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Abstract

Emergent phenomena at interfaces between oxides and metals can appear due to charge transfer

and mass transport that modify the bulk properties. By coating the metallic oxide LaNiO3 by

aluminium, we fabricated a junction exhibiting a diode-like behaviour. At the equilibrium, the

interface is insulating. The metallic behaviour can be recovered by applying a voltage drop across

the junction in one polarity only. The electrical properties in direct and reverse bias are investigated.

The observed electro-resistive effect rises up to 105 % and can be interpreted in terms of (i) a

spontaneous redox reaction occurring at the interface and (ii) its reversal induced by charge injection

in direct bias.
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I. INTRODUCTION

Oxide surfaces and interfaces attract a growing attention due to the emergence of several

phenomena which are absent in the bulk. Progress in synthesis of thin films enabled to

get rid of extrinsic factor like surface roughness or grain boundaries and the engineering

of heterostructure of ultra-thin films has become a new way to manipulate the electronic

structure at the surfaces and interfaces.

Nickelates offer an ideal background for the emergence of surface and interface phenomena

: (i) their ground state is close to a metal-to-insulator transition (MIT) that occur between

100 and 600 K depending of the rare earth ionic radius (except LaNiO3 that remains metallic

at the lowest temperature) [8, 27]; (ii) nickel sites are magnetic and order at low temperature

[10]; (iii) their electronic structures are strongly coupled with structural distortions due to

their electron correlations; (iv) the valence band is degenerated and has a hybridized Ni and

O character that makes them charge transfer insulators in the insulating side of the MIT :

hence, not only does oxygen vacancy distort the ionic lattice but it directly affect the filling

of the valence band as well [26].

Proper epitaxial strain have proved to lift the orbital degeneracy [4, 11, 19] resulting

in orbital polarization of the electronic structure [20]. The band structure can also be

tailored by the breaking of the translational invariance at a surface or an interface causes

a charge redistribution thus creating an electronic structure different from that of the bulk

[6]. Surface termination layer can be chosen to adjust the surface electronic state via surface

electrostatic properties [16]. Emergent surface magnetic order at the interface between non

magnetic compounds have been reported too [9].

In the case of an metal-oxide interface, mass transport can occur and modify the charge

transfer. If the mass transport takes place over more than one monolayer, the situation can

be described in terms of a chemical interaction (redox reaction, alloy formation, encapsula-

tion or interdiffusion) yielding new compounds that intervene in the charge redistribution

[7]. This principle has been recently applied in a universal method to fabricate 2D elec-

tron systems with insulating oxides [21]. Used on metallic LaNiO3 this method leads to an

electro-resistive effect reported in Ref. [24].

Here, we describe the reduction of an oxide by an aluminium overlayer deposited on

a the metallic oxide LaNiO3. The latter compound hosts a metal-to-insulator transition
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as oxygen vacancies are introduced in the material [2, 3]. The electric properties of the

individual compounds of the Al/LaNiO3 interface are dramatically modified by the solid

phase redox reaction that take place. The reaction can be explained in terms of transport of

oxygen ions through the interface. We show that the reaction can be reversed by an external

electric field and the junction resistance varies by a factor up to 1000.

II. EXPERIMENTAL PROCEDURE

The LaNiO3 films were epitaxially grown on (001) SrTiO3 substrates by pulsed laser

deposition and subsequently annealed during 45 min under oxygen. The growth procedure

and the quality of the film are reported in Ref. [1, 3] The oxygen stoichiometry of the

LaNiO3−δ films could be estimated by a direct procedure described in [23] and the average

δ is found to be less than 0.2 here. A 80 nm thick Al overlayer was then deposited by using

a rf-sputtering on three LaNiO3 films having three different thickness (6, 10 and 16 nm).

The electrical properties were probed in a standard 2-wire configuration.

III. RESULTS
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Figure 1: I-V characteristics of the junction measured at room temperature (black curve) and 5 K

(light blue curve) of the 6 nm thick sample.

The I−V curves of the three measured junctions exhibit a diode-like behaviour illustrated

in Fig. 1. The transition is fully reversible and was observed to be stable over tens of cycles.

At low temperature, the change of resistance with the sign of the voltage is significantly

enhanced.
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Figure 2: Log representation of the current flowing through the 6 nm thick junction in reverse bias

at different temperatures from 290 K down to 175 K by steps of 15 K. The curve measured at 5 K

is represented in open circle.

For reverse bias, the current increases with the voltage following an exponential trend

(figure 2). As the junctions are cooled down, the I−V curves in log scale are shifted toward

higher resistance. Those properties can be coherently modelled by a tunnel junction in series

with an insulator. Below 175 K, the curves progressively deviate from the high temperature

behaviour. This deviation can be accounted for by a thermoelectric current : each copper

wire of the voltage probes makes a heterogeneous contact between distinct conductors at

distinct temperatures. As the circuit is closed by the ammeter and the junction cooled down,

a thermocouple current adds to the conduction current induced by the applied voltage. In

reverse bias, where the conduction current is vanishing at low temperature, the contribution

of the thermoelectric current to the measured current is expected to be significant. This

spurious effect renders the low temperature data little reliable and the discussion will be

restricted to the data above 175 K where the temperature gradient is moderate.

The electrical properties in direct bias are represented by the temperature dependence of

the resistance measured at the applied voltage ∆V = −3 V. The residual resistivity ratios

range between 1.6 and 2.0 and the estimated resistivity upper bounds (assuming conductive

path is about 1 mm long, 3 mm wide and at most as thick as the LaNiO3 layer) are 3000

µΩ · cm for the 6 and 10 nm samples and 1000 µΩ · cm for the 16 nm sample. Those values

are coherent with the literature and one order magnitude above the most conducting single

crystals [10] and thick films [15]. Also, the resistance of the junction indirect bias agrees

well with that of the LaNiO3 film away from the Al over-layer.
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Figure 3: Two-wire resistance across the junction as a function of the temperature for three different

LaNiO3 layer thickness (t = 6, 10 and 16 nm) at the applied voltage ∆V = −3 V.
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Figure 4: Resistance plotted against the bias voltage for three different LaNiO3 layer thickness

(t = 6, 10 and 16 nm) at room temperature.

The thickness dependence of the electro-resistive effect is reported in Fig. 4. Electro-

resistive effect decreases as the LaNiO3 layer increases. More precisely, the resistance in the

reverse bias is much more enhanced than in direct bias as the thickness is diminished. This

trend shows that the oxygen vacancies created by the oxidization of Al are concentrated at

the interface: the thicker the LaNiO3 layer is, the thicker is the conducting path through

metallic, i.e. stoichiometric, LaNiO3. This is coherent with Tian et al. who demonstrated

that Ni valence is reduced below 3+ only in the first 10 nm of LaNiO3 below the interface.

The conducting path for reverse bias can be sketched by a tunnel junction in series with

two resistors in parallel representing the semiconducting LaNiO3−δ and the metallic LaNiO3

layers (Fig. 5-a and b).
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Figure 5: Sketches of the conductive path for reverse (a) and direct bias (c) and their respective

equivalent circuit (b) and (d).

In contrast, the electric behaviour in the direct bias is metallic. It is as though conducting

channels opened through the AlOx/LaNiO2.5 bi-layer by a local healing of the Al/LaNiO3

interface (Fig. 5-c and d).

IV. DISCUSSION

In this section, the results will be discussed and arguments will be brought to justify

the interpretation of the electro-resistive effect in terms of redox reaction controlled by the

external electric field.

The shape of the I − V curve corresponds to a typical Schottky diode characteristics.

However, in this model, the resistance in the reverse bias is expected to grow, or at least

not to exponentially decrease, with the voltage. Aluminium is well-known to be a strong

reducing agent that pumps oxygen out of the oxide it is deposited on [7]. A direct evidence
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Figure 6: Scheme of the band diagrams across the interface in reverse (a) and direct bias (b).

of the concomitant oxidization of Al and reduction of LaNiO3 at a Al/LaNiO3 contact have

been brought in Ref. [24]. Thus, the situation can not be described as a regular Schottky

contact because of the mass transport which is not considered in this model.

As the Al-LaNiO3 contact is formed, electrons are driven from the metal to the oxide

by the gradient of chemical potential since φLNO > φAl [12, 13]. The electrons diffusing in

the oxide combine with mobile holes and fill the nearly filled Ni3d-O2p band that crosses

the Fermi level in LaNiO3 [14]. The oxide is turned a semiconductor. The states the ex-

tra electrons set in have been calculated to have an oxygen character [17]. This favours

the mobility of oxygen ions. Thus, the charge carried by the diffusion electrons drives O2−

ions outward the oxide where a vacancy is formed and toward the metal where an AlxOy

aluminium oxide layer is formed. The oxygen transport through the oxide and across the

interface is favoured by (i) the high mobility of oxygen in LaNiO3 (activation barrier of oxy-

gen is 0.65-0.80 eV depending of the tensile strain [18]), (ii) the thermodynamic stability of

oxygen off-stoichiometric phases LaNiO2.75 and LaNiO2.5 [5, 22]. Such formation and spon-

taneous arrangement of oxygen vacancies have been shown to be an energetically favourable

response of the lattice in presence of electrostatic charge [25].

Finally, the contact between a metal and a metallic oxide makes a highly resistive junction

at the equilibrium because of the spontaneous formation of two stable, neutral and insulating

layers of AlxOy and LaNiO3−δ between the LaNiO3 and the Al layers.

The band diagrams for reverse and direct bias can be sketched as in Fig. 6. In reverse

bias, mobile charge carriers are strongly suppressed by the opening of a band gap in the
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intermediate compounds formed at the interface by the redox reaction. Furthermore, the

ionic conduction is impeded by the absence (i) of mobile oxygen ions in LaNiO3−δ and (ii)

of available oxygen sites in AlxOy. The response of the junction to the applied voltage in

reverse bias is the bending the bands in AlxOy and to some extent in LaNiO3−δ (figure 6-a).

In this scheme, the reverse bias can be described as the tunnelling of carriers through the

AlxOy/LaNiO3−δ barrier whose effective height of the barrier decreases as the applied voltage

increases. Its width may be smaller than the average thickness of the AlxOy/LaNiO3−δ bi-

layer due to interface roughness. From transmission electron microscopy led on analogue

systems in Ref. [24], the AlxOy thickness can be estimated to be about 10 nm, with enough

roughness for weak spots as thin as a few nanometres can exist. The two compounds yielded

by the solid phase redox reaction should have defects so that multiple tunnelling through

those defects is likely to take place too. This would lower the effective width of the barrier

and explain why the I − V curves depart from the behaviour of a simple tunnel junction.

In this context, it is difficult to precisely estimate the active area. The rather surprising

reversibility of the electro-resistance process suggests that only little mass is transported,

and hence that the area is relatively small.

In direct bias, the applied electric field drives O2− ions from the aluminium oxide toward

the nickelate as well as the free holes from LaNiO3 toward the LaNiO3−δ layer. The holes

injected in LaNiO3 combine with nickel d electrons and promote Ni host valence to 3+.

This creates available oxygen sites where O2− ions will be driven to satisfy the octahedral

coordination of Ni3+ sites. This two-fold transfer of charge and mass turns out to reverse the

redox reaction by reducing the aluminium oxide and re-oxidizing LaNiO3. Above a threshold

voltage, the metallic behaviour is recovered all along the conducting path. The insulator-

to-metal transition occurs over a 2 V-wide interval of applied voltages centred around a

threshold value of 0.7-0.8 V (resp. 0.8-0.9 V) at room temperature (resp. at 5 K), taking

the criterion of a division by 10 of the maximum resistance.

V. CONCLUSIONS

We reported the electrical behaviour of a Al/LaNiO3 contact. Both charge and mass

transfer take place in this metal-oxide contact and the Schottky effect is strongly enhanced.

Due to the occurrence of a redox reaction, insulating intermediate compounds are formed at
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the interface between those two metallic native compounds and the junction is highly resis-

tive at the equilibrium. The junction exhibits either tunnelling-like conduction or a metallic

behaviour depending on the sign of the applied voltage. The fabrication of such a junction is

straightforward with basic growth tools, inexpensive, efficient at room temperature. On top

of that, the mass transfer is found to be confined to a few nanometres around the interface.

All these features makes this system promising for applications in nano-electronics.
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