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Bayesian joint-regression analysis of
unbalanced series of on-farm trials
Michel Turbet Delof1, Pierre Rivière2, Julie C.Dawson3, Arnaud Gauffreteau4, Isabelle Goldringer1,Gaëlle van Frank1, and Olivier David5

Abstract
Participatory plant breeding (PPB) is aimed at developing varieties adapted toagroecologically-based systems. In PPB, selection is decentralized in the target envi-ronments, and relies on collaboration between farmers, farmers’ organisations and re-searchers. By doing so, evaluation of new genotypes takes genotype × environment(G×E ) interactions into account to select for specific adaptation. Inmany cases, there islittle overlap among genotypes assessed from farm to farm because the farmers partic-ipating in a PPB project choosewhich ones to assess on their farm. In addition, on-farmtrials can often generate more extreme observations than trials carried out on researchstations. These featuresmake the estimation of genotype, environment and interactioneffects more difficult. This challenge is not unique to PPB, as many breeding programsuse sparse testing or incomplete block designs to evaluatemore genotypes, however inPPB genotypes are not always assigned randomly to environments. To exploremethodsof overcoming these challenges, this article tests various data analysis scenarios using aBayesian approach with different models and a real wheat PPB dataset over 11 years.Four morpho-agronomic traits were studied, representing over 1000 G×E combina-tions from 189 on-farm trials. This dataset was severely unbalanced with more than90% of G×E combinations missing. We compared various Bayesian Finlay-Wilkinsonmodels and found that placing hierarchical distributions onmodel parameters andmod-elling residuals using a Student’s t distribution jointly improved the estimates of maineffects and interactions. Environment effects were the most important and explainedmore than 50% of the variance of observations. This statistical framework allowed usto estimate two indicators of genotype stability (one static and one dynamic) despitethe high disequilibrium of the data. We found differences in mean and stability as be-tween genotype categories, with registred varieties consistently shorter (−30 cm) andcontaining less protein (−0.3%) than other types of varieties. The methods developedcould be used for evaluation and/or selection within networks of various stakeholderssuch as farmers, gardeners, plant breeders or managers of genetic resource centres.
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2 Michel Turbet Delof et al.
1. Introduction2

Developing new varieties adapted to Organic Agriculture (OA), agroecological and low input3 systems is a major concern to achieve improvements in agricultural sustainability (Wolfe et al.,4 2008). In OA, the use of synthetic inputs (nitrogen, phytochemicals) is not allowed, therefore,5 cropping environments are not standardized by inputs and varieties grow in more diverse con-6 ditions from farm to farm (Dawson et al., 2008). These environments are more sensitive to pe-7 doclimatic conditions, yearly weather, farmers’ management practices and interactions between8 these factors (Desclaux et al., 2008).9

In order to develop varieties adapted to such a diversity of environments two strategies can10 be used: (i) centralized and indirect selection, or (ii) decentralized and direct selection. The key11 difference between these approaches is the way they take genotype-by-environment (G×E )12 interactions into account. These interactions are considered by plant breeders as the main factor13 limiting the efficiency of the response to selection in breeding programs (Ceccarelli et al., 2001).14 In centralized and indirect selection, breeding lines are evaluated and selected at a few research15 stations assumed to represent the target environments. This is efficient if there is a high additive16 genetic correlation between the trait measured on the station and the same trait measured in17 the target environment, and if the narrow sense heritability is high in the selection environment18 (Falconer, 1960).19

Decentralized selection can take account ofG×E interactions that are important in OA (Daw-20 son et al., 2008;Murphy et al., 2007). In this approach, the selection and evaluation environments21 are very close to the target environments (the production environments of farms). Selection then22 maximizes the use of the reproducible part ofG×E interactions to select for specific adaptations23 (Annicchiarico et al., 2010). This method is close to direct selection and has been shown to be24 effective (Annicchiarico et al., 2010; Ceccarelli et al., 2001; Murphy et al., 2007; Smith et al.,25 2001; Virk et al., 2005).26

Many participatory plant breeding (PPB) programs have been carried out over the last 2027 years targeting low-input farming systems in the Global South and also OA and agroecological28 systems in Europe and North America (Ceccarelli and Grando, 2020). A few programs tested29 different experimental designs and specific statistical methods to analyze data taking G×E into30 account (Mohammadi et al., 2011; Snapp and Silim, 2002). Recently, participatory variety trials31 using crowdsourcing have been used in several countries with great success (van Etten et al.,32 2019). These methods typically use an experimental design called a triadic comparison of tech-33 nologies (tricot), followed by an analysis of variety ranks (Beza et al., 2017). In the tricot design,34 large numbers of farmers each compare three variety subsets from the complete set of entries,35 and provide direct comparison rankings among them for a few traits (i.e. best/middle/worst). By36 using ranking methods and structuring the entry distribution as an incomplete block design, this37 allows for comparisons of larger numbers of varieties without overburdening individual farmers.38 These design options enhance breeders’ ability to engage farmers in trialing experimental lines,39 since on-farm trials are often limited by space and farmers’ time. Trialing a few experimental40 lines, including a check line or variety that is replicated across sites is more realistic for farmers41 than implementing a fully replicated design. Triadic methods are very useful in many situations,42 but they are not applicable to more mature farmer-breeder networks, where the choice of vari-43 eties and cropping practices is made by farmers according to their own logic. In addition, farmers44 may want to test different numbers of varieties, with some testing just a few and others several45 dozen. Farmers also wish to have access to quantitative data rather than simple rankings, so a46 non-parametric ranking of varieties without assumptions about distribution will not produce a47 satisfactory analysis for this purpose.48

One program with such concerns is a wheat PPB program that started in France in 2005,49 as a collaboration between INRAE GQE-Le Moulon and the Farmers’ Seed Network (Réseau Se-50 mences Paysannes, RSP). This PPB program had three objectives: (i) develop varieties adapted to51 farmers’ practices and needs (organic management, artisanal bread quality ...) using a participa-52 tory approach, (ii) develop strategies for preserving genetic diversity through on-farm dynamic53
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Michel Turbet Delof et al. 3
management and breeding, and (iii) learn from and improve farmers’ individual and collective54 breeding methods and diffuse successful methods broadly.55

In this program, farmers conducted trialswith different varieties developed through their own56 breeding efforts to determine which variety was best suited to their production systems (Turbet57 Delof, 2024). The research team provided methods to assist farmers in interpreting these trials,58 aiming to empower them (Rivière et al., 2015a; Turbet Delof, 2024; van Frank, 2018) and to59 provide general knowledge about these varieties (Goldringer et al., 2020; Rivière et al., 2015b;60 van Frank et al., 2020). When farmers seek to incorporate and evaluate new populations in their61 trials, they often struggle with a lack of information on which populations to select. This high-62 lights the need for support in varietal choice, including information on the average performance63 and stability of varieties within the trial network. Specifically, interannual stability is crucial as it64 relates to both agronomic and economic risks. Static stability describes the response of a geno-65 type that maintains a constant performance across environments, while dynamic stability de-66 scribes the response of a genotype showing a constant difference with an environmental refer-67 ence (generally the average response of all the genotypes, Annicchiarico, 2002).68

As very few varieties were common to all the trials and many varieties were tested in a lim-69 ited number of trials, the resulting series of trials was very unbalanced, so that the estimation70 of variety average performances and stabilities was difficult. Joint regression is a robust method71 for estimating genetic main effects and stability with incomplete datasets (Finlay and Wilkin-72 son, 1963; Pereira et al., 2007; Yates and Cochran, 1938). It is based on the Finlay-Wilkinson73 (FW) model, which is parsimonious since the interaction effect between a genotype and an en-74 vironment is modelled as the product of a genotype stability parameter, called sensitivity, and75 the environment main effect. Various Finlay-Wilkinson models have been used in a frequen-76 tist framework, in which environment effects were either fixed or random (Nabugoomu et al.,77 1999; Ng and Williams, 2001; Patterson and Silvey, 1980). In the latter case, environment ef-78 fects were assumed to come from a common distribution, thereby leading to shrunk estimates.79 FW models in which genetic main effects, environment main effects and genetic sensitivities80 (FW coefficient of regression) are all random effects have recently been developed. These have81 been implemented in a Bayesian framework and when they include random effects, these are82 called hierarchical models (Carlin and Louis, 2008; Robert, 2007). Thus far, these models have83 been used to analyze slightly unbalanced trials (Lian and de los Campos, 2016). Hierarchical joint84 regression has also been used to analyze very unbalanced simulated data (van Frank et al., 2019).85 This simulation study has shown that genotypes should be tested in sufficiently many trials in86 order to estimate their main effects and sensitivities reliably. However, this method had not been87 used to analyze real and very unbalanced trials. Thus, it was not clear if it could cope with the88 actual levels of unbalanced data seen in the French PPB on-farm trials and what insight it could89 give into the behavior of genotypes across environments.90

Extreme data is an important issue in data analysis. In multi-environment trials (MET), they91 may come from either (1) errors between scoring and data formatting (measurement error, wrong92 labelling, etc.), or (2) environmental heterogeneity in the trial (weed infestation, soil fertility, etc.),93 or (3) the heterogeneity of the responses of the varieties tested between trials (G×E interaction).94 In our PPB program, as cultivation environments are less controlled, extreme observations (types95 2 and 3) could be more frequent than expected. This could reduce the precision of estimates96 based on the normal distribution. Extreme observations could be removed from the dataset to97 solve this problem, but it is difficult to decide which observations to remove. If too many ex-98 treme observations are removed, then the variability of the data may be underestimated and99 the precision of the statistical analysis overestimated. Alternatively, statistical methods that are100 robust to extreme observations may be used (Hampel et al., 2011; Huber and Ronchetti, 1981).101 Various robust methods have been developed in a frequentist or a Bayesian framework, in par-102 ticular methods consisting in replacing the normal distribution by a Student’s t distribution in103 statistical models. This distribution is more robust to extreme observations than the normal dis-104 tribution, because it has heavier tails (Carlin and Polson, 1991; Choy and Chan, 2008; Lange105 et al., 1989; Rosa et al., 2003). It has been used to handle the extreme observations of a single106
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4 Michel Turbet Delof et al.
trial in a Bayesian framework (Besag and Higdon, 1999; Cao et al., 2022; Gianola et al., 2018).107 However, to our knowledge, it has not been used to analyze an unbalanced network of trials.108 This study was aimed at developing statistical methods for analyzing series of on-farm trials,109 and at improving the assessment of varieties of the wheat PPB program by using the information110 at the level of the network. As our dataset was very unbalanced and could include extreme111 observations, we compared several Finlay-Wilkinson models, in particular hierarchical models112 and models based on the t distribution. These models were developed in a Bayesian framework,113 since this framework is rigorous and since it facilitates the implementation of complex models114 (Carlin and Louis, 2008; Robert, 2007). Finally, the best Finlay-Wilkinsonmodel we obtained was115 used to analyze our data and characterize the behaviour of our varieties across environments.116

2. Materials and methods117

Notation MeaningPPB Participatory plant breedingOA Organic agricultureRSP Réseau Semences Paysannes, French farmers’ seed networkMET Multi-environment trial
G×E Genotype × environment interactionFW Finlay WilkinsonMCMC Markov chain Monte Carlo
α Germplasm main effect
θ Environment main effect
η Germplasm sensitivity (FW coefficient)
S2 Germplasm static stability
W Germplasm ecovalence (a dynamic stability)LOO Leave one outelpdloo LOO expected logarithmic predictive density

Table 1 – Main notations.
In our study, a population variety is defined as a set of individuals which may be different118 but which are derived from the using certain agronomic practices, and a germplasm as any bio-119 logical entity whose individuals are derived from the same breeding process, including varieties120 registered in the official catalog, landraces, historic varieties, mixtures or populations stemming121 from crosses. An environment is the combination of a farm and a year.122

2.1. Statistical methods123

2.1.1. Models. We consider methods for analyzing series of on-farm trials in two steps (Patter-124 son, 1997; Patterson and Silvey, 1980). First, germplasm means are estimated using within-trial125 analyses, taking into account any block effects (spatial effects). Then, these estimates are ana-126 lyzed using a between-trial analysis. In the between-trial analysis, the phenotypic value Yij ∈ R127 for a given trait Y , germplasm i and environment j is assumed to be equal to128

Yij = µij + εij ,129

where (i , j) ∈ C, C is the set of the germplasm x environment combinations occurring in the130 dataset, µij ∈ R is an expectation term, and εij ∈ R is a between-trial residual term.131 In models ADHs and ADHn, the expectation term is modelled as additive effects of both the132 germplasm and the environment without interaction:133

µij = αi + θj ,134

where αi ∈ R is the main effect of germplasm i , and θj ∈ R is the main effect of environment j .135 Models FWHs, FWs and FWHn model G×E interactions using the Finlay-Wilkinson regression,136
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Model Expectation term Residual term Prior distributionADHn Additive Normal HierarchicalADHs Additive Student HierarchicalFWHn Finlay Wilkinson Normal HierarchicalFWHs Finlay Wilkinson Student HierarchicalFWs Finlay Wilkinson Student Weakly informative

Table 2 – The five models compared.
also called joint-regression, model (Finlay and Wilkinson, 1963; Yates and Cochran, 1938). In137 these models, the expectation term is assumed to be equal to138

µij = αi + θj + ηiθj ,139

where ηi ∈ R is the sensitivity of germplasm i to environments (linear regression coefficient,140 Perkins and Jinks, 1968). As the average sensitivity is equal to 0, a germplasm with ηi > 0 is141 more sensitive and germplasm with ηi < 0 is less sensitive to environments than a germplasm142 with the average sensitivity. In these models, a part of the interaction between germplasm i143 and environment j is modelled as a multiplicative term ηiθj . The Finlay-Wilkinson coefficient is144 considered as both a static and a dynamic indicator of stability (Becker and Leon, 1988; Lin et al.,145 1986). In this model, statically stable genotypes have a coefficient close to -1. Dynamically stable146 genotypes have a coefficient close to zero, but having a coefficient close to zero is not sufficient147 to determine dynamic stability, this also depends on the amount of G×E variation that remains148 unexplained by the model.149 We consider series on-farm trials where most of the germplasm are not replicated within150 the trials. For such trials, the standard errors of germplasm means provided by the within-trial151 analyses are not precise. Thus, these standard errors are not taken into account, and the between-152 trial residuals are assumed to be homoscedastic (Patterson, 1997; Patterson and Silvey, 1980).153 In models ADHn and FWHn, the distribution of these residuals is assumed to be normal:154

εij ∼ N
(
0,σ2

ε

)
,155

where N
(
0,σ2

ε

) is the normal distribution with expectation 0 and variance σ2
ε . However, to limit156 the influence of extreme values on the results of the analyses, we also consider models based157 on Student’s t distributions. Thus, in models FWHs, FWs and ADHs, the distribution of the error158 term is assumed to be equal to159

εij ∼ t
(
0,σ2

ε , ν
)
,160

where t
(
0,σ2

ε , ν
) is the Student’s t distribution with dispersion parameter σ2

ε > 0 and ν > 2161 degrees of freedom. We assume that ν > 2 to ensure that the expectation and the variance162 of εij are defined and finite. In models FWHs, FWs and ADHs, the variance of εij is equal to163

νσ2
ε/(ν − 2). The normal distribution can be considered as a t distribution with ν tending to+∞.164 For additivemodels, the between-trial residuals combine theG×E effects andwithin-trial errors,165 i.e. experimental errors and environmental heterogeneity in each trial, while for FWmodels, they166 combine the part of G×E effects not explained by the multiplicative term ηiθj and within-trial167 errors. Student residuals better handle data heterogeneity than normal residuals, since they can168 be written as (Simar, 2002)169

εij ∼ N
(
0,σ2

ij

)
, σ−2

ij ∼ Γ(ν/2, νσ2
ε/2),170

where Γ(ν/2, νσ2
ε/2) is the gamma distribution with shape parameter ν/2 and rate parameter171

νσ2
ε/2.172

2.1.2. Prior distribution. The statistical methods are implemented in a Bayesian framework, so173 that a joint prior distribution is placed on model parameters. Weakly informative prior distribu-174 tions are placed on σε and ν (Cao et al., 2022; Gelman, 2006; Juárez and Steel, 2010):175

σε ∼ N+(0,λ2
ε), ν = 2 + γ, γ ∼ Γ(2, 0.1),176

5



6 Michel Turbet Delof et al.
where λε is a known prior value of the standard deviation of the trait, andN+(0,λ2

ε) is the normal177 distribution restricted to positive values with parameters 0 and λ2
ε .178 Since series of on-farm trials are often unbalanced and often involve many germplasm and179 environments, αi , θj and when present ηi are assumed to follow hierarchical distributions in all180 the models except model FWs:181

αi ∼ N
(
µY ,σ

2
α

)
, ηi ∼ N

(
0,σ2

η

)
, θj ∼ N

(
0,σ2

θ

)
,182

where µY , σα, ση and σθ are unknown parameters. Then, weakly informative prior distributions183 are placed on the hyperparameters µY , σα, ση and σθ:184

µY ∼ N
(
λµ,λ

2
ε

)
, σα ∼ N+(0,λ2

ε), σθ ∼ N+(0,λ2
ε), ση ∼ N+(0, 0.752),185

where λµ is a known prior value of the trait mean. Germplasm main effects, environment main186 effects, germplasm sensitivities and residuals are assumed to be independent given the hyper-187 parameters, σε and ν. In model FWs, the hierarchical distributions of αi , ηi and θj are replaced188 by weakly informative prior distributions:189

αi ∼ N
(
µY ,λ

2
ε

)
, ηi ∼ N

(
0, 0.752

)
, θj ∼ N

(
0,λ2

ε

)
.190

The values chosen for λε and λµ are in Appendix A.1.191

192 In conlusion, five models are considered, which model the expectation term, the residual193 term and the prior distribution differently (Tab. 2). The main model of interest is FWHs, the194 other models being mainly used for assessing model FWHs.195

2.1.3. Posterior distribution. Bayesian inference is based on the posterior distribution of model196 parameters. This distribution is estimated using Markov chain and Monte Carlo (MCMC) meth-197 ods. These methods simulate the values of model parameters according to a Markov chain198 that converges to the posterior distribution of these parameters (Robert, 2007). They are im-199 plemented using R (R Core Team, 2014) and the package rstan (Stan Developpement Team,200 2016), that performs Hamiltonian Monte Carlo (HMC) sampling. This method aims at reducing201 the correlation between successive sampled values by using a proposal distribution based on202 Hamiltonian dynamics (Neal, 2011).203

2.1.4. Model comparison. The predictive ability ofmodels is compared using leave-one-out cross-204 validation, which seems more appropriate than Bayes factors for selecting models that approx-205 imate the process generating the data (Lartillot, 2023). We estimate the expected logarithmic206 predictive density using the R package LOO (Vehtari et al., 2017). This criterion is equal to207

elpdloo =
∑

(i ,j)∈C
ln(p(Yij |Y−ij)),208

where Y−ij is the dataset without observation Yij , and p(Yij |Y−ij) is the leave-one-out posterior209 density ofYij . The larger this criterion, the better the agreement between themodel and the data.210 This criterion is also used to identify extreme observations. The quantity ln(p(Yij |Y−ij)) can be211 understood as the contribution of observationYij to elpdloo. Observationswith low contributions212 are unlikely and can be considered extreme observations.213 For main effects and sensitivities, we estimate the average standard deviation of estimates,214 which allows us to estimate the precision of the analysis. To be able to compare the precision215 between traits, for α and θ we estimate the average coefficient of variation by dividing this216 standard deviation by the general average µY .217

2.1.5. Variance decomposition. In order to assess the importance of model terms, the variance of218 an observation is decomposed for the main model FWHs . Since αi , θj , ηi and ϵij are conditionally219 independent, the terms θj and ηiθj are not correlated, and the variance of an observation given220 the hyperparameters, σ2
ε and ν is equal to221

Var(Yij) = Var(αi + θj + ηiθj + εij) = σ2
α + σ2

θ + σ2
ησ2

θ + Var(εij).222
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Michel Turbet Delof et al. 7
The variance of εij is equal to νσ2

ϵ /(ν−2) for model FWHs. The proportions of variance explained223 by the germplasm main effect, the environment main effect and the interaction effect are equal224 to225

π(α) =
σ2

α

Var(Yij)
, π(θ) =

σ2
θ

Var(Yij)
, π(ηθ) =

σ2
ησ2

θ

Var(Yij)
.226

π(α) is also called broad-sense heritability. The proportion of variance explained by the model227 (coefficient of determination) is equal to228

R2 = π(α) + π(θ) + π(ηθ) =
σ2

α + σ2
θ + σ2

ησ2
θ

Var(Yij)
.229

We also estimate the proportion of the variance of G×E interactions and experimental errors230 that is explained by the multiplicative term ηiθj , defined by231

ρ =
Var(ηiθj)

Var(ηiθj + εij)
=

σ2
ησ2

θ

σ2
ησ2

θ + Var(εij)
.232

2.1.6. Characterization of germplasm. The main effect and sensitivity of each germplasm are esti-233 mated using model FWHs. In addition, two stability indicators are estimated for each germplasm,234 the static stability S2
i (Becker and Leon, 1988) and the ecovalenceWi (Wricke, 1962) which is an235 indicator of dynamic stability. Due to data imbalance, the empirical estimates of these indicators236 are biased. Thus, we define stability indicators by means of theoretical variances using model237 FWHs (Cotes et al., 2006; Piepho, 1999). Using the independence assumptions of the model,238 we obtain for germplasm i ,239

Wi = Var(ηiθj + εij) = η2
i σ2

θ + Var(εij),240

S2
i = Var(θj + ηiθj + εij) = (1 + ηi )

2σ2
θ + Var(εij) = (1 + 2ηi )σ

2
θ +Wi .241

The larger these indicators, the less stable the germplasm. Becker (1981) applied the same de-242 composition with the empirical variances.243 We also perform pairwise comparisons between germplasm types (e.g., cross, landrace, reg-244 istered variety, mixture of germplasm and historic variety). For example, for main effects, we245 compute the average main effect of type k , denoted by ᾱk . The comparison between types k246 and l is considered as significant if the 95% credible interval of ᾱk − ᾱl does not contain 0. Then,247 germplasm types are grouped into significantly different sets using these pairwise comparisons248 and an "insert-and-absorb" algorithm (Piepho, 2004).249

2.2. Wheat PPB program250

2.2.1. Germplasm. We studied 206 germplasm covering different "germplasm types": 98 "cross"251 germplasm resulting from crosses made either on the farm or at the research station (Rivière et252 al., 2015b), 50 "landraces", i.e. population varieties grown before 1884 (date of creation of Dattel,253 the first wheat variety from a controlled cross), 30 "historic varieties", developed by professional254 breeding before 1950, 17 "mixtures", which were generally complex, with numerous genotypes255 from potentially all the other germplasm types. In addition, 11 "registered varieties" after 1950256 and widely used in organic farming were included: Maitre Pierre (1954), Poncheau (1956), Renan257 (1990), Ataro (2004), Pollux (2004), Rubisco (2012), Hendrix (2012), Kampmann selected from258 Renan, and Hermes (1982), Alauda (2004) and Goldritter (2013), all three selected from Probus259 (1957).260

2.2.2. Experimental designs. The data analyzed were collected between 2008 and 2019. The261 wheat PPB program followed numerous experimental designs due to the different constraints262 of farmers, collectives and researchers. The designs have been grouped into three classes (Tab.263 3). Some experimental designs (without blocks with repeated germplasm, and incomplete blocks264 with two blocks) were co-designed to be adapted to breeders’ objectives, farmers’ constraints265 and agricultural routines (Dawson et al., 2011). In these designs, the germplasm common to266 all farms (control germplasm) were collectively chosen by farmers and researchers, while each267 farmer individually chose the additional germplasm to be cultivated in his farm. At the beginning268
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8 Michel Turbet Delof et al.
the control was a selection in a landrace, and after 2014 it was a germplasm stemming from a269 cross. Most of the germplasmwere not replicated within the trials. All varieties were randomized270 within farms, but not randomized between farms. Some designs (complete blocks, remaining271 incomplete blocks) were used to address specific research questions such as the study of the272 evolution of traits (Rivière et al., 2015b), local adaptation (van Frank et al., 2020) or the evaluation273 of agronomic performance (Goldringer et al., 2020). Some unreplicated trials corresponded to274 trials with replications but for which measurements could not be performed in some replications.275

Designs Nb of blocks Nb of repeatedgermplasm Nb of gemplasmby environment Nb of envi-ronmentsComplete blocks 2 to 3 6 to 45 7 to 45 24Incomplete blocks 2 to 4 3 to 49 6 to 81 31
Without blocks 1 to 22 5 to 79 1020 32
Table 3 – Experimental designs of the 189 trials used in the statistical analysis. Nb: num-ber, Environment: combination of a year and a farm.

2.2.3. Data collected. Four traits were studied, plant height (60% of the data was the average276 height of 25 individuals and 40%was the overall height of themicroplot, mm), spikeweight (mean277 of 25 individual measures, g), protein content of the grain (on the microplot, measured with NIRS278 technology at INRAE Clermont-Ferrand France, %) and thousand kernel weight (TKW, measured279 on the microplot, g). These four traits were among those collectively chosen by farmers and280 researchers to be measured during the PPB program (Tab. 4). Plant height was measured in the281 field, while the other traits were measured after harvest at the research station on samples of282 spikes sent by farmers. Outliers with respect to agronomic knowledge of the traits were excluded283 (for example, a plant taller than three meters).284 van Frank et al. (2019) analyzed the sensitivity of the hierarchical FW model to different285 MET set-ups with simulated data. They found that, in contrast to the environmental effects, the286 germplasm effects and FWcoefficients were difficult to estimate. This is why they recommended287 that a large number of environments be used and that the germplasm be repeated sufficiently.288 We have therefore made a selection of the data and kept the environments with at least five289 germplasm and the germplasm that were present in at least four environments. Thus, the data290 analyzed comprised 70 to 76% of the initial data, depending on the trait.291 The multi-environment data were very unbalanced, with most of the germplasm occurring292 in a limited number of environments (the median number of replicates across environments was293 seven, and about 20% of the germplasm were replicated in four environments only). For each294 trait, the number of observations was between 1300 and 2000 and the measures were spread295 over more than nine years (Tab. 4).296 These data were analyzed using the models of Tab. 2. As the dataset was very unbalanced, it297 was not clear if model parameters were identifiable. Thus, for each variable, the identifiability of298 germplasm main effects and environment main effects was studied for the additive model. We299 checked that the rank of the design matrix of the model was equal to 1+(I −1)+(J −1), where300

I was the number of germplasm and J the number of environments (p. 50, Silvey, 1975). For the301 FWmodel, identifiability was more difficult to study because the model was nonlinear. Thus, we302 restricted ourselves to studying local identifiability near an estimate of model parameters (Chap.303 2, Walter and Pronzato, 1997). First, a linear approximation of the model was carried out using a304 Taylor expansion. Then, we checked that the rank of the design matrix of this linear model was305 equal to 1 + (I − 1) + (J − 1) + (I − 1).306 FourMCMCchainswere run independently to test for convergence. The initial values of each307 chain were taken randomly. For each chain, the burn-in consisted of 200 iterations, then 5,000308 iterations were performed for all models, except FWs where 10,000 iterations were required.309 The average calculation time (for a given trait and a givenmodel) was 6minutes and themaximum310 time was 22 minutes, with a computer intel CORE i7©. Estimates of the Gelman-Rubin statistic311
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Michel Turbet Delof et al. 9
were smaller than 1.02 and the effective sample size was greater than 400 for each parameter312 in all tested models.313

Trait Observations Germplasm Environments Disequilibrium Farms YearsPlant height 1437 124 117 90 44 11Spike weight 1804 172 148 93 52 10Protein 1332 144 111 92 44 9TKW 1982 177 165 93 58 11
Table 4 – Description of the dataset. Disequilibrium: percentage of missing values in theGermplasm x Environment table.

3. Results314
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Figure 2 – The first column presents the distribution of the trait to be explained (in grey).The last four columns compare the hierarchical (red) and non hierarchical (blue) versionsof the FWmodel with a Student law for the residuals, and show the smoothed histogramsof main effects, FW coefficients and residuals.

3.1. Predictive capacity of models315

According to the elpdloo criterion, the non-hierarchical FWs model was less predictive than316 the hierarchical FWHsmodel for all the traits (Fig. 1). Using the latter model shrank the estimates317 of η and sometimes α (Fig. 2). With the non-hierarchical model (FWs), some estimates (αi and318

ηi ) seemed to be unreliable, in particular some germplasm means were extreme and some FW319 coefficients were larger than 1 or smaller than -1.320 The hierarchical models with a t distribution (FWHs, ADHs) were more predictive than the321 models with a normal distribution (FWHn, ADHn), all the more as ν was low (Tab. 5). For protein322 content, the estimate of ν was equal to 20, so the t distributionwas close to a normal distribution.323 The t distribution reduced the shrinkage of FW coefficients (Fig. 3). Moreover, t models better324 accounted for extreme data than normal models (Fig. 4). These extreme data mainly came from325 germplasm that were not replicated in the trials.326
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Figure 3 – Comparison of hierarchical FW models with different residual laws, the Stu-dent (red) and the normal (blue). These graphics show the smoothed histograms of maineffects, FW coefficients and residuals.
The Finlay-Wilkinson models (FWHs, FWHn) were slightly more predictive than the simple327 additive models (ADHs, ADHn), except for protein content, where the difference was not signifi-328 cant (Fig. 1). This difference was smaller than the differences due to the distribution of residuals329 and the hierarchization of parameters.330 The elpdloo criterion was estimated using Pareto smoothed importance sampling (Vehtari et331 al., 2017). This method tends to be less precise for models that do not fit the data well. Thus,332 as expected, estimates of elpdloo were more reliable for the two hierarchical models with a t333 likelihood (FWHs and ADHs) than for the other models, in particular model FWs (Supplementary334 Tab. B.1).335

3.2. Precision of estimates and distribution of residuals336

For the models with a t distribution, the estimate of the number of degrees of freedom (ν)337 varied between 3.4 and 27.6 (close to a normal distribution) (Tab. 5). Thus, the shape of the dis-338 tribution of residuals depended on the trait. This result confirmed that the number of extreme339
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Figure 4 – Comparison of t and normal models (FWHs vs FWHn) in terms of the contri-butions of observations to the elpdloo criterion. Black (resp. red) dots correspond to ob-servations that were measured on germplasm that were replicated (resp. not replicated)within trials.
observations was not negligible in our data, and that models with a t distribution were more ap-340 propriate. In the latter case, the variation ranges of residuals were wider but with more residual341 values close to 0 for the t distribution than the normal distribution (Fig. 3). Models had similar es-342 timated precision, except for model FWs, which had less precise estimates. This result confirmed343 that a basic joint regression, i.e. non-hierarchical model, was not suited to our unbalanced data.344 Parametersα and θ were estimatedmore precisely (difference in coefficient of variation between345 0 and 1.9, Tab. 5) for t models (ADHs and FWHs) than for normal models (ADHn and FWHn).346 This result was consistent with Fig. 4, where extreme observations were better predicted by347 more likely under model FWHs than under FWHn, except for protein content.348

3.3. Variance decomposition349

The proportion of variance explained by each term of model FWHs depended on the trait350 (Tab. 6). For all four traits, the environment effect was highly explanatory. For height and TKW,351
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Michel Turbet Delof et al. 13
Trait Model ν cv(α) cv(θ) sd(η)ADHn 5 4.9ADHs 3.9 (0.5) 3.1 3Plant Height FWHn 3 2.9 0.08FWHs 3.5 (0.4) 2.8 2.7 0.09FWs 3.4 (0.4) 3.4 2.7 0.23ADHn 5.3 5.2ADHs 8.2 (2.3) 5.2 5.1Spike weight FWHn 5.4 5.2 0.12FWHs 8.2 (2.3) 5.2 5.1 0.11FWs 10.2 (4) 6.3 4.8 0.31ADHn 2.7 2.7ADHs 20.3 (9.8) 2.6 2.7Protein FWHn 2.6 2.7 0.05FWHs 19.8 (9.5) 2.6 2.6 0.05FWs 27.6 (13) 3.7 2.6 0.27ADHn 2.8 2.8ADHs 4.2 (0.5) 2.7 2.5TKW FWHn 2.8 2.8 0.15FWHs 4.1 (0.5) 2.7 2.5 0.17FWs 3.9 (0.5) 3.1 2.5 0.35

Table 5 – Number of degrees of freedom and precision of estimates.
ν: posterior means, with posterior standard deviations in parentheses, of the number ofdegrees of freedom of the t distribution; cv(α), cv(θ): average posterior coefficients ofvariation of germplasm and environment main effects; sd(η): average posterior standarddeviation of germplasm sensitivities (FW coefficients).

Plant height Spike weight Protein TKWMean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI
R2 87.3 [83.3, 90.3] 78.1 [73.9, 81.9] 82.9 [78.9, 86.6] 69.8 [64.2, 74.9]

π(α) 24 [18, 30.8] 10.9 [7.8, 14.6] 5.7 [3.7, 8.3] 16.1 [12.1, 20.8]
π(θ) 62.4 [54.6, 69.8] 66 [60.1, 71.6] 77 [71.7, 81.9] 51.5 [44.7, 58.2]
π(ηθ) 0.9 [0.4, 1.6] 1.1 [0.4, 2.1] 0.2 [0, 0.8] 2.2 [1, 3.8]

ρ 6.7 [2.9, 12.1] 4.9 [1.7, 9.3] 1.2 [0, 4.6] 6.9 [3.1, 12]

Table 6 – Variance decomposition for model FWHs.The proportions of variance explained are expressed in %. Mean: posterior mean; 95%CI: 95% credible intervals. R2 is the coefficient of determination. π(α), π(θ) and π(ηθ)are respectively the proportion of variance explained by α, θ and ηθ. ρ is the proportionof the variance of G×E and errors explained by ηθ.

a relatively large part of the total variance was explained by the germplasm effect (resp. 24%352 and 16.1% ), whereas this part was much smaller for spike weight and protein content (10.9%353 and 5.7%). The proportion of variance explained by the sensitivity effect η was not significantly354 different from 0 for protein content and low for the three other traits. It explained 6.7%, 4.9%355 and 6.9% of the variance of G×E interactions and experimental errors (ρ parameter) for plant356 height, spike weight and TKW, respectively.357

3.4. Characterization of germplasm358

The correlation between germplasm sensitivity (ηi ) and static stability (S2
i ) was very close to 1359 for all traits while germplasm sensitivity was poorly correlated toWi (Tab. 7). The main effect αi360 had a low correlation with ηi , S2

i andWi , except for plant height and in some cases spike weight.361 Depending on the trait, the correlations betweenWi and ηi or S2
i were either positive, negative362 or not significant.363
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Trait Pearson correlation between

αi |ηi αi |S2
i αi |Wi ηi |S2

i ηi |Wi S2
i |WiPlant height 0.44*** 0.41*** -0.43*** 0.997*** -0.31*** -0.23**Spike weight 0.35*** 0.35*** 0.21** 0.999*** 0.15* 0.2**Protein 0.14 0.13 -0.09 1*** 0.03 0.04TKW 0.23** 0.24** 0.13 0.995*** 0.24*** 0.34***

Table 7 – Correlation between germplasm parameters.*, **, *** : significant at P = 0.05,P = 0.01,P = 0.001 respectively.
αi : germplasm effect, ηi : germplasm sensitivity (FW coefficient), S2

i : static stability, Wi :ecovalence.

Plant height was found to depend on the type of germplasm, landraces being taller than364 historic varieties, which were themselves taller than registered varieties. For this trait, registered365 varieties were significantly more stable (static stability and FW coefficient) than landraces and366 varieties from crosses, but less stable dynamically (ecovalance). In addition, registered varieties367 had lower protein content than the other germplasm types. Landraces and varieties from crosses368 had lower spike weight than the other germplasm types. Finally, landraces had lower TKW, and369 historical varieties were statically less stable than the other germplasm types.370

4. Discussion371

To fit the characteristics of PPB trials, i.e., few inter-farm replicates and possible extreme372 data, we developed several models and we found that the hierarchical Finlay-Wilkinson model373 with t residuals was the best for prediction and parameter precision. Then we compared the374 performance and stability of different germplasm types.375

4.1. Handling the data from a highly unbalanced series of trials376

As the farmers of the program chose the germplasm they assessed, the data obtained from377 the series of trials were very unbalanced, with more than 90% of the G×E combinations miss-378 ing. This made the estimation of germplasm main effects and sensitivities difficult. Although the379 Finlay-Wilkinsonmodel was parsimonious, a basic joint regression with weakly-informative prior380 distributions (model FWs) was not able to cope with this level of disequilibrium. According to the381 elpdloo criterion, model FWs was not the best model (Fig. 1). In addition, its estimates had poor382 precision and it led to extreme sensitivity estimates, with values close to 1 or -1 (Fig. 2).383 In contrast, hierarchical joint regression appearedmore suited to our data structure.Model FWHs384 had the largest elpdloo values for three traits out of four. Placing a hierarchical distribution on385 sensitivities constrained estimates and brought them closer to 0. This led to more satisfactory386 sensitivity estimates, since they were well below 1 in absolute value.387 Three strategies have previously been used to manage incomplete G×E data: i) subset the388 total dataset to obtain an almost balanced subset for the analysis (Ceccarelli and Grando, 2007),389 ii) predict missing data with a more or less complex model and use these predictions in the390 analysis (Kumar et al., 2012;Woyann et al., 2017), and iii) use amodel more robust to unbalanced391 data, provided it complies with model validation conditions (Assis et al., 2018; van Frank et al.,392 2019). We used the last strategy to maximise the amount of information from the data (less data393 excluded than in the first strategy) with a one-step process (unlike the second strategy).394 Cotes et al. (2006) used a Bayesian approach to estimate FW coefficients in a MET study in395 order to take prior information on germplasm coming from other studies into account. A similar396 approach was used by Couto et al. (2015), Foucteau and Denis (2001), and Nascimento et al.397 (2020) and was found to greatly improve the results. Here, we used little prior information. But398 in the future, previous evaluation studies may provide stronger prior information on germplasm399 behaviour.400
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Trait Registered Historic Landrace Cross Mixture

ᾱk
862d 1136c 1220a 1175b 1188b

[822, 901] [1096, 1175] [1181, 1258] [1138, 1210] [1147, 1228]Plant
η̄k

-0.11b -0.01a 0a 0.01a -0.01a

height [−0.2,−0.03] [−0.06, 0.05] [−0.05, 0.05] [−0.01, 0.04] [−0.09, 0.06]

S̄2
k

37688b 44351ab 44813a 45620a 43800ab

[28956, 48901] [34878, 56497] [35456, 57056] [36512, 57472] [34101, 56150]

W̄k
9067a 7959b 7988b 7880b 7772b

[7272, 11725] [6568, 10184] [6593, 10234] [6541, 10056] [6419, 10000]

ᾱk
2.02b 1.98ab 1.93a 1.96a 2.01b

[1.92, 2.12] [1.89, 2.08] [1.85, 2.02] [1.87, 2.04] [1.92, 2.11]Spike
η̄k

0.02a 0.02a -0.01a 0a -0.01a

weight [−0.06, 0.1] [−0.03, 0.08] [−0.05, 0.03] [−0.02, 0.03] [−0.07, 0.05]

S̄2
k

0.34a 0.34a 0.32a 0.33a 0.32a

[0.27, 0.42] [0.28, 0.41] [0.27, 0.39] [0.28, 0.39] [0.26, 0.39]

W̄k
0.08a 0.08a 0.08a 0.08a 0.08a

[0.08, 0.09] [0.08, 0.09] [0.08, 0.09] [0.08, 0.09] [0.08, 0.09]

ᾱk
11.08a 11.37b 11.4b 11.35b 11.47b

[10.73, 11.42] [11.06, 11.7] [11.09, 11.72] [11.04, 11.66] [11.13, 11.8]Protein
η̄k

0a 0a 0a 0a 0a

[−0.03, 0.04] [−0.02, 0.02] [−0.02, 0.02] [−0.01, 0.01] [−0.03, 0.03]

S̄2
k

3.4a 3.4a 3.39a 3.4a 3.4a

[2.72, 4.29] [2.73, 4.27] [2.72, 4.26] [2.73, 4.27] [2.72, 4.28]

W̄k
0.62a 0.61a 0.62a 0.62a 0.61a

[0.56, 0.68] [0.56, 0.68] [0.56, 0.68] [0.56, 0.68] [0.56, 0.68]

ᾱk
43.6ab 43.8a 43.1b 43.4ab 43.9a

[42.6, 44.6] [42.9, 44.8] [42.3, 43.9] [42.6, 44.1] [43, 44.8]TKW
η̄k

-0.03ab 0.08a -0.03b 0.01ab -0.05b

[−0.14, 0.09] [0, 0.17] [−0.09, 0.03] [−0.03, 0.05] [−0.14, 0.04]

S̄2
k

33.4ab 37.8a 33.3b 34.9ab 32.2b

[26.9, 41.4] [31.6, 45.7] [28.2, 39.7] [29.7, 41.2] [26.6, 39]

W̄k
13.2a 13.4a 13.4a 13.2a 13.1a

[11.5, 15.6] [11.6, 15.7] [11.7, 15.7] [11.6, 15.5] [11.4, 15.4]

Table 8 – Performance and stability of types of germplasm.For a given line, types with the same letter are not significantly different. ᾱk : meangermplasm effect of type k , η̄k : mean sensitivity (FW coefficient) of type k , S̄2
k : meanstatic stability of type k , and W̄k : mean ecovalence of type k . This table gives the poste-rior mean and the 95% credible interval of each parameter.

4.2. Extreme observations401

Extreme observations were more frequent in our dataset than expected under the normal402 distribution for three traits out of four (Fig. 4). For these traits, using a t distribution increased403 elpdloo values, and the estimate of the number of degrees of freedom of this distribution was404 smaller than 10 (Tab. 5). In our application, observations were germplasm means resulting from405 within-trial analyses rather than plot measurements. Extreme observations could occur for sev-406 eral reasons, for example because of the heterogeneity of within-trial residual variances and407 replications, because cultivation environments were less controlled, or because a non-negligible408 part of G×E interactions was not captured by the multiplicative term of the FWmodel. The nor-409 mal distribution was appropriate for protein content. It is difficult to explain why this trait had410 fewer extreme observations. A possible explanation could be that the measurement of protein411 content is more standardized than other trait measurements. For plant height, extreme values oc-412 curred only for non-replicated micro-plots with a global measurement and never with data from413 the average of 25 plants (Sect. 2.2.3), suggesting that the plot measurement is less accurate.414 For TKW, the kernel count could be affected by broken kernels due to over-drying or incorrect415 threshing settings leading to an overestimation of the number of kernels in the sample. Another416
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possible explanation is that protein content is less variable under different conditions than plant417 height and spike weight (Kazakou et al., 2014).418 Using a t distribution did not affect the estimates of germplasm and environmentmain effects.419 On the contrary, it improved the estimates of sensitivities. It reduced their shrinkage and allowed420 the multiplicative term of the FW model to better capture G×E interactions (Fig. 3).421 The Student distribution is expected to take better account of extreme data and to yield422 more robust estimates (Besag and Higdon, 1999; Lange et al., 1989; Rosa et al., 2003). Extreme423 data are more likely to occur when varieties are not replicated within trials, which is frequent424 in this dataset (Fig. 4). Rosa et al. (2003) found that a normal likelihood misestimated a main425 effect compared to a t likelihood. This effect was estimated less precisely with a normal distri-426 bution, which is consistent with our results for plant height, spike weight and TKW. A Student427 distribution appears to be a good solution for dealing with extreme data, in particular in stability428 analyses, where extreme observations are sometimes removed (this is justified when they are429 extreme because of experimental errors, but not when they are due to natural variability). While430 this distribution has recently been used to implement robust alternatives to BLUP (Gianola et431 al., 2018) or to handle environmental heterogeneity in a single trial (Cao et al., 2022), to our432 knowledge, it has not already been used in MET studies.433

4.3. Computing time434

Series of trials often include many genotypes and environments, leading to large data sets.435 Thus, their analysis using mixed or hierarchical models is generally computationally demanding436 (Smith et al., 2005). The computational load can be reduced by using approximate estimation437 methods (Nabugoomu et al., 1999) or efficient algorithms, such as algorithms based on sparse438 matrix operations (Gilmour et al., 1995; Thompson et al., 2003). Hierarchical joint regression439 has already been implemented using Gibbs sampling or Jags (Lian and de los Campos, 2016;440 van Frank et al., 2020). Our implementation based on Hamiltonian Monte Carlo and Stan was441 more efficient since it required fewer iterations. It allowed us to analyze large datasets in about442 6 minutes.443 To reduce computing time, the analyses were carried out in two steps. This two-stage ap-444 proach analyzed G×E means without taking account of their standard error, which can reduce445 the efficiency of the analysis (Welham et al., 2010; Yates and Cochran, 1938). It would be inter-446 esting to develop a one-stage method for analyzing plot measurements, in order to better take447 account of the heterogeneity of the within-trial residual variances and replications (Rivière et al.,448 2015a).449

4.4. Variance decomposition450

This article shows how to decompose the variance of observations for hierarchical FW mod-451 els, and how to define the proportions of variance explained by model terms and the coefficient452 of determination (R2). These quantities are considered as unknown parameters, which are then453 estimated from the data (Gelman et al., 2019; Helland, 1987). The coefficient of determination454 is usually defined as the proportion of the sum of squares accounted for by the model, but R2455 defined in this way may be larger than one in a Bayesian framework (Gelman et al., 2019). Our456 interpretation of R2 ensures that its estimate is smaller than one.457 This variance decomposition is useful to identify the model terms which are the most im-458 portant. In our application, the environment effects were the most important, explaining from459 51% for TKW to 77% for protein content of the variance of observations (Tab. 6). This result460 is consistent with the diversity of the cropping environments encountered (soil, climate, crop-461 ping practices...) and with previous studies (Lian and de los Campos, 2016; Patterson and Silvey,462 1980; Talbot, 1984).463

4.5. Germplasm main effects and stabilities464

Heritability was significant with plant height > TKW > spike weight > protein. Rivière et al.465 (2015b) found (with data included in our study) a similar ranking in heritability: plant height >466 TKW = protein > spike weight. Plant height is known to be quite heritable due to a relatively467
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simple genetic architecture with a few major genes, such as the well known Green Revolution468 Rht1 and Rht2 genes (Peng et al., 1999). In our study, the presence of both recently registered469 varieties and varieties dating from before the second World War, very likely led to varieties470 containing different alleles for these loci and increased variability for height. The decrease in471 plant height from landraces to historic varieties and registered varieties appears very clearly472 (Tab. 8) as also found in several studies (Bektas et al., 2016; Cantarel et al., 2021).473 FW coefficients explained a low proportion of the total variance (between 0.2% and 2.2%)474 and a low proportion of the variance of G×E interactions and errors (between 1.2% and 6.9%,475 Tab. 6). We can presume that the explanation of the interaction by the FW parameter is weaker476 the greater the number of environments, for example 29% with less than 10 environments (12477 studies), and 12% with more than 10 environments (11 studies, Brancourt-Hulmel et al., 1997).478 Other classical models, such as AMMI (additive main effect and multiplicative interaction) or479 GGE (G+G×E ) models, might explain a larger part of G×E interactions. Missing data estimation480 methods allow these models to be used when the data are highly unbalanced, with up to from481 40%unbalanced data for aMETwith less than 20 environments to 60%unbalanced data forMET482 with at least 40 environments (Woyann et al., 2017; Yan, 2013). However, these datasets are483 more balanced than ours, and, as found by Rodrigues et al. (2011), FW ismore robust than AMMI484 when the data are highly unbalanced (75%). In our study, most germplasm occurred in a limited485 number of environments, so that a parsimonious and very simple modelling of G×E interactions486 had to be used. An alternative approach would be to better characterize the environments and487 thus explain the environmental effects and part of the G×E interaction using environmental488 variables (Piepho and Blancon, 2023).489 Although sensitivities explained a rather low proportion of variance, FWHs model had larger490 elpdloo values than additive models for three traits out of four. In addition, for these traits, some491 sensitivity estimates were not negligible, with values close to 0.2 or 0.3. Interaction effects then492 represented 20% or 30% of environmental effects. Additive models were appropriate for the493 protein content trait. It was found that the multiplicative term of the FW model was not signifi-494 cant for protein content, both in a balanced network of 15 environments in Serbia (Hristov et al.,495 2010) and in 12 environments in Swiss organic trials (Knapp et al., 2017). On the contrary, Mut et496 al. (2010) found significant FW coefficients for a balanced network of 7 environments in Turkey.497 These contrasting results could be explained by differences between numbers of environments498 or between genetic diversities.499 For plant height, we found that registered varieties were more statically stable but less dy-500 namically stable (Tab. 8). This can be explained by the fact that there are only a few registered501 varieties in the trials, therefore they have little influence on the average height, which can fluctu-502 ate greatly between trials, and therefore the deviation from this average will be greater for this503 type.504 Static and dynamic stabilities were difficult to estimate since our series of trials was very505 unbalanced. In particular, raw estimates of these stabilities were not reliable, since they were506 very influenced by the unbalanced nature of the data. By using theoretical variances, the FW507 model allowed us to calculate simple indicators of static and dynamic stability in the wheat PPB508 dataset. However, comparisons between germplasm stability indicators only take account of509 the part of G×E interactions explained by the FWmodel. To our knowledge, the FWmodel has510 never been used for this purpose before.511 Dependence between stability andmean is widespread (Reckling et al., 2021), but in our case,512 the correlation was low, which simplified interpretation of the stability analysis. Several studies513 for different traits and with balanced MET found a very strong correlation between FW coeffi-514 cient and the static stability (Becker, 1981; Fasahat et al., 2015; Reckling et al., 2021). However,515 in our case, this relationship was even stronger (Tab. 7), probably because of the assumption516 that the variance of residuals did not depend on the genotype. As in many other studies, the517 residual variance was assumed to be independent of germplasm throughout our study. Allow-518 ing the residual variance to depend on the genotype could improve the estimates of stability519 indicators (Cotes et al., 2006; Couto et al., 2015). In particular, the dynamic indicator would be520 similar to the Shukla Stability Variance, i.e, the varietal variance of G×E interactions (Cotes et al.,521
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2006). However, estimating a residual variance and a FW coefficient for each germplasm could522 be difficult in our study, as most of the germplasm appeared in only a few environments.523 When relationships were significant, mixtures were always in a more stable (statically and524 dynamically) statistical group (Tab. 8). This result supports the fact that within-plot diversity sta-525 bilizes performances (Döring et al., 2015; Kiær et al., 2012).526 In the wheat PPB program, the populations tested were heterogeneous and their genetic527 composition could vary over years and farms (David et al., 2020). In this analysis, such variations528 were considered as part of the response of a population to a given environment for the sake529 of simplicity. Therefore the G×E interactions could be overestimated (resp. underestimated) if530 populations underwent diversifying (resp. stabilizing) selection pressures within farms.531

532 One aim of the project was to provide farmers with information to help them select new533 germplasm for testing in their farm. The statistical tools we developed sought to cope with the534 large degree to which this series of trials was unbalanced. Their objectives were the same as in535 other MET analyses : (i) estimate and predict germplasm values for traits of interest for breeding,536 (ii) study the stability of germplasm over several environments, (iii) select new germplasm to be537 tested in new locations (Cotes et al., 2006). MET are usually carried out to find stable germplasm538 that performwell on average overmany locations, or to detect special local adaptations to certain539 environments (Annicchiarico et al., 2005; Gauch et al., 2008). Here, while farmers were mostly540 interested in selecting the best germplasm adapted to their local pedo-climatic conditions, farm-541 ing practices and marketing objectives, information retrieved from the farmers’ network on new542 varieties to introduce in their trials could also be useful.543

5. Conclusion544

The proposed hierarchical model aims to improve the estimates of the parameters of the545 FW model from unbalanced datasets. This model was complex and was easier to implement546 in a Bayesian framework. Placing hierarchical distributions on model parameters and modelling547 residuals using a t distribution improved the estimates ofmain and interaction effects. Thismodel548 allowed us to estimate static and dynamic stability indicators despite the high level of data im-549 balance. Main effects and stability indicators provide information on the behaviour of genotypes550 in different environments, which farmers could use in their selection process.551 Participatory research raises new research questions and contributes to the development of552 newmethods for societal action (Kastenhofer et al., 2011). In PPB programs, all themethodology553 is based on collective and collaborative work and action between farmers, associations of farm-554 ers and researchers (Brac de la Perrière et al., 2011). New statistical methods can contribute to a555 better use of such complex multi-environment data in the selection process, and more generally556 to the effectiveness of participatory research (Martin and Sherington, 1997).557

Supplementary information558

Appendix A. Models559

Tab. A.1 provides supplementary information on the prior distribution of model parameters.560

λµ λε µemp σempPlant height 1200 500 1188 234Spike weight 2.00 0.80 2.03 0.58Protein 12.0 4.0 11.5 1.9TKW 45.0 10.0 43.7 5.8
Table A.1 – Known values of the parameters of the prior distribution (λµ, λε), empiricalmean (µemp) and standard deviation (σemp) of traits.
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Appendix B. Model comparison561

Tab. B.1 provides supplementary information on the estimation of the elpdloo criterion. Fig. B.1562 provides supplementary information on the comparison of models FWHs and ADHs. Fig. B.2563 provides supplementary information on the comparison of models ADHs and ADHn.564

Trait Model k < 0.5 0.5 < k < 0.7 0.7 < k < 1 k > 1ADHn 1396 32 7 2ADHs 1437 0 0 0Spike weight FWHn 1397 31 7 2FWHs 1437 0 0 0FWs 1404 25 7 1ADHn 1781 23 0 0ADHs 1804 0 0 0Plant height FWHn 1761 39 4 0FWHs 1804 0 0 0FWs 1664 127 12 1ADHn 1314 16 2 0ADHs 1331 1 0 0TKW FWHn 1300 31 1 0FWHs 1329 3 0 0FWs 1121 150 53 8ADHn 1955 26 1 0ADHs 1982 0 0 0Protein FWHn 1907 69 6 0FWHs 1981 1 0 0FWs 1937 43 2 0
Table B.1 – Estimates of tail shape parameters (k ) used to estimate elpdloo. The contri-bution of each observation to elpdloo, i.e., ln(p(Yij |Y−ij)), was estimated using Paretosmoothed importance sampling (Vehtari et al., 2017). For each observation, the largestimportance weights of the importance sampling were smoothed using a generalizedPareto distribution with shape parameter k . Estimates of pointwise contributions with
k > 0.7 are less reliable.
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Figure B.1 – Comparison ofmodels FWHs and ADHs forthe distribution of germplasmmain effects (α), environmentmain effects (θ) and residuals(ε) for each trait. Red: modelFWHs; Blue: model ADHs.
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Data, script, code, and supplementary information availability580

Data and script for models are available online: DOI 10.57745/SUTZ9U https://doi.org/581

10.57745/SUTZ9U .582
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