing εt or γt to go to zero would create a unique limiting

distribution centered at x∞. In order to insure that all points are reached we are willing to allow for a

slightly higher amount of noise in the sampled points and so we define a pair of sequences

{εt}t=0,...,∞ := ε0 ≥ ε1 ≥ ... ≥ ε∞ > 0 (50)

{γt}t=0,...,∞ := γ0 ≥ γ1 ≥ ... ≥ γ∞ > 0 (51)

Which prevents the algorithm from having a limiting distribution centered on a single point.

5.2 Pareto Front Estimation

Having a set of samples {(x1,F(x1,W(θ)1)), ..., (xn,F(xn,W(θ)n))}, our task now decomposes into three

problems

1. To map samples xi to objective space in order to compare them we must find a mapping Ĝ(x) : Rd 7→
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Rk,x 7→ [E[f1(x,W(θ))|X], ...,E[fk(x,W(θ))|X]] where [E[f1(x,W(θ))|X], ...,E[fk(x,W(θ))|X]] which

is now meant to be understood as the k dimensional vector of objectives.

2. To assess the Pareto efficiency of each point xi and determine the Pareto front in objective space P(Ĝ).

3. To determine the set of pareto optimal designs through the preimage of the mapping to the Pareto

front P (ĜX )

The set of samples {(x1,F(x1,W(θ)1)), ..., (xn,F(xn,W(θ)n))} are not directly on the Pareto front almost

surely. The conditional expectation of the sample function evaluations {E[f1(x,W(θ))|X], ...,E[fk(x,W(θ))|X]},

however, are on the Pareto front. We calculate the conditional expectation using k-nearest-neighbor averages,

a flexible fully nonparametric approach with few hyperparameters which converges under light assumptions

[4].

Calculating the number of neighbors is equivalent to finding the best smoothing of our data. Using too

few neighbors to estimate the vector of conditional expectations results in a granular and overly optimistic

Pareto front. Too many, though, and we overwrite the local nature of the estimate and instead compute a

global average. To track the quality of our estimate and calibrate the number of neighbors we sequentially

add neighbors and search for an elbow in the hypervolume indicator, a commonly used performance metric

indicating the quality of a set of solutions in multi-objective optimization. As can be seen in figure 4d, the

rapid change in the hypervolume indicator corresponds to an oversmoothing of the local average. To prevent

oversmoothing, we set the number of neighbors to be equal to half of the ’elbow’ value.

(a) 5 neighbors (b) 160 neighbors (c) 1000 neighbors
(d) Elbow in Hypervolume
at ∼ 160 neighbors

Figure 4: Convex Pareto front estimated through KNN average.

Having a mapping to the space of objectives allows us to assess the relative dominance between points.

Denoting the result of the local average at sampled point xi as Ĝ(xi), we would like to know if an individual

Ik in the set of n tuples I = {(x1, Ĝ(x1)), ..., (xn, Ĝ(xn))} is undominated. e.g.

@Ij ∈ I s.t. Ij ≺ Ik. (52)
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Because the values of Ĝ(x) are estimates of the the true vector valued function G(x), the expression above

in Eq. 52 is now a probabilistic notion, and we seek to find

@Ij ∈ I s.t. PI(Ij ≺ Ik) ≥ ε (53)

This condition is well generalized by the Pareto optimal Probability [13]

POP(Ik) = P¬6P = 1− PI(∩jIj ≺ Ik) (54)

The probability PI must be the joint pdf of all of the elements in I. Elements in I are not independent.

Since the set of samples are, in expectation, on the Pareto front we can resample and perform a bootstrap

estimate of the Pareto optimal probability for each individual in the sample Ik. The procedure is as follows

1. for each xi resample individual Ii m times, generating {Î(1)
i , ..., Î

(m)
i }ni=1

2. for each xi calculate a bootstrap estimate of the Pareto optimal probability Pi = 1− 1
m

∑m
p=1 1(∃j s.t. Î(p)

j ≺

Î
(p)
i )

This yields a set of quality assessments for each sampled point xi Since we resample across the whole set of

points I, the bootstrap samples are drawn from the joint PDF for I. To estimate the set of optimal design

points, we take as P (ĜX ) the set

P (ĜX ) = {xi | Pi > c} (55)

With this estimation of the set of Pareto optimal points and corresponding bootstrap estimates of Ĝ(x) we

can also generate bootstrapped confidence intervals in objective space.

1. first discretize the space into a set of boxes of dimension k, labeled B1,...,k.

2. A confidence interval for row d can be made by ordering the elements in the union of all the boxes in

the dth row {∪k,...,ki,...,l Bi,...,d,...,l}, and taking appropriate quantiles.

See figure 5 for a visual representation of this procedure for one point in a bi-objective problem.

6 Numerical Experiments

In this section, we show the numerical effectiveness of our approach in both converging to the whole Pareto

front in objective space and in inferring the set of Pareto optimal points. First, we point out that constructing

example problems for stochastic multi-objective optimization requires some care. One may naïvely transform
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Figure 5: Example estimated Pareto efficient point and corresponding box Bi,j

a set of deterministic objectives by simply adding noise to the design variables f(x)→ f(x+W(θ)). However,

adding noise to the design variables has a smoothing effect on the objective in expectation and can change

the resulting Pareto front in unpredictable ways, even changing it from concave to convex. In addition, one

one has added noise to the design variables, changes in dimensionality can also change the shape of the

Pareto front, and the length of the Pareto front increases in proportion to the change in volume as one goes

to higher dimension. To make a fair comparison across dimension we generate an example problem, the

quadratic gaussian, a higher dimensional example of that seen in section 4. Our goal is to find all x∗

x∗ ∈ argmin
x
{E[f1(x,W(θ))],E[f2(x,W(θ))]} (56)

with

f1(x,W(θ)) = (x − s√
d

+ W(θ))||2 E[f1(x,W(θ))] = ||x − s√
d
||2 + σ2 (57)

f2(x,W(θ)) = ||(x + W(θ))||2 E[f2(x,W(θ))] = ||x||2 + σ2 (58)

W(θ) ∼ N (0,
σ2

d
) (59)

For our examples, we set s = 51d with 1d the vector of all ones. The set of Pareto optimal points is straight

line between x∗1 = 5√
d
and 0 and has a length of 5 in all dimensions.

As seen in section 4, this type of problem is difficult to solve with vanilla SMGD, the noise has infinite sup-

port and, without debiasing the gradient, it would posess a limiting point at the center of the Pareto front. To

conduct our tests, we allow only 1000 total evaluations of the stochastic functions {f1(x,W(θ)), f2(x,W(θ))},
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and we give εt and γt the functional form

εt = γt = max(
ε0√

1 + λ0t
, ε∞), (60)

with ε0 > ε∞ > 0, as our decreasing set of parameters.

Figure 6: Pareto front for example problem in Objective space

6.1 2D Gaussian

We now turn our attention fully to the quadratic gaussian example in two dimensions. Particularly, we aim

to assess our approach at estimating the Pareto front in both objective space and design space (the set of

Pareto optimal points).

Since we have access to the true expected value of our objectives for this toy problem, we directly compute

the true Hypervolume dominated by one run of optimization. Examining the ratio HVtrueHValgo shown in figure

7a, we can see that the transverse brownian motion algorithm captures 100% of the possible hypervolume.

We also have a set of points estimated to be undominated. Using the true expectations, we can compare

the set of probabilistic undomianted points to the true Pareto front as in figure 7b. We can see that points

which we predict to be undominated are near the front, meaning that if their true expectations were to

be evaluated they would likely be Pareto optimal points. One also sees that the preimage of the set of

probabilistically undominated points is centered around the set of Pareto optimal points with low variance.

Finally, we turn our attention to the 90% confidence intervals shown in figures 7d and 7e. We can see that

they cover both the Pareto front and the set of Pareto optimal points, indicating that we have effectively

captured the Pareto front.
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(a) Proportion of the hypervolume
captured by the algorithm to the true
hypervolume.

(b) Probability of Being Undomi-
nated Captures Pareto front.

(c) Local Mean is Concentrated
around True Undominated Points.

(d) 90% Bootstrapped CI for Pareto
Front in Objective Space.

(e) 90% Bootstrapped CI for Pareto
Optimal Design Points.

Figure 7: 1000 samples, ε0 = .9, λ0 = 1, and ε∞ = .15.

6.2 Tradeoff: Resolution and Efficiency

The sampling approach contains four hyperparameters, ε0, λ0, γt, and ε∞. The first three control the

optimization, particularly how transverse brownian motion iterates approach a minima; however, ε∞ has a

direct effect on the sampling efficiency of our algorithm. It is therefore important to see how the value of

ε∞ changes our ability to infer design points. Specifically, given some value of ε∞, we would like to know

the probability that our design point, x will be further than ε > 0 from the closest point in the set of Pareto

optimal points, x∗ = argminx∗∈P ||x − x∗||2, e.g. Pε(||x − x∗|| ≥ ε|ε∞). This can be viewed as a type of

concentration about the set of Pareto optimal points. Since we want to know the value for all epsilon, we

define the error as the measurement

Eε∞ = 1−
∫ ∞

0

Pε(||x − x∗|| ≥ ε)dε (61)
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As we can see in the set of figures 8 showing estimates of the set of design variables given 1000 samples, as

the value of the parameter ε∞ increases, we increase the coverage of design space. However, this coverage

comes at a cost to concentration about the set of true design points, as the error measure also increases.

There are still no silver-bullets.

(a) ε∞ = 0.01, Eε∞ = .013 (b) ε∞ = 0.1, Eε∞ = .032 (c) ε∞ = 0.5, Eε∞ = .376

Figure 8
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6.3 Revisiting the Quadratic Gaussian Example in HD

We can now examine the quadratic gaussian problem in higher dimensions first tackled in section 6.1.

Keeping all hyperparameters the same but increasing the dimension to 10 yields the convergence statistics

shown in figure 9. Since the dimension is high, it becomes prohibitive to show the full set of 55 comparisons

between all design dimensions, so the confidence intervals for the set of Pareto optimal points are relegated

to the appendix. We can see, however, that not only does the true hypervolume of the samples generated by

transverse brownian motion converge, but the Pareto front is estimated effectively with only 1000 evaluations

of the stochastic objectives.

(a) Hypervolume Converges (b) 90% Confidence Bands around es-
timated Pareto front cover the front.

(c) Shaded area shows error in
concentration measurement, Eλ1 =
0.055.

Figure 9

7 Transverse Brownian Motion Reaches All Points on the Pareto

Front

We are particularly interested in the ability of our approach to reach any point on the Pareto front in finite

time. Similar to the quantity introduced in section 6.2, we want to show that, for any point on the Pareto

front y∗ ∈ P and ε > 0, we have

Theorem 6. for any y∗ ∈ P and some t <∞

P(||xt − y∗|| ≤ ε) > 0. (62)

As long as this quantity is strictly greater than zero then transverse brownian motion will eventually

reach every point on the Pareto front. Our framework for proving theorem 6 for transverse brownian motion
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follows from that used by [10], [3] and [12], we will first show recurrence, that there is a compact sublevel

set, ΦG(x) ≤ M , that is reached infinitely many times by transverse brownian motion. We will then show

reachability, on a compact sublevel set, there is a nonzero probability to reach any target point y∗ ∈ P. Once

we have established both recurrence and reachability, it is straightforward to see that transverse brownian

motion reaches an arbitrary point y∗ in finite time with nonzero probability. Since y∗ is arbitrary, the result

follows.

We will make two assumptions.

Assumption 7.1. there are constants a and b such that

||∇ΦG(x)||2 ≥ aΦG(x)− b, ||x||2 ≤ aΦG(x) + b ∀x. (63)

Assumption 7.2. There are constants c ≤ 1 and d such that

|E[〈∇ΦG(()x),∇ΦF (()x)−∇ΦG(x)〉] ≤ c||∇ΦG(()x)||2 + d. (64)

Assumption 7.1 is necessary to show the ergodicity of the SDE dX = ∇F (X) + dW and is mild if

intimidating. It corresponds to a type of coerciveness, the further away x is from the minima, the stronger

the gradient. The second assumption is a mild one, we only require that the bias is a linear function of

the gradient, note also that 〈∇ΦF (x),ΦG(x)〉 = cos(θ)|∇ΦF (x)||∇ΦG(x)| ≤ |∇ΦF (x)||∇ΦG(x)| Note that

assumptions 7.2 and 7.1 are automatically met if x is confined to a bounded subset (x ∈ X ⊂ Rd).

We are now able to prove our first result, recurrence.

Lemma 7. Recurrent visits to the sublevel set M .

Under assumptions ??, 7.1, and 7.2 and defining a decreasing sequence {εt}t∈N such that ε0 ≥ ε1, ...,≥ ε∞ >

0. Defining a sublevel set M > 0, a constant B := Lβ−1d + b +
ε0LMV0

2 + d ≤ a inf ΦG(x), and a sequence

of stopping times τk+1 = inf{t : t > τk,ΦG(xt} ≤M) then

a) τ0 =

log

[[
ΦG(x0)

M− ε0B
ε∞a

]2]
2aε∞

(65)

and

b) E[τj ] = τ0 + (j + 1)M (66)

Proof of a). Using lipschitz continuity of ΦG(x) and the definition of transverse brownian motion, and
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defining ζt = 〈∇ΦG(()xt),∇ΦF (()xt)−∇ΦG(()xt)〉

ΦG(xt+1) ≤ΦG(xt) + 〈∇ΦG(xt),xt+1 − xt〉+
L

2
||xt+1 − xt||2 (67)

≤ ΦG(xt)− εt||∇ΦG(xt)||2 − εtζt +
L

2

(
MV0

+MV ||∇ΦG(xt)||2
)

(68)

+
√

2εtβ−1〈∇ΦG(xt), Tt〉+
L

2

(
2
√

2εtβ−1〈∇ΦF (xt), Tt〉+ 2εtβ
−1〈Tt, Tt〉

)
(69)

Et[ΦG(xt+1)] ≤ ΦG(xt)− εt(1− c−
εtMv

2
)||∇ΦG(xt)||2 + εt

(
d+

Lεt
2
MV0

+ Lβ−1d
)

(70)

≤ ΦG(xt)− εt||∇ΦG(xt)||2 + εt
(
d+

Lεt
2
MV0

+ Lβ−1d
)

(71)

≤ (1− aεt)ΦG(xt) + εtB (72)

≤ e−aεtΦG(xt) + εtB (73)

Where we have used the inequality 1−x ≤ e−x. Taking the full expectation, iterating, and setting the above

less than equal to M gives the relation

E[ΦG(xτ0)] ≤ e−aτ0ε∞ΦG(x0) +
ε0B

ε∞a
≤M. (74)

Solving for τ0 gives the result.

For the Proof of part b of the theorem, we will first prove that the quantity

ΦG(xt∧τj+1
) + t ∧ τj+1 (75)

is a supermartingale with respect to τj .

Lemma 8.

ΦG(xt∧τj+1
) + t ∧ τj+1 (76)

is a supermartingale with respect to τj.

Proof. Since t ∧ τj+1 is a stopping time and a martingale, it suffices to show that

Eτj [ΦG(xτj+1
)] ≤ ΦG(xτj ) (77)

Note that

Eτj [ΦG(xτj+1)] ≤ (1− aετj )ΦG(xτj ) + ετjB ≤M (78)
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Is true as we can always pick a ≥ 1. Since ΦG(xτj ) ≥ inf ΦG(()x) ≥ B
a ,

Eτj [ΦG(xτj+1)] ≤ ΦG(τj) (79)

And we have the result.

Having proved lemma 8 we can go on to prove part b of theorem 7

part b). Since

Eτj [ΦG(xt∧τj+1
)] + t ∧ τj+1 ≤ ΦG(t ∧ τj) + t ∧ τj (80)

we can allow t→∞ to see that

Eτj [τj+1] ≤ Eτj [ΦG(xτj+1
)] + τj+1 ≤ ΦG(xτj ) + τj (81)

Iterating, using the relation ΦG(xτj ) ≤M , and taking the full expectation we see that

E[τj+1] ≤ (j + 1)M + τ0 (82)

Having shown recurrence, we can now prove reachability.

Lemma 9. Given that ΦG(xτk) ≤M , let E[∇ΦF (x)] ≤ D. We have, for y∗ ∈ {y : ΦG(y) ≤M} ∩ {y : y ∈

P(GX )}

P (||xτj+t − y∗||2 ≤ ε) > 0 (83)

Proof. for a finite t we have the events

A = ||xτj+t − y∗||2 ≤ ε B = ||xτj − y∗ +

τj+t−1∑
s=τj

εsD +

τj+t−1∑
s=τj

√
2εsβ−1Zs||2 ≤ ε (84)

with Z ∼ N (0,1d×d). Since t < ∞ we conclude that P(B) > 0. From the definition of transverse brownian

25



motion, we have

xτj+t =xτj −
τj+t−1∑
s=τj

∇Cx{F}(xs) +

τj+t−1∑
s=τj

√
2εsβ−1Ts (85)

= xτj −
τj+t−1∑
s=τj

∇Cx{F}(xs) +

τj+t−1∑
s=τj

√
2εsβ−1PsZs (86)

= xτj +

τj+t−1∑
s=τj

D +

τj+t−1∑
s=τj

√
2εsβ−1Zs (87)

(88)

Subtracting y∗ from both sides and taking the norm, we see that

||xτj+t − y||2 ≤ ||xτj − y∗ +

τj+t−1∑
s=τj

D +

τj+t−1∑
s=τj

√
2εsβ−1Zs||2 (89)

Where we can see that on the left hand side we have event A. Since event A occurs almost surely if event

B does, one can say that P(A) ≥ P(B) = ct > 0.

We are now in position to prove theorem 6

Proof. First, define a sequence of stopping times and a τj+1 = inf{t : t > τj ,ΦG(xτj+1) ≤ M}. Then, also

define a stopping time τ∗ = inf t : ||xt − y∗|| ≤ ε for ε > 0. We have that

P(τ∗ ≥ T ) =P(τ∗ ≥ Tτj ≥ T ) + P(τ∗ ≥ Tτj ≤ T ) (90)

= P(τj ≥ T ) + P(τ∗ ≥ T, ||xτk − y∗|| ≥ ε ∀k = {1, ..., j}) (91)

≤ E[τj ] +

j∏
k=1

P(||xτk − y∗|| ≥ ε) (92)

≤ (j + 1)M + τ0
T

+

j∏
k=1

(1− cj) (93)

Where we have used our proof of recurrence in the third line, and reachability in the fourth. We can always

choose j and T large enough such that this probability vanishes.

8 Conclusion

We have introduced a new approach to solving multi-objective optimization problems in which the whole

of the pareto front is of interest, transverse brownian motion. We have seen its effectiveness in estimating
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both the Pareto front and Pareto optimal points on a problem which could not be effectively treated with its

predecessor algorithm, SMGDA, which has a bias that leads it to converge to a subset of the Pareto front.

We have also proven, under mild assumptions, that transverse brownian motion samples the whole of the

Pareto front in finite time, making it reliably usable in multi-objective optimization problems.
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A Appendex A: Pareto Optimal Points for 10 dimensional Quadratic

Gaussian Example

Confidence intervals for Pareto optimal points for the high dimensional Gaussian example.
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B Appendix B: Convergence Results for SMGDA

We collect here a series of convergence results for SMGDA which serve to round out the literature. Partic-

ularly, exploiting the potential function developed in the previous secitons we can show convergence results

using weaker assumptions than in [11] and previously explored in prior works.

B.1 Strongly Convex Case

For a set of k objective functions {fi(x,W(θ))}i=1,...,k such that E[fi(x,W(θ))] = gi(x) with {gi(x)} −

i = 1, ..., k convex and at least one gi strongly convex and lipsthitz continuous We will show that, given a

set of positive real numbers, {varepsilont}t∈N such that

∑
t

εt =∞
∑
t

ε2
t <∞, (94)

a sequence of the form:

xt+1 = xt − εt∇Cx{F}(xt) (95)

converges to a point on the pareto front.

First we will prove a pair of lemmas which will be useful for the result. Let x∗t be the projection of a

point xt to the pareto front, that is

x∗t = argmin
y∈P

||xt − y||2. (96)

We have the relation that

Lemma 10.

〈∇ΦG(x),x − x∗〉 ≥
∑
i

α∗i (x)mi||x − x∗||2 (97)

where mi ≥ 0

and

Lemma 11.

E[∇ΦF (x)−∇ΦG(x)] =
∑
i

(
E[α∗i (x,W(θ))]− α∗i (x)

)
∇gi(x) (98)

Proof of 10. From (strong) convexity we have that

〈∇gi(x),x − x∗〉 ≥ mi||x − x∗||2 (99)

with mi = 0 for gi convex and mi > 0 for gi strongly convex. Multiply both sides by α∗i (x) and sum to see
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that

〈α∗(x)∇gi(x),x − x∗〉 ≥
∑
i

miα
∗
i (x)||x − x∗||2. (100)

Using the definition of ∇ΦG(x) gives the result.

Proof of 11.

∇ΦF (x)−∇ΦG(x) = E[∇Cx{F}(x)]−∇Cx{G}(x) (101)

=
∑
i

E[α∗(x,W(θ))(∇fi(x)−∇gi(x)) + (α∗(x,W(θ))− α∗(x))∇gi(x)] (102)

=
∑
i

(E[α∗i (x,W(θ))]− α∗i (x))∇gi(x) (103)

We can now prove the theorem.

Theorem 12. Given a set of k objectives {f(x,W(θ))}i=1,...,k such that all member of the set {E[fi(x,W(θ))]}i=1,...,k

are convex and M-lipschitz continuous and defining a set of real numbers {εt}t∈N meeting the criteria stated

in 94, Then the SMGD algorithm converges to a point on the Pareto front.

||xT+1 − x∗T+1||2
T−→
∞

0 (104)

Proof. As a shorthand notation, let d2
t := ||xt−x∗t ||2, Bt := ∇ΦF (xt)−∇ΦG(xt), andmα =

∑
i α
∗
i (x,W(θ))mi.

||xt+1 − x∗t+1||2 ≤||xt+1 − x∗t ||2 = ||xt − εt∇Cx{F}(x)− x∗t ||2 (105)

Et[d
2
t+1] = d2

t − 2εt〈ΦG(xt),xt − x∗t 〉 − 2εt〈Bt, dt〉+ ε2
t E[||∇Cx{F}(x)||2] (106)

= d2
t − 2εt

(∑
i

α∗i (x,W(θ))mi

)
d2
t + ε2

tM
2 (107)

= (1− 2εtmα)d2
t + ε2

tM
2 (108)

Where in the third line we have used lemmas 11 and 10 in addition to the M-lipschitz continuity of ΦF (x).

Picking εt ≤ ε0 ≤ 1
2mα

and defining πt =
∏t
i=1(1 − 2εimα), taking the full expectation, and iterating, we

have

E[d2
T ] = πtd

2
0 +

t∑
s=0

πt
πs
ε2
sM

2 T−→
∞

0 (109)
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B.2 Online Convex Multi-Gradient and Online Stochastic Convex Multi-Gradient

Using the fact that ΦF (x) is convex, as shown in section 4, we can show convergence in the online setting.

Assume that ||x − x∗|| ≤ D and ΦF () is lipschitz continuous.

Theorem 13. Given a set of k stochastic functions F := {fi(x,W(θ))}i=1,...,k such that, for each i,

E[fi(x,W(θ))] is convex and M-lipschitz continuous over a bounded set ||x − x∗|| ≤ D, we have a sublinear

regret in ΦF (x) with respect to its minimizer on the Pareto front x∗ ∈ argminx ΦF (x).

T∑
t=1

(
ΦF (xt)− ΦF (x∗)

)
≤ 3DM

√
T

2
(110)

Proof.

||xt+1 − x∗||2 =||xt − x∗ − εt∇Cx{F}(xt)||2 (111)

= ||xt − x∗||2 − 2εt〈∇Cx{F}(xt),x − x∗〉+ ε2
t ||∇Cx{F}(xt)||2 (112)

Et[||xt+1 − x∗||2] ≤ ||xt − x∗||2 − 2εt
(
ΦF (xt)− ΦF (x∗)

)
+ ε2

tM
2 (113)

(114)

Taking the full expectation, rearranging, summing, and setting εt = D
M
√
t
with ε0 := 0 we see that

T∑
t=1

(
ΦF (xt)− ΦF (x∗)

)
≤

T∑
t=1

||xt − x∗||2

2

( 1

εt+1
− 1

εt

)
+

T∑
t=1

εtM
2 (115)

≤ D2

2

1

εT
+M2

√
T (116)

≤ 3DM
√
T

2
(117)

Where we have used the inequality
∫ T

0
1√
t
≤ 2
√
T

An important distinction must be made to minimizers x∗1 ∈ argminx ΦF (x) and x∗2 ∈ argminx ΦG(x).

While this proof works in both the stochastic and deterministic cases, functions F and functions G, the

minimizers of the stochastic problem are a subset of the deterministic problem solved using exact gradients.
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