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Complex singularities and contact topology

PATRICK POPESCU-PAMPU

Abstract

This text is a greatly expanded version of the mini-course I gave during the school Winter

Braids VI organized in Lille between 22–25 February 2016. It is an introduction to the study
of interactions between singularity theory of complex analytic varieties and contact topology. I
concentrate on the relation between the smoothings of singularities and the Stein fillings of their
contact boundaries. I tried to explain basic intuitions and facts in both fields, for the sake of the
readers who are not accustomed with one of them.
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1. Introduction

Let (X, ) be an isolated singularity of equidimensional complex analytic set. One may look at
privileged representatives of it by choosing a representative in (Cn,0) and by taking its intersections
with sufficiently small Euclidean balls centered at the origin. One almost gets in this way a compact
manifold with boundary: the only non-smooth point is the origin. By a fundamental theorem of
Whitney, such a representative is homeomorphic to a cone over the boundary. As this boundary is
independent of the choices of embedding and small ball, we will call it simply the boundary of the
singularity (X, ), and we will denote it by ∂(X, ).

As boundary of a complex manifold, which is always naturally oriented, ∂(X, ) gets also a nat-
ural orientation. In the sequel we will always consider it endowed with this orientation. This is a
non-trivial supplementary structure, as in dimension at least 3 the orientable manifolds do not
necessarily have orientation-reversing self-diffeomorphisms.

Not all closed oriented manifolds are boundaries of compact oriented manifolds: Thom’s cobor-
dism theory provides precise measuring tools for this phenomenon. What about the singularity
boundaries? Well, Hironaka’s celebrated theorem implies that there exists a resolution of singulari-
ties of (X, ). Namely, informally speaking, one may replace the point  of X by a compact analytic
space, such that the resulting space X̃ is smooth. In this process, one does not touch the bound-
ary of X, therefore ∂(X, ) is also the boundary of an oriented manifold. In fact, as soon as X is of
dimension at least 2, one gets an infinite number of homeorphism types of resolutions, therefore
an infinite number of homeomorphism types of fillings of ∂(X, ) (here and in the sequel, we simply
say that a compact oriented manifold F whose boundary is identified with a given closed oriented
manifold M is a filling of M).

If resolutions of (X, ) lead to an infinite number of fillings, by contrast deformations of (X, ) lead
necessarily to a finite number of them. Informally speaking, a deformation of (X, ) is a germ of
family of complex analytic spaces having a special member identified with (X, ). By repeating the
construction with the choice of small ball for the total space of the deformation, one may associate
a generic fiber over each irreducible component of the parameter space of a given deformation,
well-defined up to homeomorphisms. Its boundary may be canonically identified up to isotopy with
∂(X, ). Therefore, when the generic fiber is smooth, one gets again a filling of ∂(X, ). One says
in this case that the corresponding irreducible component is a smoothing component, and that the
generic fiber is the associated Milnor fiber.

A fundamental theorem of Grauert states that there exists a so called versal deformation from
which all other deformations may be obtained by base-change. In particular, the Milnor fibers of its
smoothing components give all the Milnor fibers obtainable from deformations. As the parameter
space of a versal deformation has a finite number of irreducible components, one gets in this way
a finite number of fillings of ∂(X, ).

The aim of this text is to explain that contact topology may be useful in order to understand the
topological structure of the Milnor fibers of a given isolated singularity. The reason is that:

• the boundary ∂(X, ) is canonically a contact manifold and that the Milnor fibers of (X, ) are
Stein fillings of this manifold;

• given a contact manifold, there are serious constraints on the topological types of its Stein
fillings; for instance, a theorem of Eliashberg states that any Stein filling of the contact
boundary of (C2,0) (which is the standard contact 3-sphere) is diffeomorphic to a ball.

The general question we want to examine is:

How to characterize Milnor fibers among the Stein fillings of the contact boundary of an isolated
singularity?

As a generalization of Eliashberg’s theorem stated above, Némethi and the author proved Lisca’s
conjecture that for cyclic quotient singularities (that is, the singularities of normal toric surfaces),
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the Milnor fibers give all possible diffeomorphism types of Stein fillings of their contact bound-
aries. It is completely unknown how to characterize the surface singularities for which one has an
analogous theorem. The present notes describe the state of the art about these questions.

I would like to mention that in recent years Mark McLean has proved very interesting results
relating analytical invariants of isolated complex singularities of dimension at least 3 and contact
topological invariants of their links. I won’t say anything about his works here, sending the inter-
ested reader to the original papers [122] and [123].

This text is intended to be an introduction to the topology and contact topology of isolated com-
plex singularities and of their smoothings, for students who know the basic languages of complex
algebraic or analytic geometry as well as of differential topology. I tried to describe important intu-
itions and examples. The majority of results are given without full proofs, but they are accompanied
with heuristical explanations whenever possible. Each section concludes with a list of references for
a deeper study of its material.

As a starting point for writing the present notes, I used my habilitation [162]. The recent texts
which are closest in spirit to it are the surveys [135] of Némethi, [17] of Bhupal and Stipsicz and
[149] of Ozbagci. If the first survey concentrates on the Milnor fibers of normal surface singularities,
the two other ones focus on the basic techniques for studying the topological structure of Stein
fillings of given contact 3-manifolds.

Let me briefly describe the contents of the various sections of the paper:

• Subsection 2.1 contains an explanation of basic notions about complex analytic singulari-
ties (dimension, irreducible components, local ring, multiplicity). Subsection 2.2 introduces
the basic classes of singularities of arbitrary dimension discussed in the sequel (hypersur-
faces, complete intersections, Cohen-Macaulay, normal, Gorenstein and quotient singulari-
ties). Subsection 2.3 describes the general technique of study of singularities through their
modifications (in particular the blow-ups) and resolutions.

• Subsection 3.1 explains basic facts about intersection theory of divisors on smooth surfaces
(intersection numbers, the arithmetic genus and the adjunction formula). Subsection 3.2
presents the exceptional divisor of a resolution of normal surface singularity and basic ob-
jects associated with it (its weighted dual graph, its intersection form, the Lipman semigroup,
the fundamental cycle and the anti-canonical cycle). Subsection 3.3 explains the basic facts
about the topological structure of normal surface singularities (the notion of boundary of
such a singularity, the plumbing of special 3-manifolds and 4-manifolds, the notion of graph
manifold, the fact that the boundaries of normal surface singularities are graph manifolds
and the way to deduce the homology of the boundary from the weighted dual graph of a
resolution). Subsection 3.4 introduces two notions of genus for normal surface singularities
and two classes of such singularities defined in terms of those genera, the rational and the
minimally elliptic singularities. Several subclasses are emphasized (the Kleinian, the cyclic
quotients, the simple elliptic and the cusp singularities). Section 3 concludes with Figure 3.6,
which represents (by an Euler-Venn diagram) the various inclusion relations between the
classes of surface singularities discussed so far.

• Subsection 4.1 presents the method initiated by Milnor for studying the topology of isolated
complex hypersurface singularities. Subsection 4.2 presents basic facts about deformations
of singularities (the notion of deformation, miniversal deformations, smoothings and their
Milnor fibers, Grauert’s theorem about the existence of miniversal deformations of isolated
singularities). Subsection 4.3 presents basic facts about the Milnor fibers of the smoothings
of normal surface singularities (various formulae for the inertia index of their intersection
form in terms of invariants of the singularity and of the dimension of the associated smooth-
ing component). Subsection 4.4 presents in a detailed way Pinkham’s first example of normal
surface singularity with two smoothing components, and describes the structure of the cor-
responding Milnor fibers.
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• Subsection 5.1 presents basic analogies between real affine geometry and complex geom-
etry, which are useful whenever one begings to think seriously about symplectic or contact
aspects of complex manifolds. Subsection 5.2 presents basic facts about strict plusrisub-
harmonic functions and Stein manifolds (differential-geometric objects associated to such
a function and the theorem about the homotopy type of such a manifold). Subsection 5.3
presents basic facts about contact structures, contact manifolds and their various types of
fillings (Stein, holomorphic, strong and weak symplectic).

• Subsection 6.1 introduces the notion of contact boundary of an isolated complex singularity
and basic theorems about it (the fact that a holomorphic function with isolated critical point
defines a Milnor open book which supports the contact structure on the boundary in the
sense of Giroux and, as a consequence, the fact that in complex dimension 2 this contact
structure is determined by the topological type). Subsection 6.2 contains a description of the
types of normal surface singularities for which it was proved that their Milnor fibers exhaust
their Stein fillings, with details about the combinatorial objects appearing in the special case
of cyclic quotient singularities.

• Section 7 contains a list of open questions about contact topological aspects of singularities.

Acknowledgments. The writing of this text was partially supported by the French grants ANR-
12-JS01- 0002-01 SUSI and Labex CEMPI ANR-11-LABX-0007-01. I am grateful to Arnaud Bodin and
Octave Curmi for their careful reading of a previous version of this text and for their remarks.
I am also grateful to András Némethi and Bernard Teissier for having kindly answered to several
questions. Finally, I would like to thank the organizers of the winter school – Paolo Bellingeri, Arnaud
Bodin, Vincent Florens, Jean-Baptiste Meilhan and Emmanuel Wagner – for having invited me to talk
about this subject.

2. Generalities about complex analytic singularities and their resolutions

2.1. What is a singularity?

By definition, a complex analytic set is a Hausdorff topological space which may be covered
by an atlas whose charts are identifed with the following models: simultaneous zero-loci inside
open subsets of Cn of sets of holomorphic functions. Moreover, one asks the changes of charts
to be also holomorphic. One may then define easily the notions of holomorphic function and
holomorphic map from one complex analytic set to another one. In particular, one may speak
about holomorphic isomorphisms, also called holomorphic equivalences.

If ƒ1, ..., ƒp are holomorphic functions on a complex analytic set X, we will denote by Z(ƒ1, ..., ƒp) ,→
X their common zero-locus, which is a closed complex analytic subset of X.

Complex analytic sets may have singular points:

Definition 2.1. Let X be a complex analytic set. A point  ∈ X is a singular point of X if there
does not exist a neighborhood of  in X, which is holomorphically equivalent to an open set in some
Cn. A point of X which is not singular is called regular. If all the points of X are regular, then we
say that X is a complex manifold.

One may show that the subset Sing X of singular points of X is a closed complex analytic subset
of X, strictly included in X (see [90, Corollary 6.3.4 and Remark 4.3.7]).

According to common usage among singularity theorists, we use also the following vocabulary,
in which we allow by abuse of language the point  to be regular on X:

Definition 2.2. A singularity is a germ (X, ) of complex analytic set. In this case, one says that
X is a representative of the singularity and that  is its base point.
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Figure 2.1. The folium of Descartes

A singularity is irreducible if it cannot be written as a union of two singularities different from
it. An irreducible component of a singularity is an irreducible subsingularity which is maximal for
inclusion. A singularity is isolated if there exists a representative of it which is smooth outside its
base point.

One may show that each singularity has a finite number of irreducible components.
The notion of irreducibility may be also defined for global analytic sets, not only for germs. It may

be shown that any irreducible germ has an irreducible representative. The converse is not true, in
the sense that irreducible complex analytic sets may have reducible germs at some points:

Example 2.3. Consider the folium of Descartes, defined by the equation 3 + y3 − 3y = 0. It may
be shown that it is an irreducible complex analytic set, but that its singularity at the origin has two
irreducible components, which may be guessed by looking at the locus of real points (see Figure
2.1).

If X is an irreducible complex analytic set, then it may be shown that its subset of regular points
is connected and locally isomorphic to an open set of Cn, for some n ∈ N. In this case, one says that
n is the complex dimension of X. When X is reducible, its complex dimension is by definition the
maximal dimension of its irreducible components. If all of them have the same dimension, then X is
called equidimensional. We will use the same vocabulary when speaking about singularities and
we will denote by dim(X, ) the complex dimension of the singularity (X, ).

Example 2.4. If X is the union of a plane and a transversal line inside C3, then its irreducible
components have dimension 2 and 1 respectively. Therefore the complex dimension of X is 2.

Another essential invariant of singularities is their multiplicity, which is a local version of the
degree of a projective variety:

Definition 2.5. Let (X, ) be a singularity. Fix an embedding (X, ) ,→ (Cn,0). Then the multiplicity
m(X, ) of (X, ) is the number of intersection points of a sufficiently small representative of X with
a generic affine subspace of Cn of complementary dimension to that of (X, ), not passing through
0 but very close to 0.

The previous definition is rather intuitive, but needs some work to be made precise. What means
to be “generic” and “very close” and why does one get a number which is independent of the choice
of embedding? One may find an answer to those questions in de Jong and Pfister [90, Theorem
4.2.24].

III–5



Patrick Popescu-Pampu

In order to avoid those technicalities, one turns usually to a more algebraic view of singularities,
through their local rings. Recall first the definition of such rings:

Definition 2.6. A commutative ring is called local if it has only one maximal ideal.

The ring C{z1, ..., zn} of power series in the variables z1, ..., zn, which are convergent in a neigh-
borhood of 0 ∈ Cn (we will simply speak in the sequel of convergent power series), is an example
of local ring. Its maximal ideal consists of the series whose constant term vanishes. This example al-
lows to explain the qualificative “local”. Indeed, C{z1, ..., zn} consists of the holomorphic functions
defined locally in a neighborhood of the point 0 in the complex analytic manifold Cn. Its unique
maximal ideal corresponds then to the functions vanishing at 0.

A power series ƒ ∈ C{z1, ..., zn} is called reduced if its prime factorization inside C{z1, ..., zn} has
only factors of multiplicity 1. One may show that this is equivalent to the fact that the quotient ring
C{z1, ..., zn}/(ƒ ) of convergent series modulo multiples of ƒ has no non-trivial nilpotent elements.
This motivates the following definition:

Definition 2.7. A local ring is called reduced if its only nilpotent element is 0.

According to Definition 2.2, singularities may be defined by the vanishing of a set of convergent
power series. The simplest case is that of hypersurface singularities, when one takes only one
power series ƒ . Note that the product of the distinct prime factors of ƒ is reduced and defines the
same hypersurface singularity as ƒ . Therefore, one may assume that ƒ is reduced. In this case, the
ring of restrictions to X = Z(ƒ ) of the convergent power series on Cn is again local and it may be
canonically identified with the quotient ring C{z1, ..., zn}/(ƒ ) considered above. We call it the local
ring of the hypersurface singularity (X,0). More generally:

Definition 2.8. The local ring OX, of the complex analytic set X at its point  is the ring of
germs of holomorphic functions defined on X in a neighborhood of .

One may show that such a ring is indeed always local, its unique maximal ideal mX, consisting
of the holomorphic functions which vanish at . Moreover, such a local ring is always reduced,
because a function which admits a power identically vanishing coincides with the zero function.

If (X,0) ⊂ (Cn,0) is defined as the germ at 0 of Z(ƒ1, . . . , ƒp), where ƒ1, . . . , ƒp ∈ C{z1, ..., zn}
generate the ideal of convergent power series vanishing on (X,0), then one gets a canonical iden-
tification:

OX,0 ' C{z1, ..., zn}/(ƒ1, . . . , ƒp).

More generally, one associates to each open set U of a complex analytic set X, the ring of
holomorphic functions defined (at least) on U. One gets in this way a sheaf of rings, called the
structure sheaf OX of X. The local ring OX, may be canonically identified to the ring of germs at
 of sections of this structure sheaf.

In fact, in order to get continuity properties for various numerical invariants in reasonable families
of complex sets, as well as more functorial constructions, one needs to allow also complex analytic
sets with structure sheaves admitting nilpotent elements. For instance, one allows as local ring
of a hypersurface singularity (Z(ƒ ),0) ⊂ (Cn,0) the quotient C{z1, ..., zn}/(ƒ ), even when ƒ is not
reduced. In such a generality, one speaks about complex analytic spaces instead of sets.

It is the following theorem of Samuel [173] concerning the local ring of a singularity, which is
turned usually into a definition of its multiplicity:

Theorem 2.9. Let O be the local ring of the singularity (X, ) and m be its maximal ideal. Then the
function:

ƒ : Z+ −→ Z+

k −→ dimC

� O

mk

�

becomes a polynomial function of degree dim(X, ) for k large enough. The leading coefficient of

this polynomial is equal to
m(X, )

dim(X, ) !
.
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In order to get a general view of the main concepts of complex analytic geometry, one
may read Fischer’s book [55]. A carefully written introduction to singularities of complex
analytic spaces is de Jong and Pfister’s book [90].

2.2. Some classes of singularities in arbitrary dimension

Let us come back to a hypersurface singularity (X,0) defined by a reduced convergent power
series ƒ . One may describe in the following way its singular locus:

Proposition 2.10. Let (X,0) be the hypersurface singularity in Cn defined by the vanishing of the

reduced convergent power series ƒ ∈ C{z1, ..., zn}. Then Sing X is the subset Z

�

∂ƒ

∂z1
, . . . ,

∂ƒ

∂zn

�

of X

defined by the vanishing of all the partial derivatives of ƒ .

The fact that a point of a representative of X is regular whenever there exists a partial derivative
∂ƒ

∂z
which does not vanish at it, is a consequence of the holomorphic version of the implicit function

theorem (see [90, Theorem 3.3.1]). It is a subtler point to understand why the remaining points of
the representative belong necessarily to the singular locus, as introduced in Definition 2.1 (see [90,
Section 4.3]).

Example 2.11. Assume that ƒ (z1, ..., zn) := z11 + · · · + z
n
n

, where 1, ..., n ∈ N∗. Proposition 2.10
allows to see immediately that the hypersurface Z(ƒ ) of Cn is smooth outside the origin, and that
it is also smooth at the origin if and only if at least one of the exponents k is equal to 1. When all
the k are ≥ 2, one gets therefore an isolated hypersurface singularity, called a Pham-Brieskorn
singularity. This name honors the works [157] of Pham and [20] of Brieskorn. One may learn
details about the relation between those works and their influence on the development on the
topological study of singularities in Brieskorn’s paper [23].

The singularities which are not hypersurfaces need at least two functions in order to be defined
as subvarieties of a smooth germ (Cn,0). It may be shown that each function drops the ambient
dimension by at most one. In fact one has the following result, which is a particular case of Krull’s
principal ideal theorem (see [90, Section 4.1]):

Proposition 2.12. Let (X, ) be a singularity and ƒ ∈ OX,. Then dimZ(ƒ ) ≥ dimX− 1, with equality
whenever ƒ is not a zero-divisor in OX,.

Geometrically, the fact that an element of the local ring of a singularity is not a zero-divisor
means that its zero-locus does not contain any irreducible component of the singularity.

Example 2.13. (continuation of Example 2.4, see Figure 2.2). Let X be the union of the plane
Z(z1) of the coordinates (z2, z3) and of the z1-axis inside C3. The local ring of the singularity (X,0)
is isomorphic to C{z1, z2, z3}/(z1z2, z1z3). The vanishing locus Z(z1) ,→ X is simply the plane of
coordinates (z2, z3), therefore it has the same dimension as (X,0). This is due to the fact that z1 is
a zero-divisor in the local ring C{z1, z2, z3}/(z1z2, z1z3). Note that this example shows also that the
implication stated in Proposition 2.12 cannot be extended into an equivalence. Indeed, Z(z2) ,→ X
is the union of the z1-axis and of the z3-axis, therefore dimZ(z2) = dimX−1, but z2 is a zero-divisor
in the local ring OX,0.

Unlike the previous example, the following generalizations of hypersurface singularities are al-
ways equidimensional:

Definition 2.14. A singularity is called a complete intersection if it is analytically isomorphic
to Z(ƒ1, ..., ƒp) ⊂ (Cn,0), where ƒ1, . . . , ƒp ∈ C{z1, ..., zn} and for any k ∈ {1, . . . , p}, ƒk is not a zero-
divisor in the local ring C{z1, ..., zn}/(ƒ1, . . . , ƒk−1).
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Figure 2.2. An illustration of Krull’s principal ideal theorem

Let us introduce the following standard vocabulary used in this situation:

Definition 2.15. If (X, ) is a singularity, then a finite sequence (ƒ1, ..., ƒp) ∈ OX, is called a
regular sequence on (X, ) if for any k ∈ {1, . . . , p}, ƒk is not a zero-divisor in the local ring
OX,/(ƒ1, . . . , ƒk−1).

Therefore, complete intersection singularities are those defined by a regular sequence on a
smooth germ. One may show that they are a particular case of Cohen-Macaulay singularities, which
are maximal from the view-point of existence of regular sequences:

Definition 2.16. A singularity (X, ) is called Cohen-Macaulay if it has a regular sequence with
dim(X, ) elements.

Even if they are more general than complete intersections, Cohen-Macaulay singularities are also
necessarily equidimensional (see [90, Corollary 6.5.8]). This gives a way to see topologically that
the singularity of Example 2.13 is not Cohen-Macaulay.

Even if a singularity is equidimensional, one may conclude sometimes that it is not Cohen-
Macaulay simply by looking at its singular locus. Indeed, one has the following theorem of Hartshorne
(see [44, Theorem 18.12]):

Theorem 2.17. A Cohen-Macaulay singularity is connected in codimension 1, that is, one cannot
disconnect it by removing a subsingularity of codimension at least 2.

Example 2.18. As a variation of Example 2.13, consider the union of the planes of coordinates
(z1, z2) and (z3, z4) in C4. One gets an equidimensional singularity of dimension 2 by taking the
germ at the origin 0. As one may disconnect it by removing 0, which is a subsingularity of codi-
mension 2, Theorem 2.17 shows that this singularity is not Cohen-Macaulay. Therefore, it is nor a
complete intersection.

Let us introduce another general class of singularities, which will be very important in the sequel:

Definition 2.19. A singularity is called normal if it is irreducible and if one of the following equiv-
alent properties holds:

1. its local ring is integrally closed in its field of fractions;

2. any bounded function defined on a representative of the singularity and holomorphic outside
a strict subsingularity, extends to a holomorphic function over the full singularity;

3. the codimension of the singular set is at least 2 and there exists a regular sequence of length
at least 2.

A complex analytic set is called normal if all its germs are normal.
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It is a theorem that the previous properties are equivalent (see [90, Theorems 4.4.11, 4.4.15]).
Reexpressed usually in the language of commutative algebra the third property is called Serre’s
criterion (see [90, Theorem 4.4.11] or [44, Section 11.2]).

One may show that there exists a regular sequence of length at least 2 on a singularity (X, ) if
and only if any germ ƒ ∈ OX, which is not a zero divisor may be extended to a regular sequence of
length at least 2. Therefore, in order to show that a singularity is not normal, it is enough to find a
germ ƒ which does not have this property. This argument is used in Example 2.21 below.

By Riemann’s extension theorem, all complex manifolds are normal. More generally, one has the
following theorem, which explains why we introduced the notion of normality as a companion to
that of being Cohen-Macaulay:

Theorem 2.20.

1. A surface singularity (that is, an equidimensional germ of dimension 2) is normal if and only
if it is an isolated Cohen-Macaulay singularity.

2. If the singular locus of a Cohen-Macaulay singularity is of codimension at least 2, then the
singularity is normal.

This theorem may be proved using Serre’s criterion (3) stated in Definition 2.19. Note that the
conditions of irreducibility and isolatedness of the singularity alone do not imply that a surface
singularity is normal:

Example 2.21. This example is taken from [90, Example 6.5.6 (6)]. Consider the germ at the origin
of the surface X of C4 described parametrically by the map (s, t) → (, y, z, ) = (s, st, t2, t3). The
Jacobian matrix being of rank 2 for (s, t) 6= (0,0), this map is an immersion outside the origin. It
is easy to check that it is moreover injective. Therefore, (X,0) is an irreducible isolated surface
singularity. One may check (see again [90, Example 6.5.6 (6)]) that it is not Cohen-Macaulay, as
the restriction of  − z to its local ring cannot be extended to a regular sequence of length 2. By
point (1) of Theorem 2.20, one sees that (X,0) is not normal.

Cohen-Macaulay singularities are not necessarily irreducible, in contrast with normal ones. There-
fore, one may be surprised by the implication of Theorem 2.20 stating that isolated Cohen-Macaulay
singularities are normal, therefore irreducible. Note that this fact may be seen as a consequence of
Theorem 2.17. Indeed, an isolated singularity (X, ) with at least two irreducible components may
be disconnected just by removing the point , which shows that it is not connected in codimension
1.

It may be shown that each complex analytic set X may be normalized, in the following sense:

Definition 2.22. A normalization of a complex analytic set X is a normal analytic set X endowed
with a finite (that is, proper with finite fibers) surjective morphism ν : X→ X which is an isomorphism
over a dense open subset of X.

It is a theorem that a normalization morphism is unique up to a unique isomorphism over X.
That is, if ν1 : X1 → X and ν2 : X2 → X are both normalizations of X, then there exists a unique
isomorphism ϕ : X1 → X2 such that ν2 ◦ ϕ = ν1. This allows to speak about the normalization
morphism.

The change of topology produced by the normalization morphism is partially described by the
following proposition:

Proposition 2.23. Let X be a complex analytic set. The normalization morphism ν : X → X is
a homeomorphism if and only if all the germs of X at its various points are irreducible singulari-
ties. More generally, for each  ∈ X, the cardinal of ν−1() is equal to the number of irreducible
components of the singularity (X, ).

Informally speaking, the combination of this proposition with the fact that normal complex ana-
lytic sets have a singular locus of codimension at least 2 may be expressed in the following way:
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Figure 2.3. Whitney’s umbrella

Figure 2.4. A cross cap

normalization separates the local irreducible components and removes the singular locus of codi-
mension 1.

Example 2.24. This example is treated with more details in [90, Example 4.4.7 (5)]. Consider the
surface X = Z(ƒ ) in C3, where ƒ (z1, z2, z3) = z22 − z1z

2
3. Its set of points with real coordinates is called

Whitney’s umbrella (see Figure 2.3). This denomination refers to Whitney’s papers [203] and
[204], in whose sections 4 and 3 respectively its portion of pure dimension 2 was presented as a
model for the two singularities of a “cross cap” (one of the standard models of the real projective
plane in R3, see Figure 2.4) at the ends of its segment of self-intersection. Whitney proved in
those papers that such singularities appear generically on images of smooth maps from surfaces
to 3-manifolds. He also proved an extension of this property for generic maps from n-dimensional
manifolds to (2n − 1)-dimensional ones, for arbitrary n ≥ 2. Let us come back to X = Z(ƒ ) ⊂ C3. It
may be seen as the image of the map ν : C2 → C3 defined by (s, t)→ (z1 = s2, z2 = st, z3 = t). One
may verify easily using this formula that ν is a normalization of X, according to Definition 2.22. It is
also immediate to check that the fibre above a point of the z1-axis which is distinct from the origin
consists of two points. This corresponds to the fact that at such a point two sheets of X intersect
transversally. By contrast, the fibre above the origin consists of a single point, the origin of C2,
which corresponds to the fact that (X,0) is an irreducible singularity.
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Complete intersections are not only Cohen-Macaulay singularities, they are moreover Goren-
stein, in the following sense:

Definition 2.25. A Cohen-Macaulay singularity (X, ) is Gorenstein if its dualising module ωX, is
free as an OX,-module.

The dualising module ωX, is the germ at  of the dualising sheaf ωX, which is well-defined on
any Cohen-Macaulay set (that is, a complex analytic set all of whose germs are Cohen-Macaulay). In
restriction to the smooth locus X \ SingX, the dualising sheaf ωX is simply the sheaf of holomorphic
differential forms of maximal degree. It is more complicated to understand what it means along the
singular locus, and we won’t enter into details in this text, as we don’t need this generality. We will
be only interested by the case in which X is not only Cohen-Macaulay but moreover normal. Then
the situation is simpler:

Proposition 2.26. Suppose that X is a Cohen-Macaulay and a normal complex analytic set. Then

ωX ' ∗ωX\SingX

where X \ SingX

,→ X denotes the inclusion morphism. In particular, (X, ) is Gorenstein if and only

if there exists a nowhere-vanishing holomorphic form of maximal degree defined on the smooth
locus of some neighborhood of .

Example 2.27. Let us explain why hypersurface singularities are Gorenstein, in the particular
case of isolated surface singularities. Consider such a singularity (X,0) = (Z(ƒ ),0) ⊂ (C3,0), where
ƒ ∈ C{z1, z2, z3}. In restriction to X, one has the equality:

dƒ = 0 ⇐⇒
∂ƒ

∂z1
dz1 +

∂ƒ

∂z2
dz2 +

∂ƒ

∂z3
dz3 = 0

Taking successively its exterior product with dz1, dz2, dz3, one gets the following equality in restric-
tion to X:

(2.1)
dz1 ∧ dz2

∂ƒ

∂z3

=
dz2 ∧ dz3

∂ƒ

∂z1

=
dz3 ∧ dz1

∂ƒ

∂z2

.

By the holomorphic version of the implicit function theorem (see [90, Theorem 3.3.1]), the first

expression is holomorphic and non-vanishing over the open subset X \ Z
�

∂ƒ

∂z3

�

of X. One has the

analogous properties for the second and third expressions. Therefore, the rational 2-form defined
by any one of the three expressions in equality (2.1) is non-zero and holomorphic outside the origin,
by our assumption that (X,0) has an isolated singularity and by Proposition 2.10. Being a complete
intersection, (X,0) is automatically Cohen-Macaulay. Being an isolated singularity, we know by
Theorem 2.20 (1) that (X,0) is normal. We conclude then that (X,0) is Gorenstein using Proposition
2.26.

Both Cohen-Macaulay and Gorenstein singularities behave well under hyperplane sections using
non-zero divisors (see Bruns and Herzog [24, Proposition 3.1.19] or Ishii [86, Proposition 5.3.12]):

Proposition 2.28. Let (X, ) be a singularity and ƒ ∈ OX, a non-zero divisor. Assume that the
complex analytic subgerm (Z(ƒ ), ) ,→ (X, ) defined by ƒ is reduced. Then:

• (X, ) is Cohen-Macaulay if and only if (Z(ƒ ), ) is Cohen-Macaulay;

• (X, ) is Gorenstein if and only if (Z(ƒ ), ) is Gorenstein.

Before ending this section, let us introduce another class of singularities of arbitrary dimension:

Definition 2.29. A quotient singularity is a singularity analytically isomorphic to a germ ob-
tained as a quotient of a smooth germ by a finite group of holomorphic automorphisms.
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Quotient singularities are normal, as proved by Cartan [27]. By a local linearization theorem, one
may show that in all dimensions quotient singularities are isomorphic to germs of the form Cn/G,
where G is a finite subgroup of GL(n,C).

Say that an element of the general linear group GL(n,C) is a complex reflection if it fixes point-
wise a hyperplane. By a theorem of Chevalley [31], the quotient of Cn by a finite group generated
by complex reflections is again isomorphic to Cn. Now, if G ⊂ GL(n,C) is an arbitrary finite group, its
subgroup Gc generated by complex reflections is a normal subgroup, therefore one may construct
the quotient Cn/G as a two-step quotient (Cn/Gc)/(G/Gc). One can show that the induced linear
action of G/Gc on Cn/Gc ' Cn contains no non-trivial complex reflections, that is, it is a so-called
small linear group:

Definition 2.30. A finite subgroup G ⊂ GL(n,C) is called small if it contains no complex reflection.

We see that any quotient singularity is obtainable as the germ at 0 of the quotient of Cn by a
small finite linear group. Moreover, Prill [167] proved that the corresponding linear representation
is encoded in the analytical structure of the corresponding quotient singularity.

Example 2.31. The simplest quotient singularity is obtained as the quotient of C2 by the antipodal
involution σ : (t1, t2)→ (−t1,−t2) (more precisely, by the linear group of order 2 generated by this
involution). Note that σ is not a complex reflection, therefore this linear group is small. One may
compute the quotient by finding first its algebra of regular (polynomial) functions: it is the subalge-
bra of C[t1, t2] left invariant by the involution σ. An easy computation shows that this subalgebra
is generated by z1 = t21 , z2 = t22 , z3 = t1t2. Therefore, it is isomorphic to C[z1, z2, z3]/(z1z2 − z23).
This shows that the quotient of C2 by the antipodal involution σ is isomorphic to the hypersurface
singularity of C3 defined by the polynomial z1z2 − z23. Note that Proposition 2.10 allows to show
immediately that this singularity is isolated.

For details about the algebraic aspects of Cohen-Macaulay singularities, one may con-
sult Bruns and Herzog’s treatise [24]. Information about the topology of isolated such
singularities may be found in Kollár [95].

For details about the notions of dualising module and Gorenstein singularities, one
may consult Bruns and Herzog [24], Peternell and Remmert [156], Eisenbud [44], Reid
[168].

2.3. Modifications, blow-ups and resolutions of singularities

One of the main ways to study singular complex analytic sets is to see them as images of smooth
ones, that is, as images of complex manifolds. A priori one could look for such manifolds of arbitrary
higher dimensions, but one usually restricts them in the following way:

Definition 2.32. Let X be a complex analytic set. A resolution of singularities of X is a mor-
phism π : X̃→ X such that:

1. X̃ is smooth;

2. π is proper (that is, the preimage of a compact subset of X is compact);

3. the restriction π : X̃ \ π−1(Sing X)→ X \ Sing X is an isomorphism;

4. π realizes a bijection between the irreducible components of X̃ and X.

The exceptional locus Exc(π) of π is the subspace π−1(Sing X) of X̃.
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Note that some writers call exceptional only the irreducible components E of π−1(Sing X) whose
image by π have a strictly smaller dimension than E.

Informally speaking, in order to resolve the singularities of X, one replaces its singular locus by
another complex analytic set, such that the resulting complex set becomes smooth. The properness
condition (2) is included in order to guarantee that one does not simply remove the singular locus,
or that one does not replace it by something too small.

In fact, the process is subtler, not being describable only in topological terms. Indeed, a resolution
of singularities may be a homeomorphism such that the restriction π : π−1(Sing X) → Sing X is
moreover an isomorphism (see Example 2.33 below), in which case one replaces Sing X by itself.
How to understand then what changes if one passes from X to X̃? Well, one adds new holomorphic
functions on X, changing its “structure sheaf”.

Example 2.33. Let X be a complex analytic curve, that is, a complex analytic set of pure dimension
1. In this case there exists a unique resolution of singularities of X, up to a unique isomorphism over
X. This resolution π : X̃→ X is simply the normalization of the curve X, introduced in Definition 2.22.
It may be obtained by gluing holomorphic parametrisations of the irreducible components of the
germs of X at all its points. If one asks moreover that these parametrisations are homeomorphisms
of representatives, one gets simply the Riemann surface associated to the curve X. The resolution
π is a homeomorphism if and only if the germ of X is irreducible at each one of its points. More
generally, for any  ∈ X, the fibre π−1() is a finite set which is in bijection with the set of irreducible
components of the singularity (X, ) (see Proposition 2.23).

Example 2.34. Let X ,→ Cn be an algebraic cone with vertex at the origin 0, that is, the zero locus
of a set of homogeneous polynomials in n variables. Denote by P(X) ,→ P(Cn) its projectivisation,
that is, the set of lines contained in X and passing through 0. It is simply the projective subvariety
of P(Cn) defined by the same set of homogeneous polynomials. Assume that X is smooth outside
0, which is equivalent to the smoothness of P(X). One has a natural complex line bundle on P(X),
whose fibre above a point representing a line is the line itself (its sheaf of holomorphic section is
denoted usually OP(X)(−1) in algebraic geometry). Denote by X̃ the total space of this line bundle,
and by π : X̃ → X the natural morphism which associates to each point of a fiber of X̃ the same
point seen on the corresponding line inside X. This morphism is a resolution of singularities of X,
with exceptional set P(X), identified with the zero-section of X̃.

One may construct the morphism π alternatively in the following way. Consider the rational map:

X · · · → P(X)
 · · · → []

where [] denotes the point of P(X) corresponding to the generating line of the cone passing
through . This map is well-defined outside 0. Then X̃ is the closure of the graph of this map in
X × P(X) and π : X̃→ X is the natural projection on the first factor.

We have represented schematically the morphism π in Figure 2.5. In our drawing the total space
X̃ looks like a trivial line bundle over π−1(0). In fact, over C this is never the case. Indeed, this line
bundle is the dual of an ample line bundle, whose holomorphic sections vanish precisely along the
hyperplane sections of P(X) ,→ P(Cn). By contrast, as the complex manifold P(X) is compact, the
maximum modulus principle implies that the trivial line bundle P(X)×C has only constant sections.

Definition 2.35. Let X ,→ Cn be an algebraic cone with vertex at the origin 0. Assume that X is
smooth outside 0. The morphism π : X̃ → X constructed in Example 2.34 is called the blow-up of
the point 0 in X.

The previous example shows that by blowing up the vertex of a cone with isolated singularity,
one gets a resolution of singularities in the sense of Definition 2.32.

Let us comment a little more Definition 2.32. Condition (3) insures that one replaces only the
singular locus, not a bigger complex subset of X. Finally, condition (4) insures that one does not
include in X̃ some connected component which is a manifold projecting properly inside Sing X.

III–13



Patrick Popescu-Pampu

Figure 2.5. The blow-up of the vertex of a cone

Some writers do not impose condition (3) in the definition of a resolution of singularities. Its
presence has the advantage that the boundary of a tubular neighborhood of the singular set may be
canonically identified up to an isotopy to the boundary of a tubular neighborhood of the exceptional
set. This is crucial if one is interested in the topological study of X in the neighborhood of Sing X,
for instance in the case when X has an isolated singularity, which is the most important one in this
article.

In general, one may hope to reach a resolution of singularities by composing special types of
modifications:

Definition 2.36. Let X be a complex analytic set. A modification of it is a morphism π : X̃→ X of
complex sets such that:

1. π is proper;

2. π realizes a bijection between the irreducible components of X̃ and X;

3. there exists a closed complex analytic subset  ,→ X which does not contain any irreducible
component of X, such that the restriction π : X̃ \ π−1()→ X \  is an isomorphism.

The indeterminacy locus nd(π) of the modification π is the minimal subspace  of X which has
the property (3). The exceptional locus Exc(π) of π is the preimage π−1(nd(π)) of the indetermi-
nacy locus.

When π is a resolution of X in the sense of Definition 2.32, then its indeterminacy locus is the
singular locus of X, which implies that its exceptional loci according to both definitions coincide.
The following example presents a modification which is not a resolution of singularities:

Example 2.37. Consider again the situation of a cone, as in Example 2.34, but this time without
the hypothesis that X is smooth outside 0. One may apply the same construction as in that example,
getting a modification π : X̃→ X which is still called the blow-up of 0 in X. Its indeterminacy locus is
still the point 0. Therefore, if X has singularities outside 0, then π is not a resolution of singularities
of X.
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Given a modification of a complex analytic set X, it is important to look at the induced mod-
ifications on the complex subsets of X whose irreducible components are not contained in the
indeterminacy locus:

Definition 2.38. Let X be a complex analytic set and let π : X̃→ X be a modification of it. Consider a
closed analytic subset Y ,→ X without irreducible components contained in the indeterminacy locus
nd(π). Its total transform by the modification π is the full preimage π−1(Y). Its strict transform
π−1
s
(Y) by the modification π is the closure inside X̃ of the preimage of the part π−1(Y \ nd(π)) of Y

which is not contained in the indeterminacy locus.

The reason of this terminology is that the restriction π : π−1
s
(Y) → Y of π to the strict transform

of Y is again a modification, which is not in general the case of the restriction π : π−1(Y)→ Y to the
total transform of Y.

Example 2.39. Consider the blow-up π : X̃ → X of a cone X with isolated singularity at 0, as in
Example 2.34, illustrated on Figure 2.5. We assume that X is of dimension at least 2, which implies
that P(X) ' π−1(0) is of dimension at least 1. Consider one of the generating lines Y ,→ X of the
cone X. Then the strict transform of Y is the corresponding line seen as a fiber of the line bundle
X̃ → P(X) and the restriction π : π−1

s
(Y)→ Y is an isomorphism. But the total transform π−1(Y) has

two irreducible components π−1
s
(Y) and π−1(0). The restriction π : π−1(Y) → Y is therefore not a

modification, as condition (2) of Definition 2.36 is not satisfied.

In his 1964 paper [78], Hironaka proved the following fundamental theorem, which had been
proved before only for varieties of complex dimension at most 3:

Theorem 2.40. All complex algebraic varieties admit resolutions of singularities, obtainable more-
over by sequences of blow-ups of smooth subvarieties.

Let us explain the notion of blow up of a closed submanifold S of another complex manifold M.
In the case when M = Cn seen as a cone with vertex at the origin and S = 0, the definition we are
going to give specializes to Definition 2.35.

Informally speaking, the blow up of S in M replaces S by its projectivised normal bundle P(NMS).
More precisely, one has the following definition, which is to be contrasted with Definition 2.32:

Definition 2.41. Let S be a closed complex submanifold of the complex manifold M. The blow up
of S in M is a morphism βS : BSM→ M of complex manifolds such that:

1. BSM is smooth;

2. βS is proper;

3. β−1S (S) is a codimension 1 submanifold of BSM;

4. the restriction βS : BSM \ β−1S (S)→ M \ S is an isomorphism.

One may show that the blow-up of S in M exists and is unique up to a unique isomorphism
above M. Moreover, one may show that the map which associates to each smooth germ of curve
(C, s) ,→ (M, s) transversal to S at a point s ∈ S, the intersection of its strict transform with β−1S (S),
identifies β−1S (S) with the projectivized normal bundle P(NMS).

More generally, one may blow up any complex analytic subspace of a complex analytic set (see
Fischer [55, Chapter 4] or Peternell [155, Section 2]). We won’t explain this generalization, as we
don’t need it in the sequel.

Hironaka’s proof of Theorem 2.40 extends readily to complex analytic germs. Much more efforts
were needed to extend it to complex analytic sets, but he achieved this with the help of Aroca and
Vicente in the volumes [79], [3], [4].

When (X, ) is a curve singularity, the normalization morphism resolves it. This is no longer true in
higher dimensions, but as explained after Proposition 2.23, normalization destroys nevertheless the
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Figure 2.6. A small resolution of the cone over a smooth quadric surface

singular locus in codimension 1. It may be shown that when the analytic set X is normal, then the
exceptional locus of any resolution of singularities of it has everywhere dimension ≥ 1. Therefore,
when moreover dimX = 2, this exceptional locus is a curve, that is, a divisor, in the total space X̃
of the resolution.

In general, for germs of arbitrary dimension, we say that a resolution is divisorial if its excep-
tional locus is a divisor in the total space, that is, if it has pure codimension 1 in it. Starting from
dimension 3, there exist singularities admitting non-divisorial resolutions, and even resolutions with
exceptional sets having everywhere codimension ≥ 2 (called small resolutions).

Example 2.42. The simplest example of a normal singularity which admits a small resolution is
given by the hypersurface singularity at the origin 0 of the cone X over a smooth quadric in P3. For
instance, one may take the cone in C4 defined by the equation z1z2 − z3z4 = 0. A smooth quadric
is doubly ruled, that is, it is covered by two families of lines, each one being parametrized by P1.
This shows that it is isomorphic to P1 × P1. Select one of the rulings, say, by the fibers of the first
projection p1 : P1 × P1 → P1. One may consider the rational map:

X · · · → P1

 · · · → p1[]

where [] denotes the point of the quadric P(X) corresponding to the generating line of the cone
passing through . This map is well-defined outside 0. Denote by X̃ the closure of its graph in X×P1

and by π : X̃→ X the natural projection onto the first factor. One may show that this morphism is a
resolution of singularities of X, with exceptional locus isomorphic with P1 (see Figure 2.6).

This construction may be seen as an analog of the blow-up construction of Example 2.34. Indeed,
there one looked at the collection of generating lines of the cone X and X̃ was the total space of the
associated line bundle. Here one looks at one collection of planes contained in the cone X and one
looks at the total space X̃ of the associated plane bundle over P1.

Note that one may permute the roles of the two factors in the product decomposition P(X) '
P1 × P1, getting a second small resolution. It may be shown that any other resolution of X factors
through at least one of them, but that none of these two small resolutions factors through the
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other one. Therefore, the singularity (X,0) has no minimal resolution (in the sense that any other
resolution factors through it).

For more details about modifications, one may consult Peternell [155]. For more de-
tails about blow-ups of submanifolds of complex manifolds, one may consult Griffiths
and Harris [69, Page 603]. For a gentle introduction to the use of blow-ups in resolution
of singularities, one may consult Hauser [75]. The reader interested in proofs of The-
orem 2.40 may consult Cutkosky’s book [35] or Kollár’s book [94]. For introductions to
various techniques of resolution of singularities of surfaces, one may consult Lipman
[110], Faber and Hauser [52] and Popescu-Pampu [164].

3. Surface singularities

3.1. Divisors on smooth complex surfaces and their intersection numbers

We will study normal surface singularities (X, ) through their resolutions (see Definition 2.32). If
the base point  is a singular point of X, then it gets replaced by a divisor on the total space of the
resolution. For this reason, we start by explaining in this subsection the needed facts about divisors
on smooth complex surfaces.

Definition 3.1. A divisor on a smooth complex surface S is an element D :=
∑

∈ D of the free
abelian group generated by the closed irreducible curves of S. If the previous sum is irredundant
(that is, if the irreducible curves D are pairwise distinct), then the coefficient  ∈ Z of the irreducible
curve D in D is called the multiplicity of D in D. The support |D| of D is the union of the
irreducible curves of non-zero multiplicity in D. The divisor D is called reduced if all the closed
irreducible curves appear in it with multiplicity 0 or 1. It is called effective if all the multiplicities
 are non-negative.

Each meromorphic section of a line bundle on S defines a divisor, provided that it does not vanish
or has poles on an infinite number of irreducible curves of S:

Definition 3.2. Let L be a holomorphic line bundle on the smooth complex surface S and s a
meromorphic section of it. Consider a closed irreducible curve C on S. Denote by ƒC a holomorphic
function which defines C on S in a neighborhood of p (in particular, it vanishes at order 1 along
it). The order of vanishing ordC(s) of s along C is the unique integer  such that for any p ∈
C, the meromorphic section ƒ−C s of L is in fact holomorphic and non-zero along C in a pointed
neighborhood U \ {p} of p in S. If  > 0 then C is a zero of order  of s and if  < 0 then C is a
pole of order − of s.

The divisor (s) of s is the sum

(s) :=
∑

C

ordC(s)C,

taken over all irreducible closed curves on S. It is well defined only when there is a finite number of
such curves with ordC(s) 6= 0.

In particular, one has the following special types of divisors:

• principal divisors, which are the divisors of the form (ƒ ), when ƒ is a meromorphic function
on S, that is, a meromorphic section of the trivial holomorphic line bundle S × C;

• canonical divisors, which are the divisors of the form (ω), when ω is a meromorphic 2-
form, that is, a meromorphic section of the second exterior power Λ2T∗S of the cotangent
bundle T∗S of S.
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The function sin() defined on the complex plane with coordinates (, y) is an example of non-
zero holomorphic function which vanishes over an infinite number of irreducible curves, and which
has therefore no divisor according to the previous definition. One could enlarge the definition by
allowing also infinite sums, but this level of generality will not be needed in the sequel.

If p ∈ S is a point belonging to the support |D| of a divisor D, a defining function ƒD of D in the
neighborhood of p is a meromorphic function defined in a neighborhood of p such that D = (ƒD)
in this neighborhood. Such a function necessarily exists whenever the neighborhood is sufficiently
small, but it is not unique. Nevertheless, two such functions differ multiplicatively by a holomorphic
function which vanishes nowhere in a neighborhood of p.

By contrast, a divisor D may not allow a global defining function, that is, there are smooth
complex surfaces which admit non-principal divisors. This is the case for instance whenever D is a
non-trivial effective divisor on a connected and compact complex surface. Indeed, in such a case
any global holomorphic function is constant, by the maximum modulus principle, which shows that
no such function defines globally the divisor D.

The fact that a divisor is not principal indicates only that it is not the divisor of a section of the
trivial line bundle. In fact, each divisor D may be realized as the divisor of a meromorphic section
of a suitable line bundle LS(D), which is moreover canonically attached to it (see Hartshorne [73,
Section II.6] or Ishii [86, Section 5.2]).

If A and B are two divisors on a smooth surface S, one may define their intersection number
A · B ∈ Z in the following cases:

• when the intersection of the supports |A|, |B| is finite;

• when at least one of the supports |A|, |B| is compact.

Let us consider successively the two cases.

Definition 3.3. Assume that A and B are two effective divisors on the smooth complex surface S,
whose supports intersect in a finite set. If p ∈ |A| ∩ |B| and ƒA, ƒB are defining holomorphic functions
of A and B in a neighborhood of p, then the intersection number (A · B)p of A and B at p is the
dimension

dimC

OS,p

(ƒA, ƒB)
,

where (ƒA, ƒB) denotes the ideal generated by ƒA and ƒB in the local ring OS,p of holomorphic functions
on S at p. The (global) intersection number A · B of the divisors A and B is the sum of local
intersection numbers at all points of |A| ∩ |B|.

When A is not necessarily irreducible but still compact and A, B are not necessarily effective but
|A| ∩ |B| is still finite, then the intersection number A · B is defined by bilinearity, writing both A and
B as differences of effective divisors.

The same strategy, of defining first the intersection number for effective divisors and extending
it afterwards to arbitrary divisors, works also when the supports of the divisors share irreducible
components, provided that these common components are compact:

Definition 3.4. Assume that A is a compact irreducible curve on the smooth complex surface S
and that B is an arbitrary divisor on S. Then the intersection number A ·B is equal to the degree of
the pull-back ν∗LS(B) of the line bundle associated to B by the normalization morphism ν : Ã→ A.

When A and B are not necessarily effective but A is still assumed compact, their intersection
number A · B is defined by bilinearity, writing both A and B as differences of effective divisors.

One may show that definitions 3.3 and 3.4 are compatible. Namely, when A is compact, then
both of them lead to the same notion of intersection number.

The intersection product is by construction bilinear and satisfies the following important property:

Proposition 3.5. If D is a divisor with compact support and ƒ is a meromorphic function on the
complex surface S, then D · (ƒ ) = 0.
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If D is a compact effective divisor on the smooth complex surface S, then it may be interpreted
as a (non-necessarily reduced) compact curve, with associated structure sheaf OD defined as the
quotient of the structure sheaf OS of S by the sheaf OS(−D) of ideals of holomorphic functions
vanishing along D. The local rings of the structure sheaf OD are not reduced along the irreducible
components of D with multiplicity different from 0 and 1, which explains the denomination “reduced
divisor” introduced in Definition 3.1. More generally, for any compact but not necessarily reduced
algebraic curve, one has an associated notion of genus, which generalizes the classical Riemannian
genus of a compact Riemann surface:

Definition 3.6. The arithmetic genus p(D) of the compact and not necessarily reduced curve
D is by definition equal to 1 − χ(OD).

When the curve D is situated, as in our case, in a smooth complex surface, it is possible to
compute its arithmetic genus only by computing intersection numbers inside the ambient surface:

Theorem 3.7. (The adjunction formula) Assume that D is a compact effective divisor contained
in the smooth complex surface S. Then

p(D) := 1 +
1

2
(D2 + KS ·D)

where KS is any canonical divisor on S (see Definition 3.2).

Assume now that C is an irreducible compact complex curve, possibly with singularities. We
do not assume any more that C is contained in a smooth surface. Denote by g(C) the arithmetic
genus of its normalization. By a theorem of Riemann, g(C) is equal to the topological genus of the
underlying Riemann surface (that is, to one half of its first Betti number). In order to understand
the relation between p(C) and g(C), let us introduce a measure of the complexity of a curve
singularity, different from its multiplicity:

Definition 3.8. Let (C,p) be a curve singularity. Denote by ν : (C,p)→ (C,p) the normalization of
C (therefore, (C,p) may be a multi-germ). The delta-invariant δ(C,p) of (C,p) is defined by:

δ(C,p) := dimC(OC,p/OC,p).

Let us come back to an irreducible compact complex curve C. The two genera p(C) and g(C)
associated to it are related in the following way:

Proposition 3.9. Let C be an irreducible compact complex curve. Both genera p(C) and g(C) are
related by the following formula:

p(C) = g(C) +
∑

p∈C
δ(C,p).

In particular, p(C) ≥ g(C), with equality if and only if the curve C is smooth.

One may find more details on intersection numbers of divisors on smooth complex
surfaces in Barth, Hulek, Peters and Van de Ven [8, Sections II.9-10] and Ishii [86, Section
5.4].

For more details on arithmetic genera, the adjunction formula and the anti-canonical
cycle, we refer to Reid [168, Section 3.6], Barth, Hulek, Peters & Van de Ven [8, Section
II.11] and Ishii [86, Proposition 5.3.11].

3.2. Objects associated to a resolution of surface singularity

Assume that (X, ) is a normal surface singularity. Usually one studies it using its resolutions. As
in any dimension which is at least equal to 2, those resolutions are not unique. But one has instead
(see Laufer [99, Theorem 5.9]):
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Proposition 3.10. The normal surface singularity (X, ) has a unique minimal resolution, in the
sense that any other resolution factors through it. It may be characterized by the fact that its
exceptional divisor does not contain any irreducible smooth rational curve of self-intersection −1.

In higher dimensions, one has no analogous theorem, as may be understood already by looking
at the cone over a smooth quadric surface, as in Example 2.42.

Smooth rational curves of self-intersection −1 appear in Proposition 3.10 for the following reason:

Proposition 3.11. Consider the blow up β : S → C2 of the origin in the complex affine plane C2.
Denote by E := β−1(0) its exceptional locus. Then E is a smooth rational curve of self-intersection
−1.

Let us prove this proposition. For the reason explained in Example 2.34, E may be canonically
identified with the projectivisation of C2 seen as a cone with vertex at the origin. Therefore, E is a
smooth rational curve. Consider the line L := Z() ⊂ C2 and its strict transform L′ by the blow up β
(see Definition 2.38). Consider also the lift β∗ to S of the defining function  of L. Its divisor may
be decomposed in the following way:

(β∗) = E + L′,

where  ∈ Z∗+ (as the function β∗ vanishes only along E and L′ and it has no poles). Let us show
that  = 1. Consider for this a second line H 6= L passing through the origin of C2 and its strict
transform H′ on S. By the construction of the blow up explained in Example 2.34, the morphism β
restricts to an isomorphism from H′ to H. As  vanishes with multiplicity 1 at the origin of H, we
deduce that β∗ vanishes also with multiplicity 1 at the origin of H′. But this order of vanishing
is equal to , as H′ is transversal to E, being a fiber of S seen as a line bundle over E (see again
Example 2.34). This shows that one has indeed  = 1. Apply now Proposition 3.5 to the compact
divisor E and to the principal divisor (β∗) on S. One gets:

E · (E + L′) = 0 =⇒ E2 = −E · L′ = −1.

The proposition is proved.

One may use the model of the blow up of the origin of C2 in a local chart, whenever one blows up
a smooth point of a complex surface. For this reason, any such blow up creates a smooth rational
curve of self-intersection −1. Therefore, if one starts from a smooth surface and one composes a
finite sequence of blow ups, one gets a surface which contains necessarily at least one such curve.
In fact, one has the following converse (see Hartshorne [73, Proposition 5.3] and Cutkosky [34,
Corollary 6.3] for proofs in the algebraic category, which may be easily adapted to the analytic
category):

Proposition 3.12. Assume that π : S1 → S is a proper holomorphic modification between smooth
complex surfaces. Then:

1. the exceptional locus of π contains at least one smooth rational curve D of self-intersection
−1;

2. π may be factored as π = ψ ◦ β, where ψ : S2 → S is a proper holomorphic modification
between smooth complex surfaces and β : S1 → S2 is the blow up of a point p ∈ S2, whose
exceptional locus is D;

3. π is a composition of blow ups of points.

Note that this proposition is specific to dimension 2: as explained in [73, Remark 5.4.4] and [34,
Example 6.4], in higher dimensions there are proper modifications between manifolds which are
not compositions of blow ups of smooth centers.

Note also that the exceptional locus of a modification obtained starting from a smooth complex
surface and composing blow ups has normal crossings, in the following sense:
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Definition 3.13. A divisor D is said to have normal crossings if its reduced germ at any point of
it is either smooth or the union of two smooth germs of curves intersecting transversally.

Let us return to our normal surface singularity (X, ). Consider any resolution π : (X̃, E) → (X, )
of it, where E denotes the reduced fibre over . Therefore E can be seen as a connected reduced
effective divisor in X̃, called the exceptional divisor of π. The divisor E has not necessarily nor-
mal crossings. But by blowing-up recursively the points at which E has not a normal crossing, one
obtains canonically starting from π a strict normal crossings resolution, that is, one whose ex-
ceptional divisor has normal crossings and smooth irreducible components. If one starts this process
from the minimal resolution, one obtains the canonical strict normal crossings resolution. It
may be shown that any other strict normal crossings resolution factors through it.

One associates to the resolution of (X, ) its weighted dual graph (see several examples in Figure
3.4 below):

Definition 3.14. Let π : (X̃, E) → (X, ) be a resolution of the normal surface singularity (X, ). Its
weighted dual graph (π) is obtained as follows:

• its vertices  correspond bijectively to the irreducible components E of E;

• there is an edge with multiplicity ej := E · Ej ≥ 0 between the distinct vertices  and j (if
ej = 0, then one considers that there is no edge between  and j);

• each vertex  is weighted by the self-intersection number −e := E2


of the associated com-
ponent E, inside the smooth surface X̃;

• each vertex  is also weighted by the arithmetic genus p (see Definition 3.6) of the compact
irreducible curve E.

A basic property of the graph (π), coming from the fact that (X, ) is normal, is that it is con-
nected. Note that Proposition 3.9 implies that p = 0 if and only if E is a smooth rational curve.

Example 3.15. Let us assume that X ,→ Cn is a cone over a smooth algebraic curve P(X) of degree
d ≥ 1 in the projective space Pn−1. Consider the blow up X̃ of 0 in X, as in Example 2.34. Then
X̃ is the total space of a line bundle over P(X), which shows that the exceptional divisor of π is
isomorphic to P(X). One may show by the same method as that used in the proof of Proposition
3.11 that the self-intersection number of this exceptional divisor in X̃ is −d. The associated dual
graph has therefore only one vertex , no edge, and e = d.

For simplicity, once a resolution π is fixed, we will denote the weighted dual graph by .
Denote by V() the set of vertices of  and by e ∈ ZV() the function which associates to each

vertex  the integer e. To the weighted graph  is associated a canonical quadratic form on the real
vector space RV(), called the intersection form of the resolution π:

Q() := −
∑

∈V()
e

2

+

∑

(,j)∈V()2
 6=j

ejj.

The geometrical meaning of the intersection form is the following: if one associates to  ∈ RV()

the divisor
∑

∈V() E on the smooth surface X̃, then Q() is its self-intersection number on X̃.
One has the following characterization of exceptional divisors of resolutions of normal surface

singularities (see Laufer [99, Chapter 4]), whose first statement was proved by Du Val [195] and
Mumford [130] and whose second statement was proved by Grauert [62]:
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Theorem 3.16.

1. The intersection form Q is negative definite. In particular, e > 0 for all  ∈ V().

2. If the intersection form associated to a reduced and connected compact divisor E on a
smooth surface is negative definite, then E can be contracted to a normal singular point
of an analytic surface (that is, the germ of the surface along it is the total space of a resolu-
tion of singularities of a normal surface singularity).

Consider now a germ ƒ ∈ mX,, where mX, denotes the maximal ideal of the local ring OX, of
germs of holomorphic functions on the surface singularity (X, ). Lift ƒ to the resolved surface X̃ and
look at the associated principal divisor (π∗ƒ ) of this lift. It may be uniquely decomposed as a sum:

(π∗ƒ ) = (π∗ƒ )e + (π∗ƒ )s

without common irreducible components, where (π∗ƒ )e denotes its exceptional part (whose sup-
port is contained in E) and (π∗ƒ )s denotes the strict transform on X̃ of the divisor (ƒ ). As the
intersection number between (π∗ƒ ) and each irreducible component E of E vanishes (see Proposi-
tion 3.5), one gets:

(3.1) (π∗ƒ )e · E = −(π∗ƒ )s · E ≤ 0, for all  ∈ .

Therefore one is led to introduce the Lipman semigroup L(π) of π (the name makes reference
to Lipman’s work [109]), defined as:

L(π) := {D ∈
∑

∈
ZE |D · E ≤ 0, for all  ∈ }.

This set is a semigroup for the addition of divisors. On it we consider the partial order relation:

D1 ≥ D2 ⇐⇒ D1 − D2 is effective.

A basic property of this semigroup is (see Zariski [206, Lemma 7.1]):

Proposition 3.17. All the elements of the Lipman semigroup are effective divisors.

As we have seen in the explanations leading to formula (3.1), the exceptional part of the divisor
of the lift of any holomorphic function ƒ ∈ mX, belongs to the Lipman semigroup. The converse is
not true in general, excepted for rational singularities (see Definition 3.32).

M. Artin showed in [6] that the set of non-zero divisors of the Lipman semigroup has a unique
minimal element, which is essential in the study of the singularity. This motivates:

Definition 3.18. The minimal element of L(π) \ {0} is called the fundamental cycle Znm of π.

Laufer [100, Proposition 4.1] showed that the fundamental cycle may be computed algorithmi-
cally:

Proposition 3.19. Start from Z0 := E0 , where 0 is an arbitrary element of . If Zj is defined and
there exists  ∈  such that Zj · E > 0, define Zj+1 := Zj + E. Then this process stops after a finite
number of steps and the last element in the sequence Z0, Z1, ... is the fundamental cycle of π.

We will also need to manipulate another cycle supported by the exceptional divisor E of the
resolution π and defined, as the fundamental cycle, by intersection-theoretical properties: the anti-
canonical cycle.

Before explaining its definition, let us introduce supplementary notations. For each irreducible
component E of E, denote by g the arithmetic genus of its normalization (recall from Definition
3.14 that we denote by p the arithmetic genus of E, and from Proposition 3.9 that g = p if and
only if E is smooth).

As the intersection form Q is negative definite (see Theorem 3.16), there exists a unique divisor
with rational coefficients ZK supported on E such that:

(3.2) ZK · E = −KX̃ · E , for all  ∈ V().
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Indeed, by the adjunction formula (see Theorem 3.7), this translates into the following system of
equations:

(3.3) ZK · E = 2 − 2p + E2 , for all  ∈ ,

which is a square system of affine equations with unknowns the coefficients of ZK . The matrix of
the associated homogeneous system (relative to any total order of the vertices of ) is a matrix of
the intersection form Q. As Q is negative definite, this matrix is invertible.

The negative sign in the definition (3.2) of the cycle ZK is motivated by the following consequence
of propositions 3.9, 3.10, 3.17 and formula (3.3):

Proposition 3.20. If the resolution π is minimal, then ZK is an effective divisor.

Here comes the announced definition:

Definition 3.21. The rational cycle ZK defined by the equivalent systems (3.2) and (3.3) is called
the anti-canonical cycle of E (or of the resolution π).

This name is motivated by the fact that whenever (X, ) is Gorenstein (see Definition 2.25), −ZK
is a canonical divisor on X̃. Indeed, if the singularity (X, ) is Gorenstein, consider a non-vanishing
holomorphic form defined in a pointed neighborhood of . Therefore its lift to X̃ is meromorphic
and its locus of zeros and poles is contained in E. This locus, considered with multiplicities, is by
construction a canonical divisor on X̃ (see Definition 3.13). Therefore, it is exactly −ZK , which shows
that for Gorenstein singularities, ZK has integral coefficients. This property being numeric (that is,
depending only on intersection-theoretical properties) and common to all normal Gorenstein singu-
larities, it motivates the introduction of the following notion, which plays a role in the statement of
Theorem 3.39 below:

Definition 3.22. The normal surface singularity (X, ) is called numerically Gorenstein if ZK is
an integral divisor.

Not every numerically Gorenstein singularity is Gorenstein (see Laufer’s theorem 3.44 below).
But the author proved in [163] that any numerically Gorenstein normal surface singularity has the
same topological type as a Gorenstein one. By contrast, one does not know how to characterize
the topological types of hypersurface or complete intersection normal surface singularities. By the
way, how is it possible to describe such a topological type? Next subsection is dedicated to this
question.

A survey of the properties of normal surface singularities related to their intersec-
tion forms was written by Wall [201]. More details on the various cycles attached to
such a singularity and on their importance for classification questions may be found in
Némethi’s notes [132] and [134].

3.3. The topology of normal surface singularities

Two isolated singularities are called topologically equivalent if they have representatives
which may be identified through a homeomorphism which sends one base point onto the other
one and is orientation-preserving outside the base point (the orientations being iduced by the com-
plex structures).

How to encode the topological equivalence class of an isolated complex singularity? The usual
method is to start from some representative of it and to define suitable tubular neighborhoods of the
base point, which are cones over a real smooth manifold, the boundary or link of the singularity. The
topological type of the singularity is therefore captured by the topological structure of its boundary.

Let us be more precise. Consider an isolated singularity (X, ) of arbitrary dimension. By choosing
an embedding of a representative of it in some complex affine space (Cn,0), one may restrict to X
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Figure 3.1. Passing from a rug function to a choice of boundary

the squared distance function to the origin

(3.4) ρ0(z1, ..., zn) := |z1|2 + · · · + |zn|2,

getting in this way a function:
ρ : (X, )→ (R,0)

with the following properties:

• it is real-analytic;

• it is non-negative;

• ρ−1(0) =  for some choice of the representative X.

Consider more generally any function ρ with the previous properties, not necessarily coming
from the squared-distance to the origin relative to some embedding. Following a denomination
introduced by Thom [189] in a related context, we will call it a rug functions of (X, ) (“fonction
tapissante” in French). One may show that a rug function is moreover proper and submersive in a
pointed neighborhood of  in X. This implies that the sufficiently small positive levels Mε := ρ−1(ε)
of ρ are all smooth and pairwise diffeomorphic, which allows to define:

Definition 3.23. Let (X, ) be an isolated singularity and ρ be a rug function of (X, ). The bound-
ary or link ∂(X, ) of the singularity (X, ) is any positive level manifold Mε0 of ρ such that all the
levels Mε are pairwise diffeomorphic manifolds for ε ∈ (0, ε0]. One orients Mε0 as the boundary of
the complex manifold ρ−1(0, ε0).

The process leading to the construction of a representative level of the boundary of (X, ) is
illustrated in Figure 3.1.

The boundary ∂(X, ) is a closed oriented manifold, whose connected components are the bound-
aries of the irreducible components of (X, ). If (X, ) is of pure complex dimension n, then its
boundary is of real dimension 2n − 1. One may show that ∂(X, ) is independent of the choice of
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rug function ρ, up to orientation-preserving diffeomorphisms which are well-defined up to isotopy.
Moreover, the previous construction allows to get the announced special conic representatives of
the singularity:

Proposition 3.24. Assume that the rug function ρ is proper on ρ−1[0, ε0] and that it is submersive
on ρ−1(0, ε0]. Then the pair (ρ−1[0, ε0], ) is homeomorphic to the cone over ∂(X, ).

Which oriented odd-dimensional manifolds appear as boundaries of isolated complex singulari-
ties? If such a singularity has several irreducible components, then its boundary is the disjoint union
of the boundaries of its components. Therefore, let us restrict the previous question to the case of
irreducible isolated singularities.

In complex dimension 1, the answer is simple: one gets only circles. In dimension 2 the answer
is much more complicated, but it is also known (see Theorem 3.27 below). In higher dimensions
the question is open. Nevertheless, one knows several constraints on the algebraic topological
invariants of such boundaries (see Kollár [95]).

Let us restrict now to the study of boundaries of isolated and irreducible surface singularities.
If (X, ) is such a singularity and ν : (X, ) → (X, ) is its normalization, then the lift ρ ◦ ν of any
rug function of (X, ) is a rug function of (X, ). This allows to identify the boundaries of (X, ) and
(X, ).

For this reason, in the rest of this section we will assume that (X, ) is a normal surface singularity.
The systematic study of the topological structure of boundaries of normal surface singularities

started with Mumford’s article [130], in which he proved that one could recognize whether a point
on a normal surface was smooth only by looking at the topology of the boundary of the germ of
surface at this point (see also Hirzebruch [81]):

Theorem 3.25. If the boundary of a normal surface singularity (X, ) is simply connected, then 
is a smooth point of X.

In particular, as the boundary of a germ of surface at a smooth point is diffeomorphic to S3, this
showed that one could not get a counterexample to Poincaré’s conjecture by taking the boundary
of a surface singularity.

In order to prove Theorem 3.25, Mumford described the boundary as the result of performing an
operation which he called plumbing on suitable elementary 3-manifolds. The list of those elemen-
tary 3-manifolds and the instructions for plumbing them were determined by the weighted dual
graph  (see Definition 3.14) of any strict normal crossings resolution of (X, ).

Example 3.26. Let us consider again the case of a cone X ,→ Cn over an irreducible smooth
algebraic curve P(X) of degree d ≥ 1, as in Example 3.15. Consider the blow-up π : X̃ → X of 0
in X, whose exceptional divisor E is canonically identified with P(X). It is a strict normal crossing
resolution of X. Then the tubular neighborhoods of 0 in X defined by a rug function lift to tubular
neighborhoods of E in X̃. This allows to identify the boundary ∂(X,0) with the boundary of such a
tubular neighborhood of E in X̃. As X̃ is the total space of a line bundle of degree −d over P(X),
its zero-section being E, we deduce that ∂(X,0) is diffeomorphic to the total space of the circle
bundle associated to this line bundle. Such a circle bundle is determined up to fiber and orientation-
preserving diffeomorphisms by its Euler number. When the circle bundle is associated, as is the
case here, to a complex line bundle, then its Euler number is equal to the degree of this line
bundle. Summarizing, we see that the boundary of the singularity at the vertex of the cone over a
smooth irreducible curve of degree d is a circle bundle with Euler number −d over the underlying
Riemann surface of the curve. Note that, if one restricts to the case where X = C2, then the previous
considerations lead to another proof of Proposition 3.11. The circle bundle structure which one gets
on the boundary of a Euclidean ball centered at the origin of C2 is nothing else than the classical
Hopf fibration on S3 ' ∂(C2,0).

As seen in Example 3.15, the dual graph of the previous resolution of the cone X has only one
vertex , with e = d and g equal to the genus of the smooth projective curve P(X). In this case one
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Figure 3.2. The local situation leading to a plumbing operation

has only one elementary manifold, which is the circle bundle of Euler number −e over an oriented
closed connected surface of genus g. Here one does not perform any plumbing operation.

For an arbitrary normal surface singularity (X, ), one needs to perform plumbing operations in or-
der to reconstruct its boundary ∂(X, ) only when one works with a strict normal crossing resolution
of (X, ) whose exceptional divisor E has at least two irreducible components. But the elementary
manifolds to be plumbed are still circle bundles over oriented surfaces, as in the previous example.

In order to understand this, let us think at another way of building a tubular neighborhood of E
in X̃, without the help of a rug function:

• By choosing a Riemannian metric on X̃ in a neighborhood of E, one may use the associated
exponential map in order to push the disc bundle structure on the normal bundle of each E
into a disc bundle structure of a tubular neighborhood W of E. One has to choose discs of
sufficiently small radii in the normal bundle.

• By requiring moreover that the metric be chosen such that, at each singular point p of E,
the two components E and Ej meeting at p are orthogonal at p and totally geodesic in a
neighborhood of p, one may ensure that E contains a fiber of the disc bundle of Wj in a
neighborhood of p, and conversely after permuting  and j.

• Choose more carefully the tubular neighborhoods W and Wj such that in the neighborhood of
p their intersection gets identified to a product Dj×Dj of discs by the two bundle projections
(see Figure 3.2).

• Ensure also that the global intersection of W and Wj is the disjoint union of those local
intersections with product structures.

• Take as tubular neighborhood W of E the union of the individual tubular neighborhoods W. If
one imagines that those disc bundles W are abstract manifolds, then the operation of gluing
which has to be performed in order to get W is called plumbing.

• The same name applies to the operation which allows to reconstruct ∂W from the circle bun-
dles induced on the boundaries ∂W by the disc bundles on W. Locally near an intersection
point p of E and Ej, one removes the solid torus Dj × ∂Dj from ∂W, symmetrically Dj × ∂Dj

from ∂Wj and one identifies the resulting 2-dimensional tori, getting a torus Tj inside ∂W
(see again Figure 3.2).
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Figure 3.3. Plumbing annuli and Möbius bands

• In this way, the oriented 3-manifold ∂W appears decomposed into circle-bundles over com-
pact surfaces with boundary using a finite set of pairwise disjoint tori. Along each such torus,
the fibers of the two fibrations meeting along it on both sides have as intersection number
±1.

The resulting manifold with corners W is illustrated in Figure 3.3. In order to suggest the complex
2-dimensional situation, we have drawn a real 2-dimensional picture, in which the disc-bundles
over closed surfaces are replaced by segment-bundles over circles. In order to indicate that the
disc-bundles are non-trivial (which is a consequence of the negative definiteness of the intersection
form of the resolution, see Theorem 3.16), we have drawn both annuli and Möbius bands as such
segment bundles.

It may be shown, starting from the study done by Mumford in [130], that this second way of
constructing a tubular neighborhood of E leads to a 4-dimensional manifold with boundary and
corners which is piecewise-diffeomorphic to the tubular neighborhoods constructed using lifts of
rug functions. Using also Theorem 3.16, one arrives at:

Theorem 3.27. The oriented boundaries of normal surface singularities are precisely the ori-
ented 3-dimensional manifolds which may be obtained by plumbing circle bundles according to
a negative-definite connected weighted graph.

Therefore, the boundaries of normal surface singularities are particular 3-manifolds, obtained by
plumbing circle bundles over surfaces following a weighted graph. For this reason, such 3-manifolds
were named graph-manifolds. Their theory was started by Waldhausen [200]. He looked at the
collection of tori which one gets in a graph manifold as images of the tori which were identified after
taking out solid tori from the total spaces of the circle bundles. As explained above, on such a torus
the intersection number of the fibers arriving from both sides has absolute value 1. Waldhausen
considered then more general families of tori, by asking only that their complement be fiberable
by circles, but forgetting the condition about intersection numbers. The class of 3-manifolds which
admit such a graph structure is the same as before, but one has more possibilities of simplification:
each time one finds two parallel tori, that is, disjoint 2-tori which cobound a thick torus [0,1] × T2,
one can eliminate one of them, and obtain again a graph structure on the same 3-manifold. Wald-
hausen proved in [200] that, when the initial 3-manifold is irreducible, that is, indecomposable
as a connected sum of two other 3-manifolds non-diffeomorphic to the 3-sphere, a minimal such
collection of tori is in general a topological invariant of the 3-manifold:
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Theorem 3.28. With the exception of a finite explicit list of 3-manifolds, a minimal collection of tori
which correspond to a graph structure on an irreducible closed 3-manifold is unique up to isotopy.

Waldhausen described also a notation for graph structures and characterized using it the graph
structures corresponding to the minimal collections of tori. His work was the starting point of a
“calculus” elaborated by Neumann [142] for plumbing structures. Neumann applied his calculus
to give an algorithm which allowed to determine if a given plumbing graph describes or not a
singularity boundary. Using this algorithm, he showed:

Theorem 3.29. The boundary of a normal surface singularity is irreducible. Its oriented topological
type determines the weighted dual graph of the minimal strict normal crossings resolution up to
isomorphism.

Therefore, one may encode the oriented topological type of the singularity boundary by this
graph. Moreover, one has an algorithmic way, given an oriented graph manifold, to determine if it
is diffeomorphic to a singularity boundary or not.

Before Neumann’s theorem 3.29, Sullivan [186] had given the first example of an irreducible
graph manifold which was not a singularity boundary: the 3-dimensional torus. In fact even in higher
dimensions, odd-dimensional tori cannot be boundaries of isolated singularities, as was proved first
by Durfee and Hain [42] and rediscovered by myself (see [161, Corollary 5.3]).

Waldhausen’s structure theorem for graph manifolds was extended later by Jaco & Shalen [87]
and Johannson [88] into a structure theorem for any irreducible 3-manifolds. Namely, any such
manifold contains a finite family of pairwise disjoint and non-parallel incompressible tori, minimal for
the property that the components of their complement are either Seifert-fiberable or do not contain
new incompressible tori (which are not boundary-parallel). Moreover, such a family is unique up to
an isotopy. It is now called a JSJ-family of tori. This uniqueness theorem was the starting point of
Thurston’s geometrization conjecture about the structure of 3-manifolds.

In this section we have examined till now the way to understand the topological structure of
the boundary ∂(X, ) starting from a strict normal crossings resolution. Let us see now how such a
resolution allows to compute the homology of the boundary.

The universal coefficients theorem shows that it is enough to compute the homology H∗(∂(X, ),Z)
with integral coefficients. As the boundary is an oriented closed 3-manifold, the Poincaré duality
theorem combined with the universal coefficients theorem expressing cohomology in terms of ho-
mology implies that:

H2(∂(X, ),Z) ' H1(∂(X, ),Z) ' (H1(∂(X, ),Z))∗.
Here and in the sequel we use the notation M∗ for the dual HomZ(M,Z) of an abelian group M.
Denote by Tors(M) the torsion subgroup of M.

The previous isomorphisms show that the whole homology of ∂(X, ) is determined by the first
homology group H1(∂(X, ),Z). The following proposition, in which all homology groups are taken
with integral coefficients, explains that this group is determined by the intersection form of a strict
normal crossings resolution:

Proposition 3.30. Let π : (X̃, E) → (X, ) be a strict normal crossings resolution of the normal
surface singularity (X, ). Denote as before by (E)∈ the irreducible components of E (identified
with its support |E|) and by  the dual graph of E (seen simply as a topological space). Let Λ be the
second homology group H2(E) ' Z and Λ∗ ' Z be its dual. If λ : Λ→ Λ∗ denotes the morphism of
free abelian groups determined by the intersection form on the oriented 4-manifold X̃, then:

1. There exists a short exact sequence of abelian groups:

0 −→
⊕

∈
H1(E) −→ H1(E) −→ H1() −→ 0.

2. There exists an exact sequence of abelian groups:

Λ
λ−→ Λ∗ −→ H1(∂(X, )) −→ H1(E) −→ 0.
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3. |Λ∗/λ(Λ)| = |Tors(H1(∂(X, )))|.

4. H1(∂(X, ))/Tors(H1(∂(X, ))) ' H1(E). Therefore, the boundary ∂(X, ) and the exceptional
divisor E have the same first Betti number.

Let us sketch a proof of this proposition, as it allows to understand better the relations between
the boundary ∂(X, ), the exceptional divisor E and its dual graph .

We consider as before a conic representative X of the singularity and we identify the boundary
∂(X, ) with the boundary ∂X̃ of the oriented smooth 4-dimensional manifold X̃.

One has the following two continuous maps between topological spaces:
⊔

∈
E

ν−→ E
ψ
−→ ,

in which ν is the normalization morphism of E. The map ψ is not canonically defined, but only up to
homotopy. In order to construct it, one chooses discs Dj as in Figure 3.2 above and one foliates them
by concentric circles centered at the chosen intersection point p of E and Ej. After doing this in the
neighborhood of each singular point of E, one contracts to points the connected components of the
complement inside E of the interiors of the various discs Dj, as well as each circle of the various
foliated discs. One gets in this way a graph isomorphic to the dual graph . It is this quotient map
E→  which we denote by ψ.

The morphisms of the exact sequence of point (1) of Proposition 3.30 are those induced by the
maps ν and ψ.

Let us consider now the following neighborhood of H1(∂X̃) in the long exact homology sequence
with integral coefficients of the pair (X̃, ∂X̃):

H2(X̃) −→ H2(X̃, ∂X̃) −→ H1(∂X̃) −→ H1(X̃) −→ H1(X̃, ∂X̃).

Using Poincaré-Lefschetz duality for the oriented compact manifold with boundary X̃, this exact
sequence becomes:

(3.5) H2(X̃) −→ H2(X̃) −→ H1(∂X̃) −→ H1(X̃) −→ H3(X̃).

As X̃ retracts by deformation onto E, which has a structure of CW-complex of dimension 2, the
previous exact sequence becomes:

(3.6) H2(E) −→ H2(E) −→ H1(∂X̃) −→ H1(E) −→ 0.

As both abelian groups
⊕

∈V H1(E) and H1() are free, point (1) of the proposition implies that
this is also the case for H1(E). As Tors(H2(E)) ' Tors(H1(E)) by the universal coefficents theorem,
we get canonical isomorphisms:

H2(E) ' H2(E)∗ ' Λ∗.
Therefore the exact sequence (3.6) becomes the exact sequence of point (2) of the proposition.
Points (3) and (4) are then direct consequences of this exact sequence.

For more details on the construction of the boundary of a singularity, see Looijenga
[114, Section 2.A], as well as Durfee [40], which builds a general theory of tubular neigh-
borhoods of compact real subvarieties in real algebraic geometry and Dutertre [43],
which extends it to possibly non-compact subvarieties.

For more details about graph-manifolds and the JSJ-decompostion, one may consult
Neumann [142], Neumann and Swarup [143] and Popescu-Pampu [160].

3.4. Rational and minimally elliptic surface singularities

Since Clebsch called genus the measure of complexity associated by Abel and Riemann to an
algebraic curve (see [166, Chapter 20]), the term genus flourished as a measure of various com-
plexities in algebraic and analytic geometry. This happened also in singularity theory. The following
definition was introduced by Wagreich [197]:
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Definition 3.31. Let (X, ) be a normal surface singularity. Its geometric genus is defined as:

pg(X, ) := dimC R
1π∗OX̃

where π : X̃→ X is any resolution of singularities. Its arithmetic genus is defined as:

p(X, ) := sp
Z≥0

p(Z)

where Z varies among the effective divisors supported by the exceptional divisor Exc(π) and p(Z)
denotes the arithmetic genus of Z, introduced in Definition 3.6.

In this definition, R1π∗ denotes the first right derived functor of the direct image functor π∗,
sending sheaves of OX̃-modules into sheaves of OX-modules. Let us mention another viewpoint,
for the sake of the reader who is not accustomed with this kind of yoga. Namely, one may show
that if U is a conic representative of (X, ) chosen using a Euclidean squared distance function as
explained at the beginning of Subsection 3.3 and if Ũ is its preimage by the chosen resolution, then:

pg(X, ) = dimCH
1(Ũ,OŨ).

It is a theorem that both the geometric and the arithmetic genera introduced in Definition 3.31
are independent of the chosen resolution (see Wagreich [197, Section 1] or Behnke and Riemen-
schneider [11, Section 2.3]). One has always the inequalities (which were stated by Wagreich [197,
Page 425]; for a proof, see Ishii [86, Theorem 7.2.14]):

pg(X, ) ≥ p(X, ) ≥ p(Znm) ≥ 0.

Recall that the fundamental cycle Znm was introduced in Definition 3.18.
By analogy with the fact that among smooth connected compact analytic curves, those of small-

est genus are called rational, Michael Artin [6] introduced the same terminology for surface singu-
larities:

Definition 3.32. A normal surface singularity (X, ) is called rational if its geometric genus van-
ishes.

M. Artin proved that rational singularities may be characterized topologically (see Artin [6, Propo-
sition 1, Theorem 3], Bădescu [10, Theorem 3.21] or Ishii [86, Theorem 7.3.1]):

Theorem 3.33. A normal surface singularity is rational if and only if one of the following equivalent
facts happen:

1. One has p(X, ) = 0.

2. There exists a strict normal crossings resolution for which p(Znm) = 0.

3. For all the strict normal crossings resolutions, one has p(Znm) = 0.

Using Laufer’s algorithm (see Proposition 3.19), we see that point (2) of Theorem 3.33 allows to
determine readily from the knowledge of the weighted graph of a resolution whether a singularity
is rational or not. Using Theorem 3.29, we deduce that:

Theorem 3.34. Let (X, ) be a normal surface singularity. The topological type of its boundary
∂(X, ) determines whether it is rational or not.

In general, the minimal resolution of a normal surface singularity is not a composition of blow-ups
of points, and its exceptional divisor has not necessarily normal crossings. The situation is different
for rational surface singularities (see Lipman [109, Theorem 4.1], Bădescu [10, Theorem 3.23.3]):

Theorem 3.35. Let (X, ) be a rational surface singularity. Then:

1. The surface obtained by blowing up  in X is again normal and has only rational singularities.

2. Starting from (X, ) and blowing-up recursively all non-smooth points, one gets in a finite
number of steps the minimal resolution of (X, ).
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3. The exceptional divisor of the minimal resolution of (X, ) has strict normal crossings, its
irreducible components are rational and its dual graph is a tree.

4. All the resolutions of (X, ) have simple normal crossings divisors whose irreducible compo-
nents are rational and whose dual graphs are trees.

5. Any element of the Lipman semigroup associated to any resolution of singularities of (X, )
may be realised as the exceptional part of a principal divisor.

In fact, the last property may be strengthened into the following characterization of rational
singularities (see Lipman [109, Theorem 12.1]):

Proposition 3.36. Let π : (X̃, E) → (X, ) be a resolution of a normal surface singularity X. Then
(X, ) is rational if and only if any germ D of effective divisor in the neighborhood of E such that
D · E = 0 for all  ∈  is principal.

Theorem 3.33 allows to decide by a finite algorithm whether a normal surface singularity is ratio-
nal or not whenever one knows the weighted dual graph of some strict normal crossing resolution
of it. Let us present a different criterion of rationality, which does not use explicitly resolutions in
its statement, even if they are needed in its proof (see Behnke and Riemenschneider [11, Theorem
2.7]):

Theorem 3.37. Assume that ϕ : (Y, y)→ (X, ) is a finite (that is, proper with finite fibers) holomor-
phic morphism between normal surface singularities. If (Y, y) is rational, then (X, ) is also rational.

As (C2,0) is rational, an immediate consequence of the theorem is (recall that quotient singular-
ities were introduced in Definition 2.29):

Corollary 3.38. Quotient surface singularities are all rational.

Another proof of this fact, valid also in higher dimensions, may be found in Ishii [86, Corollary
7.4.10]. As we won’t speak here about higher dimensional rational singularities, we decided not to
include their definition in our text.

Among quotient surface singularities, the ones which may be realized as hypersurface singulari-
ties in C3 are exactly those described in the following theorem:

Theorem 3.39. Let (X, ) be a normal surface singularity. Then the following properties are equiv-
alent:

1. (X, ) is analytically isomorphic to the germ (C2/G,0), where G is a finite subgroup of SL(2,C)
(one says that it is a Kleinian singularity).

2. The anti-canonical cycle (see Definition 3.21) of the minimal resolution of (X, ) is trivial (one
says that it is a Du Val singularity).

3. (X, ) is rational of multiplicity 2 (one says that it is a rational double point).

4. (X, ) is rational and numerically Gorenstein (see Definition 3.22).

Kleinian singularities are not only numerically Gorenstein, but even Gorenstein. Indeed, G being
a subgroup of SL(2,C), it leaves invariant the non-vanishing holomorphic 2-form d ∧ dy on the
affine plane C2 with coordinates (, y). Therefore, this form descends to a holomorphic 2-form on
the quotient (C2/G,0). This second form is non-vanishing outside the singular point of the quotient.
As this quotient is a normal surface, it is Cohen-Macaulay, and Proposition 2.26 implies that it is
moreover Gorenstein.

In fact, there are many more characterizations of Kleinian singularities than those stated in The-
orem 3.39. They appeared historically in different contexts under different aspects, some of those
contexts having led to the names emphasized in the previous theorem. More precisely:
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Figure 3.4. Exceptional divisors of Kleinian singularities and their dual graphs

• Klein [92] was studying the theory of invariants of finite subgroups of SL(2,C);

• Du Val [194] was studying the isolated singularities of surfaces in CP3 which do not affect
the conditions of adjunction, that is, such that the holomorphic 2-forms defined outside the
singular point extended to holomorphic 2-forms on any resolution of the singular point (see
[166, Chapter 33]);

• Artin [6] showed that any singularity having the same dual graph as those of Du Val’s list
(even without assuming that they were of embedding dimension 3), were rational of multi-
plicity 2 and embedding dimension 3.

One has the following “ADE” classification of Kleinian singularities:

(3.7)

An : n+1 + y2 + z2 = 0 (n ≥ 1);
Dn : n−1 + y2 + z2 = 0 (n ≥ 4);
E6 : 4 + y3 + z2 = 0;
E7 : 3y + y3 + z2 = 0;
E8 : 5 + y3 + z2 = 0.

On the left is written the standard name of each singularity, and on the right is given a defining
equation.

The dual graph of the minimal resolution is each time a tree of smooth rational curves with self-
intersections −2 (that is, p = 0 and e = 2), the number of vertices of the graph associated to Xn
being n, and the shape of the graph being the same as the one of the Coxeter diagram of the root
lattice of the simple complex Lie algebra with the same name. In the sequel we will say that such
weighted graphs are Kleinian graphs. Figure 3.4 representing them combines figures from Artin’s
papers [5] (top) and [6] (bottom). Case i) corresponds to the An singularities, case ii) to Dn’s, case
iii) to E6, case iv) to E7 and, finally, case v) to the E8 singularity.

Let us pass now to the quotient surface singularities which are not Kleinian. They were classified
by Brieskorn [21] (see also Matsuki [120, Chapter 4.6] or Ishii [86, Theorem 7.4.19]). The simplest
ones are the quotients of C2 by cyclic subgroups of GL(2,C). The quotient of a cyclic group by a
subgroup being again cyclic, one may assume that this subgroup is small (see Definition 2.30). This
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Figure 3.5. The dual graphs of the minimal resolutions of cyclic quotients

implies that a generator of it may be diagonalised in the form:
�

ξ 0
0 ζ

�

,

where ξ and ζ are roots of 1 of the same order. Denote by p > 0 this common order. Then one may
express ζ = ξq with 0 ≤ q < p. The order of ζ being also equal to p, we see that q is coprime with
p. This shows that the following definition exhausts all surface singularities obtainable as quotients
of C2 by cyclic groups:

Definition 3.40. Let p, q be coprime integers such that p > q > 0. The cyclic quotient (or
Hirzebruch-Jung) singularity (Xp,q,0) is the germ at the image of the origin in C2 of the quotient
Xp,q of C2 by the action (ξ, (, y)) → (ξ, ξqy) of the cyclic group {ξ ∈ C , ξp = 1} ' Z/pZ. Its
oriented boundary is the (oriented) lens space L(p, q).

The alternative name “Hirzebruch-Jung” for cyclic quotient singularities comes from the fact that
those singularities appear naturally in the Hirzebruch-Jung method (originating in Jung [91] and
Hirzebruch [80]) of resolution of surface singularities by preliminary embedded resolution of the
discriminant curve of a finite projection to a smooth surface. Namely, they are the singularities of
the normalization of a surface having such a projection whose discriminant has normal crossings
(see Laufer [99], Lipman [110] or Popescu-Pampu [164] for details).

The weighted dual graphs of the minimal resolutions of cyclic quotient singularities may be
described in the following way, starting from the defining pair (p, q):

Theorem 3.41. The weighted dual graph of the cyclic quotient singularity Xp,q is illustrated in
Figure 3.5. The sequence (b1, . . . , bs) is characterized by the conditions:































b ≥ 2, for all  ∈ {1, . . . , s},
p

q
= b1 −

1

b2 −
1

· · · −
1

bs

.

The continued fraction expansion appearing in the previous theorem is called a Hirzebruch-
Jung expansion. For the importance of such expansions in the study of the topology of normal
surface singularities, one may consult my survey [160].

Rational surface singularities are the simplest surface singularities, if one takes the arithmetic
genus as a measure of complexity. The next class in terms of this complexity contains therefore
the singularities (X, ) with p(X, ) = 1. Wagreich [197] started their study and called them elliptic
singularities, by analogy with elliptic curves, whose topological genus is 1. Unlike in the case of
rational singularities, this class contains germs with arbitrary high geometric genus. Laufer discov-
ered that there exists a subclass which is also defined topologically, and which has many properties
in common with rational singularities. Namely, in [102, Theorems 3.4 and 3.10], he proved:
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Theorem 3.42. Let (X, ) be a normal surface singularity. Working with its minimal resolution, the
following facts are equivalent:

1. One has p(Znm) = 1 and p(D) < 1 for all 0 < D < Znm.

2. The fundamental and anti-canonical cycles are equal: Znm = ZK .

3. One has p(Znm) = 1 and any connected proper subdivisor of E contracts to a rational
singularity.

4. pg(X, ) = 1 and (X, ) is Gorenstein.

Laufer introduced a special name (making reference to condition (3)) for the singularities satis-
fying one of the previous conditions:

Definition 3.43. A normal surface singularity satisfying one of the equivalent conditions stated in
Theorem 3.42 is called a minimally elliptic singularity.

One sees either from point (2) or from point (3) of Theorem 3.42 that the weighted dual graph
of the minimal resolution of (X, ) determines whether this singularity is minimally elliptic or not.
It may be shown that this weighted dual graph is determined by that of the minimal strict normal
crossings resolution. Therefore, by Theorem 3.29, whether a normal surface singularity is minimally
elliptic or not is determined by its topological type (that is, by its boundary, as introduced in Defini-
tion 3.23). Note that, by Theorem 3.42, all the singularities realising that topology are necessarily
Gorenstein.

Concerning rational singularities, we saw in Theorem 3.39 that only the Kleinian ones are Goren-
stein. Kleinian singularities are moreover taut (see Definition 3.47), which is not the case for all the
minimally elliptic ones. Nevertheless, Laufer saw that the union of the class of Kleinian singularities
and minimally elliptic singularities could be characterized in a subtle way using the property of
being Gorenstein (see Laufer [102, Theorem 4.3]):

Theorem 3.44. Let us fix a topological type of normal surface singularities. Then the singularities
realising that type are generically Gorenstein if and only if the topological type corresponds either
to a Kleinian singularity or to a minimally elliptic singularity.

It is not clear a priori what means a generic property of the singularities with given topological
type. Laufer gives the following meaning to it: a property is generic for a given topological type of
singularities if, on the base of the miniversal space of deformations with fixed topological type, the
singularities having that property form a dense open set.

If the minimal resolution of a rational singularity has a strict normal crossings exceptional divi-
sor, this is not necessarily the case for minimally elliptic ones. But Laufer [102, Proposition 3.5]
described completely the possible exceptions.

Let us introduce the following particular types of minimally elliptic singularities:

Definition 3.45. A normal surface singularity is a simple elliptic singularity if it is obtained by
contracting a smooth elliptic curve with negative self-intersections embedded in a smooth surface.
It is a cusp singularity if the weighted dual graph of its minimal strict normal crossings resolution
is a circle and p = 0.

Simple elliptic singularities were introduced by K. Saito [172] as the simplest elliptic singularities
in the sense of Wagreich and cusp singularities received their name from the fact that they are the
singularities obtained by compactifying the cusps of the Hilbert modular surfaces (see Hirzebruch
[83]). They have the following common characterization with cyclic quotient singularities, proved
by Neumann [142]:

Theorem 3.46. If one changes the orientation of the boundary of a normal surface singularity, the
resulting 3-manifold is no more orientation-preserving diffeomorphic to the boundary of an isolated
surface singularity, excepted for cyclic quotient singularities and cusp-singularities.
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Figure 3.6. Inclusions between several classes of surface singularities

The previous two classes of singularities, as well as all Kleinian singularities have moreover the
property that their topology determines their analytical type, that is, that they are taut:

Definition 3.47. A normal surface singularity or a weighted dual graph is called taut if its topo-
logical type determines its analytical type.

In [101], Laufer classified all the weighted dual graphs corresponding to taut singularities.
In order to help the reader get oriented among the various classes of surface singularities dis-

cussed in this text, I drew in Figure 3.6 an Euler-Venn diagram indicating the inclusion relations
between them. The only exceptions are the classes of taut and numerically Gorenstein singulari-
ties, which don’t play an important role in these notes.

For more details about Kleinian singularities, one may consult Hazewinkel et al. [76],
Durfee [39], Slodowy [177], Cassens & Slodowy [28], Brieskorn [23].

For more details about rational surface singularities, one may consult the original
papers of Artin [5], [6], Brieskorn [21], Tjurina [190], Lipman [109], Laufer [100], Lê And
Tosun [108], Okuma [147], Stevens [183], Némethi [136], as well as the introductory texts
of Behnke and Riemenschneider [11], Reid [168, Sections 4.12–4.15], Némethi [132, Lecture
3], Bădescu [10, Chapters 3-4] and Ishii [86, Section 7.3].
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For details about the classification of general normal surface singularities, I recom-
mend Némethi’s surveys [132], [134] as well as Reid [168] and Wall [201].

4. Smoothings of singularities and their Milnor fibers

4.1. A prototype: Milnor’s study of hypersurface singularities

Mumford’s theorem 3.25 characterizes the smooth points of normal surfaces as those for which
the boundary of the associated singularity is diffeomorphic to a standard sphere. Around 1965,
using recent work of Pham, Brieskorn proved that this is false in any higher dimension: he exhibited
isolated hypersurface singularities defined by equations of the form:

z
0
0 + · · · + z

n
n
= 0

(nowadays such singularities are called Pham-Brieskorn singularities, see Example 2.11) and whose
boundaries are diffeomorphic to standard spheres.

Moreover, he showed that one could obtain like this also exotic spheres, that is, manifolds
homeomorphic to standard spheres but not diffeomorphic to them. This was the first construction
of such spheres as explicit real algebraic sets, after the discovery of their existence as smooth
manifolds by Milnor [127]. Brieskorn’s work intrigued a lot Milnor, who began to think about this
discovery. His reflexions led to the book [129], which founded the topological theory of hypersurface
singularities. See Brieskorn [23] and Durfee [41] for more details about the previous discoveries.

Let me describe briefly the main geometric actors introduced by Milnor [129].
Assume that ƒ : (Cn,0)→ (C,0) is a germ of holomorphic function having an isolated critical point

at 0. Then Milnor considered the following objects associated to it:

1. A sufficiently small Euclidean ball Bε centered at the origin.

2. The intersection Mε := ƒ−1(0)∩ ∂Bε of the critical level ƒ−1(0) with the boundary of that ball.

3. The pieces Fε,λ contained in Bε of nearby regular levels ƒ−1(λ), for λ ∈ C∗ sufficiently small.

4. The intersections Bε ∩ ƒ−1(D2δ ) for δ > 0 sufficiently small, where D2
δ
⊂ C denotes the closed

disc of radius δ.

5. The family (Fε,λ)|λ|=const of such pieces, for a fixed non-zero absolute value of the level.

6. The map θ := rg ƒ : ∂Bε \Mε → S1 defined by the argument of ƒ .

Milnor proved in [129] that:

1. The radius ε > 0 may be chosen such that the critical level ƒ−1(0) intersects transversally
all the spheres of radius ≤ ε centered at the origin. One calls such a ball Bε a Milnor ball
and its boundary a Milnor sphere with respect to ƒ .

2. If Bε is a Milnor ball, then the pair (∂Bε,Mε) is independent of the choices, up to diffeo-
morphisms whose isotopy classes are well-defined. One calls it the embedded link of the
critical point. Note that Mε is then a representative of the boundary or link of the isolated
hypersurface singularity (ƒ−1(0),0) (see Definition 3.23).

3. One may choose δ > 0 such that the various sets Fε,λ are diffeomorphic smooth manifolds-
with-boundaries whose boundaries are diffeomorphic to Mε, for each λ ∈ C∗ such that |λ| < δ.
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Figure 4.1. Milnor’s view of an isolated critical point of holomorphic function

4. Whenever Bε is a fixed Milnor ball, one may choose δ > 0 sufficiently small such that Tε,δ :=
Bε ∩ ƒ−1(D2δ ) is homeomorphic to a ball and the restriction of ƒ to Tε,δ \ F−1(0) is a locally
trivial fibration above D2

δ
\ {0}. One calls the manifold with corners Tε,δ a Milnor tube.

5. The family (Fε,λ)|λ|=const is a locally trivial fibration over the circle. It is called the Milnor
fibration associated to the germ ƒ and its fibers Fε,λ are called the Milnor fibers of ƒ .

6. (Mε, θ) is an open book in ∂Bε, whose associated fibration is isomorphic to the Milnor fibra-
tion. One calls it the Milnor open book.

The term “open book” was introduced later, by Winkelnkemper [205]. Here is its definition:

Definition 4.1. An open book on a closed manifold V is a pair (K, θ) consisting of:

1. a codimension 2 submanifold K ⊂ W, called the binding, with a trivialized normal bundle;

2. a fibration θ : W \ K → S1 which, in a trivialized tubular neighborhood D2 × K of K, is the
normal angular coordinate (that is, the composition of the first projection D2 × K → D2 with
the angular coordinate D2 \ {0} → S1). The closures of the fibers of θ are called the pages
of the open book.

In Figure 4.2 is represented a local view of an open book on a 3-dimensional manifold, in the
neighborhood of a point of its binding. This view illustrates the fact that all the pages share the
same boundary, which is the binding. As a simple example of open book, one may think about
the system of meridians on a 2-dimensional sphere (parametrised by their longitudes), the binding
being in this case the union of the two poles (see Figure 4.3). Note that this is not a Milnor open
book, as the ambient manifold is even-dimensional.

A fundamental theorem of Milnor [129, Theorem 6.5] about the structure of Milnor fibers is:

Theorem 4.2. The Milnor fibers of a germ of holomorphic function ƒ : (Cn,0)→ (C,0) with isolated
critical point is homotopically equivalent to a bouquet of a finite number of spheres of dimension n.

The number of such spheres bears since then Milnor’s name:
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Figure 4.2. A local view of an open book near a point of its binding

Figure 4.3. An open book on the 2-dimensional sphere

Definition 4.3. Let ƒ : (Cn,0) → (C,0) be a germ of holomorphic function with an isolated critical
point. Then the number of n-spheres in a bouquet realization of the homotopy type of the Milnor
fibers of ƒ is called the Milnor number μ(ƒ ) of ƒ .

The Milnor number has also an algebraic description:

Theorem 4.4. The Milnor number of the germ ƒ : (Cn,0) → (C,0) with isolated critical point is
equal to the dimension of the complex vector space

C{z1, . . . , zn}/
�

∂ƒ

∂z1
, . . . ,

∂ƒ

∂zn

�

.

A proof of this theorem was sketched by Milnor in [129, Problem 3 of Appendix B]; another proof
by Pham was sketched by Lê in [105, Page 175]. Detailed proofs may be found in Brieskorn [22]
and in Orlik’s survey [148].

The study of the structure of the Milnor fibration associated to an isolated critical point of holo-
morphic function is one of the mainstreams of singularity theory. Hundreds of papers have been
dedicated to it. The main theme is to understand the action of the monodromy on the homology
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of the fiber and its relations with other invariants, as asymptotic integrals and mixed Hodge struc-
tures. We won’t pursue these themes here, but we will examine instead the way to associate Milnor
fibers even to singularities which are not hypersurfaces.

For more details about Milnor fibrations, one may read Milnor’s book [129], as well as
the surveys of Arnold, Gussein-Zade and Varchenko [2, Chapter I], Teissier [188], Némethi
[133] and Budur [26]. Vor various interpretations of the Milnor number, see Orlik’s survey
[148].

4.2. General facts about deformations and smoothings

Let us look a little differently at a holomorphic germ ƒ : (Cn,0) → (C,0) with an isolated critical
point at the origin. After having done Milnor’s construction explained at the beginning of subsection
4.1 and illustrated in Figure 4.1, we may think that the set of Milnor fibers Fε,λ := ƒ−1(λ) ∩ Bε
parametrized by λ ∈ D2

δ
\ {0} is a family of smooth manifolds converging to the singular space

ƒ−1(0) ∩ Bε.
Is it possible to see analogously any complex analytic singularity as a limit of smooth spaces?
One needs a little care in the definition of such a limit process. The usual way in analytic geometry

to conceptualize limits is to take analytic families of objects and to see how the nearby members
approach a special member of the family. The constraint that the families be analytic means that
the members of the family are requested to be the fibers of a complex analytic morphism.

Such a definition of family of analytic spaces is too general. For example, if one looks at the
morphism of blow-up of the vertex 0 of a cone X of dimension at least 2 (see Example 2.34) and
at the special fiber over 0, one would be forced to think at the projectivised cone P(X) as a limit of
points, which is not desirable. In order to get a notion more proximate to the intuition, one would
like to impose at least that all the fibers of the morphism be equidimensional. The algebraic notion
of flatness ensures this property and in fact much more. That is why one restricts in the following
way the notion of analytic family:

Definition 4.5. Let (X, ) be a germ of a not necessarily reduced complex analytic space. A de-
formation of (X, ) is a germ of flat morphism ψ : (Y, y) → (S, s) together with an isomorphism
between (X, ) and the special fiber (ψ−1(s), y).

Let us explain also the notion of flat morphism, used in the previous definition:

Definition 4.6. Let A be a commutative ring. An A-module M is called flat if for any injective
morphism of A-modules N1 → N2, the induced morphism N1 ⊗ M→ N2 ⊗ M is still injective.

A morphism ψ : (Y, y) → (S, s) of germs of analytic spaces is called flat if the corresponding
morphism ψ∗ : OS,s → OY,y of local rings makes OY,y a flat OS,s-module.

It is difficult to explain more geometrically the meaning of this notion. For instance, Mumford said
about it in [131, Section III.10] that “the concept of flatness is a riddle that comes out of algebra,
but which technically is the answer to many prayers.”

When the germ (X, ) is reduced, then a germ of holomorphic function ƒ ∈ mX, is flat as a mor-
phism ƒ : (X, ) → (C,0) if and only if ƒ is not a divisor of zero. Such deformations over germs of
smooth curves are called 1-parameter deformations. The simplest example is obtained when
(X, ) = (Cn,0) and ƒ has an isolated critical point at 0 ∈ Cn. Then one gets the situation consid-
ered by Milnor and recalled in Subsection 4.1, in which now ƒ is thought as a deformation of the
singularity (Z(ƒ ),0).

In general, to think about a flat morphism as a deformation means to see it as a family of con-
tinuously varying fibers and to concentrate on a particular fiber. Of course, in order to speak about
such fibers as well-defined topological spaces, one needs first to choose convenient representa-
tives of the various germs, in a way which generalizes the one explained in Subsection 4.1 (see
also Theorem 4.16 below).
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If one starts from an analytic family, one gets new families by rearranging the fibers in the
following way:

Definition 4.7. Let ψ : (Y, y) → (S, s) be a morphism of germs of analytic spaces. A second mor-
phism ψ1 : (Y1, y1)→ (S1, s1) is obtained by base change from ψ if it may be included in a cartesian
diagram of the form:

(Y1, y1)

ψ1
��

// (Y, y)

ψ

��
(S1, s1) χ

// (S, s)

that is, if ψ1 = χ∗ψ. One says in this case that ψ1 is obtained from ψ through the base change
χ.

Note that the fibers of ψ1 are precisely the fibers of ψ lying above the points of the image of the
morphism χ. In particular, the special fiber is unchanged. Moreover, it is a basic property of flat
morphisms to remain flat after base changes. For this reason, by base changes the deformations of
a singularity (X, ) are transformed into other such deformations.

In order to compute the base change ψ1 = χ∗ψ, one has to write the equations defining the
graph of the deformation ψ and to replace then the variables used to describe its base S using the
equations defining the graph of the morphism χ.

Example 4.8. Consider the holomorphic germ ƒ : (C3,0)→ (C,0) defined by ƒ (, y, z) = 2+y2+ z2.
Look at it as a deformation of the isolated surface singularity (Z(ƒ ),0). If one denotes by t the
variable of the base (C,0), then the equation of the graph of ƒ is 2 + y2 + z2 = t. Consider the
morphism χ : (C,0) → (C,0) defined by χ() = 2. Its graph has the equation 2 = t. Replacing
the variable t in the equation 2 + y2 + z2 = t using the equation 2 = t, one gets the equation
2 + y2 + z2 = 2. It defines the total space Y1 of the deformation ƒ1 obtained from ƒ through the
base change χ. This total space is a hypersurface in the affine space C4 of coordinates (, y, z, ) and
the morphism ƒ1 is simply the restriction to it of the natural projection to the axis of the coordinate
.

One is particularly interested in the situations in which there exist deformations generating all
other deformations by base changes. The following definition is a reformulation of [68, Definition
1.8, page 234]:

Definition 4.9.

1. A deformation ψ of (X, ) is complete if any other deformation is obtainable from it by a
base change.

2. A complete deformation ψ of (X, ) is called versal if for any other deformation over a base
(T, t) and any identification of the induced deformation over a subgerm (T′, t) ,→ (T, t) with a
morphism obtained from ψ by base change, one may extend this identification over all (T, t).

3. A versal deformation is miniversal if the embedding dimension of its base (S, s) is as small
as possible.

Obviously, miniversal deformations are versal, and versal deformations are complete. Such de-
formations do not necessarily exist. But, whenever a miniversal deformation exists, it results easily
from the definition that its base space is unique up to non-unique isomorphism (only the tangent
map to the isomorphism is unique). For this reason, one does not speak about a universal deforma-
tion, and the word “miniversal” was coined, with the variant “semi-universal”.

In many references, versal deformations are defined as the complete ones in Definition 4.9. Then
is stated usually the theorem that the base of a versal deformation is isomorphic to the product
of the base of a miniversal deformation and of a smooth germ. With this weaker definition, the
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theorem is false. Indeed, starting from a complete deformation, by doing the product of its base
with any germ (not necessarily smooth) and by taking the pull-back, we would get again a complete
deformation. This shows that a complete deformation is not necessarily versal.

The following crucial existence theorem of versal deformations was proved by Schlessinger [174]
in the formal category and by Grauert [63] in the holomorphic category (see also Tyurina [191],
Hauser [74] and de Jong and Pfister [90, Section 10.3]):

Theorem 4.10. Let (X, ) be an isolated singularity. Then it admits miniversal deformations, which
are unique up to (non-unique) isomorphisms.

Let us come back to the situation we were speaking about at the beginning of the section, where
a singularity is seen as a limit of smooth spaces. The following vocabulary is used in this context:

Definition 4.11. A smoothing of a singularity (X, ) is a 1-parameter deformation ƒ : (Y, y) →
(C,0) of it whose general fiber is smooth in a neighborhood of y. A singularity is smoothable
if it admits a smoothing. A smoothing component is an irreducible component of the reduced
miniversal base space of (X, ), over which the generic fibers are smooth.

Isolated complete intersection singularities have very special miniversal deformations, as shown
by the following result of Tyurina [191] (see also Looijenga [114, Chapter 6] or Greuel, Lossen and
Shustin [68, Theorem 1.16]):

Theorem 4.12. If ψ : (Y, y)→ (S, s) is a miniversal deformation of an isolated complete intersection
singularity, then both (Y, y) and (S, s) are smooth.

The miniversal deformations of isolated complete intersections may be described concretely. Let
us state this description in the case of isolated hypersurface singularities (as a particular case of
[68, Theorem 1.16]):

Theorem 4.13. Assume that ƒ ∈ C{z1, . . . , zn} with ƒ (0, . . . ,0) = 0 has an isolated critical point at
0 and that g1, . . . , gτ ∈ C{z1, . . . , zn} descend to a basis of the complex vector space

(4.1) C{z1, . . . , zn}/
�

ƒ ,
∂ƒ

∂z1
, . . . ,

∂ƒ

∂zn

�

.

Define (Y,0) ,→ (Cn
z1,...,zn

× Cτ
t1,...,tτ

,0) as the zero-locus Z(ƒ + t1g1 + · · · + tτgτ). Then the restriction

to (Y,0) of the canonical projection (Cn
z1,...,zn

× Cτ
t1,...,tτ

,0)→ (Cτ
t1,...,tτ

,0) is a miniversal deformation

of the isolated hypersurface singularity (Z(ƒ ),0).

In honor of Tyurina’s work [191], the dimension τ(ƒ ) of the complex vector space (4.1) is called
the Tyurina number of the function ƒ with isolated critical point. It may be checked formally that it
is an invariant of the isolated hypersurface singularity (Z(ƒ ),0). Theorem 4.13 gives a good reason
for this invariance: τ is equal to the dimension of the miniversal base of (Z(ƒ ),0).

Note that Theorem 4.4 implies that the Tyurina number of ƒ is not greater than its Milnor number:
τ(ƒ ) ≤ μ(ƒ ). Kyoji Saito proved in [171] that one has the equality τ(ƒ ) = μ(ƒ ) if and only if ƒ may
be transformed into a quasi-homogeneous polynomial by a holomorphic automorphism (change of
variables) of (Cn,0).

Example 4.14. Let us see an example of application of Theorem 4.13. Consider the function
ƒ (, y, z) = 2 + y2 + z2 of Example 4.8. Then

�

ƒ , ∂ƒ∂ ,
∂ƒ
∂y ,

∂ƒ
∂z

�

= (2 + y2 + z2,2,2y,2z) = (, y, z) =
�

∂ƒ
∂ ,

∂ƒ
∂y ,

∂ƒ
∂z

�

. Therefore, one has τ = μ = 1 and one may take g1 = 1. The total space (Y,0) ,→
(C3

,y,z
× Ct1 ,0) is defined by the equation 2 + y2 + z2 + t1 = 0. Therefore, it is obtained from the

deformation ƒ : (C3,0)→ (C,0) of (Z(ƒ ),0) by the base change t1 = −t. This base change being an
analytic isomorphism, we see that ƒ itself is in this case a miniversal deformation of (Z(ƒ ),0).

The miniversal base (S, s) of a general isolated singularity is not necessarily smooth or even
reduced. Moreover, its reduction (Sred, s) may be reducible. The first example of this phenomenon
was discovered by Pinkham [158, Chapter 8] (see also Behnke and Riemenschneider [11, Section
3.3]):
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Proposition 4.15. The germ at the origin of the cone over the rational normal curve of degree
4 in P4 has a reduced miniversal base space with two irreducible components. Both of them are
smoothing components.

I will give more details about Pinkham’s example in Subsection 4.4 below. Let me mention also
that, as was shown by Vakil [193], up to smooth factors, any germ of complex analytic space may
occur as the base of the miniversal deformation of an isolated singularity of dimension 3.

Not all isolated singularities are smoothable. The most extreme case is attained with rigid sin-
gularities, which are not deformable at all in a non-trivial way. For example, quotient singularities
of dimension ≥ 3 are rigid (see Schlessinger [175]). Let us note that the following conjecture (see
[68, Conjecture II.1.1]), which goes back to the 1970s, is still open:

“There exist no rigid singular reduced curve singularities and no rigid singular normal surface
singularities.”

In [161, Proposition 4.5], I gave a purely topological obstruction to smoothability for singularities
of dimension ≥ 3. In dimension 2 no such criterion is known in full generality. But for Gorenstein
normal surface singularities, one has the constraint of Theorem 4.18 below.

Let us look now at the topological structure of the generic fibers above a smoothing component.
We want to localize the study of the family in the same way as Milnor localized the study of a
function on Cn near an isolated critical point. This is possible (see Looijenga [114, Section 2.8]):

Theorem 4.16. Let (X, ) be an isolated singularity. Let ψ : (Y, y) → (S, s) be a miniversal defor-
mation of it. Then, there exist (Milnor) representatives Yred and Sred of the reduced total and base
spaces of ψ such that the restriction ψ : ∂Yred ∩ ψ−1(Sred)→ Sred is a trivial C∞-fibration. Moreover,
one may choose such representatives such that over each smoothing component S, one gets a
locally trivial C∞-fibration ψ : Yred ∩ ψ−1(S)→ S outside a proper analytic subset.

Hence, for each smoothing component S, the oriented diffeomorphism type of the oriented
manifold with boundary (Yred ∩ψ−1(s), ∂Yred ∩ψ−1(s)) does not depend on the choice of the generic
element s ∈ S: it is called the Milnor fiber of that component. Moreover, its boundary ∂Yred∩ψ−1(s)
is canonically identified with the boundary ∂(X, ) of (X, ) up to isotopy.

By looking at the various isolated singularities with the same topological type as a given singu-
larity, one gets a set of Milnor fibers which is a topological invariant of the singularity. As explained
in the introduction, the aim of this paper is to describe the classes of surface singularities for which
the answer to the next question is known:

Given an isolated singularity (X, ), identify the Milnor fibers of all (normal) isolated singularities
with the same topological type as (X, ) among the various oriented smooth manifolds having
∂(X, ) as their boundary.

The cases in which the answer to the previous question is known are described in Subsection 6.2.
All of them being surface singularities, let us see now some general results about the smoothings
of surface singularities.

For more details about flatness, one may consult Mumford [131, Section III.10], Fischer
[55, Chapter 3], de Jong and Pfister [90, Section 10.2]. For more details on deformations and
smoothings, one may consult Teissier [187, Section 4], de Jong and Pfister [90, Section 10.3],
Stevens [182], Greuel, Lossen and Shustin [68] as well as the papers of the collective
volume [140].

4.3. General properties of smoothings of normal surface singularities

In dimension 2, no purely topological obstruction to smoothability for all normal singularities
seems to be known, in contrast with higher dimensions (see Popescu-Pampu [161, Proposition 4.5]).
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But there exist such obstructions for special Gorenstein (see Definition 2.25) normal surface singu-
larities (see also [201]), as a consequence of Steenbrink’s theorem 4.18 below.

In order to state that theorem, we need a new definition:

Definition 4.17. Let (X, ) be an isolated surface singularity and F a Milnor fiber of it associated to
some smoothing component of its miniversal base space. The Milnor number μ of F is its second
Betti number dimRH2(F,R). One decomposes it as a sum of three terms:

• μ0 is the dimension of the kernel of the intersection form on H2(F,R).

• μ+ is the maximal dimension of a vector subspace of H2(F,R) on which the intersection form
is positive definite.

• μ− is the maximal dimension of a vector subspace of H2(F,R) on which the intersection form
is negative definite.

That is, the triple (μ0, μ+ , μ−) is the inertia index of the intersection form on the real second
homology with real coefficients of the Milnor fiber. It is an invariant of the chosen smoothing com-
ponent.

Note that, when (X, ) is a hypersurface singularity, the notion of Milnor number introduced in
Definition 4.17 coincides with that of Definition 4.3.

Here comes the announced theorem of Steenbrink [178], in which pg(X, ) denotes the geometric
genus of (X, ) (see Definition 3.31) and b1(∂(X, )) denotes the first Betti number of the boundary
of (X, ):

Theorem 4.18. Let (X, ) be a Gorenstein normal surface singularity. If it is smoothable, then all
its Milnor fibers satisfy:

(4.2) μ− = 10 pg(X, ) − b1(∂(X, )) + (Z2K + ||).

In particular, if a Gorenstein normal surface singularity is smoothable, then:

10 pg(X, ) − b1(∂(X, )) + (Z2K + ||) ≥ 0.

Note that, by point (4) of Proposition 3.30, the first Betti number b1(∂(X, )) may be computed
from any strict normal crossings resolution with exceptional divisor E =

∑

∈ E as:

b1(∂(X, )) = b1() + 2
∑

∈
p,

where p denotes the genus of E and  denotes the dual graph of E. The term Z2
K
+ || may also

be computed using any normal crossings resolution, and is again a topological invariant of the
singularity.

Theorem 4.18 gives non-trivial obstructions on the topology of smoothable normal Gorenstein
surface singularities.

Example 4.19. For instance, Theorem 4.18 implies that among simple elliptic singularities (Defi-
nition 3.45), the smoothable ones have minimal resolutions whose exceptional divisor is an elliptic
curve with self-intersection ∈ {−9,−8, ...,−1}. It is possible to prove that in fact all simple elliptic
singularities whose resolution satisfies this constraint are smoothable.

One gets analogous constraints on the topology of smoothable minimally elliptic singularities
(see Definition 3.43), a class determined by its topological type (see Theorem 3.42).

In what precedes, we have spoken only about μ− . There is also a theorem concerning μ0 and μ+ ,
proved first by Durfee [38] for isolated hypersurface singularities, then by Steenbrink [178] in this
full generality:

Theorem 4.20. Any Milnor fiber of a normal surface singularity (X, ) satisfies:

μ0 + μ+ = 2 pg(X, ).
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By adding the formulae of Theorems 4.18 and 4.20, one gets an expression of the Milnor number
μ in terms of analytic invariants of the starting normal surface singularity, whenever it is Gorenstein.
This generalizes Laufer’s theorem [103, Theorem 1], proved for isolated hypersurface singularities
in C3.

An immediate consequence of Theorem 4.20, of Definition 3.32 and of Theorem 4.24 below is:

Corollary 4.21. Let (X, ) be a normal surface singularity. Then the following properties are equiv-
alent:

• (X, ) is rational.

• (X, ) admits a smoothing for which the intersection form on the second homology of the
Milnor fiber is negative definite.

• (X, ) is smoothable and all the Milnor fibers of (X, ) have negative definite intersection
forms on their second homology groups.

Theorem 4.20 shows that μ0 + μ+ is not a topological invariant of the singularity, but it is an
analytical one (it does not depend on the smoothing component). In turn, μ0 is topological, as was
proved by Greuel and Steenbrink [67]:

Theorem 4.22. Any Milnor fiber of a normal surface singularity (X, ) has vanishing first Betti
number, which is equivalent to:

μ0 = b1(∂(X, )).

In fact, Greuel and Steenbrink proved in [67] the vanishing of the first Betti number (for homology
with real coefficients) of a Milnor fiber of a normal isolated singularity of arbitrary dimension ≥ 2.
Note that for hypersurfaces, this results from Milnor’s theorem 4.2.

Combining Theorems 4.20 and 4.22, one gets the following constraint on the geometric genus,
purely in terms of the topological type of (X, ):

Corollary 4.23. For any normal surface singularity (X, ), one has:

2 pg(X, ) ≥ b1(∂(X, )).

Let me explain the reason of the equivalence formulated in Theorem 4.22. One has the following
analog of the exact sequence (3.5), which is proved exactly in the same way:

(4.3) H2(F) −→ H2(F) −→ H1(∂F) −→ H1(F) −→ H3(F).

Here F denotes the Milnor fiber under consideration and this time we work with real (co)homology.
As the Milnor fiber F has the homotopy type of a CW-complex of dimension at most 2 (see Theorem
5.10 below), we deduce that H3(F) = 0. As we work with real coefficients, we have moreover
H2(F) ' H2(F)∗. We deduce therefore from (4.3) the following short exact sequence:

0 −→ H2(F)∗/h(H2(F)) −→ H1(∂F) −→ H1(F) −→ 0,

in which h : H2(F) −→ H2(F)∗ is the map induced by the intersection form on the second homology
of the Milnor fiber F. This short exact sequence shows that one has the equivalence:

H1(F) = 0 ⇐⇒ dimRH2(F)∗/h(H2(F)) = dimRH1(∂F).

This implies the equivalence formulated in Theorem 4.22.

As the only Gorenstein rational singularities are the Kleinian ones (see Theorem 3.39), we see
that Theorem 4.18 does not help to decide whether a given rational surface singularity is smooth-
able or not. In fact, one has the following theorem of M. Artin [7]:

Theorem 4.24. All rational surface singularities are smoothable. Moreover, any irreducible com-
ponent of the reduced miniversal base space of such a singularity is a smoothing component.
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Among the components of the reduced miniversal base space Sred of a rational surface singular-
ity, Artin showed that there is a distinguished one (called now the Artin component) which may
be characterized in the following way:

Theorem 4.25. Let (X, ) be a rational surface singularity and ψ : (Y, y) → (S, s) its miniversal
deformation. Then the reduced base space Sred contains a unique irreducible component (T, s) such
that the restriction ψT : (YT , y) → (T, s) of the miniversal deformation to T admits a simultaneous
resolution after a finite base change.

To say that ψT : (YT , y) → (T, s) admits a simultaneous resolution after a finite base
change means that there exists a finite surjective morphism β : (T, s) → (T, s) such that the
morphism ψT : (YT , y) → (T, s) obtained from ψ through the base change β (see Definition 4.7)
admits a simultaneous resolution of its fibers. In turn, this means that there exists a mor-
phism π : (Z, X̃)→ (YT , y) which restricts to resolutions of singularities over every fiber of ψT in the
neighborhood of . That is, one has a commutative diagram

(4.4) (Z, X̃)

γ ##G
GG

GG
GG

GG
π // (YT , y)

ψT{{ww
ww
ww
ww

(T, s)

such that its restriction over each point t of (a representative of) T is a resolution of singularities of
the surface ψ−1

T
(t).

All the fibers of the analytic morphism (Z, X̃) → (T, s) being smooth, one may apply to a well-
chosen representative of the previous morphism a version of Ehresmann’s theorem adapted to
proper morphisms between manifolds with boundary. One deduces from it that all those fibers are
diffeomorphic to the total space of the given resolution X̃ of X.

Example 4.26. Consider again the holomorphic function ƒ (, y, z) = 2+y2+z2 of Example 4.8. We
saw in Example 4.14 that ƒ is a miniversal deformation of the normal surface singularity (Z(ƒ ),0).
We recognize it as the A1 Kleinian singularity (see formulae (3.7)). Therefore, it is a rational sur-
face singularity. As for all isolated complete intersection singularities, the miniversal base space is
smooth (see Theorem 4.12), therefore irreducible. Theorem 4.25 implies therefore that there exists
a finite base change of the deformation ƒ of (Z(ƒ ),0) which admits a simultaneous resolution.

How to obtain it concretely? Well, the base change t = 2 of Example 4.8 works! Indeed, the
equation 2 + y2 + z2 = 2 of the total space Y1 of the deformation ƒ1 obtained after this base
change may be rewritten in the form z1z2 − z3z4 = 0, by the complex linear change of variables
 + y = 2z1,  − y = 2z2,  + z = 2z3,  − z = 2z4. One recognizes the 3-dimensional isolated
singularity of Example 2.42. We saw there that this singularity admits small resolutions. Consider
one of those resolutions π : Ỹ1 → Y1. It may be shown by elementary computations in affine charts
that

(Ỹ1,àZ(ƒ ))

ƒ1◦π %%KK
KKK

KKK
KK

π // (Y1,0)

ƒ1zzvv
vv
vv
vv
v

(C,0)

is a diagram of simultaneous resolution, that is, that it has all the properties mentioned about
the diagram (4.4). In order to do those computations, one needs only to know that the two small
resolutions of (Y1,0) may be obtained by starting either from z2/z4 = z3/z1 or from z2/z3 = z4/z1,
seen as rational maps Y1 · · · → P1.

As explained in [23], this example, worked out by Atiyah at the end of the 1950s, was the starting
point of Brieskorn’s reflections leading him to the discovery that the boundaries of certain Pham-
Brieskorn singularities (see Example 2.11) are exotic spheres.

Let us consider again arbitrary rational surface singularities. It may be shown that the simulta-
neous resolution of Theorem 4.25 restricts to the minimal resolution above the special fiber, which
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is the initial singularity. Moreover, it restricts to isomorphisms above the generic fibers. Using again
Ehresmann’s theorem, one gets:

Proposition 4.27. The Milnor fibers associated to the Artin component of a rational surface sin-
gularity are diffeomorphic to a tubular neighborhood of the exceptional divisor of the minimal
resolution of the singularity.

Theorems 4.18 and 4.20 imply that all smoothings of Gorenstein normal surface singularities
have the same Milnor number μ = μ0 + μ+ + μ− . This is analogous to the following theorem of Buch-
weitz and Greuel [25], proved before by Milnor [129, Theorem 10.5] for plane curve singularities
(that is, hypersurface singularities of dimension 1):

Theorem 4.28. Let (X, ) be a smoothable reduced curve singularity with r ≥ 1 irreducible com-
ponents. Then all its Milnor fibers are connected and their first Betti number μ depends only on
analytical invariants of (X, ):

μ = 2 δ(X, ) − r + 1.

For arbitrary normal surface singularities, the Milnor number may vary among the smoothing
components, as illustrated by Pinkham’s example described in Subsection 4.4. But its variation is
determined by the variation of the dimension of the corresponding smoothing component in the
miniversal base space. This results from Theorem 4.29 below, which is a consequence of results of
Wahl [198, Theorem 3.13], Greuel and Looijenga [66] and Looijenga [115, Appendix].

In order to state it, we need to introduce the following analog of the geometric genus (see
Definition 3.31):

θ := dimC R
1π∗ΘX̃

where π : X̃→ X is any resolution of singularities and ΘX̃ is the sheaf of germs of holomorphic vector
fields on X̃. As for the geometric genus, it may be seen that this definition is independent of the
resolution, and that θ ∈ Z+ .

Theorem 4.29. Let X be a normal surface singularity. Consider a smoothing component of its
reduced miniversal base space. Denote by β > 0 its dimension and by μ the Milnor number of a
corresponding Milnor fiber. Then, working with the minimal resolution of (X, ):

(4.5) 2 μ − β = 14 pg − θ − 2 b1(∂(X, )) + 2 ||.

Note that the right-hand side of equation (4.5) is an analytic invariant of (X, ). The specification
that one works with the minimal resolution (not necessarily a normal crossings one!) allows to
determine the value of || = b2(E).

Wahl proved a prototype of Theorem 4.29 in [198, Theorem 3.13]. He used another definition of
the number β, still depending only on the smoothing component whose Milnor fiber is analysed.
He used also the hypothesis that there exists a smoothing of the singularity (X, ) inside the given
smoothing component which may be globalized, in the sense that it may be realized by a global
deformation of a projective variety with only one singularity. Wahl conjectured that for an isolated
singularity of arbitrary dimension, his definition of the number β could be interpreted as the di-
mension of the smoothing component under consideration ([198, Conjecture 4.2]). This conjecture
was proved by Greuel and Looijenga in [66]. Moreover, Looijenga proved in [115, Appendix] that all
smoothings of isolated singularities could be globalized. In this way one arrives at the statement of
Theorem 4.29.

In fact, Wahl stated in the following way relation (4.5):

β = θ − 14 pg + 2(χ(F) − χ(E)),

in which χ denotes the Euler-Poincaré characteristic and E denotes the exceptional divisor of the
minimal resolution. We leave as an exercise to the reader to show that both relations are equivalent
(indication: use Proposition 3.30 (4)).

For more details on Milnor fibers of smoothings of normal surface singularities, one
may consult Wahl [198], Greuel and Looijenga [66], Looijenga and Wahl [116], Wahl [199]
as well as the surveys [11] of Behnke and Riemenschneider and [135] of Némethi.
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Figure 4.4. The method of sweeping out the cone with hyperplane sections

4.4. Pinkham’s example with two smoothing components

Let us begin this section by explaining a general method for constructing smoothings, by “sweep-
ing out the cone with hyperplane sections”, in the words of Pinkham [158, Page 46]. It is probably
the easiest way to construct smoothings, which explains why a drawing similar to Figure 4.4 was
represented on the cover of Stevens’ book [182]. My explanation follows the one I gave in [165,
Section 4].

Let V be a complex vector space, whose projectivisation is denoted P(V): set-theoretically, it
consists of the lines of V. Let A be a smooth subvariety of P(V). Denote by CA ,→ V the affine cone
over it, and by CA ,→ V the associated projective cone. Here V denotes the projective space of the
same dimension as V, obtained by adjoining P(V) to V as hyperplane at infinity. That is:

V = P(V ⊕ C) = V ∪ P(V).

The projective cone CA = CA ∪ A is the Zariski closure of CA in V. The vertex of either cone is the
origin O of V.

Assume now that H ,→ P(V) is a projective hyperplane which intersects A transversally. Denote
by:

B := H ∩ A

the corresponding hyperplane section of A. The affine cone CH over H is the linear hyperplane of V
whose projectivisation is H. The associated projective cone CH ,→ V is a projective hyperplane of V.

Let L be the pencil of hyperplanes of V generated by P(V) and CH. That is, it is the pencil of
hyperplanes of V passing through the “axis” H. In restriction to V, it consists in the levels of any
linear form ƒ : V → C whose kernel is CH. The 0-locus of ƒ |CA is the affine cone CB over B.

As an immediate consequence of the fact that H intersects A transversally, we see that CB has
an isolated singularity at O and that all the non-zero levels of ƒ |CA are smooth. Moreover, ƒ is not a
zero-divisor in the local ring of CA at its vertex. This shows that:

Lemma 4.30. The map ƒ |CA : CA → C gives a smoothing of the isolated singularity (CB, O).

Since the complement CA \ O of the vertex in the cone CA is invariant under the natural C∗-
action by scalar multiplication on V, the Milnor fibers of ƒ |CA : (CA, O) → (C,0) are diffeomorphic
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to the global (affine) fibers of ƒ |CA : CA → C. Those fibers are the complements (W ∩ CA) \ B, for
the members W of the pencil L different from CH and P(V). But the only member of this pencil
which intersects CA non-transversally is CH, which shows that the pair (W ∩ CA, B) is diffeomorphic
to (P(V) ∩ CA, B) = (A,B). Therefore:

Proposition 4.31. The Milnor fibers of the smoothing ƒ |CA : (CA, O) → (C,0) of the singularity
(CB, O) are diffeomorphic to the affine subvariety A \ B of the affine space P(V) \H.

The previous method may be applied to construct smoothings of germs of affine cones CB at their
vertices. In order to apply it, one has therefore to find another subvariety A of the same projective
space, containing B, such that B is a section of A by a hyperplane intersecting it transversally. In
general, this is a difficult problem.

An important point to be understood here is that, even if (CA, O) is normal, this is not necessarily
the case for its hyperplane section (CB, O). More generally, if (Y, y) is a normal isolated singularity
and ƒ : (Y, y) → (C,0) is a holomorphic function such that the germ (ƒ−1(0), y) is reduced and with
isolated singularity, this germ is not necessarily normal. Using this observation and the method of
sweeping out the cone, I proved in [165] the following proposition which has to be contrasted with
the fact that simple elliptic singularities are smoothable only for a finite number of topological types
(see Example 4.19):

Proposition 4.32.

1. For every simple elliptic singularity (X, ), there exists a smoothable isolated singularity
whose normalization is (X, ). Moreover, one may realize it as the germ of a cone at its
vertex.

2. For every normal surface singularity (X, ), there exists a smoothable isolated singularity
whose normalization is (X, )

In [158], Pinkham developed a deformation theory for the singularities of normal cones at their
vertices, and more generally for the singularities of normal complex affine varieties endowed with a
C∗-action. This class contains that of quotient singularities (see Definition 2.29) because the given
linear action of the finite group on Cn commutes with the usual C∗-action by scalar multiplication,
which shows that this last action descends to the quotient of Cn by the finite group.

Pinkham looked in particular at the germs at their vertices of the affine cones over all the rational
normal curves:

Definition 4.33. Consider an integer p ∈ Z∗+ . A rational normal curve of degree p is a projective
curve in Pp which is projectively equivalent to the image of the following Veronese embedding:

p : P1 −→ Pp

[ : y] −→ [p : p−1y : p−2y2 : · · · : yp].

One may show that the rational normal curves in Pp are precisely the irreducible curves of degree
p in Pp which are not contained in any hyperplane.

The singularities of the cones over the rational normal curves are special types of cyclic quotient
singularities (see Definition 3.40):

Proposition 4.34. The singularity of the cone over the rational normal curve of degree p is the
cyclic quotient singularity (Xp,1,0).

Let me explain a proof of this proposition, as it illustrates the way one may arrive at defining
systems of equations for all quotient surface singularities. This proof generalizes the arguments
given in Example 2.31.

Let us start from the defining action

(ξ, (, y)) −→ (ξ, ξy)
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of the singularity (Xp,1,0). In order to compute the quotient of the plane C2 with coordinates (, y)
by this action, one looks first at the subalgebra of C[, y] containing the polynomials which are
invariant under the action. An invariant polynomial is a sum of invariant monomials, because the
monomials are eigenvectors of the action. As (ξ, yb) → (ξ)(ξy)b = ξ+byb, we see that the
monomial yb is invariant if and only if  + b ≡ 0 (mod p). One deduces easily from this fact that
the subalgebra of invariant polynomials is:

C[p, p−1y, p−2y2, . . . , yp].

This is the algebra of restrictions of polynomials in C[z0, z1, z2, . . . , zp] to the image of the polyno-
mial morphism:

(4.6)
C2 −→ Cp+1

(, y) −→ (p, p−1y, p−2y2, . . . , yp)
.

Looking at Definition 4.33, one recognizes this image as the cone over a rational normal curve of
degree p, which proves Proposition 4.34.

For the moment, this cone is described parametrically. One may show that a defining set of
polynomials for it may be obtained by taking the 2 × 2 minors of the following matrix:

(4.7)
�

z0 z1 · · · zp−1
z1 z2 · · · zp

�

.

We will use this observation in a few moments.

Pinkham proved the following strengthened form of Proposition 4.15:

Proposition 4.35. The singularities at the vertices of the cones over the rational normal curves
have smooth miniversal base spaces, with the only exception of the singularity (X4,1,0), whose
miniversal base space has two irreducible components which are both smooth, of dimensions 1
and 3, and intersect transversally.

Among the two irreducible components of the miniversal base of (X4,1,0), the one of dimension
3 is the Artin component characterized in Theorem 4.25. Of course, for the other cones over the
rational normal curves, the only component is also the Artin component. Pinkham proved that in all
cases, the total space of the deformation of (Xp,1,0) above the Artin component may be defined by
taking the 2 × 2 minors of the following deformation of the matrix (4.7):

(4.8)
�

z0 z1 + t1 · · · zp−1 + tp−1
z1 z2 · · · zp

�

.

The deformation morphism is obtained by restricting to this total space the projection of the com-
plex space C2p with coordinates (z0, . . . , zp, t1, . . . , tp−1) to the “parameter space” Cp−1 with coor-
dinates (t1, . . . , tp−1).

The fact that in the case p = 4 one gets a second type of deformation originates in the possibility
to represent in this case the collection of defining polynomials of (X4,1,0) as the set of 2× 2 minors
of the second matrix:





z0 z1 z2
z1 z2 z3
z2 z3 z4



 .

One may deform this system of equations by taking the 2 × 2 minors of the following deformed
matrix:





z0 z1 z2
z1 z2 + s z3
z2 z3 z4



 .

Note that here one has one deformation parameter s, which parametrizes the component of dimen-
sion 1 in the miniversal base space of (X4,1,0).
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In the affine space C6 with coordinates (z0, . . . , z4, s), consider the new coordinate (linear form)
z5 := z2 + s. The total space Y of the deformation may therefore be defined by the vanishing of the
2 × 2 minors of the matrix:





z0 z1 z2
z1 z5 z3
z2 z3 z4



 .

In the same way as the cone over the rational normal curve of degree p could be described
parametrically by the morphism (4.6), one may also describe Y parametrically by the morphism:

V : C3 −→ C6

(,,) −→ (2, , , ,2,2)
,

where the parameters of C6 are (z0, . . . , z4, z5). The induced morphism P2 → P5 is called also a
Veronese embedding, this time of the projective plane as a surface of degree 2 in P5. Its image
is the Veronese surface A ,→ P5. Therefore Y gets identified with the cone CA over this projective
surface.

The morphism V gets reexpressed in the following way if one passes to the initial coordinate
system (z0, . . . , z4, s) on C6:

(4.9)
V : C3 −→ C6

(,,) −→ (2, , , ,2,2 − )
.

This shows that the smoothing is obtained by the method of sweeping out the cone by the hyper-
plane section. The total space Y of the smoothing is the cone CA over the Veronese surface A. The
kernel of the linear form s which defines the deformation parameter intersects CA along the cone
CB over a curve B ,→ A. Using the coordinates (,,) on CA and looking at the last coordinate of
(4.9), we see that CB is defined by the equation 2 −  = 0. Proposition 4.31 implies:

Proposition 4.36. The Milnor fibers associated to the irreducible component of dimension 1 of
the miniversal base of the cyclic quotient singularity (X4,1,0) are diffeomorphic to the complement
of a smooth conic curve in the complex projective plane.

What is the Milnor number of those Milnor fibers? One could use Theorem 4.29, which implies
that:

(4.10) 2μ3 − 3 = 2μ1 − 1.

Here we denote by μk the Milnor number of the Milnor fiber associated to the component of di-
mension k. As the component of dimension 3 is the Artin component, we know that its Milnor fiber
is diffeomorphic to a tubular neighborhood of the exceptional divisor in the minimal resolution.
Therefore μ3 = 1, and the equality (4.10) implies that:

(4.11) μ1 = 0.

In fact, it is possible to understand better the topological structure of this Milnor fiber, in such a way
that the previous equality will appear obvious. Indeed, one has the following result of Lê, Seade and
Verjovsky [106, Theorem 1.1] (see also Seade [176, Chapter V]), valid in arbitrary dimension:

Proposition 4.37. The complement of a smooth quadric hypersurface in the complex projective
space CPn is diffeomorphic to the total space of the tangent bundle of the real projective space
RPn.

Let us see a proof of this proposition. The key point is to look at the special quadric hypersurface
Q defined by the equation

(4.12) z20 + z
2
1 + · · · + z

2
n
= 0

inside the complex projective space CPn with homogeneous coordinates [z0 : z1 : · · · : zn]. The cone
CQ over Q is the affine hypersurface of Cn+1 defined by the same equation (4.12). Let us consider
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the defining quadratic form q of CQ:

q : Cn+1 −→ C

(z0, z1, . . . , zn) −→ z20 + z
2
1 + · · · + z

2
n

and its level 1:
F := q−1(1).

The polynomial q being homogeneous, the affine manifold F is diffeomorphic with the Milnor fiber
of q at the origin of Cn+1.

Let us denote Z := (z0, ..., zn) ∈ Cn+1 and decompose it into its real and imaginary parts:

Z = X + Y, X, Y ∈ Rn+1.

The defining equation q = 1 of F is equivalent to the system of equations:

(4.13)
�

||X||2 = ||Y ||2 + 1
X · Y = 0

in which || · || denotes the standard euclidean norm on Rn+1, obtained by restricting the quadratic
form q from Cn+1 to Rn+1, and X · Y denotes the associated scalar product.

Proposition 4.38. The map:

Ψ : F −→ Sn × Rn+1

Z = X + Y −→
�

X

||X||
, Y

�

induces a diffeomorphism from F to the total space of the tangent bundle TSn, which sends the
antipodal map:

A : F −→ F
Z −→ −Z

into the differential of the antipodal map of Sn.

Here Sn is the unit sphere in Rn+1 for the norm || · ||. The total space TSn of its tangent bundle
is realized as the submanifold of Sn × Rn+1 formed by the couples (X, Y) with Y orthogonal to
X. The equations (4.13) show that the image of Ψ is included in TSn. They allow to construct
explicitly an inverse, which may be seen to be smooth. This proves the first statement of the
previous proposition. The property about antipodal maps is also easy to check directly using the
equations (4.13).

Proposition 4.37 is now a direct consequence of Proposition 4.38. Indeed, by restricting to F the
projectivisation map

Cn+1 \ {0}→ CPn,

we get a Galois cover of degree 2 of the complement CPn \ Q. The Galois group acts precisely as
the antipodal map A on F. Therefore, the complement CPn \Q is diffeomorphic to the quotient of F
by this antipodal map. By Proposition 4.38, we see that CPn \Q is diffeomorphic to the quotient of
TSn by the diffeomorphism of the antipodal map on Sn. But this last quotient is TRPn, which ends
the proof of Proposition 4.37.

Returning to Pinkham’s example, we may summarize the previous results as the following sup-
plement of Proposition 4.15:

Proposition 4.39. The Milnor fibers of the cyclic quotient singularity (X4,1,0) are diffeomorphic
to:

• the total space of the complex line bundle of degree −4 over CP1, for the component of
dimension 3 (the Artin component);

• the total space of the tangent bundle to the real projective plane RP2, for the component of
dimension 1.
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Affine geometry Complex geometry

(1) The model real line R The model complex line C
(2) An open subset U ⊂ R An open subset U ⊂ C
(3) An affine function U→ R A holomorphic function U→ C

(4) An affine function U→ R A harmonic function U→ R

(5) The relation h

�

 + b

2

�

=
h() + h(b)

2
The relation h(A) =

1

2π

∫

S1A,r

h ds

(6) On a compact interval an affine function On a compact disc a harmonic function
ï¿½ is determined by its boundary values is determined by its boundary values
(7) The relation h′′ = 0 The relation Δh = 0
(8) The condition ρ′′ ≥ 0 The condition Δρ ≥ 0
(9) A (strictly) convex function ρ : U→ R A (strictly) subharmonic function ρ : U→ R

(10) An affine manifold of dimension 1 A complex manifold of dimension 1
(a real affine curve) (a complex curve)

(11) A real affine manifold A complex manifold
(12) An affine map from U ⊂ R A holomorphic map from U ⊂ C

to a real affine manifold to a complex manifold
(13) An affine real-valued function A holomorphic complex-valued function

on a real affine manifold on a complex manifold
(14) An affine real-valued function A pluriharmonic real-valued function

on a real affine manifold on a complex manifold
(15) The condition Hess ρ ≥ 0 The condition −ddcρ ≥ 0

on a real affine manifold on a complex manifold
(16) A (strictly) convex function A (strictly) plurisubharmonic function

on a real affine manifold on a complex manifold

Figure 5.1. Analogies between real affine geometry and complex geometry

As the total space of the tangent bundle TRP2 retracts by deformation onto RP2, they have the
same second Betti number. As RP2 is a non-orientable surface, we see that H2(RP2,Z) = 0. This
implies indeed that the Milnor number of the corresponding Milnor fibers is 0, as stated in relation
(4.11).

Nowadays one knows handlebody presentations of the Milnor fibers of all cyclic quotient singu-
larities. This is a consequence of the proof of a conjecture of Lisca [112, Page 16] by Némethi and
myself [137]. This conjecture related the smoothings of cyclic quotient singularities with the Stein
fillings of their contact boundaries. In order to explain this conjecture and the principle of its proof,
let us pass now to the basics of contact topology.

A different way of analysing the structure of the Milnor fiber of (X4,1,0) above the
miniversal component of dimension 1, valid for more general singularities, was de-
scribed by Wahl [198, Sections 5.8, 5.9].

5. Plurisubharmonic functions, Stein manifolds and contact manifolds

5.1. Basic analogies between affine geometry and complex geometry

When one is thinking about the geometry or topology of complex manifolds, it may be useful to
look for analogies with the geometry of real manifolds endowed with an affine structure. In Figure
5.1 one may find a table of basic such analogies. Let us make a few comments about them.
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• In lines (1) and (2) appear the basic building blocks allowing to construct manifolds of the
two kinds, by performing cartesian products in order to augment the dimension and gluing
of charts in order to enrich the topology.

• In lines (3) and (4) we state that both holomorphic functions U→ C and harmonic functions
U → R (where U is an open subset of C) may be seen as analogs of affine functions U → R

(where U is an open subset of R). In the first case one thinks of both types of maps as
structure-preserving ones. In the second case one thinks about them as functions with the
property that their values at the center of any ball (a segment, respectively a disc) is equal
to the mean of their values on the boundary of the ball. Those relations are explicitly written
for both cases in line (5). They imply that the value at the center of the ball is determined by
the boundary values. More generally, one has the property of line (6). It is a good exercise
to write the corresponding generalizations of the relations of line (5) and to understand in
which sense the ingredients of those generalizations are analog of each other.

• On line (7), h′′ denotes the second derivative of the function h defined on an open subset of
R and Δh :=

�

∂2

+ ∂2

y

�

h denotes the Laplacian of the function h defined on an open subset of

C ' R2. The relation h′′ = 0 is identically true if and only if h is affine, and the relation Δh = 0
is identically true if and only if h is harmonic.

• The conditions written on line (8), generalizations of those of line (7), are definitions of the
notions written in the same column on line (9) (for sufficiently regular functions). The strict
inequalities correspond to the corresponding strict notions. Note that on a compact interval
a convex function has a graph lying below the graph of the unique affine function with the
same boundary values. One may show that the analogous property holds for a subharmonic
function on a compact disc in C: its graph lies below the graph of the unique harmonic
extension of its boundary values to the whole disc. This is in fact the reason of the standard
name “subharmonic”. The analogous name for a convex function on a real interval would be
“subaffine”.

• Both types of curves on line (10) may be defined by gluing open sets from line (2) using
homeomorphisms from line (3).

• Both types of manifolds on line (11) may be locally described as cartesian products of open
sets from line (2). Then the gluing of charts is done using tuples of functions which restrict
to functions from line (3) on each factor of such a product.

• In line (12) one has the notion of parametrized distinguished subobjects of dimension 1 in
both geometries. As for the affine space Rn one gets simply the affinely parametrized lines,
one may think about them as geodesics. In model charts, both types of geodesics may be
described using tuples of maps from line (3).

• In lines (13) and (14) we mentioned that both holomorphic functions and pluriharmonic
functions on a complex manifold may be seen as analogs of affine real-valued functions
on a real affine manifold. In the first case we get in restriction to geodesics the types of
functions from line (3) and in the second case we get the types of functions from line (4).

• The conditions of line (15) are generalizations to manifolds of arbitrary dimension of the
conditions of line (8). In fact, in both cases a real-valued function ρ satisfies them identically
if and only if it satisfies the corresponding condition (8) in restriction to any geodesic (map of
the kind described in line (12)). The Hessian Hessρ is a field of quadratic forms on the tangent
bundle of the affine manifold defined in the following way: for any point p and tangent vector
V at p, extend canonically V by parallelism to a neighborhood of p (this extension is made
possible by the presence of the affine structure) and define (Hess ρ)(V) as the second Lie
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derivative L2
V
ρ of ρ in the direction of V. The object −ddcρ is a real-valued differential form

of degree 2, whose definition will be explained below.

• The functions on line (16) are definable by the corresponding condition on line (15).

We won’t pursue these analogies here. We mentioned them only because we believe that real
affine geometry is simpler to grasp in first instance than complex geometry.

The reader interested in developing her/his intuition about such analogies may con-
sult the books [85] of Hörmander and [33] of Cieliebak and Eliashberg.

5.2. Plurisubharmonic functions

We have stated in the last line of Figure 5.1 that plurisubharmonic functions are analogs of
convex functions on affine manifolds. Their precise definition is:

Definition 5.1. A smooth real-valued function ρ defined on a complex manifold M is plurisubhar-
monic (abbreviated psh) if −ddcρ ≥ 0. It is called strictly plurisubharmonic (abbreviated spsh)
if one has the stronger inequality −ddcρ > 0.

Here d denotes the operator of exterior differentiation of differential forms. Its definition needs
only the underlying structure of differential manifold of the complex manifold M under considera-
tion. By contrast, the operator dc uses the complex structure:

(5.1) dcρ := dρ ◦ J,

where J is the field of multiplications by  on the complex tangent bundle of the manifold, identified
as a real vector bundle with the real tangent bundle of the underlying differentiable manifold. In
particular:

(5.2) J2 = −dTM.

Introduce now the following real-valued differential forms on M:

(5.3)
λρ := −dcρ
ωρ := dλρ.

By definition 5.1, the function ρ : M → R is psh if and only if ω ≥ 0. What does it mean for a
differential form of degree 2 to be non-negative ? This is again a concept which is defined using the
complex structure:

Definition 5.2. A smooth real-valued differential 2-form ω on M is called non-negative, written
ω ≥ 0 (respectively positive, written ω > 0) if it is J-invariant, that is:

(5.4) ω(JV, JW) = ω(V,W)

for all tangent vectors V,W of M based at the same point and if:

(5.5) ω(V, JV) ≥ 0 (respectively ω(V, JV) > 0)

for all non-zero tangent vectors to M.
The associated Riemannian metric of a positive 2-form ω is defined by:

(5.6) g(V,W) := ω(V, JW).

Note that the inequality g(V,V) > 0 is true for all non-zero tangent vectors, as an immediate
reformulation of the strict inequality (5.5) and that the symmetry property g(V,W) = g(W,V) re-
sults from (5.4), replacing first W by JW and using then the identity (5.2). Therefore, g is indeed a
Riemannian metric for any positive 2-form ω.

It is simple to verify that the 2-form ωρ is J-invariant for any smooth real-valued function ρ defined
on M. Therefore, in order to check whether ρ is psh or spsh, one has to check simply whether one
has the corresponding inequality (5.5).
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Let us restrict for the moment to the case where M is an open subset of C. The next result
shows that in this case the condition of line (15) of Figure 5.1 allowing to define (s)psh functions
is equivalent to the (strict) condition of line (8), allowing to define (strictly) subharmonic functions.
This explains the qualificative “plurisubharmonic”: such a function is subharmonic in restriction to
all the parametrized “geodesics” of the complex manifold.

Proposition 5.3. Let U ⊂ C ' R2 be open and let ρ : U→ R be smooth. Then:

(5.7) − ddcρ = (Δρ) d∧ dy.

As a consequence, the condition −ddcρ ≥ 0 is equivalent to the condition Δρ ≥ 0.

One may prove easily this proposition using the following relations:

z =  + y
dρ = (∂zρ) dz + (∂zρ) dz
dcρ = (∂zρ) dz − (∂zρ) dz
∂z =

1
2 (∂ − ∂y)

∂z =
1
2 (∂ + ∂y)

Assume now that ρ : M→ R is strictly plurisubharmonic. Introduce also the following notations:

(5.8) gρ := the Riemannian metric associated to the positive form ωρ,

(5.9) Λρ := the gradient vector field of ρ relative to gρ.

I want to explain now that this gradient vector field has also a symplectic interpretation. First
of all, recall that a symplectic form on a smooth manifold is a closed 2-form ω which is non-
degenerate at every point. This last condition means that the duality morphism associated to ω

(5.10)
TpM −→ T∗

p
M

V −→ Vω := ω(V, ·)

is an isomorphism at each point p ∈ M.
A positive 2-form is automatically non-degenerate and a 2-form of the type ωρ is automatically

closed, because it is exact (see relations (5.3)). Therefore, ωρ is a symplectic form whenever ρ is
spsh. By construction, the 1-form λρ is a primitive of it. It is therefore a Liouville form for ωρ, and
one may consider also its associated Liouville vector field in the following sense:

Definition 5.4. Let ω be an exact symplectic form on the smooth manifold M. A Liouville form
of ω is a smooth primitive λ of it:

(5.11) dλ = ω.

A Liouville vector field of ω is a smooth vector field Λ such that the associated Lie derivative
leaves ω invariant:

(5.12) LΛω = ω.

A Liouville vector field and a Liouville form of ω are associated to each other if they correspond
by the isomorphism (5.10):

(5.13) Λω = λ.

In fact, a vector field Λ is Liouville if and only if the 1-form λ corresponding to it through equation
(5.13) is Liouville. This is an immediate consequence of Cartan’s relation

LΛ = Λ ◦ d + d ◦ Λ

applied to ω.
The announced symplectic interpretation of the gradient vector field Λρ is as a Liouville vector

field of the symplectic form ωρ:

Proposition 5.5. The gradient vector field Λρ of the spsh function ρ relative to the Riemannian
metric gρ is equal to the Liouville vector field of ωρ associated to its Liouville form λρ.
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Indeed, the defining relation

dρ(V) = gρ(Λρ, V)

of the gradient vector field Λρ (for all tangent vectors V) may be successively reformulated in the
following ways:

dρ(V) = gρ(Λρ, V)
(5.6)
⇐⇒ dρ(V) = ωρ(Λρ, JV)
V←JV
⇐⇒ dρ(JV) = ωρ(Λρ, J2V)

(5.1)+(5.2)
⇐⇒ dcρ(V) = ωρ(Λρ,−V)
(5.3)
⇐⇒ λρ(V) = ωρ(Λρ, V)
∀ V
⇐⇒ λρ = Λρωρ.

This last relation proves Proposition 5.5.
One of the simplest examples of spsh functions is the squared-distance function ρ0 to the origin

in Cn (see Equation (3.4)):

Proposition 5.6. The function ρ0(z1, . . . , zn) := |z1|2 + · · · + |zn|2 is spsh on Cn. Its associated
Riemannian metric gρ0 is the standard Euclidean metric on Cn = R2n and its associated Liouville
vector field Λρ0 is the radial vector field: Λρ0 (p) = p for all p ∈ Cn.

The restriction of a spsh function on a complex manifold to a submanifold is again spsh. For this
reason, the restriction ρ of ρ0 to any complex submanifold X of Cn is again spsh. If X is moreover a
closed subset of Cn, then ρ is proper and bounded from below (as a consequence of the fact that
ρ0 has these two properties). Therefore X is a Stein manifold, in the following sense:

Definition 5.7. A Stein manifold is a complex manifold which admits a proper spsh function
bounded from below.

As we have seen, the closed complex submanifolds of some model complex space Cn are Stein.
Grauert [61] proved the converse:

Theorem 5.8. Any connected Stein manifold may be embedded as a closed complex submanifold
of some complex affine space Cn.

One may see alternative characterizations of Stein manifolds in Cieliebak and Eliashberg [33,
Section 5.3].

By arbitrarily C2-small perturbations, any proper spsh function bounded from below on a Stein
manifold X may be transformed into a function of the same kind which is moreover Morse. For
instance, if the function is the restriction of ρ0, given some embedding of X in Cn, then one may
take instead the squared-distance function to a generic point in some arbitrarily fixed neighborhood
of the origin of Cn.

Once one has a proper Morse function bounded from below on a smooth manifold, a fundamental
theorem of Morse theory (see Milnor [128, Theorem 3.5]) implies that the manifold has the homo-
topy type of a CW-complex of dimension equal to the maximal index of the critical points of the
function.

Strictly pluri-subharmonic functions have constrained indices:

Proposition 5.9. The indices of the critical points of a Morse spsh function on a complex manifold
of complex dimension n are at most equal to n.

Therefore, one has the following fundamental topological property of Stein manifolds, discovered
by Thom (see Milnor [128, Theorem 7.2]):

Theorem 5.10. A Stein manifold of complex dimension n has the homotopy type of a CW-complex
of dimension at most n. In particular, a Milnor fiber of a smoothable singularity of complex dimen-
sion n has the homotopy type of a CW-complex of dimension at most n.
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Let us see an intrinsic proof of Proposition 5.9, which uses the symplectic interpretation of the
gradient vector field Λρ stated in Proposition 5.5 (see details in Cieliebak and Eliashberg [33, Section
2.8]). Let p ∈ X be a critical point of ρ and let Dp be the stable cell centered at it, formed as the
union of the Λρ-orbits which tend to p when the time goes to +∞. Its dimension is by definition
the index indp(ρ) of the function ρ at p. Assume by contradiction that this index is > n. Therefore
the intersection TpDp ∩ J(TpDp) of the tangent space to the stable cell at p and of its image by the
complex multiplication J is of positive dimension. Let DC

p
be the union of the Λρ-orbits which tend

to p tangentially to this intersection. It is a smooth ball of even positive dimension contained in
Dp. As ωρ is symplectic on its tangent space at p, this will also be the case on some neighborhood
ρ−1[ρ(p) − ε, ρ(p)] ∩ DC

p
of it (where ε > 0 is sufficiently small). But the positive flow of Λρ shrinks

such a neighborhood strictly, which contradicts the fact that this flow dilates ωρ exponentially (see
Equation 5.12). This contradiction proves the desired inequality indp(ρ) ≤ n.

For more details about Stein manifolds, one may consult Grauert and Remmert’s book
[64], Peternell’s survey [154] and Cieliebak and Eliashberg’s book [33].

5.3. Contact manifolds and their fillings

In the previous section we saw that a spsh function ρ on a complex manifold determines canoni-
cally a Riemannian metric, a symplectic structure, a vector field and a 1-form, which are related by
various relations. We will examine now in which way those objects interact with the smooth levels
of ρ. For simplicity, we will drop the dependency on ρ from our notations.

Let M ,→ X be a regular level of ρ. It is a smooth hypersurface of X seen as a real manifold.
Consider the restriction of the Liouville form λ of Equation (5.3) to M:

α := λ|M.

If V is a tangent vector to X at a point p, we denote by V⊥ the real hyperplane of TpX which is
g-orthogonal to V. One has the following properties, whose proofs we leave as an exercise to the
reader (hint: use the equivalence λ(V) = 0 ⇐⇒ g(JΛ, V) = 0):

Proposition 5.11. At all the points of the smooth level manifold M of the spsh function ρ one has
the following properties (see Figure 5.2):

1. TM = Λ⊥.

2. kerλ = (JΛ)⊥ = J(TM).

3. kerα = TM ∩ J(TM).

4. dα is symplectic in restriction to kerα.

Therefore, α is a contact form on the manifold M, in the following sense:

Definition 5.12. A contact form on a smooth manifold M is a smooth real-valued 1-form α such
that dα is symplectic in restriction to kerα.

A basic fact about bilinear symplectic forms is that they exist only on even-dimensional vector
spaces. As the kernel of a linear form on a vector space is either a hyperplane or the whole vector
space, this shows that the field of kernels of a contact form on a manifold is necessarily of constant
even dimension. The differential dα being symplectic, the form α cannot be identically 0, which
shows that kerα is a field of hyperplanes on M. This implies that M is of odd dimension and that
kerα is a contact structure, in the following sense:
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Figure 5.2. An illustration of Proposition 5.11

Figure 5.3. The contact structure ker(dz + dy)

Definition 5.13. A contact structure on a smooth manifold M is a smooth field ξ of hyperplanes
which may be locally defined in the neighborhood of any point of M as the field of kernels of a con-
tact form. A contact structure is called oriented if the vector bundle ξ is oriented and cooriented
if its normal vector bundle TM/ξ is oriented. A manifold endowed with a contact structure is called
a contact manifold.

Example 5.14. The 1-form α := dz + dy is a contact form on R3. Its associated contact structure
kerα is represented in Figure 5.3. Note that it is invariant by translations parallel to the plane of
coordinates (y, z). For this reason it is enough to understand how varies the plane field along the
-axis. I drew five of those planes, as well several of their translates.

The previous example allows in fact to understand the local structure of all contact structures on
3-manifolds. Indeed, in arbitrary dimensions contact forms have no local invariants (like complex
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structures and unlike Riemannian structures) as emphasized by the following result of Darboux (see
Geiges [57, Theorem 2.5.1]):

Theorem 5.15. If α is a contact form on a (2n+ 1)-dimensional manifold M, then in the neighbor-
hood of any point of M there exist local coordinates (1, y1, . . . , n, yn, z) such that:

α = dz +
n
∑

k=1

k dyk .

Globally the situation is distinct, due to the fact that there is a canonical vector field attached to
any contact form: its so-called Reeb vector field, uniquely determined by the requirements to be
in the kernel of dα and to have length 1 when measured by α. Then any dynamical invariants of
the Reeb vector field are invariants of the contact form, which makes one feel that by deforming
a form, the global structure may change drastically. In fact one can get subtle invariants from the
study of Reeb vector fields. This is the subject of contact homology, but we won’t speak about it
here.

When one works with a contact structure instead of a contact form, the situation becomes com-
pletely different. Indeed, on a closed manifold there is an Ehresmann-type theorem, proved by Gray
[65] (see also Geiges [57, Theorem 2.2.2]):

Theorem 5.16. Two homotopic contact structures on a closed manifold are isotopic.

The previous theorem shows that on closed manifolds, contact structures have no moduli, that
is, that their classification up to isotopy is discrete. This is the reason why, when looking at the
tangent distribution to a real hypersurface of a complex manifold, one does not keep the field of
complex operators J : ξ → ξ as a supplementary structure. Indeed, then one would keep moduli,
that is, the analog of Gray’s theorem would not be true.

The first question which one asks in any classification problem is that of existence of the ob-
jects. In what concerns contact structures, the situation was settled first on closed 3-dimensional
manifolds. Before explaining this, let us make a remark about contact structures in dimension 3:

Proposition 5.17. Any contact structure on a smooth 3-manifold induces a canonical orientation.
Therefore, any 3-manifold which may be endowed with a contact structure is orientable.

In order to understand this fact, let us choose locally a defining contact 1-form α of the given
contact structure ξ. As dα is by definition symplectic in restriction to ξ, this shows that the 3-form
α∧dα is everywhere non-zero on its domain. Therefore, it defines an orientation on this domain. The
point is that this orientation is independent of the choice of defining 1-form. Indeed, a second such
form α′ may be written as α′ = α, where  is a smooth and non-vanishing function. Consequently,
α′∧dα′ = 2α∧dα, which shows that the orientations defined by α′∧dα′ and α∧dα are the same.

Now, if a given 3-manifold is already oriented, one may compare a contact form on it with this
orientation:

Definition 5.18. A contact form on an oriented 3-manifold is called positive if the orientation
induced by it coincides with the given orientation.

We may state now the announced theorem about the existence of contact structures on 3-
manifolds. The first statement was proved by Martinet [118] and the second one by Lutz [117]
(see also Geiges [57, Theorems 4.1.1 and 4.3.1]):

Theorem 5.19. Any closed oriented 3-manifold carries a positive contact structure. Moreover, one
may find a positive contact structure in any homotopy class of cooriented plane fields.

An analog of this theorem was recently proved in higher dimensions by Borman, Eliashberg and
Murphy [19].

Once one knows that contact structures exist on a given closed manifold, it is natural to try to
classify them. In view of Gray’s Theorem 5.16, one has to classify them up to homotopy. Of course,
if two contact structures are not homotopic as hyperplane fields, then they are nor homotopic as
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contact structures. Therefore, one has to concentrate on the classification of contact structures in
a given homotopy class of hyperplane fields. But how to show that two such contact structures are
different? The first method to prove such a result was found by Bennequin [12], using the following
notion:

Definition 5.20. An overtwisted disk in a contact 3-manifold is an embedded compact disk
which is tangent to the contact structure along its boundary. A contact structure is called over-
twisted if it contains an overtwisted disk and tight otherwise.

In fact, one finds several variants of the definition of overtwisted disks in the literature. But all of
them lead to the same notions of overtwisted or tight contact 3-manifolds (see Geiges [57, Section
4.5]).

As in Proposition 5.6, let us denote by ρ0 the squared-distance to the origin in C2. Its levels are the
spheres centered at the origin. As ρ0 is spsh, Proposition 5.11 implies that the fields of hyperplanes
on them invariant by complex multiplication are contact structures. The homotheties centered at
the origin identifies them all. We get therefore a well-defined contact structure on S3, which we will
call the natural contact structure. It may be shown that its restriction to the complement of any
point of S3 is isomorphic to the contact structure on R3 introduced in Example 5.14, which we will
also call natural.

Bennequin proved in [12] that:

Theorem 5.21. The natural contact structures on S3 and R3 are tight.

By performing so-called Lutz twists (see Geiges [57, Section 4.3]), one may transform any con-
tact structure on a 3-manifold into an overtwisted one, which is nevertheless contained in the
same homotopy class of plane fields. This shows in particular that one may find on S3 two contact
structures which are homotopic as plane fields, but not as contact structures. In fact, as proved by
Eliashberg [45]:

Theorem 5.22. Each homotopy class of plane fields on an oriented closed 3-manifold contains a
unique overtwisted positive contact structure, up to isotopy.

Therefore, the difficulty is to classify the tight contact structures on 3-manifolds. There exist ori-
ented 3-manifolds which do not admit any tight contact structure (see point (1) of the enumeration
of results at the end of this section), but it is still an open problem to characterize the 3-manifolds
with this property.

Let us assume again that M is a regular level of a spsh function ρ on a complex manifold X.
By Proposition 5.11, the hyperplane field kerα is the field of hyperplanes invariant by complex
multiplication and is a contact structure. It may be cooriented by the positive values of α and
oriented by the restriction of J to kerα = TM ∩ J(TM) (see Proposition 5.11). Let us introduce the
following terminology, which extends the one used above for S3:

Definition 5.23. Let M be a regular level of a spsh function on a complex manifold. Then the
contact structure TM ∩ J(TM) oriented and cooriented as explained above is called the natural
contact structure on M.

One may see that the natural contact structure depends only on the real hypersurface M of X,
not on the defining strictly plurisubharmonic function.

Let us assume now that M is a regular level of a spsh function which is moreover proper and
bounded from below. One has a special terminology for this situation:

Definition 5.24. Let ρ : X→ R be a proper spsh function bounded from below. Assume that  ∈ R is
a regular value of ρ. Then the compact sublevel Xρ≤ := ρ−1(−∞, ] is called a Stein domain, and
a Stein filling of its boundary M := ρ−1() endowed with its natural contact structure. A contact
manifold which is isomorphic to the boundary of a Stein domain endowed with its natural contact
structure is called Stein fillable.

One has also the following related notion:
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Definition 5.25. A closed oriented contact manifold is called holomorphically fillable if it is
contactomorphic to the natural contact structure on a regular level M = ρ−1() of a smooth proper
function ρ : X→ R bounded from below on a complex manifold X, which is spsh in the neighborhood
of M. In this case, the sublevel Xρ≤ is called a holomorphic filling of the contact manifold.

The difference with Definition 5.24 is that the function ρ is asked here to be strictly plurisubhar-
monic only in a neighborhood of the boundary M of the sublevel.

Bogomolov & de Oliveira proved in [18] that:

Theorem 5.26. In dimension 3 all holomorphically fillable contact manifolds are also Stein fillable.

This fact is false in higher odd dimensions (see Popescu-Pampu [161, Section 6]).
One may forget part of the previous structures and relations in order to arrive at purely symplec-

tic concepts (which make no reference to an underlying complex structure):

Definition 5.27. Let (M,ξ) be a closed oriented and cooriented contact manifold.
A strong symplectic filling of (M,ξ) is a compact symplectic manifold (Y,ω) with boundary

∂Y = M such that there exists a primitive α of ω in a neighborhood of M whose restriction to M is a
defining form of ξ.

A weak symplectic filling of (M,ξ) is a compact symplectic manifold (Y,ω) with boundary
∂Y = M such that the restriction of ω to ξ is a field of symplectic forms on ξ which define the given
orientation of ξ.

A Stein filling of a contact manifold is obviously a strong symplectic filling and a strong symplectic
filling is necessarily a weak symplectic filling. The systematic study of the previous notions of
fillability in arbitrary dimensions was started by Eliashberg and Gromov [48]. Before that, they
had proved in [70] and [46] the following generalization of Bennequin’s theorem 5.21, specific to
dimension 3:

Theorem 5.28. A weakly symplectically fillable contact structure on a closed 3-manifold M is tight.

In dimension 3, the three notions of fillability are in fact pairwise different and also different from
the notion of tightness, as shown by the following results:

1. There exist oriented irreducible 3-manifolds which admit no positive tight contact structures:
Etnyre & Honda [50] proved this for the Poincaré homology sphere with the orientation
opposite to the one obtained as the boundary of the Kleinian complex surface singularity
E8 (see table 3.7). Therefore there exist reducible 3-manifolds which admit no tight contact
structure at all (one simply takes the connected sum of two copies of the Poincaré homology
sphere with both its orientations).

2. There exist tight contact manifolds which are not weakly symplectically fillable: Etnyre and
Honda [51] constructed such structures on some Seifert manifolds.

3. There exist weakly symplectically fillable contact structures which are not strongly symplec-
tically fillable: examples were constructed by Eliashberg [47] for T3 and by Ding and Geiges
[37] for arbitrary torus bundles over the circle.

4. There exist strongly symplectically fillable contact manifolds which are not Stein fillable:
Ghiggini [58] constructed such a structure on some small Seifert manifolds.

Those notions are also different in higher dimensions (see [161] and [119] for precise references).
Since 2000, a lot of effort was concentrated by various people on the problems of classification

of 3-manifolds which admit one of the previous types of fillings, and for such manifolds, on the
classification of those fillings up to diffeomorphism or homeomorphism. But those problems remain
widely open.

III–61



Patrick Popescu-Pampu

The foundations of contact topology were described in Geiges’ textbook [57]. As
an introduction to the problem of understanding the topology of fillings of contact 3-
manifolds one may consult Ozbagci and Stipsicz’ book [150] and Ozbagci’s more recent
survey [149]. For the same problem in higher dimensions, the basic reference is Cieliebak
and Eliashberg’s book [33].

6. Milnor fibers of surface singularities seen as Stein fillings

6.1. The contact boundary of an isolated singularity

One may constrain more the class of rug functions ρ used to define the notion of boundary
of an isolated complex singularity (see the beginning of Section 3.3), by demanding them to be
restrictions of squared-distances to the origin for some embedding in (Cn,0) (see Equation (3.4)).
As ρ0 is spsh, its restrictions have the same property and their regular levels are endowed with
natural contact structures (see Definition 5.23). Varchenko [196] proved using Gray’s theorem 5.16,
that those contact manifolds are independent of the choices of embedding and of sufficiently small
level, up to contactomorphisms well-defined up to isotopy. This allows to introduce the following
definition:

Definition 6.1. The oriented contact manifold associated in this way, up to contactomorphisms
isotopic to the identity, to any isolated singularity (X, ), is called the contact boundary of (X, ),
and is denoted (∂(X, ), ξ(X, )). An oriented contact manifold isomorphic to such a contact struc-
ture on the boundary of an isolated singularity is called Milnor fillable.

The name “Milnor fillable” was introduced in [30] in reference to the work [129] of Milnor recalled
in Section 4.1. A Milnor fillable contact manifold (M,ξ) is holomorphically fillable (see Definition
5.25), as any resolution of a singularity whose contact boundary is contactomorphic to (M,ξ) gives
a holomorphic filling of it.

Ustilovsky [192] proved the following property of a special class of Pham-Brieskorn singularities
(see Definition 2.11), using the so-called contact homology (see also Kwon and van Koert [98]):

Theorem 6.2. Let m ≥ 2 be an integer. For varying p ∈ Z∗+ such that p ≡ ±1 (mod 8), the contact
boundaries of the isolated hypersurface singularities defined by the equations

z
p
0 + z

2
1 + · · · + z

2
2m = 0

are pairwise non-isomorphic.

But Brieskorn [20] had proved that all the previous singularity boundaries are diffeomorphic to
the standard sphere S4m+1 (see also Hirzebruch [82] or Hirzebruch and Mayer [84]). Therefore, the
smooth structure on the boundary of an isolated singularity of dimension ≥ 3 does not determine
the associated contact structure.

In complex dimension 2 the situation is radically different, as was proved by Caubel, Némethi
and myself [30]:

Theorem 6.3. Any Milnor fillable oriented 3-manifold admits a unique Milnor fillable contact struc-
ture up to contactomorphism. If the manifold is a rational homology sphere, then this contact
structure is unique up to isotopy.

Bhupal and Ozbagci [16, Proposition 4] proved that the second statement does not extend to the
case where the Milnor fillable manifold is not a rational homology sphere.

Let us explain the principle of the proof of Theorem 6.3, as it applies Milnor’s construction ex-
plained in Section 4.1 to a function with isolated critical point on an arbitrary irreducible complex
isolated singularity (X, ).

A germ of holomorphic function ƒ ∈ mX, is said to have an isolated critical point at  ∈ X if
there is a representative of (X, ƒ ) such that ƒ is regular outside . By the general theorems of Lê and
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Teissier [107] on limits of tangent hyperplanes to a germ of complex analytic space, one sees that,
given (X, ), there are always such functions ƒ with isolated critical points. Hamm [71] proved that
ƒ induces then again a Milnor open book on the boundary of (X, ), as in Milnor’s initial situation
where (X, ) = (Cn,0) explained in Subsection 4.1.

One has then the following theorem of [30, Theorem 3.9], which was extended by Caubel [29] to
the boundaries of the Milnor fibers of some non-isolated singularities:

Theorem 6.4. Let (X, ) be an irreducible isolated singularity and let ƒ : (X, )→ (C,0) be a germ
of holomorphic function with isolated critical point. Then its Milnor open book carries the natural
contact structure of the contact boundary of (X, ).

Let us explain the meaning of the notion of open book carrying a contact structure (see Definition
4.1 for the notion of open book). This notion was introduced by Giroux [59]:

Definition 6.5. A positive contact structure ξ on a closed oriented manifold M is carried by an
open book (N,θ) if it admits a defining contact form α which verifies the following:
• α induces a positive contact structure on N;
• dα induces a positive symplectic structure on each fiber of θ.

If a contact form α satisfies these conditions, then it is called adapted to (N,θ).

Giroux proved in [59] that:

Theorem 6.6. On any 3-dimensional closed oriented manifold, any contact structure is carried by
some open book and two positive contact structures carried by the same open book are isotopic.

Giroux and Mohsen generalized this theorem to all dimensions (see a sketch of proof in [59]).
Moreover, in dimension 3 Giroux [59] and Giroux and Goodman [60] described the relation existing
between open books which carry the same contact structure.

Theorem 6.6 shows that in order to describe a positive contact structure on a 3-dimensional
closed and oriented manifold, it is enough to describe an open book which carries it. This is the
strategy adopted in [30] to prove Theorem 6.3. Namely, we combined Theorem 6.4, valid in arbi-
trary dimension, with the following result specific to complex dimension 2:

Corollary 6.7. Let M be a closed connected oriented 3-manifold which is Milnor fillable. Then there
exists an open book (N,θ) in M which can be completely characterized by the topology of M, such
that, for any normal surface singularity (X, ) whose boundary ∂(X, ) is orientation-preserving
diffeomorphic to M, there exists a function ƒ ∈ mX, having an isolated critical point and whose
Milnor open book is isomorphic to (N,θ).

Before ending this section, let us mention two properties of Milnor fillable 3-manifolds which were
proved since the publication of [30]:

1. Lekili and Ozbagci proved in [104] that the lift of a Milnor fillable contact structure to the uni-
versal cover of the manifold is still tight. When this universal cover is compact, this is obvi-
ous, as one gets again the contact boundary of a singularity. Their proof concentrates on the
case when this universal cover is non-compact. Note that is still lacking in general (except-
ing some special classes) a characterization of the unique Milnor fillable contact structure
among all possible positive Stein fillable and universally tight contact structures on a normal
surface singularity boundary.

2. H. Park and Stpisicz proved in [153] that a configuration of symplectic surfaces in a 4-
dimensional symplectic manifold which has the same weighted dual graph as that of a reso-
lution of normal surface singularity (X, ) has a tubular neighborhood which is a strong sym-
plectic filling of the contact boundary of (X, ). This ensures that the 4-manifold obtained by
replacing such a tubular neighborhood by any Milnor fiber of (X, ) admits also a symplectic
structure, which may be chosen to coincide with the starting one outside the given tubu-
lar neighborhood. This construction gives a lot more flexibility for performing “symplectic
surgeries” than the prototypical “rational blow-downs” of Fintushel and Stern [54].
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For more details about open books supporting contact structures, one may consult
the foundational paper [59] of Giroux, as well as the survey [49] of Etnyre, the paper [60]
of Giroux and Goodman and Geiges’ textbook [57, Section 7.3]. A survey of the properties
of the contact boundaries of Pham-Brieskorn singularities was written by Kwon and van
Koert in [98].

6.2. Cases when the Milnor fibers exhaust the Stein fillings

Assume that (X, ) is a smoothable isolated singularity, and let ƒ : (Y, y) → (C,0) be one of its
smoothings (see Definition 4.11). By choosing an embedding (Y, y) ,→ (Cn,0) and restricting to Y
the squared distance function ρ0 to the origin (see Equation 3.4), one constructs representatives of
the Milnor fibers of ψ which are Stein domains (see Definition 5.24) and whose contact boundaries
are contactomorphic (by Gray’s theorem 5.16) with the contact boundary of (X, ) introduced in
Definition 6.1. Therefore:

Proposition 6.8. Let (X, ) be a smoothable isolated singularity. Then the Stein representatives
of its Milnor fibers constructed as before are Stein fillings of the contact boundary (∂(X, ), ξ(X, )).

As a consequence, if one wishes to characterize the Milnor fibers of a given isolated singularity
up to diffeomorphisms among the fillings of the boundary of the singularity, it is natural to restrict
one’s attention to the Stein fillings of the contact boundary. In complex dimension 2 the situation is
special, due to Theorem 6.3. In this case, one is led to ask the following questions:

Is it possible to characterize the Milnor fibers of the various isolated surface singularities with a
given topological type among the Stein fillings of the associated Milnor fillable contact 3-manifold?
Are there situations in which one gets all the Stein fillings up to diffeomorphisms as such Milnor
fibers?

Note that, because of the existence of blow up operations both in complex and in symplectic
geometry (see McDuff [121] for the second case), from one holomorphic or strong symplectic filling
of a contact 3-manifold one can get by successive blow ups an infinite number of pairwise non-
homeomorphic such fillings. Therefore, the second question above has always a negative answer if
one replaces in it the notion of Stein filling by one of those weaker notions of filling.

In full generality the previous questions are widely open. But there are answers known in par-
ticular cases. The first result going in this direction was obtained by Eliashberg [46] (see Cieliebak
and Eliashberg [33, Theorem 16.6] for a strengthening):

Theorem 6.9. Any Stein filling of the natural contact structure on S3 is diffeomorphic to the 4-
dimensional compact ball.

The “natural contact structure” on S3 being simply its natural contact structure when we see it
as the unit sphere in C2 (see Definition 5.23), it is also the unique Milnor fillable contact structure
on S3.

Theorem 6.9 was extended by Mc Duff [121] to all lens spaces of type L(p,1) (see Definition 3.40)
endowed with their standard contact structure, which is again their unique Milnor fillable contact
structure:

Theorem 6.10. Let p ≥ 2 be an integer. Consider the natural contact structure ξ0 on the lens
space L(p,1).

1. If p 6= 4, then (L(p,1), ξ0) has only one Stein filling up to diffeomorphisms, which is the Milnor
fiber of the unique smoothing of the cyclic quotient singularity (Xp,1,0).

2. (L(4,1), ξ0) has exactly two Stein fillings up to diffeomorphisms, which are the Milnor fibers
of the two smoothings of the cyclic quotient singularity (X4,1,0).
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Figure 6.1. The framed links allowing to describe the Stein fillings of lens spaces

As explained by Cieliebak and Eliashberg [33, Theorem 16.10], this theorem was strengthened
by Plamenevskaya and Van Horn Morris [159] and Hind [77].

Recall that we described the differentiable types of the two Milnor fibers of (X4,1,0) in Section
4.4 (see Proposition 4.39).

In [112] Lisca sketched a proof of a classification of the Stein fillings of all lens spaces endowed
with their natural contact structures (again, the unique Milnor fillable one, obtained as the contact
boundaries of the cyclic quotient singularities), and he described a detailed proof in [113]. In order
to give an idea of the combinatorial complexity of his classification, let us explain his description of
those fillings as smooth compact 4-manifolds with boundary.

Fix a lens space L(p, q) (where 0 < q < p and p and q are coprime). Recall from Theorem 3.41
that the minimal resolution of the associated cyclic quotient singularity (Xp,q,0) has a weighted

dual graph which may be described using the Hirzebruch-Jung continued fraction expansion of
p

q
.

Let us introduce also the analogous expansion of
p

p − q
:































 ≥ 2, for all  ∈ {1, . . . , r},
p

p − q
= 1 −

1

2 −
1

· · · −
1

r

.

We will denote more concisely by [1, 2, . . . , r] the previous Hirzebruch-Jung continued fraction.
For each r ≥ 1, consider the following finite subset of Nr :

Definition 6.11. A sequence k = (k1, ..., kr) ∈ Zr+ is called admissible if either r = 1 or r ≥ 2,
k ∈ (Z∗+ )

r , [k1, ..., k] > 0 for all  ∈ {1, ..., r − 1} and [k1, ..., kr] ≥ 0. Let adm(Zr+) be the set of
admissible sequences from Zr+ . For r ≥ 1, denote by:

(6.1) Kr := {k = (k1, . . . , kr) ∈ adm(Zr+) | [k1, . . . , kr] = 0}

the set of admissible sequences which represent 0.

The sequence (1, . . . , r) determines the following subset of Kr :

Definition 6.12. Let  ∈ Zr+ be fixed with  ≥ 2 for all  ∈ {1, . . . , r}. Then

(6.2) Kr() := {k ∈ Kr | k ≤ , for all  ∈ {1, . . . , r}}

is the set of -admissible sequences which represent 0.
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Let us fix a -admissible sequence k = (k1, . . . , kr) which represents 0. Associate to it the framed
link in the oriented 3-dimensional sphere S3 drawn in Figure 6.1. This link is a disjoint union of
the two links L(k) (a chain of unknoted circles, any two consecutive ones forming a Hopf link) and
L(, k) (consisting of k packets of ear-rings for the composing knots of L(k)).

Consider the closed and oriented 3-manifold obtained by surgery on S3 along the framed link
L(k). It is possible to show that there exists an orientation-preserving diffeomorphism identifying it
with S1 × S2. Keep calling L(, k) the image inside S1 × S2 of the initial framed link with the same
name in S3.

Definition 6.13. Let Wp,q(k) be the smooth oriented 4-manifold with boundary obtained by at-
taching index 2 handles to S1 × B3 along the framed link L(, k).

The manifold Wp,q(k) is therefore obtained by attaching index 2 handles to the 4-ball along the
whole framed link described in Figure 6.1, and replacing the sublevel of a corresponding Morse
function which contains the ball and the handles attached along L(k) with the manifold S1 × B3.
Lisca showed that this construction does not depend on the choice of the orientation-preserving
diffeomorphism identifying the surgered sphere with S1 × S2.

Lisca’s classification theorem may be stated briefly like this:

Theorem 6.14. The manifolds Wp,q(k) exhaust the Stein fillings of the standard contact structure
on L(p, q) and are pairwise non-diffeomorphic by diffeomorphisms fixing the boundary.

Therefore, the Stein fillings of the lens space L(p, q) endowed with its Milnor fillable contact
structure are parametrized by the -admissible sequences which represent 0. The same objects had
appeared in the classification of the irreducible components of the reduced miniversal base space
of the cyclic quotient singularity (Xp,q,0), conjectured and partially proved by Christophersen [32].
The proof of the following theorem was completed by Stevens [180], using deep results of Kollár
and Shepherd-Barron [96]:

Theorem 6.15. Assume that
p

p − q
= [1, . . . , r]. Then there is a bijection from the set Kr() of

-admissible sequences representing 0 to the set of irreducible components of the reduced base
space of the miniversal deformation of (Xp,q,0).

Christophersen and Stevens gave moreover equations describing the restriction of the miniversal
deformation to each such component (generalizing Pinkham’s equations described in Section 4.4
and Riemenschneider’s equations for the deformation over the Artin component given in [169]).
Némethi and myself used those equations in [137] in order to prove the following theorem, which
answers affirmatively a conjecture of Lisca [113], first formulated in [112]:

Theorem 6.16. The Milnor fiber associated to the component of the miniversal base space of
(Xp,q,0) which is parametrized by k ∈ Kr() in the Christophersen-Stevens correspondence is dif-
feomorphic to Lisca’s manifold Wp,q(k). Therefore, the Milnor fibers of a cyclic quotient singularity
exhaust the Stein fillings of its contact boundary up to diffeomorphism.

In the paper [137] we got a second proof of the last statement by using the work [89] of de
Jong and van Straten on sandwiched surface singularities, which form a class of rational surface
singularities containing the cyclic quotients. We extended partially our results to all sandwiched
singularities in [138]. Nevertheless, the question to know if the analog of the last statement of
Theorem 6.16 extends to all sandwiched surface singularities remains open. Note that sandwiched
surface singularities are not in general taut (see Definition 3.47), therefore the question is: do the
Milnor fibers of all the sandwiched surface singularities with a fixed topological type exhaust the
Stein fillings of their common contact boundary?

The last statement of Theorem 6.16 was extended by Park, Park, Shin and Urzúa [151] to all
quotient surface singularities. They concentrated on the cases not covered by Theorem 6.16. Us-
ing Stevens’ description from [181] of the irreducible components of their miniversal base space
Bhupal and Ono’s classification from [14] of the Stein fillings of their contact boundaries up to
diffeomorphisms, they proved:
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Theorem 6.17. There is a bijective correspondence between the set of diffeomorphism classes
fixing the boundary of Stein fillings of the contact boundary of a quotient surface singularity and
the set of irreducible components of its miniversal base space. This correspondence identifies each
Stein filling with the Milnor fiber of the associated component.

The particular case of Kleinian surface singularities was proved before by Ohta and Ono [145],
who had also treated in [144] the case of simple elliptic singularities:

Theorem 6.18. The Stein fillings of the contact boundary of a simple elliptic singularity is diffeo-
morphic either to the tubular neighborhood of the exceptional divisor in the minimal resolution, or
to the Milnor fiber of the unique smoothing component, when the singularity is smoothable.

Recall from Example 4.19 that simple elliptic singularities are smoothable only for a finite number
of topological types. Anyway, the previous theorem is different in spirit from Theorems 6.16 and
6.17, as the differentiable types of Stein fillings of the contact boundary are not obtainable only as
Milnor fibers. This is due in fact to the constraint of looking only at normal representatives of this
topological type. As shown in Proposition 4.32, if one drops this constraint, then Ohta and Ono’s
theorem may be reformulated in the following way:

Theorem 6.19. The Stein fillings of the contact boundary of a simple elliptic singularity are realized
by the Milnor fibers of the smoothings of the isolated surface singularities whose normalization is
simple elliptic.

Note that one gets all the Stein filling from any simple elliptic singularity and the isolated singu-
larities which have it as normalization. This is not the case for general non-taut singularities. For
instance, Laufer [103, Page 48] gave an example of two isolated hypersurface singularities (whose
equations are 2 + y7 + z14 = 0 and 3 + y4 + z12 = 0) with the same topological type, therefore
with the same contact boundaries, by Theorem 6.3, but with non-homeomorphic Milnor fibers (an
immediate application of Theorem 4.4 shows that their Milnor numbers are different). Note that,
being hypersurface singularities, by Tyurina’s theorem 4.12 both of them have a single Milnor fiber,
up to diffeomorphisms fixing the boundary. Note also that by point (3.30) of Proposition 3.30, their
boundaries are not rational homology spheres, as their minimal resolutions have smooth excep-
tional divisors of genus 3.

For the moment, no examples of such pairs with rational homology sphere boundaries are known.
In fact, Mendris and Némethi conjectured in [124] that:

“If the link of an isolated hypersurface singularity is a rational homology 3-sphere, then it de-
termines the equisingularity type, the embedded topological type, the equivariant Hodge numbers
and the multiplicity of the singularity.”

Let us finish this sections with several remarks about related directions of research:

1. If the isolated surface singularity (X, ) is fixed, the existence of a miniversal deformation
shows that, up to diffeomorphisms, there is only a finite number of Stein fillings of its con-
tact boundary which appear as Milnor fibers of its smoothings. For the classes of singularities
considered till now in this subsection, there is also a finite number of Stein fillings and even
of strong symplectic fillings. This fact is not general. Ohta and Ono [146] showed that there
exist Milnor fillable contact 3-manifolds which admit an infinite number of minimal strong
symplectic fillings, pairwise not homotopically equivalent. Later, Akhmedov and Ozbagci [1]
proved that there exist Milnor fillable contact 3-manifolds which admit even an infinite num-
ber of Stein fillings pairwise non-diffeomorphic, but homeomorphic. Moreover, by varying
the contact 3-manifold, the fundamental groups of such fillings exhaust all finitely presented
groups. For details one may consult Ozbagci’s survey [149].

2. In [9] Baykur and Van Horn-Morris construct many contact 3-manifolds which admit infinitely
many Stein fillings with arbitrarily large Euler characteristics and arbitrarily small signature,
disproving in this way a conjecture of Ozbagci and Stipsicz.
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3. Another direction of research concentrated on the question of classification of those normal
surface singularities admitting Milnor fibers which are rational homology balls. Such Milnor
fibers were used for performing the operation of rational blow-down introduced by Fintushel
and Stern [54] and generalized by Stipsicz, Szabó, Wahl [185]. Due to the efforts of several
researchers, the normal surface singularities which have smoothings whose Milnor fibers
are rational homology balls are now completely classified. See Park, Shin and Stipsicz [152],
Bhupal and Stipsicz [17] and Fowler [56] for details about this direction of research.

For details about the structure of the miniversal deformation of cyclic quotient singu-
larities, one may consult Behnke and Riemenschneider [11], Hamm [72], Riemenschnei-
der [170] and Stevens [184].

For an introduction to the techniques of study of the Stein fillings of contact 3-
manifolds, one may consult Ozbagci and Stipsicz’ book [150], and the surveys [17] of
Bhupal and Stipsicz and [149] of Ozbagci. For a sketch of the proof of Theorem 6.16 and
of its partial extension to the class of sandwiched surface singularities, one may consult
Némethi’s survey [135].

7. Open questions

Let me conclude with a list of open questions about the contact topological aspects of singularities.
Even if my text concentrated on isolated singularities, note that some of the questions concern
non-isolated singularities and their smoothings.

1. Characterize Milnor fillable oriented contact structures among all contact structures on the
boundary of a normal surface singularity. As mentioned in Remark (1) at the end of Subsec-
tion 6.1, the Milnor fillable contact structures are necessarily Stein fillable and universally
tight.

2. Characterize the topological types of normal surface singularities whose set of isolated but
not necessarily normal representatives produces a finite number of Milnor fibers, up to dif-
feomorphisms fixing the boundary. Of course, as a consequence of Grauert’s theorem 4.10,
a fixed isolated singularity has a finite number of Milnor fibers up to diffeomorphisms fixing
the boundary. As stated in Proposition 4.32, non-normal isolated singularities can produce
different Milnor fibers than their normalizations. Therefore it is not a priori clear that even the
topological types of taut singularities (see Definition 3.47) produce a finite number of Milnor
fibers. Nevertheless, one may show that this is the case for the topological types of taut and
rational singularities, as a consequence of results of Kollár (see [165, Remark 5.10]).

3. Describe the topologies of Milnor fibers for a given topology of normal surface singularity. As
explained in Section 4.4, this was done till now for all quotient surface singularities and for
simple elliptic singularities.

4. For which topological types, the Milnor fibers give all the Stein fillings up to diffeomorphisms
fixing the boundary? By Theorems 6.16 and 6.17, this is the case for all quotient surface
singularities. It is also true for simple elliptic singularities, by combining Theorem 6.18 and
Proposition 4.32.

5. Are there isolated singularities of dimension at least 2 with exotic pairs of Milnor fibers (i.e.
homeomorphic but non-diffeomorphic)? In this question I use the standard vocabulary of
differential topology, in which a manifold A is called an “exotic” version of a manifold B if it
is homeomorphic but not diffeomorphic to B.
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6. Characterize the topological types of oriented 3-manifolds appearing as boundaries of Mil-
nor fibers of smoothings of not necessarily isolated surface singularities. By the works of
Michel and Pichon [125], [126] and Némethi and Szilard [139] (for smooth total spaces of
the smoothings) and Fernández de Bobadilla and Menegon Neto [53] (for total spaces with
isolated singularity), one knows that such boundaries are graph-manifolds, similarly to the
boundaries of isolated surface singularities. The present question asks to get an analog of
Theorem 3.27.

7. Which oriented contact structures on oriented 3-manifolds does one obtain as contact bound-
aries of such Milnor fibers? This question is an extension of question (1) above.

8. Is it possible to read on the contact boundary of an isolated complex singularity of dimension
at least 3 whether it is isomorphic to the contact boundary of an isolated Cohen-Macaulay
singularity? Note that there are constraints on the finitely presented groups which may occur
as fundamental groups of boundaries of such singularities (see Kollár [95, Theorem 4]).

9. Does the contact boundary of an isolated and irreducible complex singularity of dimension
at least 3 determine the simple homotopy type of the dual complex of the exceptional di-
visor of a simple normal crossings resolution of the singularity? As shown independently by
Stepanov [179] and Kontsevich and Soibelman [97, Section A.4], this simple homotopy type
is independent of the chosen resolution. The fact that its homotopy type has this property
is a consequence of the previous work of Danilov [36]. I restrict the question to dimensions
≥ 3 because Neumann’s theorem 3.29 shows that the answer is affirmative for dimension 2.
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