
HAL Id: hal-04381574
https://hal.science/hal-04381574v2

Submitted on 10 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implicit neural multiple description for DNA-based data
storage

Trung Hieu Le, Xavier Pic, Jeremy Mateos, Marc Antonini

To cite this version:
Trung Hieu Le, Xavier Pic, Jeremy Mateos, Marc Antonini. Implicit neural multiple description
for DNA-based data storage. 2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2024), IEEE, Apr 2024, Seoul, South Korea. �hal-04381574v2�

https://hal.science/hal-04381574v2
https://hal.archives-ouvertes.fr


IMPLICIT NEURAL MULTIPLE DESCRIPTION FOR DNA-BASED DATA STORAGE

Trung Hieu Le∗ , Xavier Pic∗, Jeremy Mateos, Marc Antonini
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ABSTRACT

DNA exhibits remarkable potential as a data storage solution
due to its impressive storage density and long-term stability,
stemming from its inherent biomolecular structure. However,
developing this novel medium comes with its own set of chal-
lenges, particularly in addressing errors arising from storage
and biological manipulations. These challenges are further
conditioned by the structural constraints of DNA sequences
and cost considerations. In response to these limitations, we
have pioneered a novel compression scheme and a cutting-edge
Multiple Description Coding (MDC) technique utilizing neural
networks for DNA data storage. Our MDC method introduces
an innovative approach to encoding data into DNA, specifically
designed to withstand errors effectively. Notably, our new
compression scheme overperforms classic image compression
methods for DNA-data storage. Furthermore, our approach
exhibits superiority over conventional MDC methods reliant
on auto-encoders. Its distinctive strengths lie in its ability to
bypass the need for extensive model training and its enhanced
adaptability for fine-tuning redundancy levels. Experimen-
tal results demonstrate that our solution competes favorably
with the latest DNA data storage methods in the field, offering
superior compression rates and robust noise resilience.

Index Terms— DNA data storage, Multiple Description
Coding (MDC), Implicit Neural Network (INR), Quaternary
Shannon Fano Entropy Coder (SFC4).

1. INTRODUCTION
The memory of humanity hinges on our capacity to effectively
handle ever-expanding volumes of data, spanning timeframes
ranging from mere years to several centuries. As our current
storage media struggle to keep pace, there is an urgent need to
explore groundbreaking solutions that can be swiftly put into
practical use. In the development of alternative data storage
methods, synthetic molecules, particularly synthetic DNA, ap-
pear as one of the most promising options. Due to its density,
durability, and its low energy consumption, synthetic DNA is
an ideal storage support candidate for long-term data storage.
The initial phase in the data encoding process involves con-
structing a sequence of nucleotides A, T, C, and G (referred
to as nts). However, it is imperative that the DNA-encoded
information stream follows specific biochemical constraints.
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These constraints include avoiding homopolymers, maintain-
ing a balanced GC content, and preventing repetitive patterns.
Additionally, it is crucial to acknowledge that the biochemical
procedures involved in this process can introduce errors that
may compromise the integrity of the stored data. Operations
such as synthesis, sequencing, storage, and DNA manipula-
tion can introduce errors in the form of substitutions and indels
(insertions or deletions of nucleotides). During the last decade,
information therorists have developed different schemes for the
encoding of digital data into DNA, with some of them targeting
the storage of images [1, 2]. Some compression algorithm and
coders have been developed specifically for this paradigm of
data storage [3, 4, 5, 6]. This work introduces a Single Descrip-
tion Coder (SDC) and a Multiple Description Coder (MDC)
designed for DNA data storage with the SDC method exhibit-
ing superior compression performance compared to the exist-
ing state of the art. MDC for image encoding involves encod-
ing multiple representations of an image. Historically, it was
used for transmission, In this work, the concept of MDC was
used to robustify the DNA storage biochemical processes that
are prone to generating errors. if one is lost or corrupted dur-
ing transmission, the remaining descriptions can still be used
to reconstruct the original image with some quality degrada-
tion. Recent research [7, 8] show a potential use of neural net-
works to generate different descriptions, which involve Gener-
ative Networks and Compressive Autoencoders. However, the
main drawback of this method is its long training process that
has a high computational cost. Furthermore, the training pro-
cess must be performed with very large datasets to converge to-
wards an optimal model. This is even more challenging in the
MDC context due to the redundancy adaptation mechanism,
which requires retraining the model.

In recent works on image compression using neural net-
works, the so-called Implicit Neural Representation (INR),
learns to represent an image implicitly through the weights of
the INR model, a coordinate map, and possibly a latent space
[9, 10]. More recently, the Coordinate-based Low Complexity
Hierarchical Image Codec (COOL-CHIC) framework [11] has
achieved superior performance compared to traditional im-
age compression methods. The first MD scheme using INR
(INR-MDSQC) has been proposed in [12] with the following
advantages: generalized model training is unnecessary, high
performance and flexible redundancy tuning. However, INR-
MDSQC’s drawback is the number of descriptions, which is
limited to two. Moreover, those descriptions are not balanced.

The goals of implementing Multiple Description Coding
(MDC) in DNA data storage are twofold: minimizing the read-
ing cost (the number of DNA strands, called oligos, to read),
and enhancing noise robustness. This is particularly crucial due
to the biochemical constraints inherent in the process, which
can result in the absence of certain oligos. To our knowledge,
this work constitutes the first MDC application for DNA data



Fig. 1: SF-MDC: During the training process, N latent sets are initially divided into blocks of size 8x8. Each block is then quantized independently with
added uniform noise. These quantized latent blocks are then fed into the Block Merger module. In this module, each block is categorized as either redundancy
or principal. Principal blocks are merged to form the central description, as illustrated in Fig. 2. Both these side descriptions and the central description are
then input into the synthesis module, which generates the corresponding reconstruction and computes the related distortion. The latent space is updated using
the back-propagation process, which is based on the distortion measured in MSE. Simultaneously, the Auto-regressive model is refined to better estimate the
distribution of the quantized latent space.

storage. More precisely, we propose a Spatial Frequency Mul-
tiple Description based on INR (SF-MDC) generalized to N
descriptions, and evaluate its performance on the Kodak Loss-
less True Color Image Suite dataset.1.

2. SPATIAL FREQUENCY MDC

In this section, we introduce a SF-MDC approach that incorpo-
rating an INR. The SF-MDC architecture, as depicted in Fig.
1, comprises three main components:

• fθ: Synthesis Model with θ its parameters
• fψ: Auto-regressive Model with ψ its parameters
• Block Splitter/Merger

2.1. Synthesis model
The quantization process is defined as follows:

ŝ = Q(s,∆s) (1)
where s is the element to be quantized, and ∆s is its asso-
ciated quantization step. The latent spaces corresponding to
each description yj ∈ {y1..yN} are hierarchically organized
at different levels of resolution. Accordingly, we denote by
yk|j the latent space corresponding to resolution level k for de-
scription j. In our solution, each description contains a mix
of redundancy (low rate, low quality) and principal (high rate,
high quality) blocks. At the decoder, when all the descriptions
are received correctly, the decoder will merge all the principal
blocks to form the central description. Otherwise, the redun-
dancy blocks will be used to replace any corrupted principal
blocks. Therefore at the encoding phase, to distribute equal
amounts of redundancy across descriptions, block splitter di-
vides each yk|j into M blocks, each of size 8x8. A block b of
the latent yk|j is denoted as ybk|j , where b ∈ {0, 1, ...,M − 1}
is the block index. Each ybk|j is quantized with a unique quan-
tization step ∆ybk|j . A principal block uses a finer step, and a
redundancy block uses a coarser step. The central description
ŷ0 is merged from the principal blocks as depicted in Fig. 2.
Hence, each quantized block ŷbk|j is expressed as:

ŷbk|j = Q(ybk|j ,∆y
b
k|j) (2)

Therefore, the quantized latent space ŷk|j is defined as:

ŷk|j = {ŷbk|j ∈ Z8×8, b ∈ {0, 1, ...,M − 1}} (3)

1http://r0k.us/graphics/kodak/

From this, we deduce description j composed by the set of
different quantized latent spaces ŷk|j :

ŷj = {ŷk|j ∈ ZHk×Wk , k ∈ {0, 1, ..., L− 1}} (4)

where Hk =
H

2k
, H and W denote respectively the height and

with of the input picture, Wk =
W

2k
, and L denotes the hier-

archical depth of ŷj . As discussed in [12], ŷj is sequentially
input into the synthesis model fθ with shared parameters, trans-
forming set of latent spaces into a reconstructed image. In the
synthesis model fθ, each ŷk|j is first upsampled using bi-cubic
interpolation to match the target image shape before being fed
into an MLP (Multilayer Perceptron) composed of 2 linear lay-
ers. The output of fθ is defined as:

x̂j = fθ(ŷj) where j ∈ {0, .., N} (5)
The distortion of each x̂j compared to the target image is de-
noted by Dj and measured using Mean Squared Error (MSE).
Given that the latent space is discrete and the quantization pro-
cess is non-differentiable, uniform noise is introduced to enable
differentiable operations, as described in [13]. Thus, the latent
space quantization is defined as:

ŷbk|j =

{
ybk|j + u, u ∼ U [−0.5, 0.5] during training
Q(ybk|j) otherwise

where U is the uniform noise and j ∈ {1, ..., N} (6)

2.2. Autoregressive model

Assuming that the distribution of each coefficient in the latent
space is conditioned by their neighbors, then according to [14]
the probability of the coefficients can be determined by a fac-
torized model:

pψ(ŷj) =
∏
i,k

pψ(ŷik|j |cik|j) (7)

where ŷik|j is the latent coefficient at the position i of level k
of description j and cik|j ∈ ZC is the set of the C decoded
coefficients neighboring ŷik|j , representing decoding context.
The auto-regressive model pψ , estimated through a MLP, uses
the Laplace distribution as described in [11] to approximate the
real conditional probability of the latent space and by using the
factorized model defined in (7). The rate for each description

http://r0k.us/graphics/kodak/


Fig. 2: Block Merger Module: In this example, the number of descriptions
is N = 4. The Principal and Redundancy blocks are assigned using the prin-
ciple of round-robin item attribution. The central description is derived from
the principal blocks of the 4 descriptions. Each description is then sequentially
fed into the Synthesis model.

ŷj can be expressed as:

R(ŷj) = −log2(pψj (ŷj)) = −log2
∏
i,k

pψj (ŷik|j |cik|j)

= −
∑
i,k

log2pψj (ŷik|j |cik|j) (8)

2.3. Multiple description optimization
The optimization process is divided into two distinct phases:
training and post-training. The objective of the training phase
is to update the model parameters θ and ψ, and to adapt the var-
ious latent spaces {y1, . . . ,yN} to the dynamics of the target
image. Its cost function is defined as:

Jt = D0(ŷ0) + α

N∑
j=1

Dj(ŷj) +

N∑
j=1

λjR(ŷj) (9)

where α ∈ [0, 1] is the redundancy factor, R(ŷj) denotes the
rate as defined in equation (8),Dj is the side distortion, andD0

is the central reconstruction distortion. The differences in dis-
tortion, represented by D1, . . . , DN , between the side recon-
structions x̂1, . . . , x̂N and the central reconstruction distortion
D0, are dependent on the redundancy factor α. The configu-
ration of cost function (9) pushes the Synthesis model to par-
tition the image information into N distinct descriptions and
converges towards maintaining the lowest D0 possible while
accommodating different rates. After training the network, the
model parameters ψ, θ are represented as 32-bit values, but
such precision is not necessary for transmission. Thus, in the
post-training phase the model parameters θ andψ are quantized
according to equation (1), transforming them into θ̂ and ψ̂, re-
spectively. The quantization steps for θ̂ and ψ̂ are optimized as
outlined in [12] by minimizing the post-training cost function:

Jp =D0(ŷ0, θ̂, ψ̂) + α

N∑
j=1

Dj(ŷj , θ̂, ψ̂)

+

N∑
j=1

λj(R(ŷj , θ̂, ψ̂) +R(θ̂) +R(ψ̂)) (10)

Where, R(θ̂) and R(ψ̂) represent the estimated rate utilizing a
Laplace model.

3. ENTROPY CODER ADAPTED TO DNA

Fig. 3: Context Entropy Coding with C3 DNA coder:In this example,
the model uses C=12 coefficients, cik|j , to yield µik|j and σik|j , modeling a
Laplacian distribution. The symbol probability is calculated, and an entropy
coder encode the latent coefficient ŷik|j into a binary stream. The binary
stream is then converted to quaternary stream by using the C3 DNA coder.

3.1. Description coder: Range Transcoder
In the binary case, the Range coder [15] has been used to en-
tropy code the latent space in different MDC schemes. Since
the Range coder offers high performance at a very low entropy,
we decided to adapt it to DNA by designing a transcoder that
encodes its output into DNA. The principle of context latent
coding is depicted in Fig. 3, then the encoded values from
Range coder are then fed to the C3 coder described in [16]. In
this paper, we introduced an arithmetic coder inspired by the
JPEG 2000 MQ coder. This coder is based on a fixed-length
code C3 composed of 48 elements. Further inspired by the
Run-length Limited (RLL) binary codes, it has been designed
to prevent the occurrence of homopolymers, which are repeti-
tions of the same nucleotide too many times consecutively. The
arithmetic coder output will be represented in base 48. Its base
48 development will be encoded in DNA with the C3 code.
C3 = {AAT,AAC,AAG,ATA,ATC,ATG,ACA, ...,
GCT,GCG,GGA,GGT,GGC}
|C3| = 48

3.2. ARM and Synthesis Models coder: SFC4
In [17], we introduced a novel constrained quaternary entropy
coder SFC4 adapted to the biochemical constraints of DNA
data storage, with increased performance over the state of the
art Huffman/Goldman algorithm [4]. In [12], the MLP can be
modeled by a Laplace distribution, so the code-book is initial-
ized with a frequency table following this Laplace model. After
initialization, the SFC4 encoder will be used to encode all the
parameters of the ARM and synthesis models, since they are
necessary for decoding.

Fig. 4: Design of the differents oligos format. General format: The format
remains consistent across all oligos, with the only variation occurring in the
payload. ”S” is the orientation nt, ID is the encoded file’s label, P is a set of 4
parity nucleotides. GIO: General informations for the encoded image such as
the image size, the number of descriptions and the coding dynamics. ARMO:
Contains the weight and the bias of the ARM model. SynthO: Contains the
weight and the bias of the Synthesis model. DO: Contains the coefficients of
the latent spaces.



4. OLIGO STRUCTURE

DNA data storage requires the use of short oligos, of length
generally lying between 100 and 300 nts. In this work, we use
oligos of length 200 nts. The decodability is ensured only if
we manage to decode at least one of the descriptions, the auto
regressive model, and the synthesis model. In our design, we
separated the different parts of the encoded data into separate
oligos. Some oligos will encode the ARM model, some the
synthesis, and other oligos will encode separate latent spaces,
as presented in Fig. 4.

5. EXPERIMENTS
In the following subsections, we are going to introduce com-
parative results from different DNA coding methods. The im-
ages used to conduct the test are extracted from the previously
mentioned kodak dataset. The number of hierarchy levels used
is six (L = 6).

5.1. Performance study
The new SDC (equivalent to a MDC with N = 1) shows better
performance over the state of the art image coding methods
adapted to DNA as shown in Fig. 5(A). With this new method,
we were able to show gains between 0.5 and 3 dB in terms
of quality of reconstruction in comparison to the best previous
method (JPEG DNA SFC4 Transcoder). The results have been
computed and averaged on the kodak dataset.

To ensure the validity of SF-MDC, its performance at cen-
tral reconstruction should neither surpass the upper limit of the
SDC nor fall below the SDC at an N× Rate. As shown in Fig.
5 (B), with α = 0.1, the solution approaches the upper bound
limit of the single SDC as the rate increases, and never goes
under the lower bound limit for different N . Besides, we ob-
served that the compression rate increases with the number of
descriptions used. On the other hand, increasing the number of
description makes the coder more robust to noise.

5.2. Noise robustness
In this section, we simulate the loss for the MDC case N = 2.
As each latent space is entropy coded and independently de-
codable. Therefore, to analyze a typical case scenario, we drop
three out of six latent spaces from each description, alternating
between different levels of descriptions (Description 1: 77%
oligo loss, Description 2: 23% oligo loss, and Central Descrip-
tion: 50% oligo loss). The results have been computed on the
image kodim01 of the kodak dataset previously mentioned. As
observed in Fig. 6, the MDC demonstrates a high resilience
capacity, maintaining a loss of only 5dB when losing a big part
of the information contained in the different latent spaces.

6. CONCLUSION
This work introduces an innovative DNA-based image codec
that achieves substantial improvements in reconstruction qual-
ity when compared to existing DNA-based image codecs. On
average, these improvements amount to 3 dB, with peak gains
of up to 5 dB. These notable enhancements result from the
utilization of the ARM, synthesis networks, and the DNA-
adapted Range coder, which deliver exceptional performance
even at low entropy levels. Furthermore, we present a Multiple
Description Coder (MDC) capable of generating a variable
number of descriptions. This MDC enhances the resilience of
oligos to the noise inherent in DNA data storage channels. We
also conducted experiments that involved introducing noise
into the storage channel. The result shows that we only lost
5dB in the worst scenario.

In future works, we aim at building a noise model for the
DNA data storage channel that could further improve the noise
robustness of the MDC.
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(A) SDC’s Rate Distortion (B) MDC’s Rate Distortion
Fig. 5: (A) Average results over the kodak dataset. Our novel SDC coding scheme overperforms all the state of the art coders by at least 0.5 to 3 dB (JPEG DNA
BC: [2], JPEG DNA BC Transcoder: [18], JPEG DNA SFC4: [17]), (B) Average result curve over kodak dataset, the MDC side curve is the mean curve across
different descriptions. The benchmark is done with the following configuration: N number of descriptions with N = {2, 4}, α = 0.1. The SDC (N = {2, 4}) is
its rate ×N , it is equivalent to the compression rate used with MDC (N = {2, 4}), it allows us to compare SDC and MDC in terms of quality for the same rates.

(A1) Side description 1: 38.757 dB (A2) Side description 2: 38.789 dB (A3) Central description: 41.829 dB

(B1) Side description 1: 20.329 dB (B2) Side description 2: 20.039 dB (B3) Central description: 35.829 dB
Fig. 6: Loss simulation on kodim01: The image is encoded with two side description shown in (A1) and (A2). The central reconstruction computed from these
side descriptions is shown in (A3). Noise was then introduced (oligo loss), removing entire latent spaces from those side descriptions. (B1) and (B2) are respective
visual results of this noise added to the side descriptions (A1) and (A2), and (B3) is the visual result on the central reconstruction computed from (B1) and (B2).
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