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A ROBUST TWO-LEVEL SCHWARZ PRECONDITIONER FOR
SPARSE MATRICES∗

HUSSAM AL DAAS† , PIERRE JOLIVET‡ , FRÉDÉRIC NATAF§ , AND PIERRE-HENRI

TOURNIER§

Abstract. This paper introduces a fully algebraic two-level additive Schwarz preconditioner for
general sparse large-scale matrices. The preconditioner is analyzed for symmetric positive definite
(SPD) matrices. For those matrices, the coarse space is constructed based on approximating two
local subspaces in each subdomain. These subspaces are obtained by approximating a number of
eigenvectors corresponding to dominant eigenvalues of two judiciously posed generalized eigenvalue
problems. The number of eigenvectors can be chosen to control the condition number. For general
sparse matrices, the coarse space is constructed by approximating the image of a local operator
that can be defined from information in the coefficient matrix. The connection between the coarse
spaces for SPD and general matrices is also discussed. Numerical experiments show the great
effectiveness of the proposed preconditioners on matrices arising from a wide range of applications.
The set of matrices includes SPD, symmetric indefinite, nonsymmetric, and saddle-point matrices.
In addition, we compare the proposed preconditioners to the state-of-the-art domain decomposition
preconditioners.

Key words. Algebraic domain decomposition, two-level preconditioner, additive Schwarz,
sparse linear systems, spectral coarse spaces.

1. Introduction. In this work, we consider the linear system of equations

(1.1) Ax = b,

where A ∈ Rn×n is sparse and n× n for n ≫ 1; b is the right-hand side; and x is the
sought solution.

This problem arises in a wide range of scientific applications and optimization.
Methods that are based on direct factorization of the sparse coefficient matrix A such
as sparse Cholesky, LDLT, and LU decompositions feature robust and reliable black
box solvers for (1.1), see [11, 32]. However, their underlying algorithms suffer from
an intrinsic sequential paradigm and they require a very high amount of memory
resources. Hence, sparse direct solvers are not suitable for solving large-scale linear
systems of equations using emerging heterogeneous parallel computers. Iterative
methods relying on Krylov subspaces, on the other hand, require only a sparse
matrix-vector multiplication (Av, for some v ∈ Rn) per iteration which can be
highly parallelizable due to the sparsity of A. The Conjugate Gradient (CG) [20]
method, Minimal Residual (MINRES) method [27], and the Generalized Minimal
Residual (GMRES) [31] are widely used Krylov iterative methods for solving linear
systems of equations with a coefficient matrix A that is symmetric positive definite
(SPD), symmetric nonsingular, general nonsingular, respectively, see [30] for further
information on iterative methods for linear systems of equations. The catch in these
methods is that their convergence relies heavily on the properties of A, and they
usually require a very high number of iterations to reach an approximate solution
with fine accuracy. If A is SPD, the A-norm of the error at the kth iteration of CG
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satisfies the inequality:

∥A−1b− xk∥A ≤ 2∥A−1b− x0∥A

(√
κ2 (A)− 1√
κ2 (A) + 1

)k

,

where κ2 (A) is the condition number of A, that is the ratio between largest and
smallest eigenvalues of A, see [30]. Therefore, preconditioning the system (1.1), i.e.,
multiplying both sides from the left by an SPD matrix M−1 can change the spectrum
of A such that the ratio between the largest and smallest eigenvalues of M−1A is
small, and hence, CG with a modified scalar product would converge fast. Thus, if
one can construct M−1 cheaply such that the multiplication M−1v for v ∈ Rn is
cheap and the eigenvalues of M−1A are clustered near 1, then, the CG runtime will
be reduced. This also applies when A is symmetric and M is SPD.

Although the convergence of GMRES is still a mystery for general matrices, it is
known that spectral information is not enough to describe its behavior, see [14, 24].
Nevertheless, it is common to employ preconditioners that are analyzed for symmetric
matrices to nonsymmetric ones, see for example [4].

Preconditioning techniques vary from the simplest approach of diagonal
preconditioners passing by block diagonal preconditioners and incomplete
factorization up to sophisticated multilevel preconditioners based on domain
decomposition (DD) methods and multigrid and even beyond by mixing some of
these aforementioned, see [9, 28, 35, 36].

We focus in this paper on multilevel DD preconditioners, in particular, we are
interested in variants of the additive Schwarz method combined with spectral coarse
spaces. These preconditioners have demonstrated, particularly during the last decade,
their effectiveness in solving linear systems of equations arising from a variety of
applications such as elliptic PDEs [2, 3, 4, 12, 13, 17, 18, 22, 23, 25, 33], normal
equations [5], indefinite Helmholtz equation [7], advection-diffusion equations and
nonsymmetric sparse matrices [4]. Originally, spectral DD preconditioners relied
essentially on the underlying PDE to set up the coarse space. More recently, in
the last three years, there have been several attempts to establish fully algebraic
spectral DD preconditioners [1, 3, 4, 13, 18]. Despite being successful, each of these
methods suffers from either requiring impractical high computational costs to set
up or a lack of generality in its guaranteed robustness. The approach proposed in
[1] requires massive computational costs yielding impracticality issues. Nonetheless,
the framework presented in [1] identifies a class of matrices, local symmetric positive
semidefinite (SPSD) splitting matrices and their important role in constructing
robust spectral DD preconditioners. In [3], despite the computations being local
and concurrent, the complexity cost of the presented algorithm is very high, cubic
with respect to the local number of unknowns per subdomain. The robustness of
the approach proposed in [4] can only be guaranteed for diagonally dominant SPD
matrices. [18] introduces a fully algebraic preconditioner that is guaranteed to be
robust for the 2D diffusion equation.

In this paper, we present a new two-level additive Schwarz preconditioner that
controls the condition number for SPD matrices. The coarse space is obtained by
solving two generalized eigenvalue problems using the Krylov–Schur method [19, 34].
The construction of the coarse space and the bound on the condition number can be
established only by using local information (on each subdomain) from the coefficient
matrix. In addition, we propose an adapted version of the preconditioner to be
applied to general matrices. Surprisingly, the general variant seems to be very efficient
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in practice after being tested on advection-dominated advection-diffusion equation
(highly nonsymmetric), and symmetric indefinite saddle-point system arising from
Stokes equations.

The paper is organized as follows: Section 2 sets the notation and gives a brief
introduction to variants of algebraic additive Schwarz preconditioners. Section 3
introduces the lifting and harmonic extension operators and shows the latter’s
connection with the local SPSD splitting. These operators will be key in defining
our proposed spectral coarse spaces. It also prepares the necessary elements required
to analyze the two-level preconditioner which is then presented in section 4 along
with a bound on the condition number of the preconditioned matrix. Due to the
large dimension of the coarse space that is proposed in section 4, another coarse
space is proposed in section 5 based on an SVD-like operator truncation of the
harmonic extension operator. The truncation parameter allows to adaptively control
the condition number of the preconditioned matrix. While sections 3 to 5 consider
the SPD case, section 6 introduces a generalization of the proposed coarse space to
be applied to general nonsingular matrices. Numerical experiments on a variety of
sparse linear systems of equations arising from highly challenging academic examples
such as the biharmonic, diffusion, advection-diffusion, elasticity, and Stokes equations
are presented in section 7. They demonstrate the effectiveness and efficiency of
the proposed preconditioner. Comparisons with state-of-the-art two-level domain
decomposition methods show the competitiveness of the proposed method, especially
being fully algebraic and not relying on any further information from the underlying
problem. Concluding remarks and future lines of research are presented in section 8.

2. Background.

2.1. Notation. We are given a large sparse matrix A ∈ Rn×n. Suppose we are
given a N nonoverlapping partitioning of the sparsity graph of A+ A⊤. We refer to
the ith subset as the ith nonoverlapping subdomain and it is denoted by ΩIi . Let RIi

denote the restriction of a vector of size n to ΩIi . Given ΩIi , we define the extension
of ΩIi with δ layers to be the subset of nodes in the sparsity graph of A + A⊤ that
are not in ΩIi and reachable from ΩIi through a path of length smaller or equal to
δ. We denote this subset by ΩΓi,1:δ

. Without loss of generality we assume that the
nodes in ΩΓi,1:δ

are ordered with respect to their distance from ΩIi . We refer to the
subset Ωi,1:δ = [ΩIi ,ΩΓi,1:δ

] as the overlapping subdomain i. We denote by Ri,1:δ the
restriction to Ωi,1:δ. The number of elements in a subset Θ is referred to as |Θ|. We
assume that Ri,1:δ orders the nodes so that the nonoverlapping nodes appear first,
followed by those reachable with distance 1, then 2 and so on. The p×q zero matrix is
denoted 0p,q, and the p× p identity matrix is denoted Ip. Given a vector v ∈ R|Ωi,1:δ|

we refer to its first |ΩIi | components as vIi , to the following |Γi,1:δ−1| components as
vΓi,1:δ−1

, and to the remaining |Γi,δ| components as vΓi,δ
.

We often omit 1 : δ from the subscript when we refer to Ωi,1:δ or Ri,1:δ. For
example, Ωi, Ri refer to Ωi,1:δ and Ri,1:δ, respectively.

We define in addition the partition of unity (PoU) matrix Di ∈ R|Ωi,1:δ|×|Ωi,1:δ|

for i = 1, . . . , N . Di is a diagonal nonnegative matrix that satisfies the relation

In =

N∑
i=1

R⊤
i DiRi.

We consider in this paper Di that is Boolean; the first |ΩIi | diagonal values are set
to one and the rest is zero.
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The following example helps the reader understand the notation. Let A be given
as

A =



1 2
3 4 5

7 8 9
10 11 12

13 14 15
16 17 18

19 20


and let N = 2, ΩI1 = {1, 2, 3} and ΩI2 = {4, 5, 6, 7}. The restriction operators
RI1 , RI2 are

RI1 =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 , RI2 =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 .

The first layer reached from ΩI1 and ΩI2 is ΩΓ1,1:1 = {4} and ΩΓ2,1:1 = {3},
respectively. Therefore, the overlapping subdomain Ω1,1:1 = {1, 2, 3, 4} and Ω2,1:1 =
{4, 5, 6, 7, 3}; the corresponding restriction operators are

R1,1:1 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 , R2,1:1 =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0

 .

The associated Boolean PoU matrices are

D1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , D2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 .

The first two layers reached from ΩI1 and ΩI2 are ΩΓ1,1:2 = {4, 5} and ΩΓ2,1:2 =
{3, 2}, respectively. Therefore, the overlapping subdomain Ω1,1:2 = {1, 2, 3, 4, 5} and
Ω2,1:2 = {4, 5, 6, 3, 2}; the corresponding restriction operators are

R1,1:2 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

 , R2,1:2 =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0

 .

The associated Boolean PoU matrices are

D1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , D2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

In the following sections, the matrix A is SPD unless otherwise stated.



PRECONDITIONER FOR SPARSE MATRICES 5

2.2. Subdomain-permutation. For each subdomain i, let Pi the permutation
matrix Pi = In([ΩIi ,ΩΓi,1:δ−1

,ΩΓi,δ
,ΩΓi,δ+1:∞ ], :). We have the corresponding block

structure,

(2.1) PiAP
⊤
i =


AIi,Ii AIi,Γi,1:δ−1

AΓi,1:δ−1,Ii AΓi,1:δ−1,Γi,1:δ−1
AΓi,1:δ−1,Γi,δ

AΓi,δ,Γi,1:δ−1, AΓi,δ,Γi,δ
AΓi,δ,Γi,δ+1:∞

AΓi,δ+1:∞,Γi,δ
AΓi,δ+1:∞,Γi,δ+1:∞

 .

This formal representation allows us to view the matrix A from a perspective where
the unknowns of the subdomain under consideration are positioned first followed by
the unknowns of distance one to them through the sparsity graph of A, which are
followed by the unknowns of distance two and so on. This is useful for defining local
SPSD splitting matrices as well as the definitions of the local subspaces required to
construct the spectral coarse space in subsequent sections.

2.3. Local matrix and one-level Schwarz. Let Aii = RiAR⊤
i (=

Ri,1:δAR
⊤
i,1:δ). Given the order in Ri, Aii takes the form

Aii =

 AIi,Ii AIi,Γi,1:δ−1

AΓi,1:δ−1,Ii AΓi,1:δ−1,Γi,1:δ−1
AΓi,1:δ−1,Γi,δ

AΓi,δ,Γi,1:δ−1, AΓi,δ,Γi,δ

 .

Note that using the notation of subblocks of A, Aii = AΩi,1:δ,Ωi,1:δ
.

The one-level additive Schwarz preconditioner associated with the overlapping
subdomains (Ωi,1:δ)1≤i≤N is defined as:

(2.2) M−1
ASM =

N∑
i=1

R⊤
i A

−1
ii Ri.

The one-level restricted additive Schwarz preconditioner [8] associated with the
overlapping subdomains (Ωi,1:δ)1≤i≤N is defined as:

(2.3) M−1
RAS =

N∑
i=1

R⊤
i DiA

−1
ii Ri,

where Di ∈ R|Ωi,1:δ|×|Ωi,1:δ| is the PoU matrix.

3. Local SPSD splitting and local projections. In this section, we recall
the definition of the local Symmetric Positive Semi Definite (SPSD) splitting of the
matrix A with respect to the ith subdomain and present the harmonic and the lifting
projections. These two projections will define the spectral coarse space.

3.1. Local SPSD splitting.

Lemma 3.1. Let Ãi be defined such that
(3.1)

Ãi := P⊤
i


AIi,Ii AIi,Γi,1:δ−1

AΓi,1:δ−1,Ii AΓi,1:δ−1,Γi,1:δ−1
AΓi,1:δ−1,Γi,δ

AΓi,δ,Γi,1:δ−1, AΓi,δ,Γi,1:δ−1
S−1
Γi,1:δ−1

AΓi,1:δ−1,Γi,δ

0

Pi

where

(3.2) SΓi,1:δ−1
= AΓi,1:δ−1,Γi,1:δ−1

−AΓi,1:δ−1,IiA
−1
Ii,Ii

AIi,Γi,1:δ−1
.
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Then, Ãi is a local SPSD splitting of A, i.e., Ãi and A− Ãi are SPSD matrices.

Proof. Consider the Schur complement w.r.t. the third block in PiÃiP
⊤
i

X = AΓi,δ,Γi,1:δ−1
S−1
Γi,1:δ−1

AΓi,1:δ−1,Γi,δ
−AΓi,δ,Ωi,1:δ−1

A−1
Ωi,1:δ−1,Ωi,1:δ−1

AΩi,1:δ−1,Γi,δ
.

Since AΓi,δ,Ii = A⊤
Ii,Γi,δ

= 0, we have

AΓi,δ,Ωi,1:δ−1
A−1

Ωi,1:δ−1,Ωi,1:δ−1
AΩi,1:δ−1,Γi,δ

=

AΓi,δ,Γi,1:δ−1
(AΓi,1:δ−1,Γi,1:δ−1

−AΓi,1:δ−1,IiA
−1
Ii,Ii

AIi,Γi,1:δ−1
)−1AΓi,1:δ−1,Γi,δ

,

HenceX = 0, and since AΩi,1:δ−1,Ωi,1:δ−1
and AΓi,δ,Γi,1:δ−1

S−1
Γi,1:δ−1

AΓi,1:δ−1,Γi,δ
are SPD

and SPSD, respectively, we deduce that Ãi is SPSD.
Now, consider the Schur complement of PiAP⊤

i − PiÃiP
⊤
i w.r.t. the third block

Y = AΓi,δ,Γi,δ
−AΓi,δ,Γi,1:δ−1

S−1
Γi,1:δ−1

AΓi,1:δ−1,Γi,δ

−AΓi,δ,Γi,δ+1:∞A−1
Γi,δ+1:∞,Γi,δ+1:∞

AΓi,δ+1:∞,Γi,δ

which is nothing but the Schur complement of the matrix PiAP⊤
i w.r.t. the third

block, hence Y is SPD since A is.

The restriction of Ãi to the overlapping subdomain i is denoted by Ãii := RiÃiR
⊤
i .

Note that due to the locality of Ãi, we have

(3.3) Ãi = R⊤
i ÃiiRi .

Lemma 3.2. Let Ãi be the local SPSD splitting defined in (3.1) for subdomain i.
We have

0 ≤ u⊤
N∑
i=1

Ãiu ≤ kc u
⊤Au, ∀u ∈ Rn

where kc is the number of colors (to be considered for the δ overlapping subdomains).

Proof. Let G1, . . . , Gkc
be the partitioning of the subdomains into kc groups each

gathering the subdomains with the same color. The proof is immediate if we prove
that 0 ≤ u⊤∑

i∈Gk
Ãiu ≤ u⊤Au.

The last inequality can be easily argued since Ωi,1:δ ∩ Ωj,1:δ is empty for any

i ̸= j ∈ Gk, for k = 1, . . . , kc. Let k ∈ {1, . . . , kc}. For i ∈ Gk, subtracting Ãi from A

will only affect the nodes Ωi,1:δ, therefore, we can safely subtract Ãj for j ̸= i ∈ Gk

from A − Ãi and still have A − Ãi − Ãj SPSD. The last inequality can be obtained
by repeating the subtraction process for the rest of the elements in Gk.

3.2. Local harmonic projection.

Definition 3.3 (Local harmonic operator). For subdomain i ∈ {1, . . . , N}, the
local harmonic operator is defined as

Πi : R|Ωi,1:δ| → R|Ωi,1:δ|

v =

(
vΩi,1:δ−1

vΓi,δ

)
7→
(
−A−1

Ωi,1:δ−1,Ωi,1:δ−1
AΩi,1:δ−1,Γi,δ

I|Γi,δ|

)(
0|Γi,δ|,|Ωi,1:δ−1| I|Γi,δ|

)
v.

(3.4)
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Lemma 3.4. The operator Πi (3.4) is a Aii-orthogonal projection. That is, Π2
i =

Πi, and

(I −Πi)
⊤AiiΠi = 0.

Proof. It is straightforward to see that Π2
i = Πi. Now, let u, v ∈ Rn|Ωi,1:δ| , we

have

AiiΠiv =

(
−AΩi,1:δ−1,Γi,δ

vΓi,δ
+AΩi,1:δ−1,Γi,δ

vΓi,δ

−AΓi,δ,Ωi,1:δ−1
A−1

Ωi,1:δ−1,Ωi,1:δ−1
AΩi,1:δ−1,Γi,δ

vΓi,δ
+AΓi,δ,Γi,δ

vΓi,δ

)
=

(
0|Ωi,1:δ−1|

−AΓi,δ,Ωi,1:δ−1
A−1

Ωi,1:δ−1,Ωi,1:δ−1
AΩi,1:δ−1,Γi,δ

vΓi,δ
+AΓi,δ,Γi,δ

vΓi,δ

)
.

We obtain the proof by noticing that

u−Πiu =

(
uΩi,1:δ−1

+A−1
Ωi,1:δ−1,Ωi,1:δ−1

AΩi,1:δ−1,Γi,δ
uΓi,δ

0|Γi,δ|

)
.

Note that Πiv is harmonic for any v ∈ Rn|Ωi,1:δ| .
It is worth mentioning that there is a tight connection between the local SPSD

splitting Ãii and the local harmonic operator Πi through the local subdomain matrix
Aii. We have

(3.5) (I −Πi)
⊤Aii(I −Πi) = Ãii.

3.3. Lifting projection. Consider the generalized eigenvalue problem

(3.6) DiAiiDiu = λAiiu,

and let Zi be the matrix whose columns are the Aii-orthonormal generalized
eigenvectors corresponding to the eigenvalues λ > ν, for some prescribed ν > 1.
Then the projection operator ZiZ

⊤
i Aii satisfies,

(3.7) v⊤(I −AiiZiZ
⊤
i )DiAiiDi(I − ZiZ

⊤
i Aii)v ≤ ν v⊤Aiiv.

Since ZiZ
⊤
i Aii is actually the projection on the column space of Zi parallel to the

vector space spanned by all eigenvectors whose eigenvalues are lower or equal to ν,
eq. (3.7) follows from [10, Lemma 7.7].

The following theorem characterizes the eigenvalues in (3.6).

Theorem 3.5. The eigenvalues in the generalized eigenvalue problem (3.6)

DiAiiDiu = λAiiu.

are composed of:
• 0 with multiplicity |Γi,1:δ|
• 1 with multiplicity dim

(
ker
(
AΓi,1:δ,Ii

))
which is at least ||Ii| − |Γi,1:δ||

• λ > 1

Proof. The generalized eigenvalue problem can be written as

AIi,IiuIi = λ(AIi,IiuIi +AIi,Γi,1:δ
uΓi,1:δ

)

0 = λ(AΓi,1:δ,IiuIi +AΓi,1:δ,Γi,1:δ
uΓi,1:δ

)
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Notice that the pair

(
0,

(
0Ii

uΓi,1:δ

))
satisfies the generalized eigenvalue problem.

Hence, the multiplicity of 0 is at least |Γi,1:δ|, and since AIi,Ii is not singular, the
multiplicity of 0 is |Γi,1:δ|.

The pair

(
1,

(
uIi

0Γi,1:δ

))
, for uIi ∈ ker

(
AΓi,1:δ,Ii

)
, satisfies the generalized

eigenvalue problem. Therefore, the minimum multiplicity of the eigenvalue 1 is the
dimension of ker

(
AΓi,1:δ,Ii

)
.

Now if λ = 1, we have by substitution, AIi,Γi,1:δ
AΓi,1:δ,Γi,1:δ

AΓi,1:δ,IiuIi = 0, and

since AΓi,1:δ,Γi,1:δ
is SPD AΓi,1:δ,IiuIi = 0, i.e., uIi ∈ ker

(
AΓi,1:δ,Ii

)
. The two previous

arguments show that the eigenvalue 1’s multiplicity is the dimension of the kernel of
AΓi,1:δ,Ii .

The matrices defining the generalized eigenvalue problem are symmetric positive
semi definite, thus λ is non negative. Now if λ > 0, by substitution we have

AIi,IiuIi = λ(AIi,Ii −AIi,Γi,1:δ
A−1

Γi,1:δ,Γi,1:δ
AΓi,1:δ,Ii)uIi .

Multiplying from the left by u⊤
Ii

we get

(1− λ)u⊤
IiAIi,IiuIi = −λu⊤

IiAIi,Γi,1:δ
A−1

Γi,1:δ,Γi,1:δ
AΓi,1:δ,IiuIi

which by using the SPSD properties of AIi,Ii and AΓi,1:δ,Γi,1:δ
shows that λ ≥ 1 and

concludes the proof.

It is worth noting that the generalized eigenvalue problem (3.6) can be interpreted as
a singular value problem for Di where the Euclidean inner product is replaced by the
one induced by the SPD matrix Aii.

4. Two-level theory. In this section, we set up the elements of the fictitious
subspace lemma [10, Section 7.2.1] (see [26] for the original paper as well as [15]
for a modern reformulation) required to obtain spectral bounds on the two-level
preconditioned matrix.

The components of the fictitious subspace lemma are the decomposition spaces,
the bilinear form defined on the product of the decomposition spaces, the interpolation
operator, the surjectivity and continuity of the interpolation operator and the stable
decomposition.

4.1. The coarse space and decomposition spaces. In this section, we
introduce a new spectral coarse space followed by decomposition spaces that we use
to define the two-level Schwarz preconditioner. These spaces are composed of local
subdomain spaces and the decomposition space associated with the spectral coarse
space.

4.1.1. The spectral coarse space. The coarse space that we propose is defined
as the space spanned by the columns of the matrix R⊤

0 , where R⊤
0 is given as the

horizontal concatenation of the N matrices

R⊤
i Di

(
−A−1

Ωi,1:δ−1,Ωi,1:δ−1
AΩi,1:δ−1,Γi,δ

Zi,Ωi,1:δ−1

I|Γi,δ| Zi,Γi,δ

)
.

We remind the reader that Zi =

(
Zi,Ωi,1:δ−1

Zi,Γi,δ

)
is the matrix whose columns are the

selected eigenvectors from the generalized eigenvalue problem (3.6) such that (3.7) is



PRECONDITIONER FOR SPARSE MATRICES 9

satisfied. In other words, the coarse space is

(4.1)

N⊕
i=1

R⊤
i Di

(
−A−1

Ωi,1:δ−1,Ωi,1:δ−1
AΩi,1:δ−1,Γi,δ

Zi,Ωi,1:δ−1

I|Γi,δ| Zi,Γi,δ

)
.

We let Ω0 be an indexing set with |Ω0| being equal to the dimension of the coarse
space.

Given the coarse space basis matrix R⊤
0 , we define the coarse space operator

A00 = R0AR
⊤
0 as the Galerkin projection of A onto the coarse space. We assume in

what follows that R⊤
0 has full column rank so that A00 is SPD.

4.1.2. The decomposition spaces. For each i = 0, . . . , N , we set R|Ωi| as the
decomposition space. Note that for i = 1, . . . , N , the dimension of each decomposition
space is the size of the subdomain space.

4.2. The bilinear form. Now that the decomposition spaces are defined, we
introduce the following bilinear form on the product space of the decomposition spaces
equipped with the Euclidean scalar product:

B :

N∏
i=0

R|Ωi| ×
N∏
i=0

R|Ωi| → R

((ui)0≤i≤N , (vi)0≤i≤N ) 7→ (vi)
⊤
0≤i≤NB(ui)0≤i≤N =

N∑
i=0

v⊤i Aiiui,

where B :
∏N

i=0 R|Ωi| →
∏N

i=0 R|Ωi|, (ui)0≤i≤N 7→ (Aiiui)0≤i≤N .
We note that the operator B is SPD. Furthermore, the inverse of B can be easily

obtained by replacing Aii with A−1
ii .

4.3. The interpolation operator. We introduce in this section the
interpolation operator R from the product of the decomposition spaces to the space
Rn as follows

R :

N∏
i=0

R|Ωi| → Rn

(ui)0≤i≤N 7→ R⊤
0 u0 +

N∑
i=1

R⊤
i ui.

By using the PoU property, we have
∑N

i=1 R
⊤
i (DiRiu) = u, for all u ∈ Rn. Hence

R is surjective. In addition, R is continuous with respect to the norms defined by B
and A on the domain and codomain, respectively. Indeed, for any choice of a coarse
space projection matrix R0, the argument of the number of colors required to color the
decomposition that includes the coarse space can be used. This adds a single color to
the number of colors required to color the decomposition excluding the coarse space.
That is, we have the following inequality(

N∑
i=0

R⊤
i ui

)⊤

A

(
N∑
i=0

R⊤
i ui

)
≤ (kc + 1)

N∑
i=0

u⊤
i Aiiui.
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Remark 4.1. The two-level additive Schwarz preconditioner M−1
2 :=∑N

i=0 R
⊤
i A

−1
ii Ri can be formulated as

M−1
2 = RB−1R⊤

where B is defined in subsection 4.2 and R⊤ is the transpose operator of R which
satisfies for any u ∈ Rn, (vi)0≤i≤N ∈

∏N
i=0 R|Ωi|

(vi)
⊤
0≤i≤NR⊤u = u⊤R(vi)0≤i≤N

= u⊤
N∑
i=0

R⊤
i vi

=

N∑
i=0

v⊤i (Riu).

That is, R⊤u = (Riu)0≤i≤N .

4.4. Stable decomposition. The stable decomposition property can be stated
as follows:
There exists a finite constant cl > 0 such that ∀u ∈ Rn, ∃(ui)0≤i≤N ∈

∏N
i=0 R|Ωi|

such that u = R(ui)0≤i≤N =
∑N

i=0 R
⊤
i ui and

N∑
i=0

u⊤
i Aiiui ≤ cl (R(ui)0≤i≤N )

⊤
A (R(ui)0≤i≤N ) = u⊤Au.

The fictitious subspace lemma states that the largest eigenvalue of the
preconditioned matrix RB−1R⊤A = M−1

2 A is bounded from above by the continuity
constant of the interpolation operator. In addition, the lowest eigenvalue of M−1

2 A is
bounded from below by the inverse of the stable decomposition constant.

Remark 4.2. Since we are working in finite dimensions, the question of the
existence of the constant cl is trivial. The main question we address is to find a
constant that is independent of the number of subdomains, N , or at least does not
increase aggressively with N .

The following auxiliary inequality, which is proved in [10, Lemma 7.12], is useful
to derive the stable decomposition inequality. For any R0, (ui)0≤i≤N , we have

(4.2)

N∑
i=0

u⊤
i Aiiui ≤ 2 (R(ui)0≤i≤N )

⊤
A (R(ui)0≤i≤N ) + (2kc + 1)

N∑
i=1

u⊤
i Aiiui

Given u ∈ Rn, we define the following quantities in the decomposition spaces:
• ui = Di(I − ZiZ

⊤
i Aii)(I −Πi)Riu, for i = 1, . . . , N

• u0 is defined as the stacking of the vectors(
P⊤
Γi,δ

Z⊤
i Aii(I −Πi)

)
Riu,

where PΓi,δ
=

(
0|Γi,δ|,|Ωi,1:δ−1|

I|Γi,δ|

)
such that

R⊤
0 u0 =

N∑
i=1

R⊤
i DiΠiRiu+

N∑
i=1

R⊤
i DiZiZ

⊤
i Aii(I −Πi)Riu
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Using these components from the decomposition spaces, we immediately have

u =

N∑
i=0

R⊤
i ui = R (ui)0≤i≤N , ∀u ∈ Rn.

As for the stability of this decomposition, the following proposition derives a
stable decomposition constant.

Proposition 4.3. The decomposition introduced in subsection 4.4 satisfies the
stable decomposition property with a constant cl = 2 + (2kc + 1)kcν.

Proof.

u⊤
i Aiiui =

(
Di(I − ZiZ

⊤
i Aii)(I −Πi)Riu

)⊤
Aii

(
Di(I − ZiZ

⊤
i Aii)(I −Πi)Riu

)
= ((I −Πi)Riu)

⊤ (
(I −AiiZiZ

⊤
i )DiAiiDi(I − ZiZ

⊤
i Aii

)
((I −Πi)Riu)

(3.7)

≤ ν ((I −Πi)Riu)
⊤
Aii ((I −Πi)Riu)

= ν (Riu)
⊤ (

(I −Πi)
⊤Aii(I −Πi)

)
(Riu)

(3.5)
= ν (Riu)

⊤
Ãii (Riu)

= νu⊤R⊤
i ÃiiRiu

(3.3)
= νu⊤Ãiu.

By summing over i = 1, . . . , N and using Lemma 3.2, we have

N∑
i=1

u⊤
i Aiiui ≤ kc ν u

⊤Au.

The last inequality combined with (4.2) conclude the proof.

Theorem 4.4. Let M2 be the two-level additive Schwarz preconditioner associated
with the coarse space R0 defined in (4.1). Then, the condition number of the
preconditioned matrix M−1

2 A satisfies the inequality

κ
(
M−1

2 A
)
≤ (kc + 1)(2 + (2kc + 1)kcν).

Proof. The proof can be obtained immediately by applying the fictitious subspace
lemma with the elements introduced in section 4.

5. Shrinking the coarse space. The coarse space introduced earlier can have
a relatively large dimension. Indeed, each subdomain contributes a subspace of
dimension Γi,δ at least. This results in an impractical method. To alleviate this,
we judiciously select a subspace of a much smaller dimension that still provides an
effective coarse space.

5.1. The spectral coarse space and decomposition spaces.

5.1.1. The spectral coarse space. In this section, we will approximate the
left-PoU-weighted local harmonic operator by using a form of a truncated operator
decomposition to define the coarse space.

Recall that the operator Πi is given in (3.4) as

Πi =

(
−A−1

Ωi,1:δ−1,Ωi,1:δ−1
AΩi,1:δ−1,Γi,δ

I|Γi,δ|

)(
0|Γi,δ|,|Ωi,1:δ−1| I|Γi,δ|

)
.
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By expanding the components in Ωi,1:δ−1 into components in ΩIi and Γi,1:δ−1 we can
write Πi as

Πi =

−A−1
Ii,Ii

AIi,Γi,1:δ−1
S−1
Γi,1:δ−1

AΓi,1:δ−1,Γi,δ

S−1
Γi,1:δ−1

AΓi,1:δ−1,Γi,δ

I|Γi,δ|

(0|Γi,δ|,|Ii| 0|Γi,δ|,|Γi,1:δ−1| I|Γi,δ|
)
.

Note that since Di is Boolean it takes the value 1 on Ii and 0 elsewhere, so that
we have

DiΠi =

−A−1
Ii,Ii

AIi,Γi,1:δ−1
S−1
Γi,1:δ−1

AΓi,1:δ−1,Γi,δ

0|Γi,1:δ−1|,|Γi,1:δ−1|
0|Γi,δ|,|Γi,δ|

(0|Γi,δ|,|Ii| 0|Γi,δ|,|Γi,1:δ−1| I|Γi,δ|
)
.

Proposition 5.1. Consider the generalized eigenvalue decomposition

(5.1) Π⊤
i DiAiiDiΠiw = λ2Aiiw

and let Wi be the matrix whose columns correspond to the Aii-normalized generalized
eigenvectors which form an Aii-orthonormal basis ordered by decreasing order of the

eigenvalues. Let Wi = [W
(1)
i ,W

(2)
i ] where W

(1)
i corresponds to the set of generalized

eigenvectors associated with the eigenvalues that are larger than τ2 for some prescribed
number τ > 0. We have

Π⊤
i DiAiiDiΠiW

(j)
i = AiiW

(j)
i Λ2

j

where Λ2
j corresponds to the diagonal matrix of the eigenvalues associated with the

eigenvectors W
(j)
i for j = 1, 2. Furthermore, since Wi is Aii-orthogonal, we have

W
(1)
i W

(1)⊤
i Aii +W

(2)
i W

(2)⊤
i Aii = I.

Now, let Ξ
(1)
i = DiΠiW

(1)
i W

(1)⊤
i Aii and Ξ

(2)
i = DiΠiW

(2)
i W

(2)⊤
i Aii, we have

(5.2) DiΠi = Ξ
(1)
i + Ξ

(2)
i .

Furthermore, the following holds

Ξ
(2)⊤
i AiiΞ

(1)
i = 0(5.3)

v⊤Ξ
(2)⊤
i AiiΞ

(2)
i v ≤ τ2v⊤Aiiv(5.4)

Proof. The generalized eigenvalue problem (5.1) is symmetric and the right-hand
side matrix is SPD. Hence, the set of generalized eigenvectors, columns of Wi, forms
an Aii-orthonormal basis, i.e., W⊤

i AiiWi = I, so that W−1
i = W⊤

i Aii. That is:

W⊤
i AiiWi = WiW

⊤
i A = I.

Moreover, using the splitting Wi = [W
(1)
i ,W

(2)
i ], we have

[W
(1)
i ,W

(2)
i ][W

(1)
i ,W

(2)
i ]⊤Aii = W

(1)
i W

(1)⊤
i Aii +W

(2)
i W

(2)⊤
i Aii = I.

Therefore,

DiΠi = Ξ
(1)
i + Ξ

(2)
i .
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Using the (Π⊤
i DiAiiDiΠi)-orthogonality of the eigenvectors, we have

W
(1)⊤
i Π⊤

i DiAiiDiΠiW
(2)
i = 0.

Left and right multiplications by AiiW
(1)
i and W

(2)⊤
i Aii, respectively, yield the Aii-

orthogonality between Ξ
(1)
i and Ξ

(2)
i :

AiiW
(1)
i W

(1)⊤
i Π⊤

i DiAiiDiΠiW
(2)
i W

(2)⊤
i Aii = Ξ

(1)⊤
i AiiΞ

(2)
i = 0,

which proves (5.3). To prove (5.4) we first note that since the columns of Wi form a

basis, any vector v ∈ R|Ωi| can be written uniquely as v = W
(1)
i w1 +W

(2)
i w2, where

wj = W
(j)
i Aiiv for j = 1, 2. Therefore, we have

v⊤Ξ
(2)⊤
i AiiΞ

(2)
i v = (DiΠiW

(2)
i W

(2)⊤
i Aiiv)

⊤AiiDiΠiW
(2)
i W

(2)⊤
i Aiiv

= (DiΠiW
(2)
i w2)

⊤AiiDiΠiW
(2)
i w2

= w⊤
2 W

(2)⊤
i Π⊤

i DiAiiDiΠiW
(2)
i w2

= w⊤
2 Λ

2
2w2

≤ τ2w⊤
2 w2

= τ2w⊤
2 W

(2)⊤
i AiiW

(2)
i w2

≤ τ2
(
w⊤

2 W
(2)⊤
i AiiW

(2)
i w2 + w⊤

1 W
(1)⊤
i AiiW

(1)
i w1

)
= τ2v⊤Aiiv

Note that the splitting in (5.2) can be seen as an SVD splitting with respect to the
scalar product induced by Aii for the domain and codomain of DiΠi.

Let Π
(1)
i = Πi−DiΠi+Ξ

(1)
i and Π

(2)
i = Ξ

(2)
i , we have Πi = Π

(1)
i +Π

(2)
i . We define

the coarse space as the space spanned by the columns of the matrix R⊤
0 , where R⊤

0 is

the horizontal concatenation of R⊤
i Di

(
ΠiW

(1)
i , Zi

)
. In other words, the coarse space

is

(5.5)

N⊕
i=1

R⊤
i Di

(
ΠiW

(1)
i , Zi

)
.

We let Ω0 be an indexing set with element count equal to the number of columns in
R⊤

0 .
The decomposition spaces, the bilinear form, and the interpolation operator can

be defined exactly in the same way as defined earlier in section 4 and they satisfy
the same properties. It remains to check the stability of the decomposition. This is
carried out in the following section.

5.2. Stable decomposition. Given u ∈ Rn, we define the following quantities
in the decomposition spaces:

• ui = Di(I − ZiZ
⊤
i Aii)(I −Π

(1)
i )Riu, for i = 1, . . . , N

• u0 is defined as the vertical stacking, for 1 ≤ i ≤ N, of the vectors(
W

(1)⊤
i Aii

Z⊤
i Aii(I −Π

(1)
i )

)
Riu.
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Note that R⊤
0 u0 =

∑N
i=1 R

⊤
i Di

(
Π

(1)
i + ZiZ

⊤
i Aii(I −Π

(1)
i )
)
Riu. This can be derived

as follows where we exploit in the second and fifth lines the Boolean property of the
PoU matrices Di, that is, D

2
i = Di:

R⊤
0 u0 =

N∑
i=1

R⊤
i Di

(
ΠiW

(1)
i W

(1)⊤
i Aii + ZiZ

⊤
i Aii(I −Π

(1)
i )
)
Riu

=

N∑
i=1

R⊤
i Di

(
DiΠiW

(1)
i W

(1)⊤
i Aii + ZiZ

⊤
i Aii(I −Π

(1)
i )
)
Riu

=

N∑
i=1

R⊤
i Di

(
Ξ
(1)
i + ZiZ

⊤
i Aii(I −Π

(1)
i )
)
Riu

=

N∑
i=1

R⊤
i Di

(
DiΠ

(1)
i + ZiZ

⊤
i Aii(I −Π

(1)
i )
)
Riu

=

N∑
i=1

R⊤
i Di

(
Π

(1)
i + ZiZ

⊤
i Aii(I −Π

(1)
i )
)
Riu.

Using these components from the decomposition spaces, we immediately have

u =

N∑
i=0

R⊤
i ui = R (ui)0≤i≤N , ∀u ∈ Rn.

Regarding the stability of this decomposition, the following Proposition provides
the stability constant.

Proposition 5.2. The decomposition introduced in subsection 5.2 satisfies the
stable decomposition property with a constant

cl =
(
2 + (2kc + 1) ν

(
kc + λ∗

(
2τ + τ2

)))
,

where λ∗ is the largest eigenvalue of the generalized eigenvalue problem

(5.6)

N∑
i=1

R⊤
i AiiRiu = λAu.

Proof. Let u ∈ Rn. We have

u⊤Ãiu
(3.5)
= ((I −Πi)Riu)

⊤Aii((I −Πi)Riu)

= ((I −Π
(1)
i −Π

(2)
i )Riu)

⊤Aii((I −Π
(1)
i −Π

(2)
i )Riu)

= ((I −Π
(1)
i )Riu)

⊤Aii((I −Π
(1)
i )Riu)

+ (Π
(2)
i Riu)

⊤Aii(Π
(2)
i Riu)− 2((I −Π

(1)
i )Riu)

⊤Aii(Π
(2)
i Riu)

= ((I −Π
(1)
i )Riu)

⊤Aii((I −Π
(1)
i )Riu)

+ (Π
(2)
i Riu)

⊤Aii(Π
(2)
i Riu)

− 2((I −Π
(1)
i −Π

(2)
i )Riu)

⊤Aii(Π
(2)
i Riu)− 2(Π

(2)
i Riu)

⊤Aii(Π
(2)
i Riu)

= ((I −Π
(1)
i )Riu)

⊤Aii((I −Π
(1)
i )Riu)

− (Π
(2)
i Riu)

⊤Aii(Π
(2)
i Riu)− 2((I −Πi)Riu)

⊤Aii(Π
(2)
i Riu).
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Therefore,

((I−Π
(1)
i )Riu)

⊤Aii((I−Π
(1)
i )Riu) = u⊤Ãiu

+ 2((I −Πi)Riu)
⊤Aii(Π

(2)
i Riu)

+ (Riu)
⊤(Π

(2)⊤
i AiiΠ

(2)
i )(Riu).

By using Cauchy–Schwarz and Proposition 5.1, we have

((I−Π
(1)
i )Riu)

⊤Aii((I−Π
(1)
i )Riu) ≤ u⊤Ãiu

+ 2
√

((I −Πi)Riu)⊤Aii((I −Πi)Riu)

√
(Π

(2)
i Riu)⊤Aii(Π

(2)
i Riu)

+ τ2(Riu)
⊤Aii(Riu).

Since (I − Πi) is a Aii-orthogonal projection and reapplying the inequality from
Proposition 5.1, we have

((I−Π
(1)
i )Riu)

⊤Aii((I−Π
(1)
i )Riu) ≤ u⊤Ãiu

+ 2
√

(Riu)⊤Aii(Riu)
√

τ2(Riu)⊤Aii(Riu)

+ τ2(Riu)
⊤Aii(Riu).

Therefore,

((I−Π
(1)
i )Riu)

⊤Aii((I−Π
(1)
i )Riu) ≤ u⊤Ãiu+ (2τ + τ2)(Riu)

⊤Aii(Riu).

By summing over i, we have

N∑
i=1

((I −Π
(1)
i )Riu)

⊤Aii((I −Π
(1)
i )Riu) ≤

N∑
i=1

u⊤Ãiu+ (τ2 + 2τ)(Riu)
⊤Aii(Riu)

≤ kcu
⊤Au+ (τ2 + 2τ)

N∑
i=1

(Riu)
⊤Aii(Riu).

By using the definition of λ∗, we can write

N∑
i=1

((I −Π
(1)
i )Riu)

⊤Aii((I −Π
(1)
i )Riu) ≤ kcu

⊤Au+ (2τ + τ2)λ∗τu
⊤Au

≤ (kc + λ∗(τ
2 + 2τ))u⊤Au.

Choosing ui = Di(I−ZiZ
⊤
i Aii)(I−Π

(1)
i )Riu, for i = 1, . . . , N , as in the proposed

decomposition and applying (3.7)

N∑
i=1

u⊤
i Aiiui ≤ ν

N∑
i=1

(
(I −Π

(1)
i )Riu

)⊤
Aii

(
(I −Π

(1)
i )Riu

)
≤ ν

(
kc + λ∗(τ

2 + 2τ)
)
u⊤Au.

(5.7)

The last inequality combined with (4.2) conclude the proof.
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Theorem 5.3. Let M2 be the two-level additive Schwarz preconditioner associated
with the coarse space defined in (5.5). Then, the condition number of the
preconditioned matrix M−1

2 A satisfies the inequality

κ
(
M−1

2 A
)
≤ (kc + 1)

(
2 + (2kc + 1) ν

(
kc + λ∗

(
2τ + τ2

)))
Proof. The proof can be obtained immediately by applying the fictitious subspace

lemma with the elements introduced in section 5.

Note that all terms in the upper bound on the condition number in Theorem 5.3
are independent of N except for the term λ∗(2τ + τ2). Indeed, the value of λ∗, the
largest eigenvalue in (5.6) might increase when N increases. But, being multiplied by
(2τ + τ2), the impact of λ∗ can be remedied by choosing small value for τ . Numerical
experiments show that the eigenvalues in (5.1) decay fast and this decay gets even
faster with increasing δ, the number of layers in the overlapping region. It is then a
tradeoff.

6. Extension to nonsymmetric matrices. In the previous section, we showed
how to construct a spectral coarse space by solving two generalized eigenvalue
problems (3.6) and (5.1) and selecting the eigenvectors corresponding to the dominant
eigenvalues. We noted that if we replace the Euclidean scalar product with that

induced by Aii, the selected eigenvectors in (3.6) and (5.1) (Zi,W
(1)
i ) can be

interpreted as the right singular vectors of Di and DiΠi corresponding to the singular
values larger than

√
ν and τ , respectively. Note also that the vectors added to the

coarse space are DiZi and DiΠiW
(1)
i , which corresponds to the image of the right

singular vectors, that is, the space spanned by the left singular vectors.
If A is nonsymmetric, the local matrices may not induce a scalar product. One

way to generalize the approach proposed previously for SPD matrices to nonsymmetric
ones can be achieved by considering the singular value decomposition of Di and DiΠi

with respect to the Euclidean scalar product.
Since ∥Di∥2 = 1 (Di is Boolean), all singular values of Di are smaller than 1

which is smaller than
√
ν > 1. Hence, Di will not contribute anything to the coarse

space in the nonsymmetric case. The contribution from DiΠi will consist of its left
singular vectors associated with singular values larger than τ .

7. Numerical results. In this section, we validate the two-level method
proposed earlier for solving linear systems arising from the discretization of various
PDEs. We rely on PETSc [6] as the linear algebra backend, FreeFEM [16] for the
discretization, and the PCHPDDM [21] infrastructure for benchmarking different two-
level domain decomposition preconditioners.

We note that when the coefficient matrix is nonsymmetric, we only compute the
left singular vectors associated with the largest singular values of DiΠi, cf. section 6.
Moreover, when the coefficient matrix is SPD, we observed through a variety of
numerical tests that the contribution from eigenvectors associated with the generalized
eigenvalue problem (3.6) had no impact on improving the numerical effectiveness
of the proposed method. Therefore, when the matrix is SPD, the PCHPDDM
implementation used to generate the numerical experiments of the proposed method
does not consider the generalized eigenvalue problem (3.6).

7.1. Impact of the number of layers. Figure 1 demonstrates that increasing
the number of overlapping layers δ, speeds up the decay of eigenvalues and
singular values in the generalized eigenvalue problem (5.1) and the singular value
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decomposition of DiΠi, cf. section 6. This behavior was encountered across all the
numerical experiments that we carried out. Given a fixed threshold value τ , increasing
the number of overlapping layers decreases the number of contributed vectors to the
coarse space at the expense of an increase in subdomain-wise local computational
costs.
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Fig. 1. For a partitioning with N = 256 subdomains of a three-dimensional diffusion
(resp. Stokes) problem on the left-hand side (resp. right-hand side), the first 200 eigenvalues λ
(resp. singular values σ) of the generalized eigenvalue problem Π⊤

i DiAiiDiΠu = λ2Aiiu (resp.

Π⊤
i DiDiΠiu = σ2u) are plotted for three values of overlapping layers δ = 1, 3, and 5; showing

values only for subdomains i = 1, 65, 129, and 193.

7.2. Comparison against two-level Schwarz methods. Throughout this
comparison, the right-preconditioned GMRES [31] with no restart and a relative
tolerance set to 10−8 is used, with 256 subdomains. The theory concerning the
proposed methods holds when we combine the additive Schwarz method (2.3), as
the one-level correction, with an additive coarse-space correction (second-level). As
custom with domain decomposition preconditioners, we instead use the restricted
additive Schwarz method as the one-level correction combined with a deflated variant
of the coarse-space correction, see [21, section 3.2.1]. The setup of the coarse operator
itself remains the same, the previous remark only matters when computing the action
of the preconditioner on a vector. The methods we compare against use the same
combination as well. Therefore, the main difference between the compared methods
is the coarse space. However, the number of overlapping layers δ may also be different.

In all that follows:
• “ GenEO” (only for SPD problems) A generalized eigenvalue problem in

each subdomain is solved to construct the coarse space. The involved matrices
are the left-and-right-PoU-weighted subdomain matrix and the unassembled
subdomain matrix (Neumann matrix) [33]. Note that this method is not
algebraic since the unassembled matrix requires more information from the
discretization kernel. One layer of overlap is always used.
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• “ SVD” The coarse space is assembled by finding in each subdomain i
the dominant subspace of DiΠi which can be carried out by using the SVD,
see (5.2). The number of overlapping layers is δ.

• “ GEVP” (only for SPD problems) The coarse space is assembled by
solving a generalized eigenvalue problem in each subdomain. The involved
matrices are the subdomain matrix and the left-and-right-PoU-weighted
subdomain matrix, see (5.1). The number of overlapping layers is δ.

• “ Block splitting” A generalized eigenvalue problem is solved in each
subdomain to construct a coarse space. One of the matrices involved is
the left-and-right-PoU-weighted subdomain matrix. The other matrix is
obtained algebraically based on a heuristic (which is guaranteed for Hermitian
diagonally dominant matrices), see [4]. One layer of overlap is used.

The following problems are solved.
• Figure 2, constant-coefficient fourth-order two-dimensional bilaplacian
discretized with Morley finite elements [29];

• Figure 3, heterogeneous-coefficient three-dimensional Poisson equation
discretized with piecewise-linear Lagrange finite elements;

• Figure 4, constant-coefficient two-dimensional linear elasticity discretized
with piecewise-linear Lagrange finite elements;

• Figure 5, heterogeneous-coefficient three-dimensional linear elasticity
discretized with piecewise-linear Lagrange finite elements (for the coefficient
distribution, see Figure 6.2 of [2]);

• Figure 6, constant-coefficient two-dimensional lid-driven cavity problem
discretized with lowest-order Taylor–Hood finite elements;

• Figure 7, constant-coefficient three-dimensional lid-driven cavity problem
discretized with lowest-order Taylor–Hood finite elements;

• Figure 8, heterogeneous-coefficient two-dimensional SUPG-stabilized
advection equation discretized with piecewise-linear Lagrange finite elements
(for the coefficient distribution, see Figure 2 (b) of [4]);

• Figure 9, heterogeneous-coefficient three-dimensional SUPG-stabilized
advection equation discretized with piecewise-linear Lagrange finite elements
(for the coefficient distribution, see Figure 2 (b) of [4]);

The parameters (overlap and threshold for selecting eigenvectors or singular vectors)
for the various preconditioners are displayed on the bottom right-hand side table
for all previously listed figures. Overall, while convergence is under control for
all these physics, one can notice that the grid and operator complexities (GC and
OC), of the proposed two-level preconditioner are higher than previously developed
preconditioners. We recall that, with a two-level method, GC = 1 + nC

n and
OC = 1 + nnzC

nnzA
where nnzC (resp. nnzA) is the number of nonzero entries in the

coarse (resp. fine) operator.
Table 1 reports the results of a weak-scaling analysis. The mesh is iteratively

refined uniformly while increasing the number of subdomains. The constant-coefficient
three-dimensional Poisson equation discretized with piecewise-linear Lagrange finite
elements is solved. The analysis starts with two subdomains and a problem of
dimension 29,791. It ends with 512 subdomains and a problem of dimension 6.97 ·106.
While there is a slight increase in grid complexity, the number of iterates remains
stable. This observation holds when the preconditioner is assembled using either
local singular vectors (Table 1a) or local eigenvectors (Table 1b). Note that in this
experiment, the relative tolerance is set to 10−10 (instead of 10−8 of the previous
figures).
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Fig. 2. Bilaplace 2D (1 · 106 unknowns)

5 10 15
10−9

10−6

10−3

1

Iteration number

U
n
p
re
co
n
d
it
io
n
ed

re
la
ti
ve

re
si
d
u
a
l

GenEO
SVD
GEVP

Iterations nC GC OC
18 1,754 1.003 1.012
14 4,364 1.008 1.061
10 4,366 1.008 1.061

Preconditioner Overlap Threshold
GenEO 1 0.2
SVD 4 10−1

GEVP 4 102

Fig. 3. Diffusion 3D (5.31 · 105 unknowns)
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Fig. 5. Elasticity 3D (5.22 · 105 unknowns)
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Fig. 6. Stokes 2D (1.44 · 106 unknowns)
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Fig. 7. Stokes 3D (1.66 · 106 unknowns)
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Fig. 9. Advection 3D (8.12 · 106 unknowns)

N Iterations nC GC OC
2 6 45 1.002 1.002
4 7 108 1.007 1.002
8 8 275 1.016 1.002

16 8 638 1.03 1.003
32 9 1,351 1.042 1.003
64 9 2,844 1.053 1.003

128 10 5,629 1.059 1.003
256 10 10,232 1.052 1.003
512 11 21,148 1.057 1.003

(a) SVD

N Iterations nC GC OC
2 6 11 1.001 1.001
4 8 54 1.002 1.001
8 9 137 1.004 1.001

16 6 311 1.007 1.001
32 10 660 1.01 1.002
64 11 1,395 1.013 1.002

128 12 2,669 1.013 1.002
256 12 4,887 1.012 1.001
512 13 10,108 1.013 1.001

(b) GEVP
Table 1

Diffusion 3D (approximately 15,000 interior unknowns per process)
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8. Conclusion. We presented in this paper new fully algebraic spectral coarse
spaces for symmetric positive definite as well as nonsingular general matrices. The
first spectral coarse space for SPD matrices requires the solution of one local, per
subdomain, generalized eigenvalue problem. The bound on the condition number
of the preconditioned matrix is independent of the number of subdomains. But,
the dimension of the coarse space can be very large. Another local generalized
eigenvalue problem is proposed to reduce the dimension of the coarse space. Therefore,
two generalized eigenvalue problems are proposed to construct a two-level Schwarz
preconditioner that provides an adaptive bound on the condition number of the
preconditioned matrix. Numerical experiments showed the effectiveness of the
proposed method and its competitiveness against state-of-the-art two-level Schwarz
preconditioners. In the general case, a generalization of the local generalized
eigenvalue problems is proposed to construct spectral coarse spaces for general
nonsingular matrices without theoretical background, though. Nonetheless, numerical
experiments demonstrated that the proposed method can be applied to a wide range
of problems and prove effective for very challenging problems. For SPD and general
matrices, we found that there is a trade-off between increasing the number of layers
in the overlap or fixing it and decreasing the truncation threshold τ .
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