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ON P-ADIC CONTINUED FRACTIONS WITH EXTRANEOUS
DENOMINATORS: SOME EXPLICIT FINITENESS RESULTS

LAURA CAPUANO, SARA CHECCOLI, MARZIO MULA, AND LEA TERRACINI

Abstract. Let K be a number field. We show that, up to allowing a finite set
of denominators in the partial quotients, it is possible to define algorithms for
P-adic continued fractions satisfying the finiteness property on K for every prime
ideal P of sufficiently large norm. This provides, in particular, a new algorithmic
approach to the construction of division chains in number fields.

1. Introduction

Let K be a field. A (finite) continued fraction in K is an expression of the form

[a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an

, with a1, . . . , an ∈ K.

The elements a0, a1, . . . are called the partial quotients of the continued fraction.
When K is endowed with a topology, one can also define infinite continued fractions
as

[a0, a1, . . . , an, . . .] = lim
n→∞

[a0, a1, . . . , an],

provided that this limit exists in the completion of K. Continued fractions are
a classical and fascinating topic which has been investigated in many branches of
mathematics and beyond, ranging from Diophantine approximation [AA15] to the
study of astronomy [RS92, §4.1] and the tuning of musical instruments [DM99].

An approach to generating continued fraction expansions involves an iterative
procedure that employs a floor function s : K → K. Given α ∈ K, a typical
algorithm works as follows:

(1)


α0 = α

an = s(αn)

αn+1 =
1

αn−an
if αn − an ̸= 0,

and it stops if αn = an. In this case, an only depends on αn. However, there
are examples in the literature of more complex algorithms taking into account also
previous steps of the computation (see for example the second algorithm proposed
in [Bro00]).

In the classical case, K is the real field R and the floor function is nothing else
than the integral part of a real number. For classical real continued fractions there
are many results that relate algebraic properties of real numbers to the form of their
continued fraction expansion. For example, the Euclidean algorithm shows that
rational numbers correspond to finite continued fractions, and Lagrange’s theorem
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characterizes quadratic irrationals as those real numbers having a periodic continued
fraction expansion.

Since the 1970s, several different definitions of p-adic continued fractions were
proposed, for example in [Rub70; Sch70; Bro78; Bro00], and many authors studied
the finiteness and periodicity properties in the p-adic setting which seem to be very
different with respect to the real case (see for example [Bed90; Oot17; CVZ19;
CMT23; BCM21; MRS23]).

Recently, in [CMT22], the authors proposed a unifying approach for continued
fractions over the non-Archimedean completions of a number field K, based on the
notion of type.

A type is a triple (K,P, s) where K is a number field, P is a prime ideal of K, and
s is a P-adic floor function for K, that is a function s on KP (the P-adic completion
of K) satisfying analogous properties of the classical real floor function (see [CMT22,
Definition 3.1]). In particular, s takes values which are integral outside P.

Each type determines an algorithm of the form (1), which produces a P-adically
convergent continued fraction for every input α ∈ KP. Obviously, if the algorithm
stops then α ∈ K, but the converse is not necessarily true. One says that K
has the P-adic CFF (Continued Fraction Finiteness) property when there exists a
type τ = (K,P, s) such that the corresponding algorithm stops for any given input
α ∈ K.

In [CMT22, Theorem 4.5] the authors give a criterion for a type τ to satisfy the P-
adic CFF property. They use this to show that, for instance, when K has Euclidean
minimum strictly less than 1, then K has the P-adic CFF property for almost all
primes P and, more generally, for all primes belonging to a norm Euclidean class of
ideals (see [CMT22, Theorem 5.6 and Theorem 7.4]).

The criterion in [CMT22] involves the boundedness of some quantity ντ attached
to the field K and to the chosen type. This is, in general, not easy to compute, but
types τ with small ντ can be found under certain arithmetical conditions on K. On
the other hand, it is known that the validity of the P-adic CFF property for a field
K implies certain conditions on the class group of K (see Corollary 7.4).

In order to establish a generalized version of the P-adic CFF property for every
number field, one needs to enlarge the set of values taken by the floor function,
allowing new extraneous denominators. This will be our framework.

We first generalize the definitions of floor functions and types given in [CMT22]
in order to include this new set of denominators T (see Definitions 3.1 and 3.2):
this gives rise to the new notions of (P, T )-CFF properties for types and fields (see
Definition 3.4).

We now describe the main contributions of our article. Firstly, in Theorem 4.1,
we establish a criterion for a type to satisfy the (P, T )-CFF property, which is a
generalization of [CMT22, Theorem 4.5]. In particular we prove that a certain bound
on some quantity ντ (depending on the type τ) gives a bound on the Weil height of
the complete quotients appearing in the CF-expansion, which in turn implies either
finiteness or periodicity. This criterion serves then as the key ingredient to prove
our main result, which is the following:

Theorem 1.1. Let K be a number field. There exists a finite set T such that the
field K satisfies the (P, T )-adic CFF-property for all prime ideals P outside a finite
set P0. Moreover, the sets T and P0 can be explicitly determined in terms of K.

This result is an immediate consequence of Theorem 5.8, where the sets T and P0

are explicitly determined and their cardinality depends in particular on the degree
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and the discriminant of the field K and on the covering radius of the image of the
group of units O×

K via the logarithmic embedding. Using this, we are able to compute
the involved constants in some explicit cases: one of them is the field K = Q(

√
14),

i.e. the real quadratic field with the smallest discriminant which is Euclidean but
not norm Euclidean. For Q(

√
14) we also show how it is possible to decrease the

size of the set of denominators T needed to ensure the finiteness result, at the cost
of a larger set P0. This strategy could also be applied to larger classes of fields; we
provide a table of examples of non-CM fields with degree ≥ 3 over Q and having
rank of unity strictly larger than 1 for which we compute the explicit constants of
Theorem 5.8.

In the final part of the paper we compare the floor-function-based approach to
continued fraction expansions with a different one, based on division chains. It is
easy to see that, if a pair a, b ∈ K has a terminating division chain of length k with
coefficients in a certain subring R of K, then a/b has a continued fraction expansion
with partial quotients in R of the same length, even if it does not come from any
floor function s : K → K. The existence of a finite division chain with coefficients
in R for every pair of elements of K is also related to the fact that the group SL2(R)
can be generated by elementary matrices (see [O’M65; Coh66; CZZ18]). In this
setting, a result of Morgan, Rapinchuck and Sury [MRS18] ensures that, if R = OS

(i.e. the ring of S-integers of K, where S is a finite set of places) has infinitely many
units, then a/b has a CF-expansion of length at most 5. Although this approach
leads to a uniform bound on the lengths of the CF-expansions of every element in
a fixed number field K, to the best of our knowledge there is no efficient algorithm
to compute the division chains. Moreover, the continued fractions obtained by this
approach do not satisfy the convergence conditions ensured by the floor-function-
based approach. For these reasons we believe that floor-function-based continued
fractions are worth considering.

The paper is organized as follows. After recalling the classical properties of
heights, embeddings of number fields, lattices and covering radii, in Section 3 we
introduce the new notion of P-adic T -floor function for K, which is a natural gener-
alization of the P-adic floor function from [CMT22] – obtained by introducing more
denominators – and the associated notions of type and CFF and CFP-properties.
Section 4 is devoted to proving a criterion for a type to satisfy the (P, T )-CFF and
CFP properties (see Theorem 4.1). This criterion, together with certain explicit
bounds involving the covering radius of the image of the group of units via the loga-
rithmic embedding, allows us to prove Theorem 5.8, which provides an explicit way
of constructing sets T for which the (P, T )-adic CFF property holds for all ideals of
sufficiently large norm. In Section 6 we give some examples of computations of the
constants involved in Theorem 5.8 and we describe a possible strategy to decrease
the size of the set of denominators used in the CF-expansions. Finally, in Section 7
we analyse the relation between continued fractions and division chains, making
a comparison between floor-function-based continued fractions and those obtained
using division chains.

2. Notation and preliminaries on valuations and heights

2.1. Absolute values, valuations and the Weil height. In this article all fields
are assumed to be subfields of a fixed, once and for all, algebraic closure Q of Q.
Given a number field K, we denote by OK its ring of integers and by Cl(K) the
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ideal class group of K. We also denote by MK the set of places of K and by M0
K

the subset of the non-Archimedean ones.
Given a place w ∈ MK , we denote by Kw the completion of K with respect to

the w-adic valuation and by | · |w the corresponding absolute value. If w ∈ M0
K and

P ⊂ OK is the corresponding prime ideal, we usually write KP instead of Kw and
we denote by OP its ring of integers.

If K = Q, then | · |v is chosen so that |p|v = 1/p if v ∈ M0
Q corresponds to the

prime number p, while | · |v is either the (usual) real or complex absolute value if
v ∈ MQ \M0

Q.
For a general number field K and w ∈ MK , the normalization of | · |w is chosen

so that, for every x ∈ K×, the product formula∏
w∈MK

|x|dww = 1

holds, where dw = [Kw : Qv] is the local degree of K at w and v ∈ MQ is such
that w | v. More precisely, given v ∈ MQ, we have that |x|w = |NKw

Qv
(x)|1/dwv is the

unique extension of | · |v to Kw.
Recall that, for x ∈ Q, its absolute Weil height is the non-negative real

H(x) =
∏

w∈MK

sup(1, |x|w),

where K is any number field containing x. This function satisfies several important
properties as the following proposition shows.

Proposition 2.1. The function H satisfies the following:
(i) (Kronecker’s theorem) H(x) = 1 if and only if x is either 0 or a root of

unity in Q.
(ii) (Northcott’s theorem) For any integer d ≥ 1 and any real B ≥ 0 the set

of all algebraic numbers of degree at most d and height at most B is finite
and can be effectively determined.

We refer to [BG06, Theorems 1.5.9 and 1.6.8] for a proof of these results and for
more details on height functions.

2.2. Embeddings. We recall some notation and definitions from [CMT22, §5].
Given a number field K, we denote its signature by (r1, r2) and its degree by
d = r1 + 2r2. Then K has r1 real embeddings σ1, . . . , σr1 and r2 pairs of complex
conjugated embeddings (τ1, τ̄1), . . . , (τr2 , τ̄r2). We let

ι : K ↪→ Rr1 × Cr2

be the Euclidean embedding defined as
ι(x) = (σ1(x), . . . , σr1(x), τ1(x), . . . , τr2(x)).

We will also consider the embedding λ : K ↪→ Rd obtained by composing ι with
the isomorphism of real vector spaces

f : Rr1 × Cr2 → Rd

(x1, . . . , xr1 , y1, . . . , yr2) 7→ (x1, . . . , xr1 , y1, ȳ1, . . . , yr2 , ȳr2).

We let N : Rr1 × Cr2 → R be the norm map defined as
N(x1, . . . , xr1 , z1, . . . , zr2) = x1 · · ·xr1z1z̄1 · · · zr2 z̄r2

where z̄ denotes as usual the complex conjugate of a complex number z. Notice that
N is the extension to Rr1 × Cr2 of the field norm on K, i.e. N(ι(x)) = NK/Q(x).



ON P-ADIC CONTINUED FRACTIONS WITH EXTRANEOUS DENOMINATORS 5

We also denote by
ℓ : K× ↪→ Rr1+r2

the logarithmic embedding defined as

ℓ(x) = (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |τ1(x)|, . . . , 2 log |τr2(x)|)
for every x ∈ K×, where |z| = (zz̄)1/2 denotes the usual complex absolute value of
a complex number z.

2.3. Lattices and covering radius. We further need to recall some terminology
from lattice theory. Let Λ be a lattice in Rn and, for a real number p ∈ [1,∞)∪{∞},
let || · ||p be the Lp norm on Rn. The distance function relatively to p is by definition

ρp(v,Λ) = min
w∈Λ

||v −w||p.

The covering radius of Λ with respect to || · ||p is the number

ρp(Λ) = sup
v∈Span(Λ)

ρp(v,Λ).

Equivalently, it is the smallest number ρ, such that closed balls of radius ρ (with
respect to the Lp norm) centered on all lattice points in Λ cover the entire space
Span(Λ).

Remark 2.2 (Naive upper bound for the covering radius). Let Λ ⊆ Rn be a lattice
of rank r with basis e1, . . . , er, with ei = (ei,1, . . . , ei,n). Then, the set

D =

{
r∑

i=1

aiei | |ai| ≤
1

2

}
is a translate of the fundamental parallelepiped of Λ. Therefore

ρ∞(Λ) ≤ sup
x∈D

(||x||∞) ≤ 1

2

r∑
i=1

||ei||∞ =
1

2

r∑
i=1

max
j

|ei,j|,

where | · | is the usual real absolute value.

Given a number field K, we define ΛK = ℓ(O×
K) to be the image of the group of

units in OK via the logarithmic embedding. Then, ΛK is a lattice in Rr1+r2 and, for
p ∈ [1,∞) ∪ {∞}, we denote its covering radius by ρp(K) = ρp(ΛK).

Notice that Span(ΛK) is the hyperplane defined by

{(x1, . . . , xr1 , y1, . . . , yr2) ∈ Rr1+r2 | x1 + ...+ xr1 + y1 + ...+ yr2 = 0}.

3. T -floor functions and types

Given a finite set S of places in K, the ring of S-integers is

OS = {α ∈ K | vQ(α) ≥ 0 for each Q /∈ S}.
By definition, OS consists of the elements of K which are integers outside the places
in S. We will be particularly interested in the case S = {P} where P is a prime
over p.

The following definition is modeled upon [CMT22, Definition 3.1] and provides a
generalization of it.

Definition 3.1. Let K be a number field, T a finite subset of OK \ {0} and P a
prime ideal of OK . A P-adic T -floor function for K is any function s : KP → K
such that

(i) α− s(α) ∈ P for every α ∈ KP;
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(ii) for every α ∈ KP, there exists t ∈ T such that ts(α) ∈ O{P};
(iii) s(0) = 0;
(iv) if α− β ∈ P, then s(α) = s(β).

Our definition differs from [CMT22, Definition 3.1] only in (ii): this, in [CMT22],
was replaced by the condition that s(α) ∈ O{P}, which is clearly a special case of
our definition with T = {1}.

As a natural generalization of [CMT22] we also have:

Definition 3.2. A type is a quadruple τ = (K,P, T , s) where K is a number field,
T ⊂ OK \ {0} is a finite subset, P ⊂ OK is a prime ideal and s : KP → K is a
P-adic T -floor function for K.

3.1. Continued fraction expansion associated with a type. In this short sec-
tion we recall some definitions and results from [CMT22, §3.3] on continued fraction
expansions associated to types.

Let τ = (K,P, T , s) be a type. We denote by w0 the place of K corresponding
to the prime P and by | · |w0 the corresponding absolute value.

As in [CMT22, Definition 3.5], for a given type τ = (K,P, T , s) we say that a
continued fraction of type τ is a (possibly infinite) sequence [a0, a1, . . .] of elements
of s(KP) such that |an|w0 > 1 for every n ≥ 1.

Remark 3.3. As remarked in [CMT22, §3.3] the following facts hold true:
(1) The sequence of n-th convergents

Qn = a0 +
1

a1 +
1

. . . +
1

an
of a continued fraction [a0, a1, . . .] converges P-adically.

(2) Conversely, every α ∈ KP is the limit of the sequence of convergents of the
continued fraction [a0, a1, . . .] given by an = s(αn), where the sequence (αn)n
is defined recursively as α0 = α and αn+1 = 1/(αn − s(αn)) if αn ̸= s(αn)
(otherwise the algorithm stops at index n). The sequence [a0, a1, . . .] obtained
in this way is called the continued fraction expansion of type τ for α.

(3) Given the continued fraction expansion [a0, a1, . . .] of type τ for α, for n ≥ −1
consider the sequence (Vn)n of elements of K defined as V−1 = 1, V0 = a0−α
and Vn+1 = an+1Vn + Vn−1. The sequence (Vn)n satisfies many interesting
properties, collected for instance in [CMT22, Proposition 3.6].

We also recall the following definitions (see [CMT22, Definition 4.1]):

Definition 3.4. Given a type τ = (K,P, T , s), we say that τ satisfies the CFF
(Continued Fraction Finiteness) property ( respectively, CFP (Continued Fraction
Periodicity) property) if every α ∈ K has a finite (respectively, finite or periodic)
expansion of type τ .

We say that the field K satisfies the (P, T )-adic CFF (respectively, CFP) property
if there is a type τ = (K,P, T , s) satisfying the CFF (respectively, CFP) property.

4. A criterion for the CFF and CFP properties for types

As in [CMT22, §4.1], for x ∈ C we define

(2) θ(x) =
1

2

(
|x|+

√
|x|2 + 4

)
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where | · | denotes the usual complex absolute value. It is easy to see that
(3) |x| ≤ θ(x) ≤ |x|+ 1.

The following generalization of [CMT22, Theorem 4.5] provides a sufficient condition
for a type τ to satisfy the CFP and CFF properties.

Theorem 4.1. Let τ = (K,P, T , s) be a type. Denote by w0 ∈ M0
K the place

corresponding to the prime P. Let Σ be the set of embeddings of K in C and set

ντ = sup

|a|−dw0
w0

∏
σ∈Σ

θ(σ(a))
∏

w∈M0
K\{w0}

max(|a|w, 1)dw

∣∣∣∣∣∣ a ∈ s(KP), |a|w0 > 1

 .

Then
(a) if ντ ≤ 1, then τ satisfies the CFP property;
(b) if ντ < 1, then τ satisfies the CFF property.

More precisely, in both cases, for every α ∈ K the continued fraction expansion of
type τ of α has either length or period length bounded by

Cα = d

2d+1

√|s(α)− α|2 + 1
∏

w∈M0
K\{w0}

sup(|s(α)− α|w, 1)

+ 1

d+1

,

where d = [K : Q].

Remark 4.2. Before proving the result we notice that, if a ∈ s(KP) then, from
Definition 3.1.(ii), there exists t ∈ T such that |ta|w ≤ 1 for every w ∈ M0

K \ {w0}.
So the product

∏
w∈M0

K\{w0}max(|a|w, 1) is finite and bounded, independently on a,
by the quantity

∏
t∈T
∏

w∈M0
K\{w0} |t|

−1
w .

Proof. Let α ∈ K, let [a0, a1, . . .] be its continued fraction expansion of type τ and
let (αn)n be the sequence defined in Remark 3.3(2). Let H be the absolute Weil
height on Q. We first want to show that, for every n ≥ 1, one has
(4) H(αn+1)

d ≤ C νn
τ ,

where d = [K : Q] and C > 0 is a constant only depending on α.
If (Vn)n is the sequence defined in Remark 3.3(3), then αn+1 = −Vn−1/Vn for all
n ≥ 1 by [CMT22, Proposition 3.6(b)], and since Vn ∈ K we have
(5)

H(αn+1)
d = H

(
−Vn−1

Vn

)d

=
∏

w∈MK

sup

(∣∣∣∣Vn−1

Vn

∣∣∣∣dw
w

, 1

)
=
∏

w∈MK

sup(|Vn|dww , |Vn−1|dww ).

Let w be an Archimedean place of K and let σ ∈ Σ be the corresponding embedding.
Notice that, for each such σ, the sequence σ(Vn) satisfies the recurrence formula

σ(Vn) = σ(an)σ(Vn−1) + σ(Vn−2),

for every n ≥ 1. Therefore, by [CMT22, Lemma 4.4] we have
(6) ∏
w∈MK\M0

K

sup(|Vn|dww , |Vn−1|dww ) =
∏
σ∈Σ

sup(|σ(Vn)|, |σ(Vn−1)|) ≤ C∞

n∏
j=1

∏
σ∈Σ

θ(σ(aj))

where C∞ =
√

|a0 − α|2 + 1.
Let now w ∈ M0

K \ {w0}. Then, since for all n ≥ 1 one has
sup(|Vn|w, |Vn−1|w) ≤ sup(|Vn−1|w, |Vn−2|w) sup(|an|w, 1),
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iterating one gets

(7) sup(|Vn|w, |Vn−1|w) ≤ Cw

n∏
j=1

sup(|aj|v, 1)

where Cw = sup(|w0|w, |V1|w) = sup(|a0 − α|w, 1) and clearly Cw = 1 for almost
all w.

Finally, if w = w0, from [CMT22, Proposition 3.6(c)] one has

(8) sup(|Vn|
dw0
w0 , |Vn−1|

dw0
w0 ) = |Vn−1|

dw0
w0 .

But now, by (5) and (8) we have

H(αn+1)
d = |Vn−1|

dw0
w0

∏
σ∈Σ

max(|σ(Vn)|, |σ(Vn−1)|)
∏

w∈M0
K\{w0}

max(|Vn|w, |Vn−1|w)dw .

Therefore, using (6) and (7) and rearranging the factors we get

H(αn+1)
d ≤ C · |Vn−1|

dw0
w0

n∏
j=1

∏
σ∈Σ

θ(σ(aj))
∏

w∈M0
K\{w0}

sup(|aj|w, 1)dw


≤ C · |Vn−1|
dw0
w0 νn

τ

n∏
j=1

|aj|
dw0
w0 ,

where

C = C∞ ·
∏

w∈M0
K\{w0}

Cw

is an explicit constant depending only on α. Finally, by [CMT22, Proposition 3.6.(d),
(g)], we have

|Vn−1|w0 =

∣∣∣∣∣(−1)n
n∏

j=1

1

αj

∣∣∣∣∣
w0

=
n∏

j=1

∣∣∣∣ 1aj
∣∣∣∣
w0

so that

H(αn+1)
d ≤ C νn

τ

and (4) is proven, as desired.
Suppose now that ντ ≤ 1. In view of (4), for every n ≥ 1

αn ∈ Sd,C := {α ∈ Q | [Q(α) : Q] ≤ d,H(α) ≤ C1/d}.

The set Sd,C is finite by Northcott’s theorem and, by [BG06, proof of Theorem 1.6.8]
its cardinality can be bounded as

|Sd,C | ≤ Cα := d(2d+1⌈C⌉+ 1)d+1.

Therefore either the continued fraction expansion of type τ for α is finite, of length
at most Cα, or there exist m,n ∈ N such that αm = αn, so that the expansion is
periodic of period length at most Cα. If moreover ντ < 1, then H(αn+1) < H(αn)
for all n and, by Northcott’s theorem, this can happen only for finitely many n, so
the expansion of α must be finite. □
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5. The CFF property for fields

5.1. A bound involving the covering radius. We have the following effective
version of Lemma 5.5 of [CMT22].

Lemma 5.1. Let K be a number field, let Σ be the set of embeddings of K in C and
denote by O×

K the units in OK. Set T0 = eρ∞(K), where ρ∞(K) denotes the covering
radius as in Section 2.3. Then, for every a ∈ K×, there exists u ∈ O×

K such that

|σ(ua)| ≤ T0
d

√
|NK/Q(a)|

for every σ ∈ Σ, where | · | is the usual complex absolute value.

Proof. For a ∈ K×, consider the vector

b = ℓ(a)−
log |NK/Q(a)|

d
(1, . . . , 1, 2, . . . , 2)

where d = [K : Q].
By construction, b ∈ Span(ΛK). Hence, by definition of the covering radius,

there exists u ∈ O×
K such that ||b + ℓ(u)||∞ ≤ ρ∞(K). But now, denoting by

σ1, . . . , σr1 ∈ Σ the real embeddings of K and by (τ1, τ̄1), . . . , (τr2 , τ̄r2) the r2 pairs
of complex conjugated embeddings, we have that

b+ ℓ(u) = (v1, . . . , vr1 , w1, . . . , wr2)

where, for all 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2, one has

vi = log
|σi(a)|

d
√
|NK/Q(a)|

+ log(|σi(u)|) = log
|σi(au)|

d
√

|NK/Q(a)|
and

wj = 2 log
|τj(a)|

d
√
|NK/Q(a)|

+ 2 log(|τj(u)|) = 2 log
|τj(au)|

d
√
|NK/Q(a)|

.

Therefore

ρ∞(K) ≥ ||b+ ℓ(u)||∞ = max(|v1|, . . . , |vr1|, |w1|, . . . , |wr2|) ≥

∣∣∣∣∣log |σ(au)|
d
√

|NK/Q(a)|

∣∣∣∣∣
for every σ ∈ Σ. Thus, for every σ ∈ Σ, one has |σ(au)| ≤ T0

d
√
|NK/Q(a)|, where

T0 = eρ∞(K), as wanted. □

5.2. A criterion for (P, T )-adic CFF-property for a field. Let K be a number
field of degree d and let ι : K ↪→ Rr1 ×Cr2 and N : Rr1 ×Cr2 → R be, respectively,
be the Euclidean embedding and the norm map defined in Section 2.2. For an ideal
I ⊂ OK , we denote by N (I) = |OK/I| its (ideal) norm while, for an element x ∈ K,
we denote by NK/Q(x) its (field) norm.

Definition 5.2. Let A be a non-zero ideal of OK , let T ⊆ OK \{0} be a finite subset
and let 0 < δ < 1. We say that property (⋆) holds for the triple (A, T , δ) if, for each
ξ ∈ Rr1 × Cr2 , there exists ω ∈ ι(A) and x ∈ ι(T ) such that |N(xξ − ω)| < δN (A).

Notice that property (⋆) holds for the triple (A, T , δ) if and only if it holds for
any triple (B, T , δ), where B is any element of the ideal class of A. Therefore we
have the following definition:

Definition 5.3. Let C be an ideal class in OK , let T ⊆ OK be a finite subset and
let 0 < δ ≤ 1. We say that property (⋆) holds for the triple (C, T , δ) if one of the
following equivalent conditions is satisfied:
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(i) property (⋆) holds for one triple (A, T , δ) with A ∈ C;
(ii) property (⋆) holds for all triples (A, T , δ) with A ∈ C.

Theorem 5.4. Let K be a number field, T ⊂ OK \ {0} be a finite set, C an ideal
class of OK and 0 < δ < 1. Suppose that property (⋆) holds for the triple (C, T , δ).
Then K satisfies the (P, T )-adic CFF-property for all but finitely many prime ideals
P of C.

Proof. As usual, we denote by || · ||∞ the sup norm of a vector and by | · | the usual
complex absolute value.

We fix an integral ideal A ∈ C and we denote by D ⊆ Rr1 × Cr2 a compact
fundamental domain for ι(A). From the fact that Property (⋆) holds for (C, T , δ),
that D is compact and that N is continuous, we deduce that there exists a finite
number of pairs (x1, γ1), . . . , (xt, γt) with xi ∈ ι(T ), γi ∈ ι(A) such that the open
sets

Ui = {α ∈ D | |N(xiα + γi)| < δN (A)}
form a finite covering of D.

Moreover, for every α ∈ D, we also have that ||xiα + γi||∞ < Γ, where

Γ = max
i

||xi||∞ max
α∈D

||α||∞ +max
i

||γi||∞

is a well-defined positive constant only depending on the finitely many pairs (xi, γi)
and on A.

Let now P be a prime ideal in C and suppose that P ∩ T = ∅. Since T is finite,
this will be true for all but finitely many P ∈ C. We want to show that, for all
but finitely many of such ideals P, there is a type (K,P, T , s) satisfying the CFF
property.

To this aim, we now construct a suitable P-adic T -floor function s : KP → K.
Let η ∈ KP and suppose that η belongs to the coset α + POP ⊆ KP. By strong
approximation, such coset contains an element α′ ∈ K such that |α′|v ≤ 1 for every
non-Archimedean v ∈ MK \ {w0}, where w0 is the place of K corresponding to P.

Also, by Lemma 5.1, we can take an element γP ∈ K such that γPA = P and
|σ(γP)| ≤ T0

d
√

|NK/Q(γP)| for every embedding σ of K in C, where T0 = eρ∞(K) and
d = [K : Q].

Now, take y ∈ A such that the translate

β =
α′

γP
+ y

of the element α′/γP satisfies ι(β) ∈ D.
Furthermore, by previous considerations, there exist xi ∈ ι(T ) and γi ∈ ι(A) such

that |N(xiι(β)− γi)| < δN (A), and ||xiι(β)− γi||∞ < Γ. Finally, writing xi = ι(ti)
with ti ∈ T and γi = ι(ai) with ai ∈ A, we set

s(η) = γP

(
β − ai

ti

)
.

We now want to verify that the function s : KP → K so defined is indeed a P-adic
T -floor function for K, as in Definition 3.1.

First notice that condition (iii) clearly holds, as well as condition (iv), as, by
construction, s(η) only depends on the class of η modulo P. So we are left to verify
conditions (i) and (ii).
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For every η ∈ KP, we have that

s(η)− η = γPy − γP
ai
ti

mod P.

As both γPy, γPai ∈ γPA = P, we have ti(s(η)−η) ∈ P. But now notice that ti ̸∈ P
(indeed ti ∈ T and, by hypothesis, T ∩ P = ∅). This implies that s(η) − η ∈ P,
condition (i) is satisfied.

As for condition (ii), let η ∈ KP. We want to show that there exists t ∈ T such
that xs(η) is Q-integral for every prime Q ̸= P and we claim that we can take t = ti.
Indeed, if v is the place corresponding to Q, we have

|tis(η)|v = |tiγPβ − γPai|v = |tiα′ + tiγPy − γPai|v
≤ max(|ti|v|α′|v, |tiγPy − γPai|v) ≤ 1

(9)

as |α′|v ≤ 1 and both ti and tiγPy − γPai are in OK .
We want now to apply Theorem 4.1 to show that the type (K,P, T , s) associated

to the floor function s constructed above satisfies the CFF property for all but
finitely many prime ideals P ∈ C. To this aim we have to show that for every
a ∈ s(KP) such that |a|w0 > 1 we have

(10) |a|−dw0
w0

∏
σ∈Σ

θ(σ(a))
∏

w∈M0
K\{w0}

max(|a|w, 1)dw < 1

where θ was defined in (2).
Let us set a = s(η) with η ∈ KP as before. We first give a bound for the factor∏
σ∈Σ θ(σ(a)). Notice that we have

|N(xiι(a))| = |N(ι(γP))N(xiι(β)− γi)| < δ|NK/Q(γP)|N (A) = δN (P)

so, setting q = N (P), we get

(11) |N(ι(a))| < δq

|N(xi)|
.

Also, we have ||xiι(a)||∞ = ||ι(γP)||∞||xiι(β) − γi||∞ <
(
T0

d
√
|NK/Q(γP)|

)
Γ, so

that

(12) ||ι(a)||∞ <
HT0

d
√

|NK/Q(γP)|
||xi||∞

.

Denoting by Σ the embeddings of K into C, for every subset S ⊊ Σ we have

(13)
∏
σ∈S

|σ(a)| ≤ (Γ0T0)
|S| d
√

q|S|

where Γ0 = Γ/mini ||xi||∞ depends on A and T . Therefore, using also (3), we get∏
σ∈Σ

θ(σ(a)) ≤
∏
σ∈Σ

(1 + |σ(a)|) ≤
∑
S⊆Σ

∏
σ∈S

|σ(a)| = |N(ι(a))|+
∑
S⊊Σ

∏
σ∈S

|σ(a)|

<
δq

|N(xi)|
+

d−1∑
i=0

(
d

i

)
(Γ0T0

d
√
q)i ≤ δq

|N(xi)|
+ Γ1

d
√
qd−1

where for instance one can take

Γ1 = (2max(1,Γ0T0))
d−1

which depends only on K, A and T , but not on P. Hence, for all δ < ϵ < 1, if

(14) q >

(
Γ1|N(xi)|
(ϵ− δ)

)d
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we obtain

(15)
∏
σ∈Σ

θ(σ(a)) <
ϵq

|N(xi)|
.

Let w ̸= w0 be a non-Archimedean place of K. By (9), we have that |a|w ≤ 1
|ti|w

and ti ∈ OK \ P, so that |ti|w ≤ 1 and |ti|w0 = 1. Putting this together with the
product formula gives

(16)
∏

w∈M0
K\{w0}

max(|a|w, 1)dw ≤
∏

w∈M0
K\{w0}

max

(
1

|ti|w
, 1

)dw

=
∏

w∈M0
K

1

|ti|dww
= |NK/Q(ti)|.

Since by hypothesis |a|w0 > 1, then |a|dw0
w0 ≥ |a|w0 ≥ q. This, together with (15)

and (16) (recalling also that N(xi) = N(ι(ti)) = NK/Q(ti)), gives that the left-hand
side in (10) is bounded above by ϵ < 1 for any q satisfying (14), so Theorem 4.1
applies and concludes the proof. □

Remark 5.5. Although the validity of property (⋆) for C is independent on the choice
of the ideal A, it is important to highlight that the bound for the norm of the ideals
P satisfying the theorem does depend on the specific choice of the ideal A (as well
as on the set T and the field K) and on the chosen covering for D.

5.3. Explicit realization of the (P, T )-adic CFF-property. The goal of this
section is to prove Theorem 5.8, which provides an explicit way of constructing sets
T for which the (P, T )-adic CFF-property holds on all ideals of sufficiently large
norm.

At first glance, this statement might seem stronger than Theorem 5.4 from the
previous section. However, while we gain an explicit lower bound for the norm of the
ideals for which it holds, we lose flexibility in the choice of the set of denominators T .

The heart of the proof of Theorem 5.8 is the following effective and slightly more
general version of a result originally proven by Hurwitz [Hur19] and based on its
ideas. We also refer the reader to [Len76, Theorem 1.4] and [LT16, Theorem 2.1]
for a detailed description of the original proof.

Theorem 5.6. Let K be a number field with signature (r1, r2) and let ∆ be the
absolute discriminant of K. Let A be an integral ideal in OK of norm N (A) and let

(17) c(A, K) = max

((
2

π

)r2√
|∆|N (A), 1

)
.

Then, for every rational integer M > c(A, K), there exists a real number ϵ = ϵ(A)
with 0 < ϵ < 1 satisfying the following property: for each ξ ∈ K, there is τ ∈ A and
a rational integer 0 < j < M for which |σ(jξ − τ)| < ϵ for every embedding σ of K
in C. In particular we have

|NK/Q(jξ − τ)| < ϵd.

Proof. We consider the embedding λ = f ◦ ι : K → Rd defined in Section 2.2 and
we denote as usual by ||x||∞ = maxi(|xi|) the sup norm of a vector x ∈ Rd, where
| · | is the usual absolute value on R. For every ϵ > 0, we consider the open ball

Uϵ =
{
x ∈ Rd | ||x||∞ <

ϵ

2

}
.

Then for every x, y ∈ Uϵ one has

(18) ||x− y||∞ < ϵ.



ON P-ADIC CONTINUED FRACTIONS WITH EXTRANEOUS DENOMINATORS 13

Moreover
Vol(Uϵ) = ϵd

(π
4

)r2
.

Let D ⊆ Rd be a compact fundamental parallelepiped for λ(A). It is known that

Vol(D) =

√
|∆|N(A)

2r2
,

(see for example [Sam67, §4.2, Proposition 2]); therefore, by hypothesis, there exists
0 < ϵ < 1 such that

(19) M >
Vol(D)

Vol(Uϵ)
.

Let φD : Rd → D be the map sending a vector to its representative (modulo the
ideal A) lying in D. Let ξ ∈ K and for r ∈ {1, . . . ,M} consider the set

Vr = φD(rλ(ξ) + Uϵ).

We now show that φD is injective on rλ(ξ)+Uϵ. Suppose that rλ(ξ)+u1 = rλ(ξ)+
u2 + λ(τ) for some u1, u2 ∈ Uϵ and τ ∈ A. Then λ(τ) ∈ Uϵ and ||λ(τ)||∞ ≤ ϵ/2,
hence

|NK/Q(τ)| ≤
( ϵ
2

)d
< 1.

As τ ∈ OK we get τ = 0, and u1 = u2 as wanted.
Therefore Vol(Vr) = Vol(φD(rλ(ξ)+Uϵ) = Vol(Uϵ) for every r. By our choice of ϵ

and (19), the Vr’s cannot be disjoint in pairs. Therefore there exist 1 ≤ r < s ≤ M
such that Vr ∩ Vs ̸= ∅, that is sλ(ξ) + u1 + λ(τ) = rλ(ξ) + u2 for some u1, u2 ∈ Uϵ

and τ ∈ A. Then
(s− r)λ(ξ) + λ(τ) = u2 − u1

so that, by (18), for every embedding σ of K in C we have

|σ((s− r)λ(ξ) + λ(τ))| ≤ ||λ((s− r)ξ + τ)||∞ = ||u1 − u2||∞ < ϵ

and the statement is proven taking j = s− r. □

Corollary 5.7. Let K be a number field of degree d and signature (r1, r2) and let
∆ be the absolute discriminant of K. Let

(20) c(K) = max

(
|∆|
(

8

π2

)r2 d!

dd
, 1

)
.

Then, for every rational integer M ≥ c(K), there exists a real number ϵ with
0 < ϵ < 1 such that every ideal class C in Cl(K) contains an integral ideal A = A(C)
with the following property: for each ξ ∈ K, there is τ ∈ A and a rational integer
0 < j < M for which |σ(jξ− τ)| < ϵ for every embedding σ of K in C. In particular
we have

|NK/Q(jξ − τ)| < ϵd.

Proof. Let Cl(K) = {C1, . . . , Cm} be the ideal class group of K. By Minkowski’s
bound (see for example [Sam67, §4.3, Corollaire 1]), every class Ci in Cl(K) contains
an integral ideal Ai of norm

N (Ai) <
d!

dd

(
4

π

)r2√
|∆|.

But then we can apply Theorem 5.6 as, by hypothesis, M > c(Ai, K), where c(A, K)
is the constant defined in (17). Choosing ϵ(Ai) > 0 as in Theorem 5.6, the proof is
concluded by setting ϵ = mini ϵ(Ai). □
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Theorem 5.8. Let K be a number field of degree d, let ∆ be its the absolute dis-
criminant and let ρ∞(K) be the covering radius as in Section 2.3. Let c(K) be the
constant defined in (20), let M > c(K) be a rational integer, let ϵ = ϵ(M) > 0 be as
in the statement of Corollary 5.7 and, for T0 = eρ∞(K), define

(21) c(M,K) =

 M

ϵT0

(
d

√
1−ϵd

ϵdT d
0
+ 1− 1

)
d

.

Then, setting T = {1, . . . ,M}, the field K satisfies the (P, T )-adic CFF-property
for every prime ideal P of OK of norm N (P) > c(M,K).

Remark 5.9. The constant c(M,K) defined in (21) is strictly larger than Md. To
prove this, we use the facts that 0 < ϵ < 1 and d

√
a+ b ≤ d

√
a+ d

√
b for any a, b ≥ 0.

The following inequalities hold for the denominator in (21):

ϵT0

(
d

√
1− ϵd

ϵdT d
0

+ 1− 1

)
< T0

(
d

√
1

T d
0

+ 1− 1

)
≤ T0

(
d

√
1

T d
0

)
= 1.

In particular, the condition N (P) > c(M,K) implies that no element in T lies in P.

Proof. The proof is similar to that of Theorem 5.4, but now the main new ingredient
is the explicit Corollary 5.7.

Let P be a prime ideal of OK of norm N (P) = q > c(M,K). We now construct a
suitable P-adic T -floor function s : KP → K such that the type (K,P, T , s) satisfies
the CFF property.

Let C be the class of P in Cl(K) and let A = A(C) be the integral ideal in C from
the statement of Corollary 5.7.

Let η ∈ KP. If η = 0, we set s(η) = 0. Otherwise, by strong approximation, the
coset of η modulo POP contains an element α′ ∈ K such that |α′|v ≤ 1 for every
non-Archimedean v ∈ MK \ {w0}, where w0 is the place of K corresponding to P.

Also, by Lemma 5.1, there exists γP ∈ K such that |σ(γP)| ≤ T0
d
√
|NK/Q(γP)| for

every σ ∈ Σ (where Σ is, as usual, the set of embeddings of K in C) and γPA = P.
In particular,

(22) |NK/Q(γP)| ≤ q.

By Corollary 5.7, setting ξ = α′

γP
, there exist j ∈ T and τ ∈ A such |σ(jξ−τ)| < ϵ

for every σ ∈ Σ. We finally set

s(η) = γP

(
ξ − τ

j

)
.

One can easily verify, in the same way as in the proof of Theorem 5.4, that the
function s : KP → K so constructed satisfies all conditions in Definition 3.1. Notice
that condition (i) follows from Remark 5.9.

The proof now goes on by showing that we can apply Theorem 4.1 to deduce that
the type (K,P, T , s) satisfies the CFF property, i.e. that for every a ∈ s(KP) such
that |a|w0 > 1 we have

(23) |a|−dw0
w0

∏
σ∈Σ

θ(σ(a))
∏

w∈M0
K\{w0}

max(|a|w, 1)dw < ϵ′,

for some ϵ′ ∈ (0, 1), where θ was defined in (2).
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Let us set a = s(η) where η ∈ KP is as above. As already noticed in the proof of
Theorem 5.4 one has:

(24)
∏
σ∈Σ

θ(σ(a)) < |NK/Q(a)|+
∑
S⊊Σ

∏
σ∈S

|σ(a)|.

Now notice that for every σ ∈ Σ one has

|σ(a)| < ϵ
|σ(γP)|

j
≤ ϵ

T0
d
√
q

j
.

Hence, for every subset S ⊊ Σ,

(25)
∏
σ∈S

|σ(a)| ≤
(
ϵT0

j

)|S|
d
√

q|S|

and

(26) |NK/Q(a)| <
ϵd|NK/Q(γP)|
|NK/Q(j)|

≤ ϵdq

jd
,

where the latter inequality follows from (22).
Plugging (25) and (26) into (24) we obtain

∏
σ∈Σ

θ(σ(a)) ≤ ϵdq

jd
+

d−1∑
i=0

(
d

i

)(
ϵT0

j

)i
d
√

qi

=
ϵdq

jd
+

[(
ϵT0

d
√
q

j
+ 1

)d

− q

(
ϵT0

j

)d
]

=
ϵdq

jd
+

q

jd

[
ϵdT d

0

((
1 +

j

ϵT0
d
√
q

)d

− 1

)]

=
q

jd
· ϵd
(
1 + T d

0

((
1 +

j

ϵT0
d
√
q

)d

− 1

))

≤ q

jd
· ϵd
(
1 + T d

0

((
1 +

M

ϵT0
d
√
q

)d

− 1

))
︸ ︷︷ ︸

ϵ′

.(27)

The quantity ϵ′ tends to 0 as q tends to infinity. Furthermore, the choice of q in
(21) ensures that ϵ′ < 1.

Let w ̸= w0 be a non-Archimedean place of K. By the choice of α′ one has
|a|w ≤ 1

|j|w and j ∈ OK \P by Remark 5.9. So, using also the product formula, we
get

(28)
∏

w∈M0
K\{w0}

max(|a|w, 1)dw ≤
∏

w∈M0
K\{w0}

max

(
1

|j|w
, 1

)dw

=
∏

w∈M0
K

1

|j|dww
= |NK/Q(j)| = jd.

Since by hypothesis |a|w0 > 1, then |a|dw0
w0 ≥ |a|w0 ≥ q. This, together with (27)

and (28), implies that the left-hand side in (23) is always at most ϵ′ < 1, hence
Theorem 4.1 applies to conclude. □
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6. Explicit examples and possible refinements

In this section, we apply Theorem 5.8 and compute the involved constants in some
explicit examples. We also consider a general strategy that can be used to (possibly)
reduce the values of M and c(M,K).

Let us start with the field K = Q(
√
14). This field has received attention by

many authors since it is the real quadratic field of smallest discriminant which is
Euclidean [Har04], but not norm Euclidean [MC95]. Performing the computations
with ∆ = 56 and r2 = 0, we find that M = ∆/2 = 28, and, from (19),

ϵ =

√√
∆/M = 1/

4
√
14 ≈ 0.516973.

Since the unit rank of K is 1, the naive upper bound for the covering radius given
in Remark 2.2 is, in fact, exactly equal to the covering radius, so ρ ≈ 1.70 and
T0 ≈ 5.48. Finally, the constant c(M,K) from Theorem 5.8 equals 48896.

We will now see how the value of M can be decreased using a result by Bedoc-
chi [Bed85, page 202]: he proved that the elements a, b ∈ Z[

√
14] such that b ̸= 0

and |NK/Q(a − bq)| ≥ |NK/Q(b)| for all τ ∈ Z[
√
14] are exactly those of the form

a = (1 +
√
14 + 2s)t and b = 2t for some s, t ∈ Z[

√
14]. Equivalently, there exists

ϵ < 1 with the following property: for any element ξ = a/b ∈ Q(
√
14) there exists

j ∈ {1, 2} and τ ∈ OK s.t. NK/Q(jξ − τ) ≤ ϵ. This is in fact the property needed to
construct the floor function in the proof of Theorem 5.8, since having class number
1 allows us to choose A = OK as a representative of the ideal class of P. Therefore,
we can actually take M = 2.

In order to conclude the computation of c(M,K) for this new value of M , we still
need to compute the exact value of ϵ – which in this case is the second Euclidean
minimum of K. This has been done by Bedocchi in a later work [Bed89, Proposition
3.8], where he found ϵ = 31/32. Plugging this value in (21) yields c(M,K) = 119008.
So, for this example, we have obtained a smaller set of denominators at the price of
a way larger constant.

In general, however, it is reasonable to expect – in the light of Remark 5.9 –
that smaller values of M might lead to smaller values of c(K,M), and the strategy
used to refine M in Q(

√
14) can be indeed generalized to a wider family of number

fields. To this end, consider Table 6, which displays various values of M for different
number fields together with the corresponding constants c(M,K) obtained applying
Theorem 5.8.

Minimal polynomial of α # Cl(K) Signature |∆| M c(M,K)
x3 − x2 − 2x+ 1 1 (3, 0) 72 11 40926432

x3 − 3x− 1 1 (3, 0) 34 18 187030596
x3 − x2 − 3x+ 1 1 (3, 0) 22 · 37 33 2446455004
x3 − x2 − 6x+ 1 1 (3, 0) 5 · 197 219 2626003081902
x4 − x3 + 2x− 1 1 (2, 1) 52 · 11 21 208540588019

x4 − x− 1 1 (2, 1) 283 22 187169288265
x4 − x3 + x2 + x− 1 1 (2, 1) 331 26 165348251296

Table 1. Some values of the constants from Theorem 5.8 for K = Q(α).

The choice of these number fields is not random. Specifically, all the selected
fields satisfy the following three conditions:

• they are non-CM fields,
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• they have degree at least 3,
• the rank of their unit group is strictly larger than 1 (more precisely, it is 2).

It is proven by Cerri [Cer06, Theorem 5] (see also subsequent work of McGown
[McG12]) that, if a field K satisfies the three conditions above, then the number
of cosets in K/OK having Euclidean minimum greater or equal than ϵ is finite for
every ϵ > 0. Suppose that we define Tϵ as the set of the norms of the denominators
appearing in these cosets: in this way, for every ξ ∈ K, there exist j ∈ Tϵ and
τ ∈ OK satisfying NK/Q(jξ − τ) < ϵ. Thus, as long as the class number of K is 1
(that is, as long as we further require P to be principal), the proof of Theorem 5.8
can be adapted to this choice of Tϵ by simply setting M = max(Tϵ).

The restriction on P being principal, highlighted above, can be in fact dropped
thanks to a suitable generalization of [Cer06, Theorem 5]. To this end, for each
x ∈ K we consider the Euclidean minimum of x with respect to (the class of) A

mA(x) =
1

N (A)
inf
τ∈A

NK/Q(x− τ),

as defined in [McG12]. The map mA extends to an upper semicontinuous function
on Rd, whose properties in Cerri’s setting (i.e. when A = OK) can be generalized as
follows:

Proposition 6.1. Let K be a non-CM number field of degree at least 3 and rank of
unit group strictly larger than 1, and let A be an integral ideal of K. Let λ be the
embedding K → Rd defined in Section 2.2. For each ϵ > 0, the set

Sϵ = {x ∈ Rd/λ(A) | mA(x) ≥ ϵ}
is finite.

Proof. The proof is based on [Cer06, Theorem2], where it is proven that if T is an
n-dimensional torus and Σ is a commutative semigroup of endomorphisms of T, then
every proper closed Σ-invariant subset of T is finite if and only if the the following
three conditions hold:

(1) there exists σ ∈ Σ such that, for every integer n, the characteristic polyno-
mial of σn is irreducible;

(2) every eigenvector of Σ possesses an eigenvalue of modulus strictly bigger
than 1;

(3) Σ has at least two elements which are rationally independent.
Consider now the torus T = Rd/λ(A) and Σ = λ(O×), where Σ is seen as a commu-
tative semigroup of endomorphisms on T via the action given by the multiplication
by units.

In this setting one can check that the three conditions above are satisfied following
verbatim the proof of the first part [Cer06, Theorem5], replacing the ring of integers
of K with A. This concludes the proof as the set Sϵ is clearly Σ-invariant. □

To sum up, one can proceed as follow:
• List all the successive minima ϵ1, . . . , ϵn+1 until ϵn+1 < 1.
• Compute Tϵn .
• Set ϵ = ϵn and T = Tϵn .

When P is principal, these steps can be performed using an algorithm by Lezowski [Lez14].1
It would be interesting to generalize Lezowski’s algorithm for computing the succes-
sive minima of a non-trivial ideal class, but we are not aware of such a result.

1Code available at https://www.math.u-bordeaux.fr/~plezowsk/recherche.php.

https://www.math.u-bordeaux.fr/~plezowsk/recherche.php
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Finally, we remark that there are of course cases in which the three conditions
required by [Cer06, Theorem 5] are not met. For instance, in degree 3, while the
non-CM assumption is always met, the condition that the rank of the unit group be
strictly greater than 1 (which, in this case, is equivalent to the field having signature
(3, 0)) is presumably rare for the splitting field of polynomials of degree 3 produced
via certain random processes (see for instance [EK95]).

7. Related work: continued fractions without floor functions

Throughout the previous sections, we managed to construct types τ = (K,P, T , s)
that satisfy the CFF property. In other words, we managed to encode any element
α ∈ K as a finite sequence [a0, a1, . . . , ak] of elements belonging to some smaller set,
namely

s(K) ⊆
{
a

j

∣∣∣∣ a ∈ O{P}, j ∈ T
}
,

so that

(29) α = a0 +
1

a1 +
1

. . . +
1

ak

.

The only part of our construction which is not fully explicit – and therefore not easy
to convert into an actual CF-algorithm – is the T -floor function s. It is then natural
to ask whether an expression of the form (29) can be computed without resorting
to any floor function. The answer is positive: there are some strong results on the
existence of short expansions of the form (29). This, of course, comes with a price,
which essentially amounts to losing the P-adic convergence of CF-expansions of the
elements in KP \ K. In this section we will briefly survey these short expansions
and compare them with our floor-function-based CF-expansions.

7.1. Continued fractions and division chains. Most of the results we will con-
sider are in fact referred to division chains rather than continued fractions. It is
well-known that these notions are closely related, as we will review in this section.

Let K be a number field and let R be a subring of K. Given a, b ∈ R, a division
chain of length k for the pair a, b is a sequence of quotients q1, . . . , qk ∈ R and
residues r1, . . . , rk ∈ R such that

a = q1b+ r1

b = q2r1 + r2
...

rk−2 = qkrk−1 + rk.

(30)

A division chain is terminating if rk = 0.
Suppose that the pair a, b has a terminating division chain of length k. Then,

using (30), we can write

a

b
= q1 +

1

b/r1
= q1 +

1

q2 +
1

r1/r2

= · · · = q1 +
1

q2 +
1

. . . +
1

qk

.
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In other words, [q1, . . . , qn] is a continued fraction expansion of a/b. We stress that,
in general, it is not obtained via algorithm (1) (in particular, the elements qi may
not lie in the image of any floor function on K).

Remark 7.1. The CFF property for (K,R) is also related to the fact that the group
SL2(R) (or SLn(R)) can be generated by elementary matrices (see [O’M65; Coh66;
CZZ18]).

We can now rephrase the CFF property in the language of division chains.

Definition 7.2. Let K be a number field and R be any subring of K.
• R satisfies the Euclidean chain condition [O’M65] if every pair of elements
a, b ∈ R admits a terminating division chain.

• R is k-stage Euclidean if it satisfies the Euclidean chain condition and each
division chain has length at most k [Coo76].

It is well-known that the Euclidean chain condition, which is exactly the CFF
property seen in the context of division chains, holds for (Q,Z) and, more generally,
for (K,R) when R is an Euclidean ring and K = Frac(R).

The property of being k-stage Euclidean, on the other hand, seems much harder
to satisfy, since it dictates the maximum length allowed for division chains. Never-
theless, in many relevant cases it does hold for remarkably small values of k, as we
will see in Section 7.3.

7.2. Euclidean chain condition and ideal class group. Let us focus again on
the case R = OS, where S is a finite set of places of K. An essential prerequisite for
the Euclidean chain condition (and therefore, in particular, the CFF property) arises
from the very structure of the ideals of OS. It is proven in [Coo76, Prop. 2] that,
if (K,OS) satisfies the Euclidean chain condition, then OS is a unique factorization
domain. In particular, if the Euclidean chain condition holds for (K,OK), then the
class number of K is 1. Furthermore, when the group of units O×

K is infinite, the
converse also holds [Coo76, Theorem 1].

A more general necessary condition is motivated by the following result, which is
based on [CMT22, Cor. 7.2].

Proposition 7.3. Let K be a number field, let S be a finite set of places of K, and
assume that the pair a, b ∈ OS has a terminating division chain with quotients in
OS. Then, the class in Cl(K) of the fractional ideal (a, b) belongs to the subgroup
generated by the classes of the ideals in S.

Proof. Let a0, . . . , an ∈ OS be the quotients in the division chain of the pair a, b.
One can prove, by induction on n, that the continued fraction [a0, . . . , an] = a/b is
equal to the ratio of two elements An, Bn ∈ OS, which can be defined recursively as

A−1 = 1, A0 = a0, An = anAn−1 + An−2,

B−1 = 0, B0 = 1, Bn = anBn−1 +Bn−2,

for n ≥ 1. Moreover, An and Bn are coprime since they satisfy AnBn−1+An−1Bn = 1.
Therefore, the ideal (An, Bn) = (a, b) belongs to the kernel of the natural projection
of Cl(K) into the class group of OS. The kernel of this projection is generated by
the classes of the ideals in S [NSW13, p. 452].

□

Corollary 7.4. Suppose that R satisfies the Euclidean chain condition and let S be
the set of the prime ideals P of OK such that vP(a) < 0 for some a ∈ R. Then
Cl(K) is generated by the classes of the ideals in S.
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Corollary 7.4 is one of our motivations for introducing extraneous denominators:
classic P-adic continued fractions may have the CFF only when the class group is
generated by the class of P, while P-adic continued fractions of type τ = (K,P, T , s)
may have the CFF when the class group is generated by the classes of P and the
ideals generated by T .

7.3. Some results on k-stage Euclideanity. In terms of continued fractions, say-
ing that OS is k-stage Euclidean means that every element in K can be expressed as
a continued fraction with length k and partial quotients in OS. It is surprising that,
if OS contains enough units and S meets the necessary condition of Corollary 7.4,
one can set k to be as low as 5 [MRS18].

Theorem 7.5. Assume that there are infinite units in OS. Let a, b be coprime
elements in OS. Then the pair a, b has a division chain of length 5.

The same result was proven – under GRH – in [CW75, Thms. 2.2 and 2.9], with
the further observation that a/b has a CF-expansion of length 4 if S contains at
least one finite place. The following algorithm, introduced by Cooke, Lenstra and
Weinberger, can be used to compute these CF-expansions whenever a finite principal
place P = (p) belongs to S:

• Choose q1 and r1 such that
a = q1b+ r1 and |r1|p = 1.

This ensures that the next step can be done within a finite amount of time.
• Check each principal prime ideal (p′) not in S until the following conditions

are met:
– b ≡ p′ mod r1,
– r1 ≡ u mod p′, where u is a unit.

We remark that it is sufficient to check the latter condition only on a finite
number of units, since OS/(p

′) is finite.
• For the p′ found at the previous step, complete the chain

b =

(
b− p′

r1

)
︸ ︷︷ ︸

q2

r1 + p′︸︷︷︸
r2

,

r1 =

(
r1 − u

p′

)
︸ ︷︷ ︸

q3

p′ + u︸︷︷︸
r3

r2 = u−1r2︸ ︷︷ ︸
q4

u

The above strategy can be implemented and allowed us to successfully find, for
example, a 5-adic CF-expansion of 7/3 in the field Q(z) where z is a root of x3+x+1:

7

3
= −1 +

1

1−z
5

+
1

−12z2 + 6z − 15 +
1

2z + 1

.

In general, though, the algorithm runs indefinitely due to the hardness of finding
p′. However, as far as we know, there is still no efficient algorithm for calculating
the corresponding division chains. This is a further reason for considering the floor-
function-based approach, which seems easier to implement and, as already remarked,
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has the further property of providing converging approximations of the elements in
KP \K.
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