
HAL Id: hal-04380713
https://hal.science/hal-04380713v1

Submitted on 10 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Plumbings and Murasugi Sums
Burak Ozbagci, Patrick Popescu-Pampu

To cite this version:
Burak Ozbagci, Patrick Popescu-Pampu. Generalized Plumbings and Murasugi Sums. Arnold Math-
ematical Journal, 2016, 2 (1), pp.69-119. �10.1007/s40598-015-0033-3�. �hal-04380713�

https://hal.science/hal-04380713v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

41
2.

22
29

v2
  [

m
at

h.
G

T
] 

 1
9 

M
ar

 2
01

6

GENERALIZED PLUMBINGS AND MURASUGI SUMS

BURAK OZBAGCI AND PATRICK POPESCU-PAMPU

Abstract. We propose a generalization of the classical notions of plumbing and Mura-
sugi summing operations to smooth manifolds of arbitrary dimensions, so that in this
general context Gabai’s credo “the Murasugi sum is a natural geometric operation” holds.
In particular, we prove that the sum of the pages of two open books is again a page of an
open book and that there is an associated summing operation of Morse maps. We con-
clude with several open questions relating this work with singularity theory and contact
topology.

This paper appeared in Arnold Math. Journal (2016) 2:69-119. DOI
10.1007/s40598-015-0033-3
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1. Introduction

Around 1960, Milnor and Mumford introduced independently particular cases of an
operation which builds new manifolds with boundary from given ones: “plumbing”. Mil-
nor used this operation to construct exotic spheres in higher dimensions and Mumford
in order to describe the boundaries of nice neighborhoods of isolated singular points on
complex surfaces.

Key words and phrases. Cobordisms. Morse functions. Murasugi sums. Open books. Plumbing.
Seifert surfaces.

1

http://arxiv.org/abs/1412.2229v2


2 BURAK OZBAGCI AND PATRICK POPESCU-PAMPU

Around the same time, Murasugi defined an analogous operation on Seifert surfaces of
links in the 3-sphere. This operation was done on embedded objects rather than abstract
ones. Nevertheless, this operation agrees with (a slight generalization of) the plumbing
operation on the embedded surfaces.

In the mid-seventies, Stallings introduced the name of “Murasugi sum” for the operation
above, and he showed that the Murasugi sum of two pages of open books is again the page
of an open book. Several years later, Gabai proved that Murasugi sum preserves other
properties of surfaces embedded in 3-manifolds, and summarized the general philosophy
behind such results by the credo “Murasugi sum is a natural geometric operation” (see
Gabai [11], [12], [13], [14]).

In the mid-eighties, Lines proved an analog of Stallings’ theorem for special types of
open books in higher dimensional spheres, after having extended to that context the
operation of Murasugi sum.

Details about the previous historical facts may be found in Sections 2 and 3 of our
paper.

The effect of the Murasugi sum on the hypersurfaces under scrutiny is to plumb them,
that is, roughly speaking, to identify by a special diffeomorphism two balls embedded in
them, in such a way that the result is again a manifold with boundary.

The aim of this paper is to identify the most general operation of plumbing in arbitrary
dimensions, which allows one to extend the classical operation of Murasugi sum, such that
Gabai’s credo still holds.

Our main result (see Theorem 9.3) is that an analog of Stallings’ theorem holds if the
plumbing operation is generalized by allowing the gluing of two manifolds with boundary
through any diffeomorphism of compact full-dimensional submanifolds, provided that the
result is again a manifold with boundary.

In particular, we never impose orientability hypotheses. Instead, throughout the paper
the crucial assumptions are about coorientability of hypersurfaces. Moreover, we work
with fixed coorientations. As those coorientations are present in the absence of any orien-
tations on the ambient manifold or on the hypersurface, we work in a slightly non-standard
context. This obliges us to give careful definitions of all the objects we manipulate, by
lack of a convenient source in the literature.

An important message of our work is that it is much easier to prove that generalized
Murasugi sums conserve geometric properties (illustrating Gabai’s credo) if the funda-
mental notion of sum is defined on special types of cobordisms. In fact, the most difficult
result of our work from the technical viewpoint (Proposition 9.1) states that our gener-
alization of the Murasugi sum to arbitrary dimensions coincides with another definition
given in terms of cobordisms.

We believe that, combining our new operations with those explored in [25] and [35],
one will get a better understanding of the differential topology of singularities.

Let us describe the structure of the paper.
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In Section 2 we sketch the historical evolution of the notions of plumbing and Murasugi
sum, through the works of Milnor, Mumford, Murasugi, Stallings, Gabai and Lines. We
quote from the original sources, in order to allow the reader to compare easily those
classical constructions to ours.

In Section 3 we explain Gabai’s geometric proof of Stallings’ theorem. We describe a
variant of his proof given by Giroux and Goodman and give a second interpretation of it
as explained by Etnyre.

In Section 4 we explain our basic conventions about coorientations of hypersurfaces in
manifolds with boundary (see Definition 4.3), their sides and collar neighborhoods (see
Definition 4.7).

In Section 5 we set up our notation for cobordism of manifolds with boundary (see
Definition 5.1), which is essential for our approach, mainly through its special case of
cylindrical cobordisms (see Definition 5.5). Cobordisms of manifolds with boundary may
also be composed, just like usual cobordisms. In the following sections, for concision, we
simply speak about cobordisms instead of cobordism of manifolds with boundary.

In Section 6 we describe the notions of Seifert hypersurfaces (see Definition 6.1) and
open books (see Definition 6.14) and establish the equivalence of these notions with some
special types of cobordisms.

In Section 7 we introduce our generalizations of the classical notions of plumbing and
Murasugi sum. We call them abstract and embedded summing respectively (see Defini-
tions 7.4 and 7.8). For the latter, the hypersurfaces to be summed are not assumed to be
coorientable, but only the identified patches (see Definition 7.2) are assumed to be coori-
ented. We show that embedded summing is an associative but in general non-commutative
operation (see Proposition 7.10).

In Section 8 we introduce a supplementary structure on cylindrical cobordisms, stiff-
enings, which exist and are unique up to isotopy, but which are not canonical. Such
structures are essential for the proofs presented in Section 9. We also define a summing
operation on stiffened cylindrical cobordisms (see Definition 8.6).

In Section 9 we show that, under the assumption that the hypersurfaces which are to be
summed in an embedded way are globally cooriented, the operation of embedded summing
may be reinterpreted as a summing operation on cylindrical cobordisms (see Proposition
9.1). Our generalization of Stallings’ theorem (see Theorem 9.3) is obtained then easily
by working with a stiffening adapted to the open books under scrutiny. We also formulate
an extension of this theorem to what we call Morse open books (see Definition 9.5).

Finally, in Section 10 we list several open questions. Some of them concern the relations
of open books with singularity theory and contact topology. For this reason, we begin
that section by recalling briefly the basics of those relations. We hope that this work will
be useful in particular to the researchers interested in the topology of singular spaces and
to those interested in the topology of contact manifolds.
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2. Plumbing and Murasugi sums in the literature

In this section we recall the classical notions of plumbing, as defined by Milnor and
by Mumford, as well as Murasugi’s original construction, its extensions by Stallings and
Gabai to more general 3-dimensional operations and by Lines to arbitrary dimension.

In [29, p.71], Milnor constructed for any k ≥ 1 a (2k − 1)-connected manifold-with-
boundary Mk of dimension 4k whose intersection form in dimension 2k has the following
matrix:























2 1
1 2 1 −1

1 2 1
1 2 1

−1 1 2 1
1 2 1

1 2 1
1 2























in an appropriate basis, where the missing entries are 0. The determinant of this matrix
is 1, which ensures that the boundary of the constructed manifold is homeomorphic to
a sphere. Milnor showed that this boundary generated the cyclic group of 7-dimensional
homotopy spheres which bound parallelizable manifolds.

In order to construct Mk, Milnor started from two transversal copies of the sphere S
2k

inside S2k × S2k, intersecting in exactly two points, and having self-intersections +2: the
diagonal and its image by the map 1 × α, where α : S2k → S2k denotes in his words the
“twelve hour rotation which leaves the north pole fixed, and satisfies α(x) = −x for x on
the equator”.

He took the universal cover Ũ of a tubular neighborhood U of the union X of the two
spheres, and looked at the total preimage X̃ of X inside Ũ . He could easily find in Ũ a
sequence:

T1 ∪ T ′
1 ∪ T2 ∪ T ′

2 ∪ T3 ∪ T ′
3 ∪ T4 ∪ T ′

4

of tubular neighborhoods of eight (2k)-dimensional spheres of X̃ intersecting in a chain,
whose intersection matrix is isomorphic to the one given above, except that the two −1’s
are replaced by 0-s. Milnor explains at this point:

“To correct this intersection matrix it is necessary to introduce an inter-
section between T ′

1 and T3, so as to obtain an intersection number −1.
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Choose a rotation of S2k × S2k which carries a region of T ′ near the “equa-
tor” onto a region of T near the “equator”, so as to obtain an intersection
number of −1. Matching the corresponding regions of T ′

1 and T3, we obtain
a topological manifold W2, with the required intersection matrix.”

We note that W2 is not the final manifold in Milnor’s construction, but this is not
so important for our purposes. It is this “matching” of regions which was later named
“plumbing”, following a denomination introduced for a related object by Mumford [32].

Mumford’s problem in [32] was to study the topology of the boundary of a “tubular
neighborhood” of a reducible compact complex curve in a smooth complex surface. He
assumed that the irreducible components Ei of the curve are smooth and he described
the boundary M of their union as the result of a cut-and-paste operation done on the
boundaries Mi of tubular neighborhoods of the individual Ei’s. One first has to cut some
solid tori from the Mi’s and then glue pairwise collar neighborhoods of the boundary
components created in this way. He described those collar neighborhoods as “standard
plumbing fixtures” (see [32, Page 8]). The term “plumbing” was brought to this context!
Later, it was used as a name for two different but related operations:

• following Mumford, a cut-and-paste operation used to describe the boundary of a
tubular neighborhood of a union of submanifolds of a smooth manifold, intersecting
generically (see [34] and [36]);

• following Milnor, a purely pasting operation used to describe the tubular neigh-
borhoods themselves.

One of the first definitions of this operation in a textbook is to be found in [24, Chapter
8]. Let us quote from it the definition of the plumbing of two n-disc bundles (see Figure
1, reproduced from the same book):

Definition 2.1. “Let ξ1 = (E1, p1, S
n
1 ) and ξ2 = (E2, p2, S

n
2 ) be two oriented

n-disc bundles over Sn. Let Dn
i ⊂ Sn

i be embedded n-discs in the base
spaces and let:

fi : D
n
i ×Dn → Ei|Dn

i

be trivializations of the restricted bundles Ei|Dn
i for i = 1, 2. To plumb

ξ1 and ξ2 we take the disjoint union of E1 and E2 and identify the points
f1(x, y) and f2(y, x) for each (x, y) ∈ Dn ×Dn.”

It was Hirzebruch [23] who related Milnor’s and Mumford’s constructions:

“M(E8) was constructed by “plumbing” 8 copies of the circle bundle over
S
2k with Euler number −2. By replacing this basic constituent by the

tangent bundle of S2k one obtains a manifold M4k−1(E8) of dimension
4k − 1. This carries a natural differentiable structure. For k ≥ 2 it is
homeomorphic to S4k−1, but not diffeomorphic (Milnor sphere).”
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Figure 1. Plumbing of two n-disc bundles according to [24]

Here Hirzebruch proposed an alternative construction of a generator of the group of
homotopy spheres of dimension 7, as the intersection matrix of the E8 diagram is sim-
pler than the one considered by Milnor in [29]. In fact, Milnor presented later in [30]
Hirzebruch’s “plumbing” construction according to the E8 diagram rather than his initial
construction.

The operation of “plumbing” was generalized from n-disc bundles over n-dimensional
spheres to arbitrary n-dimensional manifolds as base spaces, the identifications of f1(x, y)
and f2(−y, x) being also allowed (see, for example, Browder’s book [2, Section V.2]). Nev-
ertheless, what remained unchanged was the structure of the subbundles to be patched:
products Dn ×Dn of n-dimensional discs.

Now let us turn our attention to the related notion of Murasugi sum. We quote below
the original construction by Murasugi [33, p.545], illustrating it in Figures 2 and 3 by
drawings which are similar to Murasugi’s original ones:

“Let us consider an orientable surface F in S3 [...] consisting of two disks
D1, D2 to which n bands B1, B2, ..., Bn are attached. All Bi are twisted
once in the same direction, and the bands are pairwise disjoint and do not
link one another. Let us call F a primitive s-surface of type (n, ǫ), where
ǫ = ±1 according as the twisting is right-handed or left-handed. [...]
Consider two primitive s-surfaces F and F ′ in S3 of type (n, ǫ) and (m, η).

Take two disks, D1 and D′
1 say, from each F and F ′ and identify them so

that the resulting orientable surface F̃ = F ∪ F ′ spans a link, and that
F̃ − F and F̃ − F ′ are separated, i.e. there exists a 2-sphere S in S

3 such
that S ∩ F̃ = D1(= D′

1) and each component of S3 − S contains points of

F̃−D1. [...] F̃ will be called an s-surface. [...] In general, by an s-surface is
meant an orientable surface obtained from a number of primitive s-surfaces
by identifying their disks in this manner.”

The “primitive s-surfaces” used by Murasugi are fiber-surfaces, that is, they appear as
the pages of some open books in S3 (see Definition 6.14 below). In [39, p.56], Stallings
generalized Murasugi’s construction to arbitrary fiber-surfaces as follows:
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D1 D2

B1

B2

Bn

Figure 2. Primitive s-surface of type (n, 1), whose boundary is the
(−2, n)-torus link

Figure 3. Disks in primitive s-surfaces of type (2, 1) and of type (2,−1)
are identified to give a Seifert surface for a figure-eight knot.

“Consider two oriented fibre surfaces T1 and T2. On Ti let Di be 2-cells,
and let h : D1 → D2 be an orientation-preserving homeomorphism such
that the union of T1 and T2 identifying D1 with D2 by h is a 2-manifold
T3. That is to say:

(2.1) h(D1 ∩ Bd T1) ∪ (D2 ∩ Bd T2) = Bd D2.

[Here Bd X denotes the boundary of X ].
We can realize T3 in S3 as follows: Thicken D1 on the positive side

of T1, to get a 3-cell, whose complementary 3-cell E1 contains T1 with
T1∩Bd E1 = D1 and with negative side of T1 contained in the interior of E1.
Likewise, there is a 3-cell E2 containing T2 with T1∩ Bd E1 = D1 and with
the positive side of T2 contained in the interior of E2. The homeomorphism
h : D1 → D2 extends to h : Bd E1 → Bd E2. The union of E1 and E2,
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identifying their boundaries by h - this is S3 - contains T3 as T1 ∪ T2. We
say T3 is obtained from T1 and T2 by plumbing.”

The main result of Stallings’ paper is:

Theorem 2.2. If T1 and T2 are fibre surfaces, so is T3.

This shows in particular that the s-surfaces of Murasugi are fibre surfaces. Note that,
Stallings’ definition of (embedded) “plumbing” applies to any oriented surfaces in S3, not
only to fibre surfaces.

In [11, p.132], Gabai coined the name “Murasugi sum” for a slightly restricted operation:

“The oriented surface R ⊂ S3 is a Murasugi sum of compact oriented
surfaces R1 and R2 in S3 if:
(1) R = R1 ∪D R2, D = 2n gon
(2) R1 ⊂ B1, R2 ⊂ B2 where B1∩B2 = S, S a 2-sphere, B1∪B2 = S3 and

R1 ∩ S = R2 ∩ S = D. ”

As remarked by Gabai, this definition extends immediately to an operation on oriented
surfaces in arbitrary oriented 3-manifolds.

Note that in the definition above, the way that D is embedded in R1 ∪D R2 is not
explicitly stated, but in Gabai’s drawing [11, Figure 1] the edges on the boundary of the
2n-gon D appear as arcs included alternately in the interior of R1 and in the interior of
R2. Thus we may deduce that this slightly restricted operation is what Gabai had in
mind from the fact that ∂D gets a structure of a polygon with an even number of edges
from its embedding in both R1 and R2.

In [38] Rudolph called this second, more restrictive interpretation of the summing op-
eration, “Murasugi sum” and reserved the name “Stallings plumbing” for Stallings’ more
general definition. Changing his notations to those of Stallings’ paper, in order to be able
to make reference to the identity (2.1), let us quote his comparison of the two definitions:

“On its face, Stallings plumbing is a strict generalization of Murasugi sum,
[...] its seemingly special case in which [...] (2.1) is supplemented by:

(2.2) h(D1 ∩ Bd T1) ∩ (D2 ∩ Bd T2) = ∂(D2 ∩ Bd T2).

In fact, however, it is easy to see that (up to ambient isotopy) every
Stallings plumbing is a Murasugi sum of the same plumbands. The dis-
tinction is nonetheless useful and will be maintained here.”

The fact that the more general notion of “Stallings plumbing” is “nonetheless useful”,
even if it describes the same objects as the “Murasugi sum” may be seen already from
the first application of Theorem 2.2 given by Stallings in his paper ([39, Theorem 2]):

Theorem 2.3. The oriented link β̂ obtained by closing a homogeneous braid β is fibered.

A homogeneous braid is described by a word in the standard presentation of the braid
groups, such that each generator appears always with exponents of the same sign. In the
special case in which the generators are always positive, one obtains the usual notion of
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positive braid. Stallings’ proof considers the Seifert algorithm for constructing a Seifert
surface applied to the diagram of the link β̂ associated to the given word. The Seifert
surface appears constructed as a finite sequence of disks situated in parallel planes, suc-
cessive disks being connected by twisted bands. The condition of homogeneity says that
all the bands between two given successive disks are twisted in the same sense (see Figure
4). One recognizes therefore an s-surface of Murasugi, which is in general a “Stallings
plumbing” in Rudolph’s sense, but not a “Murasugi sum” in Gabai’s sense.

Figure 4. On the left: the figure eight knot β̂ which is the closure of the
homogeneous braid β = σ−1

1 σ2σ
−1
1 σ2. On the right: the top two disks with

twisted bands connecting them form a primitive s-surface of type (2,−1),
while the lower two disks with twisted bands connecting them form a prim-
itive s-surface of type (2, 1). By gluing these primitive s-surfaces in the

obvious way, we get a Seifert surface for β̂. Compare with Figure 3.

For a special type of higher dimensional hypersurfaces in spheres, a generalization of
Murasugi summing was studied by Lines in a series of papers [26, 27, 28]. Here are the
definitions he used:

Definition 2.4. A knot K ⊂ S2k+1 is a (k− 2)-connected oriented (2k− 1)-dimensional
submanifold. A Seifert surface for K is a compact oriented hypersurface of S2k+1 with
boundary K. The knot K is called simple if it admits a (k−1)-connected Seifert surface.

The following definition appeared in [26, Section 2]:

Definition 2.5. Let K1 and K2 be two simple knots in S2k+1 bounding (k−1)-connected
Seifert surfaces F1 and F2 respectively. Suppose that S2k+1 is the union of two balls B1

and B2 with a common boundary which is a (2k)-sphere S. Let ψ : Dk × Dk → S be an
embedding such that:

(1) F1 ⊂ B1, F2 ⊂ B2;
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(2) F1 ∩ S = F2 ∩ S = F1 ∩ F2 = ψ(Dk × Dk);
(3) ψ(∂Dk × Dk) = ∂F1 ∩ ψ(Dk × Dk) and ψ(∂Dk × ∂Dk) = ∂F2 ∩ ψ(Dk × Dk).

Then the submanifold F := F1 ∪ F2 ⊂ S2k+1, after smoothing the corners, is said to be
obtained by plumbing together the Seifert surfaces F1 and F2.

In [26, Proposition 2.1], Lines proved that Theorem 2.2 extends to this context. His
proof is algebraic, not geometric. In the sequel, we will extend his definition, dropping
any hypothesis on the topology of the pages and of the ambient manifold (see Definition
7.8), and we will show, through a geometric proof, that Theorem 2.2 extends also to this
more general context (see Theorem 9.3).

3. A geometric proof of Stallings’ Theorem

For the sake of completeness, we include here a geometric proof of Theorem 2.2, for the
most frequently used case in the literature, where the plumbing region is just a rectangle
(n = 2 in Gabai’s Murasugi sum). The principle of the proof below is due to Gabai [11,
p.139-141], although we will present here another formulation of his proof which appeared
more recently in [17, p.101], using the language of open books (see Definition 6.14), rather
than fibered surfaces or foliations.

First we prepare a local model of a neighborhood of a properly embedded arc in the
page of an open book in an arbitrary 3-manifold as follows. Set:

K̃ = {(x, y, z) ∈ R
3 | x = ±1, y = 0}

and let θ̃ : R3 \ K̃ → S1 be the map defined by:

θ̃(x, y, z) = arg
(1 + x+ iy

1− x− iy

)

= arg(1− x2 − y2 + 2iy).

As θ̃ does not depend on the z-coordinate, for each t ∈ S1, the preimage θ̃−1(t) can be

described as the intersection θ̃−1(t) ∩ {z = 0}, translated invariantly in the z-direction.

Therefore, to visualize θ̃−1(t), it suffices to understand (θ̃|{z=0})
−1(t) which is the preimage

of a ray starting from the origin in the complex plane under the homography defined by

the equation w =
1 + u

1− u
, where u = x+ iy. Since homographies preserve the circles, each

such preimage is included in some circle on the xy-plane. Using the last equality above,
it is possible to see that for each t 6= 0, π ∈ S

1, the preimage (θ̃|{z=0})
−1(t) is an open

arc of a circle passing through (1, 0) and (−1, 0), as depicted in Figure 5. For t = 0 and
t = π, these preimages are given by the segment (−1, 1) and R \ [−1, 1] on the x-axis,
respectively.

It follows that, for t 6= π ∈ S1, the union θ̃−1(t)∪ K̃ is a connected infinite strip parallel

to the z-axis, while θ̃−1(π)∪ K̃ consists of two connected components. Therefore, θ̃ is not
a locally trivial fibration over S1 (and hence it does not define an open book on R3), but
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nevertheless, θ̃−1(t) ∪ K̃ is still called a “page” of θ̃, since it gives a “piece” of an open
book.

x

y

x2 + 2y2 = 2

Figure 5. The intersection of the “pages” of (K̃, θ̃) with the xy-plane, and
the ellipse x2 + 2y2 = 2.

Let E = ∂B denote the ellipsoid which is the boundary of the domain:

B = {(x, y, z) ∈ R
3 | x2 + 2y2 + z2 ≤ 2}.

Note that, for all t 6= ±π/2, the pages of the “open book” (K̃, θ̃) intersect E transversely
inducing a foliation on E \ K̃, where E ∩ K̃ = {(1, 0, 1), (1, 0,−1), (−1, 0,−1), (−1, 0, 1)}.
This foliation agrees with what Gabai depicted in [11, Fig.4]. It is invariant with respect
to the reflections along all three coordinate planes, and under a rotation of angle π about
all three coordinate axes.

The four points in E ∩ K̃ are the corners of a square inscribed in the circle of radius√
2 on the xz-plane (see Figure 6). Moreover, the map:

ρ̃ : E → E, (x, y, z) → (z,−y,−x)
cyclically permutes these four points, rotating the square (clockwise) in the xz-plane by
an angle of π/2. Furthermore, ρ̃ is an orientation reversing self-diffeomorphism of E such
that:

θ̃ ◦ ρ̃(x, y, z) = θ̃(x, y, z) + π for any (x, y, z) ∈ E \ K̃.
Let Mi be an arbitrary closed oriented 3-manifold for i = 1, 2, and let (Ki, θi) be an

open book in Mi. Our goal is to construct an open book (K, θ) in the connected sum of
M1 andM2 such that the page of (K, θ) is obtained by plumbing the pages of (K1, θ1) and
(K2, θ2). Suppose that Ci is a properly embedded arc in the page θ−1

i (0) ∪Ki. Then Ci
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x

y

z

x2 + z2 = 2

K̃K̃

Figure 6. The intersection of the (π/2)-page of (K̃, θ̃) with B

has a neighborhood Ui ⊂Mi with an orientation-preserving diffeomorphism ψi : Ui → R3,
carrying (Ki ∩ Ui, θi|Ui

) to (K̃, θ̃) and Ci to the segment [−1, 1] on the x-axis. This last
claim follows from two basic facts:

(i) any locally trivial fibration is trivial over an interval;
(ii) the geometric monodromy can be assumed to be the identity near the binding of

an open book.
Consequently, the composition:

ρ = ψ−1
2 ◦ ρ̃ ◦ ψ1 : E1 = ψ−1

1 (E) → E2 = ψ−1
2 (E)

is an orientation-reversing diffeomorphism which can be used to construct the connected
sum:

M =M1#M2 = (M1 \ int(B1)) ∪ρ (M2 \ int(B2)),

where Bi = ψ−1
i (B).

There is a natural open book (K, θ) on M which is defined as follows: Let K be the
union of K1 \ int(B1) and K2 \ int(B2), which is a link in M because of the properties of
the map ρ̃ discussed above. Since θ2 ◦ ρ(x, y, z) = θ1(x, y, z) + π, the map θ defined as
θi + (−1)i+1π/2 when restricted to (Mi \ int(Bi)) \Ki induces a fibration on M \K.

To understand the pages of the open book (K, θ) on M , consider the piece of (non-

smooth) surface (θ̃−1(π/2) ∪ K̃) \ int(B) depicted in Figure 7 (compare with Figure 6,

but beware that we take the complement). Since (K̃, θ̃) is a local model for both open
books (K1, θ1) and (K2, θ2), we just need to understand how the pages in two copies of
this local model fit together by the map ρ̃ : E → E. Because of the symmetry of the
construction, (θ̃−1(−π/2) ∪ K̃) \ int(B) is also homeomorphic to the surface depicted in
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Figure 7. (θ̃−1(π/2) ∪ K̃) \ int(B)

Figure 7. These two oriented surfaces-with-boundary can be glued together along parts
of their boundaries, dictated by the map ρ̃ : E → E, to give an oriented smooth surface
with corners as we depicted on the left in Figure 8.

C ′
2

C ′
1

K2

K1

K2

K1

Figure 8. Local pictures of the pages of (K, θ): the 0-page on the left,
other pages on the right

This shows that the 0-page of (K, θ) can be viewed as the plumbing of the (−π/2)-page
of (K1, θ1) with the (π/2)-page of (K2, θ2) along the neighborhoods of the arcs C ′

1 and C
′
2

defined by:
C ′

1 = ψ−1
1 (C1) and C

′
2 = ψ−1

2 (C2),

where:

C1 = {x2 + y2 = 1, y ≤ 0, z = 0} and C2 = {x2 + y2 = 1, y ≥ 0, z = 0}.
Similarly, all the other pages of the open book (K, θ) will appear locally as drawn on the

right in Figure 8, each of which is globally diffeomorphic to the 0-page, after smoothing
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the corners as usual. Hence θ : M \ K → S1 is a locally trivial fibration each of whose
fibers is obtained by plumbing a page of (M1, θ1) with a page of (M2, θ2)—which finishes
Gabai’s proof of Stallings’ Theorem 2.2.

The proof above can be described with another point of view which turns out to be
more suitable for the generalizations we have in mind. One can interpret what is inside
the domain B in the local model (R3, θ̃) as the union of two (overlapping) pieces:

• a tubular neighborhood of the intersection B∩K̃, which is nothing but two disjoint
arcs of the binding K̃;

• a thickening of the plumbing region.

x

y

thickening of the plumbing region

neighborhood of the bindingneighborhood of the binding

Figure 9. A model with truncated pages

The thickening (topologically a rectangle times an interval) consists of a rectangle from

each page θ̃−1(t) ∪ K̃ for t ∈ [−π/2, π/2] ∈ S
1. To see this, we slightly truncate the

pages of θ̃ in B corresponding to the arc [−π,−π/2] ∪ [π/2, π] on S1 such that the pages
intersect the xy-plane as shown in Figure 9. In other words, we slightly deform the domain
B keeping all of its symmetries needed in the previous discussion. Therefore, by removing
B, we remove the plumbing region from half of the pages of the open book corresponding
to one “half” of S1, along with tubular neighborhood of the two arcs of the binding.

For the Murasugi sum of two open books, we remove the plumbing regions from half
of the pages in both open books but these halves correspond to complementary oriented
arcs on S1. (This fact reveals itself in the above proof by the appearance of the difference
π in the parametrization of the fibrations to be glued.) So, when we glue the ambient
manifolds after removing diffeomorphic copies of B from each one of them, the fibrations
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in the complements of the respective bindings will glue together so that the hole created
as a result of removing a rectangle (the plumbing region) from any page will be sewn back
up by the rectangle in the corresponding page of the complementary fibration. The way
that these rectangles are identified is equivalent to plumbing, so that the resulting pages
are smooth manifolds. One can also see that the aforementioned tubular neighborhoods
of the arcs on the bindings will indeed disappear in the process, whereas the rest of the
bindings will glue together to give the new binding in the glued up manifold.

There is yet another interpretation of the proof using abstract open books (see Etnyre
[10, Theorem 2.17]). Given two abstract open books (Σi, φi), i = 1, 2 (see Remark 6.15 (1)
below), let Ci be an arc properly embedded in Σi and Ri = Ci× [−1, 1] ⊂ Σi a rectangular
neighborhood of Ci. The idea of the proof is to perform a Murasugi sum of the mapping
tori M(Σ1, φ1) and M(Σ2, φ2) leaving the bindings out of the picture at first and then
to complete the resulting mapping torus into an open book of the connected sum of the
ambient manifolds.

φ1 φ2

0 1/4 1

0 3/4 1

R1

R2

1/2

1/2

Figure 10. Local pictures of M(Σ1, φ1)\B1 (on the left) and M(Σ2, φ2)\
B2 (on the right)

Note that B1 = R1× [1/2, 1] is a 3-ball in M(Σ1, φ1) and similarly B2 = R2× [0, 1/2] is
a 3-ball in M(Σ2, φ2). We view the mapping torus M(Σ1, φ1) obtained as gluing Σ1×{0}
to Σ1 × {1} using the identity and then cutting the resulting Σ1 × S1 along Σ1 × {1/4}
and regluing using φ1 (see Figure 10). Similarly we view M(Σ2, φ2) obtained as gluing
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Σ2 × {0} to Σ2 × {1} using the identity and then cutting the resulting Σ2 × S1 along
Σ2 × {3/4} and regluing using φ2.

M(Σ1, φ1) \B1

M(Σ2, φ2) \B2

Figure 11. Two “lego” pieces of Figure 10 fitting together

Let Σ = Σ1 + Σ2 denote the Murasugi sum of Σ1 and Σ2 along the rectangles R1 and
R2. Then M(Σ1, φ1) \ B1 and M(Σ2, φ2) \ B2 can be glued together, as illustrated in
Figure 11, to induce a mapping torus with page Σ. Therefore we conclude that:

(

M(Σ1, φ1) \B1

)

∪
(

M(Σ2, φ2) \B2

)

= M(Σ, φ),

where Σ = Σ1 + Σ2, and φ = φ1 ◦ φ2. Here we extend φi (i = 1, 2) from Σi to Σ by the
identity map and then compose these extended diffeomorphisms, which we still denote by
φi on Σ. As a matter of fact, from this monodromical viewpoint “Murasugi sum” appears
more like a composition than a sum.

To show that the mapping torus M(Σ, φ) extends to an open book of the connected
sum M1#M2 we proceed as follows (see Goodman’s Thesis [19, pages 9-10]). First of all,
we view Σi as a submanifold of Σ and identify R = Ri, for i = 1, 2. Then si =: R ∩ ∂Σi

is the disjoint union of two properly embedded arcs in Σ such that the set of four points
∂s1 = ∂s2 belongs to ∂Σ.

In the following we present the separating sphere S in the connected sumM =M1#M2.
Let I1 = [0, 1/2] and I2 = [1/2, 1]. For each i = 1, 2, consider the disjoint union of two
disks si × Ii ⊂ Σ × I ⊂ M(Σ, φ). Let S ′ be the surface obtained as the following union
of six disks:

(s1 × I1) ∪ (s2 × I2) ∪ (R× {0}) ∪ (R× {1/2})
in M(Σ, φ). Observe that ∂S ′ = S1× ∂s1. We can cap off S ′ with the four disks D2× ∂s1
to construct the desired sphere S as illustrated in Figure 12.
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R

s2

I2

s2

s1

s1

I1

D
2

D
2

D
2

D
2

Figure 12. The four disks used to cap off S ′ in order to get the sphere S

Now we claim that M \S decomposes intoM1 \B1 andM2 \B2 for some 3-dimensional
balls B1 and B2. To prove our claim, we note that M(Σ, φ) = (Σ× I1) ∪ (Σ× I2), where
we identify Σ×{1/2} in the first product with Σ×{1/2} in the second product via φ1 and
Σ×{1} with Σ×{0} via φ2. It follows that, by removing S, we have (Σ1 ⊔ (Σ2 \R))× I1
glued to (Σ2 ⊔ (Σ1 \ R)) × I2. But since φ1 is the identity on Σ2 and φ2 is the identity
on Σ2, the result can also be viewed as a union of two pieces M(Σ1, φ1) \ (R × I1) and
M(Σ2, φ2) \ (R × I2).

Finally, we insert the binding as follows. Since ∂si is a set of four points in ∂Σ, the
solid torus D2 × ∂Σ is cut into four pieces along D2 × ∂si. Thus by gluing in the binding,
we see that M decomposes into two pieces along the sphere S:

(

M(Σ1, φ1) ∪ (D2 × ∂Σ1)
)

\
(

(R × I1) ∪ (D2 × s1)
)

=M1 \
(

(R× I1) ∪ (D2 × s1)
)

and:
(

M(Σ2, φ2) ∪ (D2 × ∂Σ2)
)

\
(

(R× I2) ∪ (D2 × s2)
)

=M2 \
(

(R× I2) ∪ (D2 × s2)
)

.

Observe that each Bi := (R× Ii) ∪ (D2 × si) is a 3-ball with boundary S.

Our paper is motivated by the search of the most general operation of Murasugi-type
sum (that is, embedded Milnor-style plumbing) for which one has an analog of Theorem
2.2. We figured out that we do not need to restrict in any way the full-dimensional
submanifolds which are to be identified in the plumbing operation. That is why we define
a general operation of “summing” of manifolds (see Definition 7.4), which reduces to
the classical operation of Definition 2.1 when the identified submanifolds have product
structures Dn × Dn.



18 BURAK OZBAGCI AND PATRICK POPESCU-PAMPU

The greater level of generality obliged us to discard the special model used in the
previous proof. The principle of the proof of our generalization 9.3 of Gabai’s theorem is
instead inspired by Etnyre’s interpretation. In this respect, Figure 11 is to be compared
with Figure 30.

4. Conventions and basic definitions

In this section we explain our conventions about manifolds, orientations and coorien-
tations of hypersurfaces. We give rather detailed explanations because throughout the
paper we work without any assumptions about orientability of the manifolds: the only
important issues are about coorientations, which makes the setting rather non-standard
when compared with the usual literature in differential topology.

In this paper, the manifolds are assumed to be smooth and pure dimensional, but not
necessarily orientable or connected. If a manifold is endowed with an orientation, we
explicitly say that it is an “oriented manifold”. We use the expression “manifold-with-
boundary” for a smooth manifold with possibly empty boundary. We denote by ∂W the
boundary of the manifold-with-boundary W and by:

int(W ) := W \ ∂W
its interior.

In the sequel, we will implicitly use the facts that the corners of a manifold with corners
can be smoothed, and that the resulting smooth manifold-with-boundary is well-defined
up to isotopy as a zero-codimensional submanifold of the initial manifold with corners.
A standard reference for these folklore facts is the Appendix of Milnor’s paper [29]. We
will also use the folklore fact that two manifolds-with-boundary can be glued along compact
zero-codimensional submanifolds of their boundaries, once a diffeomorphism between these
submanifolds is fixed, and that the result is well-defined up to diffeomorphism. A standard
reference for this is Hirsch’s book [22, Chapter 8.2]. All these facts are also treated in a
detailed way by Douady in his contributions [6], [7], [8] to the Seminar Cartan.

Remark 4.1. In the sequel, the only gluings to be done will be special cases of identifi-
cations of submanifolds of two manifolds-with-boundary by diffeomorphisms. In order to
simplify the notations, instead of giving different names to those submanifolds and label-
ing also the diffeomorphism used for the gluing, we will assume that the two submanifolds
were identified using that diffeomorphism, which implies that the gluing diffeomorphism
is the identity. For instance, we will not write “glue M1 to M2 using the diffeomorphism
φ : P1 → P2 of Pi →֒ Mi”, but “glue M1 to M2 along P →֒Mi”.

If V is a submanifold-with-boundary embedded inW , then we use the notation V →֒ W .
We say that V is properly embedded into W if V ∩ ∂W = ∂V and if V and ∂W are
transversal in W everywhere along ∂V . When ∂V = ∅, this means simply that V ⊂
int(W ). In this paper, the submanifolds of interest are not necessarily properly embedded
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(for instance, the pages of an arbitrary open book). If M →֒ W is a submanifold, we
denote by codimW (M) its codimension in the ambient manifold W .

If V →֒ W is properly embedded, we denote by UW (V ) (or simply U(V ) if W is clear
from the context) a closed tubular neighborhood of V in W such that UW (V ) ∩ ∂W
is a tubular neighborhood of ∂V in ∂W . Moreover, we assume that UW (V ) is endowed
with a structure of smooth fiber bundle over V , whose fibers are diffeomorphic to compact
balls of dimension codimW (V ).

Let us examine the special case of properly embedded hypersurfaces. One has the
following well-known proposition:

Proposition 4.2. Let M →֒ W be a compact hypersurface-with-boundary properly em-
bedded inside the manifold W . The following conditions are equivalent:

(1) the normal bundle NM |W of M in W is orientable;
(2) M admits a tubular neighborhood diffeomorphic to [−1, 1]×M , where M →֒ W is

identified with {0} ×M ;
(3) each connected component Ui of an arbitrary regular neighborhood UW (M) is dis-

connected by Ui ∩M .

Moreover, if any of the conditions above is satisfied, then the following choices are equiv-
alent:

(1’) an orientation of the normal bundle NM |W of M in W ;
(2’) an embedding [−1, 1]×M →֒ W which sends {0} ×M to M by {0} ×m→ m for

any m ∈ M , up to isotopy;
(3’) a choice of connected component of Ui \M for each connected component Ui of a

tubular neighborhood UW (M).

More precisely, the normal vectors pointing towards the positive side for the chosen ori-
entation of the normal bundle are tangent to the curves entering into (0, 1] ×M , which
defines the choice of connected component of each Ui.

The previous proposition allows us to define:

Definition 4.3. Let M →֒ W be a properly embedded compact hypersurface-with-
boundary. It is called coorientable if it satisfies any one of the equivalent conditions
(1)–(3) of the previous proposition. A coorientation of M in W is an orientation of the
normal bundle NM |W of M in W .

Example 4.4. Consider a Möbius band W seen as a non-trivial segment-bundle over a
circle. Any fiber is coorientable, but no section of it is coorientable.

Suppose that W is a manifold with nonempty boundary ∂W . Recall that we do not
assume orientability of either W or ∂W . Even though ∂W is not properly embedded in
W , it has an orientable normal bundle in W and hence we say that ∂W is coorientable
by adapting Definition 4.3 to this case. Since ∂W is coorientable, then any codimension
zero submanifold of ∂W is coorientable and for each connected component of such a
submanifold of ∂W , the two coorientations may be distinguished as:
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• incoming, if the corresponding normal vectors point inside W ;
• outgoing, if the corresponding normal vectors point outside W .

Remark 4.5. In the sequel (see for instance Definition 5.1) we will not necessarily coorient
a whole boundary component uniformly, but we might have to break it up by inserting
“corners” as in Figure 14. For this reason, we also speak about the coorientation of any
full-dimensional submanifold of the boundary.

If a manifold-with-boundary W is oriented, then for each connected component of its
boundary ∂W we define the outgoing orientation by the rule known as “outside pointing
normal vector comes first”: a normal vector to ∂W pointing outside of W , followed by a
positive basis of the tangent space to ∂W , gives a positive basis to the tangent space of
W . It is customary to take the outgoing orientation as the canonical orientation induced
on ∂W . The opposite orientation of the boundary is the incoming orientation.

Example 4.6. For each n ≥ 1, we denote by Dn ⊂ Rn the compact unit ball endowed
with the restriction of the canonical orientation of Rn and by Sn−1 its boundary sphere,
endowed with the associated outgoing orientation.

If W is an oriented manifold-with-boundary and ∂W is independently oriented, then:

• its outgoing boundary ∂+W is the union of the connected components of ∂W
which are endowed with the outgoing orientation;

• its incoming boundary ∂−W is the union of the connected components of ∂W
which are endowed with the incoming orientation.

We clearly have:

∂W = ∂+W
⊔

∂−W.

In this case, we see W as a cobordism from ∂−W to ∂+W (see Figure 13).

∂−W

∂+W

W

Figure 13. W is a cobordism from ∂−W to ∂+W .

For instance, the interval [0, 1] endowed with its canonical orientation is a cobordism
from the positively oriented point {0} = ∂−[0, 1] to the positively oriented point {1} =
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∂+[0, 1]. Note that to orient a point means to choose one of the signs ± attached to it,
which allows us to speak in this case about positive/negative orientations.

More generally, we will denote by I or Ij (j varying inside some index set) an oriented
compact interval, that is, an oriented compact manifold-with-boundary, diffeomorphic
to [0, 1] ⊂ R. Its two boundary components will be endowed with their canonical orien-
tations, therefore we may speak without ambiguity of the outgoing point ∂+I and the
incoming point ∂−I of I.

Definition 4.7. Let M →֒ W be a properly embedded and cooriented compact hyper-
surface-with-boundary. A positive side of M is an embedding I+ ×M →֒ W such that
M →֒ W is identified with ∂−I

+ ×M and the positive normal vectors of M point into
I+ ×M . A negative side of M is an embedding I− ×M →֒ W such that M →֒ W is
identified with ∂+I

− ×M and the positive normal vectors of M point outside it. Here
both I+ and I− denote oriented compact intervals. A collar neighborhood of M →֒ W
is the union of a negative and of a positive side of M whose intersection is M .

In the sequel we will have to work with a more general notion of cobordism, which is
described in the next section.

5. Cobordisms of manifolds-with-boundary

In this section we set up the notation for cobordisms of manifolds with boundary, without
the assumption of orientability. We also introduce cylinders, cylindrical cobordisms and
endobordisms as particular cases of cobordisms of manifolds with boundary. Moreover,
we explain in which sense the notions of endobordism and properly embedded cooriented
hypersurface in a manifold-with-boundary are equivalent.

In the next definition we extend the notion of cobordism to situations where:

• the total manifold is not necessarily orientable;
• the incoming and outgoing boundaries are not necessarily closed manifolds;
• the total manifold may have boundary components which are not labeled as in-
coming or outgoing.

What we keep instead from the situation described in the previous section is the dis-
jointness of the two types of boundary regions and the fact that they are of codimension
zero in the boundary of the cobordism.

Definition 5.1. Let M− and M+ be manifolds-with-boundary. A cobordism W from
M− to M+ is a manifold-with-boundary W , whose boundary is decomposed as:

∂W = Y ∪M− ∪M+,

where Y is a nonempty submanifold-with-boundary of ∂W such that M− ∩ M+ = ∅,
Y ∩M− = ∂M−, Y ∩M+ = ∂M+ and:

• M− is endowed with the incoming coorientation, and
• M+ is endowed with the outgoing coorientation.
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We say thatM∓ is the incoming/outgoing boundary region of the cobordism W and
set ∂∓W =M∓. We denote this cobordism (of manifolds-with-boundary) by:

W : ∂−W Z=⇒ ∂+W.

∂−W

∂+W

W

Y

Figure 14. Cobordism of manifolds-with-boundary W : ∂−W Z=⇒ ∂+W ,
where ∂−W is blue, ∂+W is red and Y (the rest of ∂W ) is green (colour
figure online).

Remark 5.2. The definition above is not new (see, for example, [1]) except for the ori-
entability assumptions. Strictly speaking, W is a manifold with corners (for this reason,
we called them “cobordisms with corners” in a previous version of this paper), but never-
theless, corners along ∂(∂−W ) ⊔ ∂(∂+W ) may be smoothed. Note that ∂−W and ∂+W
may belong to the same connected component of ∂W after smoothing the corners and
also, the boundary of W may have connected components disjoint from ∂−W ⊔ ∂+W , as
illustrated in Figure 14.

More generally, if one has two manifolds M− and M+ (possibly with boundaries) and
fixed diffeomorphisms M± ≃ ∂±W , we simply say that W is a cobordism from M− to
M+ and write W :M−

Z=⇒M+. Note that cobordisms can be composed : if W1 :M1 Z=⇒
M2 and W2 :M2 Z=⇒ M3 are two cobordisms then their composition W2 ◦W1 :M1 Z=⇒
M3 is a cobordism obtained by gluing W1 and W2 along M2.

Remark 5.3. The notion of cobordism of manifolds-with-boundary weakens and extends
to arbitrary dimension the notion of sutured manifold introduced in dimension 3 by Gabai
[12, Definition 2.6]:

“A sutured manifold (M, γ) is a compact oriented 3-manifold M together
with a set γ ⊂ ∂M of pairwise disjoint annuli A(γ) and tori T (γ). Fur-
thermore, the interior of each component of A(γ) contains a suture, i.e. a
homologically nontrivial oriented simple closed curve. We denote the set
of sutures by s(γ). Finally every component of R(γ) = ∂M − int(γ) is
oriented. Define R+(γ) (or R−(γ)) to be those components of ∂M − int(γ)
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whose normal vectors point out of (into) M . The orientations on R(γ)
must be coherent with respect to s(γ), i.e., if δ is a component of ∂R(γ)
and is given the boundary orientation, then δ must represent the same
homology class in H1(γ) as some suture.”

A sutured manifold (M, γ) as in Gabai’s definition is a cobordism of manifolds-with-
boundary from R−(γ) to R+(γ) according to our definition. We drop any constraints
on the structure of the complement of the union of outgoing and incoming boundary
regions inside the full boundary. Moreover, we do not assume that the ambient manifold
is oriented, or even orientable. Our definition is also more general than the extension to
arbitrary dimensions of the notion of sutured manifold, given by Colin-Ghiggini-Honda-
Hutchings in [5].

In the sequel, we will simply write “cobordisms” instead of “cobordisms of manifolds-
with-boundary”.

Definition 5.4. If the incoming and the outgoing boundariesM− andM+ of a cobordism
W : M−

Z=⇒ M+ are diffeomorphic and a diffeomorphism between them is fixed, then
we say that W is an endobordism of M ≃ M− ≃ M+. The mapping torus of
the endobordism W : M−

Z=⇒ M+ is the manifold-with-boundary T (W ) obtained by
gluing M− and M+ using this diffeomorphism. The mapping torus comes equipped with
a cooriented proper embedding M →֒ T (W ), which is the image inside T (W ) of the
boundary manifolds M− and M+ which are identified (see Figure 15).

In the notation “T (W )”, we suppress for simplicity the diffeomorphism which identifies
the incoming and outgoing boundaries. Note that it is nevertheless of fundamental impor-
tance for the construction. The reason we chose the name “mapping torus” is explained
in Remark 6.15 (2) below.

We will be mainly concerned with the following types of endobordisms:

Definition 5.5. Let M be a manifold-with-boundary. A cylinder with base M is a
trivial cobordism W = I ×M , the incoming boundary being ∂−I ×M and the outgoing
one being ∂+I ×M . A cylindrical cobordism with base M is a cobordism W from
a copy M− of M to another copy M+ such that the union of connected components of
∂W which intersect M− ∪M+—the cylindrical boundary ∂cylW—is endowed with a
diffeomorphism (respecting the incoming and outgoing boundary regions) to the boundary
∂(I ×M) = (∂I ×M)∪ (I × ∂M) of a cylinder with base M . The segment I is called the
directing segment of the cylindrical cobordism.

Note that cylinders with base M are special cases of cylindrical cobordisms with base
M , which are special cases of endobordisms of M .

The composition of two cylinders/cylindrical cobordisms with the same base M is a
cylinder/cylindrical cobordisms with base M . More generally, the composition of two
endobordisms of M is again an endobordism of M .
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glue by a diffeomorphism

W

T (W )

M− M+

M

Figure 15. Mapping torus of an endobordism

To any cooriented and properly embedded hypersurface M of a (not necessarily oriented
or even orientable) manifold-with-boundary is associated canonically (up to diffeomor-
phisms) an endobordism with base M .

Definition 5.6. Let W be a compact manifold-with-boundary and let M →֒ W be a
cooriented and properly embedded compact hypersurface-with-boundary. We view a collar
neighborhood [−1, 1]×M →֒ W of M as the cylinder Z[−1,1] : {−1} ×M Z=⇒ {+1} ×M .
Denote by Z[−1,0] and Z[0,1] the analogous cylinders corresponding to the intervals [−1, 0]
and [0, 1], which implies that Z[−1,1] ≃ Z[0,1]◦Z[−1,0]. LetWM be the closure insideW of the
complementW \([−1, 1]×M). We see it as an endobordismWM : {1}×M Z=⇒ {−1}×M ,
hence the composition Z[−1,0] ◦ WM ◦ Z[0,1] is also an endobordism of M . We call this
endobordism the splitting of W along M and denote it by:

ΣM (W ) :M−
Z=⇒ M+

(see Figure 16), where M∓ are two copies of M . The natural map:

σM : ΣM (W ) →W

is called the splitting map of W along M or of M →֒ W .
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M

W

ΣM (W )
M− M+

σM

Figure 16. Splitting of W along a cooriented properly embedded hyper-
surface M

Intuitively, one modifies W replacing each point of M by the set of two orientations of
the normal line to M at that point.

Remark 5.7. (1) The splitting map σM is a diffeomorphism aboveW \M , the preim-
age of M by σM being the disjoint union M+ ⊔M− of two copies of M , distin-
guished canonically as the incoming and the outgoing boundaries of the cobordism
ΣM(W ) :M−

Z=⇒M+. Both figures 15 and 16 may be seen as graphical represen-
tations of the splitting map σM . In the first case one starts from the source and
in the second case from the target, before constructing the map σM .

(2) The splitting map σM allows one to prove that the splitting ofW alongM is unique
up to a unique diffeomorphism aboveW (that is, any two such splittings are related
by a unique diffeomorphism compatible with their splitting maps). One may see
ΣM(W ) as a generalization of the surface obtained by cutting a given surface along
a properly embedded arc, an operation fundamental in Riemann’s approach of [37]
to the topology of surfaces. Another way to model this splitting operation is to
remove a collar neighborhood of M . We preferred the previous definition because
of its canonical nature.

(3) One could also define a splitting map along non-coorientable hypersurfaces. In
this case one would not obtain a cobordism, because above M the map would
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restrict to a non-trivial covering of degree 2. We did not define such splittings
because we do not use them in this paper.

We have the following immediate relation between the operations of taking the mapping
torus and of splitting:

Proposition 5.8. The operations of taking the mapping torus of an endobordism and of
splitting along a cooriented properly embedded hypersurface are inverse to each other.

6. Seifert hypersurfaces and open books

In this section we introduce a notion of Seifert hypersurface and we explain in which
sense it is equivalent to the notion of cylindrical cobordism introduced in the previous
section. We conclude by treating the special case of Seifert hypersurfaces which are pages
of open books.

Assume that M is still a cooriented compact hypersurface-with-boundary in W , but
which is not properly embedded. Instead, we require M to be contained in the interior of
W . In order to write more concisely, we introduce a special name for such hypersurfaces:

Definition 6.1. Let W be a manifold-with-boundary. A compact hypersurface-with-
boundary M →֒ W is a Seifert hypersurface if:

• the boundary of each connected component of M is non-empty;
• M →֒ int(W );
• M is cooriented.

Remark 6.2. Traditionally, a Seifert surface is defined as an oriented surface embedded
in S3, whose boundary is an oriented link L which one wants to study. Seifert surfaces
are often used algebraically through their associated Seifert forms. To define the Seifert
form, one needs to choose a positive side of the Seifert surface, to push some 1-cycles
off the surface towards that direction and to compute some linking numbers. An impor-
tant ingredient in this construction is the coorientation of the Seifert surface, which is
canonically determined by the orientation of L and S3. For this reason, we have decided
to extend this aspect of Seifert surfaces in S3 to a general definition, that also subsumes
Lines’ Definition 2.4.

There is a canonical way to associate to a Seifert hypersurface M of W a cooriented
and properly embedded hypersurface-with-boundary in a new manifold (see Definition 6.8).
But in order to achieve this, one has first to “pierce” W along ∂M . We will define this
piercing procedure using special trivialized tubular neighborhoods of ∂M →֒ W :

Definition 6.3. Let W be a manifold-with-boundary and let M →֒ W be a Seifert
hypersurface. A tubular neighborhood UW (∂M) of ∂M →֒ W is called adapted to M if
it is endowed with a product structure D2×∂M such thatM intersects it along [0, 1]×∂M
(where [0, 1] →֒ D2 is the canonical embedding) and if the canonical orientation of ∂D2
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coincides with the given coorientation ofM in W . The composition of the first projection
UW (∂M)\∂M ≃ (D2\{0})×∂M → D2\{0} with the angular coordinate θ : D2\{0} → S1

is called an angular coordinate of ∂M adapted to M (see Figure 17).

MW

Figure 17. Angular coordinate of ∂M adapted to M

An adapted tubular neighborhood of the boundary of a Seifert hypersurface always ex-
ists and is unique up to isotopy. The reason is that the normal bundle N∂M |W of ∂M inW
is canonically trivialized up to homotopy, by taking as a first section a nowhere vanishing
incoming vector field on M along ∂M and as an independent section a positively normal
vector field of M along ∂M (recall the fundamental hypothesis that M is cooriented).

We want to pierce or blow-up W in an oriented way along ∂M . We will define this
operation using the following local model to be used in each fiber of an adapted tubular
neighborhood:

Definition 6.4. The radial blow-up of D2 is the map π0 : [0, 1] × S1 → D2 which
expresses the cartesian coordinates on D2 in terms of polar ones:

(r, θ) 7→ (r cos θ, r sin θ).

One may perform the radial blow-up operation fiberwise in an adapted tubular neigh-
borhood of a Seifert hypersurface:

Definition 6.5. Let W be a manifold-with-boundary and let M →֒ W be a Seifert
hypersurface. Let D2 × ∂M →֒ W be a tubular neighborhood of ∂M adapted to M . Let
Π∂M(W ) be the manifold obtained as the union of W \ ∂M and [0, 1]× S1 × ∂M , where
(D2 \ {0})×∂M in W \∂M is identified with (0, 1]×S1×∂M in [0, 1]×S1×∂M through
the diffeomorphism π0 × id∂M . The radial blow-up of W along ∂M is the map:

π∂M : Π∂M(W ) → W

described as follows: π∂M is just the the inclusion map on W \ ∂M and is given by
π0 × id∂M on [0, 1] × S1 × ∂M . We also say that Π∂M(W ) is obtained by piercing W
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along ∂M . The strict transform M ′ of M by π∂M is the closure of (π∂M)−1(int(M))
inside Π∂M(W ).

The operation of radial blow-up is also called oriented blow-up in the literature, but
under that name it is in general used in the semi-algebraic category. Intuitively, W is
modified by replacing each point of ∂M by the circle of oriented lines passing through the
origin of the normal plane to ∂M at that point. We have the following easy lemma:

Lemma 6.6. The radial blow-up map π∂M is proper and a diffeomorphism above W \M .
The restriction π∂M |M ′ :M ′ →M is a diffeomorphism.

In the sequel, we will identify M and M ′ using this diffeomorphism, which will allow
us to speak about the embedding M →֒ Π∂M(W ). This embedding is cooriented (by the
lift of the coorientation of M in W ) and proper.

M ′W

Figure 18. The radial blow-up of the surface W of Figure 17 along the
end points of the arc M , and the strict transform M ′ of M . The two green
cylinders are attached transversely toW (in the usual 3-dimensional space),
where we first remove two disks from W (colour figure online).

Remark 6.7. (1) The radial blow-up allows us to pass from a Seifert hypersurface to
a properly embedded cooriented hypersurface in the pierced manifold.

(2) This remark is to be compared with Remark 5.7 (3). One could define an analo-
gous operation of radial blow-up along an arbitrary submanifold of codimension
2, as one does not need to have a globally trivial fibered tubular neighborhood in
order to do fiberwise radial blow-ups of the centers of the discs. Nevertheless, we
introduced this more restricted definition, as the only one which is needed in the
paper.

As M is cooriented and properly embedded in Π∂M (W ), one may consider the splitting
ΣM(Π∂M (W )), as introduced in Definition 5.6:

Definition 6.8. Let W be a manifold-with-boundary and let M →֒ W be a Seifert
hypersurface. The splitting of W along M , denoted ΣM(W ), is defined as the splitting
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ΣM (Π∂M(W )) of the properly embedded hypersurface M →֒ Π∂M(W ). It is therefore an
endobordism of M . The composition π∂M ◦ σM : ΣM(W ) → W is called the splitting
map of W along M (Fig. 19).

W

Figure 19. The splitting of W along M for the pair (W,M) of Figure 17.
Recall that the intermediate radial blow-up is drawn in Figure 18.

Remark 6.9. This remark is a continuation of Remark 5.7 (2). Riemann explained that
one has to cut a surface along a curve which goes from the boundary to the boundary.
This is the operation we modeled in arbitrary dimensions by Definition 5.6. He added
that if the surface has no boundary, then one has first to pierce it, creating like this an
infinitely small boundary, and then one may cut it along a curve going from this boundary
to itself. This is the operation we modeled in arbitrary dimensions in Definition 6.8. We
first “pierced” W along the boundary of M (Definition 6.5), and then we were able to
apply Definition 5.6.

One has the following immediate observation, consequence of the fact that one gets a
segment by splitting a circle at a point. This observation is nevertheless very important
for the sequel. Recall that both notions of cylindrical cobordisms and of their cylindrical
boundaries were introduced in Definition 5.5:

Lemma 6.10. If M →֒ W is a Seifert hypersurface, then the splitting ΣM(W ) is a
cylindrical cobordism whose cylindrical boundary is given by:

σ−1
M (M ∪ π−1

∂M (∂M)).

Assume conversely that W : M−
Z=⇒ M+ is a cylindrical cobordism with base M ,

its cylindrical boundary being identified with ∂(I ×M). Fix an orientation-preserving
identification of S1 with the circle obtained from I by gluing ∂−I and ∂+I. One identifies
therefore to S1 × ∂M the image of the cylindrical boundary inside the mapping torus
T (W ). This allows us to define:

Definition 6.11. Let W : M−
Z=⇒ M+ be a cylindrical cobordism with base M . Its

circle-collapsed mapping torus Tc(W ) is obtained from the mapping torus T (W ) by
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collapsing the circle S1×{m} to {0}×{m}, for all m ∈ ∂M . The Seifert hypersurface
associated to the cylindrical cobordism W is the natural embedding M →֒ Tc(W ).

We have the following analog of Proposition 5.8:

Proposition 6.12. The operations of taking the circle-collapsed mapping torus of a cylin-
drical cobordism and of splitting along a Seifert hypersurface are inverse to each other.

This shows that, in differential-topological constructions, one may use interchangeably
either cylindrical cobordisms or Seifert hypersurfaces.

One may describe the construction of the circle-collapsed mapping torus of a cylindrical
cobordism in a slightly different way, by filling the boundary of the mapping torus with
a product manifold, instead of collapsing the circles contained in it:

Lemma 6.13. Let W : M−
Z=⇒ M+ be a cylindrical cobordism with base M . The

manifold obtained by gluing the mapping torus T (W ) to the product D2 × ∂M through
the canonical identification of their boundaries is diffeomorphic to the circle-collapsed
mapping torus Tc(W ) through a diffeomorphism which is the identity on the complement
of an arbitrary neighborhood of D2 × ∂M and which sends 0× ∂M onto ∂M .

We will use this second description in the proof of Proposition 9.1.

We apply now the previous considerations to the special situation where M →֒W is a
page of an open book. Let us recall first this notion:

Definition 6.14. An open book in a closed manifold W is a pair (K, θ) consisting of:

(1) a codimension 2 submanifold K ⊂ W , called the binding, with a trivialized
normal bundle;

(2) a fibration θ : W \ K → S1 which, in a tubular neighborhood D2 × K of K is
the normal angular coordinate (that is, the composition of the first projection
D2 ×K → D2 with the angular coordinate D2 \ {0} → S1).

It follows that for each θ0 ∈ S1, the closure in W of θ−1(θ0)—called a page of the open
book—is a Seifert hypersurface whose boundary is the binding K. Its coorientation is
defined by turning the pages in the positive sense of S1. If v is a vector field which is
transverse to the pages, meridional near K and such that its vectors project to positive
vectors on S1, then the first return map of v on an arbitrary page is called the geo-
metric monodromy of the open book. As in the 3-dimensional case, such a geometric
monodromy is well-defined up to isotopies relative to the boundary and conjugations by
diffeomorphisms which are the identity on the boundary. No conjugation appears if the
initial page is fixed.

One may describe the previous monodromical considerations in a slightly different way,
using the splitting of the ambient manifold along a page (see Definition 6.8). LetM →֒ W
be an arbitrary page of the open book. The splitting of W along M is a cylindrical
cobordism ΣM (W ) :M Z=⇒ M . Consider the same vector field as before. Its flow realizes
a diffeomorphism from the incoming boundary (a copy of M) to the outgoing boundary
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(another copy of M). Therefore it gives a diffeomorphism of M , which is moreover fixed
on the boundary of M . It is the geometric monodromy diffeomorphism!

This geometric monodromy is isotopic to the identity if and only if ΣM (W ) is isomorphic
to the cylinder I × M by an isomorphism which is the identity on the boundary and
respects the fibrations over the interval I. Note that ΣM(W ) is always isomorphic to that
cylinder, if we do not impose constraints on the boundary.

Conversely, for any self-diffeomorphism φ of a compact manifold-with-boundary M
which is the identity on ∂M , one can construct as follows a closed manifold equipped
with an open book with page M and monodromy φ:

• take the cylinder [0, 1]×M ;
• consider it as a cylindrical cobordism [0, 1] ×M : M0 Z=⇒ M1 where M0,M1 are
two copies of M , that M0 is identified to {0}×M using the identity ofM and M1

is identified to {1} ×M using φ :M ≃M1;
• take the circle-collapsed mapping torus associated to this cylindrical cobordism
(see Definition 6.11). The fibers of the first projection [0, 1]×M → [0, 1] induce
the pages of an open book structure on it.

Remark 6.15. (1) The pair (M,φ) is sometimes called an abstract open book.
(2) The mapping torus of the previous cylindrical cobordism (according to Definition

5.4) coincides with the classical mapping torus M(M,φ) of the diffeomorphism
φ. This is the reason why we chose the name “mapping torus” for the object
introduced in Definition 5.4.

(3) A codimension 2 closed submanifold K →֒ V of a closed manifold is called a
fibered knot if it is the binding of some open book (K, θ). In this case, the map
θ is not part of the structure.

(4) One may consult [45] for a survey of the use of open books till 1998. Since then,
Giroux’s paper [15] started a new direction of applications of open books, into
contact topology. The expression “open book” appeared for the first time in 1973
in the work of Winkelnkemper [44]. Before, equivalent notions of “fibered knots”
and “spinnable structures” were introduced in 1972 by Durfee and Lawson [9] and
Tamura [40] respectively. All those papers were partly inspired by Milnor’s dis-
covery in [31] of such structures — without using any name for them — associated
to any germ f : (Cn, 0) → (C, 0) of polynomial with an isolated singularity at 0.
In [3] was introduced the name “Milnor open book” for the open books associated
more generally to holomorphic functions on germs of complex spaces, when both
have isolated singularities.

7. Abstract and embedded summing

In this section we define a notion of sum of manifolds-with-boundary of the same
dimension (see Definition 7.4), which generalizes the usual notion of plumbing recalled in
Definition 2.1. The sum is done along identified patches and extends to a commutative
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and associative operation on patched manifolds with identified patches. Then we define
an embedded version of this sum (see Definition 7.8). Unlike the abstract sum, this
operation is in general non-commutative, but it is still associative (see Proposition 7.10).
It generalizes both Stallings’ and Lines’ plumbing operations recalled in Section 2.

In the sequel, we will consider embedded submanifolds-with-boundary in other mani-
folds-with-boundary of the same dimension, where part of the boundary of the submani-
fold belongs to the interior, and part to the boundary of the ambient manifold. The next
two definitions will allow us to speak shortly about such embeddings:

Definition 7.1. Let P be a compact manifold-with-boundary. An attaching region
A →֒ ∂P is a compact manifold-with-boundary of the same dimension as ∂P . The closure
B := ∂P \ A of the complement of the attaching region is the non-attaching region.
We say that (P,A) is an attaching structure on P . The complementary attaching
structure of (P,A) is (P,B).

Definition 7.2. Let M be an n-dimensional compact manifold-with-boundary. A patch
of M is the datum of an attaching structure (P,A) on another n-dimensional compact
manifold-with-boundary and of an embedding P →֒M such that P ∩ ∂M = B, where B
is the non-attaching region of (P,A) (see Figure 20). That is, the attaching region A is
the closure of ∂P ∩ int(M). A manifold endowed with a patch is a patched manifold.
We denote it either as a pair (M,P ) or as an embedding P →֒ M .

A

A A

B B

B

P

M

Figure 20. A patched manifold (M,P ) with patch (P,A)

Remark 7.3. (1) The condition P ∩ ∂M = B is equivalent to the condition that the
attaching region A is the closure of ∂P ∩ int(M). Therefore, the attaching region
is determined by the embedding P →֒ M . We chose the name “attaching region”
thinking to the fact that P is attached to M \ P along it.
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(2) As represented in Figure 20, a patch (P,A) is best thought as a manifold with
corners. When we speak about P as a manifold-with-boundary, we again use
implicitly the fact, recalled at the beginning of Section 4, that the corners may be
smoothed.

Now we are ready to give the main definition of this section, that of an operation of
summing of two patched manifolds with identified patches:

Definition 7.4. Let M1 and M2 be two compact manifolds-with-boundary of the same
dimension. Assume that a manifold P is a patch of both M1 and M2, with the corre-
sponding attaching regions A1 and A2, such that A1 ∩A2 = ∅. Then we say that the two
patched manifolds (M1, P ) and (M2, P ) are summable. The (abstract) sum of M1

and M2 along P , denoted by:

M1

P
⊎

M2,

is the compact manifold-with-boundary obtained from the disjoint union M1

⊔

M2 by
gluing the points of both copies of P through the identity map. Its associated patch is

the canonical embedding P →֒M1

P
⊎

M2, obtained by identifying the two given patches

with attaching region A1 ∪ A2 (see Figure 21).

Note that Definition 7.4 respects our convention explained in Remark 4.1. It may be
immediately extended to the case where the patches are distinct, and are identified by a
given diffeomorphism, such that after the identification the attaching regions are disjoint.

Remark 7.5. (1) The attaching region of P →֒ M1

P
⊎

M2 is the union of the attach-

ing regions of P →֒M1 and P →֒ M2.

(2) One may also present the construction of M1

P
⊎

M2 in the following way (see

Figure 22): glue M1 \ P to M2 by the canonical identification of A1 →֒ ∂(M1 \ P )
and A1 →֒ ∂M2. One has this last inclusion because the hypothesis A1 ∩ A2 = ∅
implies that A1 ⊂ B2 ⊂ ∂M2, where B2 denotes the non-attaching region of

(P,A2). This second description shows that, indeed, the sum M1

P
⊎

M2 has a

structure of manifold-with-boundary. One has of course a symmetric description
obtained by permuting the indices 1 and 2.

(3) If M1

P
⊎

M2 is viewed as described in the previous remark, one can see that a

diffeomorphic manifold is obtained by allowing isotopies of A1 inside the non-
attaching region B2 := ∂P \ A2. In other words, it is sufficient to require only
that the interiors of A1 and A2 are disjoint. Note that, if A1 ∩ A2 6= ∅, then

strictly speaking, P is not a patch inside M1

P
⊎

M2. Nevertheless, in this case
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M1

M2

A1

A1

P
P

P

A2 A2

P
⊎

=

Figure 21. The abstract sum M1

P
⊎

M2 of M1 and M2 along P

one still gets a canonical realization of P as a patch, up to isotopy, in M1

P
⊎

M2,

by isotoping A1 inside itself so that the hypothesis A1 ∩ A2 = ∅ is achieved.
As explained in Section 4, the operations of gluing done here are defined up to
smoothing of the corners.

(4) When the two patches used in the summing are the complementary patches (Dn×
Dn, Sn−1×Dn) and (Dn×Dn,Dn×Sn−1), one gets the classical notion of plumbing
recalled in Definition 2.1. This is an example of a situation discussed in Remark
7.5 (3), in which only the interiors of the attaching regions are disjoint.
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A1

A2

A1

A2

P

M2

M1 \ P

Figure 22. An alternative description of the abstract sum M1

P
⊎

M2

Remark 7.5 (3) shows that one may define the abstract sum:

P
⊎

i∈I

Mi

whenever P appears as a patch of all the manifolds in a finite collection (Mi)i∈I of
manifolds-with-boundary with pairwise disjoint interiors of attaching regions.

This sum is commutative and associative (up to unique isomorphisms), which motivates
the absence of brackets in the notation. It is again endowed with a canonical patch

P →֒
P
⊎

i∈I

Mi whenever the attaching regions themselves are pairwise disjoint. As explained

in Remark 7.5 (3), if only the interiors of the initial patches are assumed to be disjoint,
then there is still such a patch, but only well-defined up to isotopy.

We pass now to the definition of the embedded sum. Let us explain first which are the
objects which may be summed in this way.

Definition 7.6. Let W be a compact manifold-with-boundary and P →֒M be a patched
manifold. Assume that M →֒ int(W ) is an embedding of M as a hypersurface of int(W ).
We say that the triple (W,M,P ), also denoted P →֒ M →֒ W , is a patch-cooriented
triple if:

• P is coorientable in W ;
• a coorientation of P in W is chosen.
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In the previous definition, M is not necessarily a Seifert hypersurface of W (see Defi-
nition 6.1). Indeed, we only assume that a coorientation was chosen along P . It is even
possible that M is not coorientable inside W . To illustrate this, we depict in Figure 23 a
cooriented quadrilateral patch P of a Möbius band M →֒ W := S3.

M

P

Figure 23. Cooriented quadrilateral patch P in a Möbius band M

Recall that the notion of positive side for a cooriented hypersurface was explained in
Definition 4.7. Let I+ and I− denote oriented compact intervals.

Definition 7.7. Let (W,M,P ) be a patch-cooriented triple. A positive thick patch of
(W,M,P ) is a choice of positive side I+ × P →֒ W of P →֒W intersecting M only along
P . If for example I+ = [0, 1], then this means that {0} × P maps to P in M , and the
positive tangents to I+ point in the direction of co-orientation. Analogously, a negative
thick patch of (W,M,P ) is a choice of negative side I− × P →֒ W of P →֒ W , also
intersecting M only along P .

We may now describe a generalization of Stallings’ (embedded) plumbing operation
recalled in Section 2 (see the quotation containing equality (2.1)) and of Lines’ higher
dimensional plumbing operation (see Definition 2.5):

Definition 7.8. Let (W1,M1, P ) and (W2,M2, P ) be two patch-cooriented triples with
identified patches, such that (M1, P ) and (M2, P ) are two summable patched manifolds
(recall Definition 7.4). Then we say that the two triples are summable and their (em-
bedded) sum, denoted by:

(W1,M1)
P
⊎

(W2,M2),

is the compact manifold-with-boundary obtained by the following process (see Figure 24):

• choose a positive thick patch I+ × P →֒ W1 of (W1,M1, P ) and a negative thick
patch I− × P →֒W2 of (W2,M2, P );

• consider the complements of their interiors W ′
1 := W1 \ int(I+ × P ) and W ′

2 :=
W2 \ int(I− × P );
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• glue W ′
1 to W ′

2 by identifying ∂(I+ × P ) →֒ W ′
1 to ∂(I− × P ) →֒ W ′

2 through
the restriction of the map σ × idP : I+ × P → I− × P . Here σ : I+ → I−

denotes any diffeomorphism which reverses the orientations (that is, such that
σ(∂±I

+) = ∂∓I
−).

It follows that:
(

(W1,M1)

P
⊎

(W2,M2),M1

P
⊎

M2, P
)

is a patch-cooriented triple through the canonical embeddings:

P →֒ M1

P
⊎

M2 →֒ (W1,M1)

P
⊎

(W2,M2)

and the gluing of the coorientations of P in W1 and in W2.

M1

M2
P
⊎

=

positive
thick
patch

negative
thick
patch

Figure 24. Embedded sum (W1,M1)

P
⊎

(W2,M2) of two patch-cooriented triples

Remark 7.9. (1) The manifold (W1,M1)

P
⊎

(W2,M2) has non-empty boundary if

and only if either W1 or W2 has a non-empty boundary.
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(2) The abstract sum M1

P
⊎

M2 is obtained inside (W1,M1)

P
⊎

(W2,M2) as the union

of the images of M1 →֒W ′
1 and of M2 →֒W ′

2.
(3) We choose to take a positive thick patch for the first hypersurface and a negative

one for the second hypersurface in order to respect Stallings’ convention (see the
citation containing formula (2.1)). If we choose the other way around, we get an
alternative definition of the embedded sum of the triples (W1,M1, P ), (W2,M2, P ),

which is diffeomorphic to (W2,M2)

P
⊎

(W1,M1) by a diffeomorphism which fixes

M1

P
⊎

M2 and the coorientation of P . The operation of embedded sum being

in general non-commutative (see Proposition 7.10), this alternative definition is
indeed different from Definition 7.8.

Proposition 7.10. The patch being fixed, the operation of embedded sum of patch-cooriented
triples is associative, but non-commutative in general.

Proof. Let us prove first the associativity of the operation. Consider three summable
patch-cooriented triples (W1,M1, P ), (W2,M2, P ), (W3,M3, P ), that is, assume that the
attaching regions A1, A2, A3 are pairwise disjoint. We want to prove that the two patch-
cooriented triples:

(
(

(W1,M1)
P
⊎

(W2,M2)
)

P
⊎

(W3,M3),M1

P
⊎

M2

P
⊎

M3, P ),

( (W1,M1)

P
⊎

(

(W2,M2)

P
⊎

(W3,M3)
)

,M1

P
⊎

M2

P
⊎

M3, P )

are isomorphic. But this is an immediate consequence of the fact (see Definition 7.8) that
both may be obtained from the disjoint union W1 ⊔W2 ⊔W3 by removing:

• the interior of a positive thick patch of (W1,M1, P );
• the interiors of a positive and of a negative thick patch of (W2,M2, P ), which
intersect only along P ;

• the interior of a negative thick patch of (W3,M3, P );

and executing then the same gluings.

Let us show now that the operation is non-commutative in general. Consider the
particular case where the triples to be summed are bands in 3-spheres, as in Figure 24,
that is,M1 andM2 are either annuli or Möbius bands. Moreover, assume that the patches
are disks disposed as in that figure, that is, such that one may choose core circles K1, K2

of the two bands such that they intersect transversally once inside P .

Denote by J1 the arc ofK1 intercepted by P . IsotopeK1 inside both (S3,M1)

P
⊎

(S3,M2)

and (S3,M2)

P
⊎

(S3,M1) by pushing the arc J1 a little outside P towards the positive side
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of P , and keeping its complement in K1 fixed. Denote by K+
1 the new circle, contained

either in (S3,M1)
P
⊎

(S3,M2) or in (S3,M2)
P
⊎

(S3,M1). Look then at the linking number

(modulo 2) lk(K+
1 , K2). It is equal to 1 in the first case and to 0 in the second case.

This shows that there is no isomorphism from (S3,M1)

P
⊎

(S3,M2) to

(S3,M2)

P
⊎

(S3,M1) which is fixed on M1

P
⊎

M2 and respects the coorientation of P .

This is enough in order to deduce that the operation of embedded summing is in general
non-commutative. �

In the next section we will consider carefully the special situation in which the hyper-
surfaces Mi →֒ Wi are globally cooriented:

Definition 7.11. Let (W1,M1, P ) and (W2,M2, P ) be two patch-cooriented triples with
identified patches. They are called summable patched Seifert hypersurfaces if both
M1 →֒ W1 and M2 →֒ W2 are Seifert hypersurfaces whose coorientations extend those of
the patches.

8. The sum of stiffened cylindrical cobordisms

In Section 7 we defined an operation of embedded sum for (summable) patch-cooriented
triples without assuming that the hypersurfaces endowed with the (identified) patches are
themselves cooriented or even coorientable. In this section we will assume this supple-
mentary condition and we give an alternative definition of the (embedded) sum based on
the equivalence of Seifert hypersurfaces and cylindrical cobordisms stated in Proposition
6.12. In the next section we will show that this alternative definition gives the same result
as Definition 7.8. This alternative definition will make the proof of a generalization of
Stallings’ Theorem 2.2 very easy (see Theorem 9.3).

In the following definition we enrich the structure of cylindrical cobordism of Definition
5.5:

Definition 8.1. A stiffened cylindrical cobordism (see Figure 25) is a cylindrical
cobordism W :M−

Z=⇒M+ and a neighborhood V (the stiffening) of M−
⊔

M+ in W ,
endowed with a diffeomorphism to a neighborhood of (∂I)×M in I ×M of the form:

(I \ int(C))×M,

which extends the restriction to V of the given diffeomorphism ∂cylW ≃ ∂(I ×M). Here
C →֒ int(I) denotes a compact subsegment, called the core of the stiffened cobordism.
The pull-back to V ∪∂cylW of the first projection I×M → I is called the height function
of the stiffened cylindrical cobordism.
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W

base M

height

core C

I

Figure 25. A stiffened cylindrical cobordism W with directing segment I

Remark 8.2. (1) Given a cylindrical cobordism, stiffenings exist and are unique up
to isotopy.

(2) Our choice of name is motivated by the fact that we see this supplementary struc-
ture as a way to rigidify or stiffen the initial cobordism.

Recall from Lemma 6.10 that one obtains cylindrical cobordisms by splitting any man-
ifold along a Seifert hypersurface. Moreover, the two notions are equivalent, as shown by
Proposition 6.12. From this viewpoint, stiffenings correspond to tubular neighborhoods
of the Seifert hypersurface:

Lemma 8.3. Let M →֒ W be a Seifert hypersurface. Consider a collar neighborhood
[−θ, θ]×M of the strict transformM →֒ Π∂MW ofM (see Definition 6.5), which intersects
the boundary S1×∂M →֒ Π∂MW along [−θ, θ]×∂M . Here θ ∈ (0, π), therefore the segment
[−θ, θ] is seen as an arc of the circle S1. Then its image inside the splitting ΣM (W ) is
a stiffening of this cylindrical cobordism, with directing segment the splitting of S1 at the
point of argument 0 and core segment [θ, 2π − θ].

A straightforward proof of this lemma easily follows by inspecting Figures 18 and 19.
In the following definition we extend to stiffened cylindrical cobordisms the notion of

sum introduced for manifolds (see Definition 7.4) and for hypersurfaces (see Definition
7.8):

Definition 8.4. Consider two summable patched manifolds (Mi, P )i=1,2, with attaching
regions (Ai)i=1,2. Let (Wi : M

−
i Z=⇒ M+

i , Vi)i=1,2 be two stiffened cylindrical cobordisms
with identified directing segment I. They are called summable if their core intervals
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(Ci)i=1,2 are disjoint and if C1 is situated after C2 with respect to the orientation of I. In
this case, their sum, denoted by:

(W1, V1)
P
⊎

(W2, V2)

is obtained by performing the following operations using the stiffenings (see Figures 26
and 27):

• Over, I \ (int(C1) ∪ int(C2)), sum fiberwise (M1, P ) to (M2, P ) (that is, one
has to multiply the gluing map used to do this abstract sum by {t}, for any
t ∈ I \ (int(C1) ∪ int(C2))).

• Over C1, glue C1 ×M2 \ P to W1 along C1 × ∂M1 fiberwise (for each t ∈ C1) by

the canonical identification of A2 →֒ ∂(M2 \ P ) and A2 →֒ ∂M1.

• Over C2, glue C2 ×M1 \ P to W2 along C2 × ∂M2 fiberwise (for each t ∈ C2) by

the canonical identification of A1 →֒ ∂(M1 \ P ) and A1 →֒ ∂M2.

Remark 8.5. (1) Let hi denote the height function of the stiffened cylindrical cobor-
dism Wi, for i = 1, 2. In Definition 8.4, we use the facts that for sufficiently small
(and also sufficiently large) t ∈ I, the fiber h−1

i (t) is canonically identified with Mi

and that this identification extends to an identification of h−1
i (t) ∩ ∂Wi with ∂Mi

for all t ∈ I, by the definition of a stiffened cylindrical cobordism. All the gluings
above fit together by Remark 7.5 (2).

(2) The sum W1

P
⊎

W2 gets a natural structure of stiffened cylindrical cobordism with

basis M1

P
⊎

M2, directing segment I and core segment the convex hull inside I

of the cores C1 and C2. The new stiffening is the image inside W1

P
⊎

W2 of the

union of the initial stiffenings, and the two initial height functions glue into the
new height function.

Next, we extend the summing operation to cylindrical cobordisms whose directing seg-
ments are not identified, and which do not have fixed stiffenings. One has to make the
following choices:

• Choose stiffenings. This choice is unique up to isotopy (see Remark 8.2 (1)).
• Identify their directing segments by an orientation-preserving diffeomorphism.

There are two ways to make such an identification, up to isotopy, in order to guarantee
the disjointness of the cores, which is an essential hypothesis in Definition 8.4. Therefore,
one gets an operation which is a priori non-commutative. The fact that it is indeed
in general non-commutative results from the combination of propositions 7.10 and 9.1.
More precisely, we use the fact, resulting from the proof of Proposition 7.10 using any
kinds of bands, that the embedded summing operation is non-commutative even when
the hypersurfaces are globally cooriented.
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P

W1
base M1

base M2

W2

height

I

core C2 core C1

P

Figure 26. Two summable stiffened cylindrical cobordisms

Definition 8.6. Consider two summable patched manifolds (Mi, P )i=1,2, with attaching
regions (Ai)i=1,2. Let (Wi :M

−
i Z=⇒M+

i )i=1,2 be two cylindrical cobordisms with directing
segments (Ii)i=1,2. Choose stiffenings for both of them. Let ϕ : I1 → I2 be an orientation-
preserving diffeomorphism which places the core segment of I1 after the core segment of
I2. The sum of W1 and W2, denoted by:

W1

P
⊎

W2

is obtained by applying Definition 8.4 after identifying the directing segments I1 and I2
using the diffeomorphism ϕ.
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P

P

C1 C2 M1M2W1W2

Figure 27. The stiffened cylindrical cobordism Wi (for i = 1, 2) is repre-
sented by the solid rectangular box where the solid green ball in the interior

is removed. The sum (W1, V1)

P
⊎

(W2, V2) will look like Figure 11, except

that two disjoint solid balls have to be removed from the interior (colour
figure online).

Remark 8.7. The diffeomorphism ϕ which places the core segment of I1 after the core
segment of I2 being well-defined up to isotopy, as well as the stiffenings, we deduce that
the sum is well-defined up to diffeomorphisms fixed on the cylindrical boundary of the

cylindrical cobordism W1

P
⊎

W2 (see Remark 8.5 (2)).

9. Embedded summing is a natural geometric operation

In this section we prove an extension of Stallings’ Theorem 2.2 to arbitrary dimensions.
Namely, we prove that the embedded sum of two pages of open books is again a page of
an open book (see Theorem 9.3). We extend this result to pages of what we call Morse
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open books (see Theorem 9.7). A direct consequence of this theorem is a generalization
to arbitrary dimensions of a theorem proved in dimension 3 by Goda. Both theorems
illustrate Gabai’s credo that “Murasugi sum is a natural geometric operation”. Their
proofs are parallel and are based on the fact that, in the case of Seifert hypersurfaces,
the embedded sum as described in Definition 7.8 may be equivalently described using the
operation of sum of cylindrical cobordisms described in Definition 8.6 (see Proposition
9.1). Technically speaking, this is the most difficult result of the paper.

The following proposition shows that in the case in which one works with summable
patched Seifert hypersurfaces (see Definition 7.11), the previous notion of sum of cylindri-
cal cobordisms gives the same result as the embedded sum of two patch-cooriented triples
with identified patches:

Proposition 9.1. Let (W1,M1, P ) and (W2,M2, P ) be two summable patched Seifert
hypersurfaces. Then their embedded sum (see Definition 7.8):

M1

P
⊎

M2 →֒ (W1,M1)
P
⊎

(W2,M2)

is diffeomorphic, up to isotopy, to the Seifert hypersurface associated to the cylindrical
cobordism (see definitions 6.11 and 8.4):

ΣM1
(W1)

P
⊎

ΣM2
(W2).

Proof. We start from the cylindrical cobordisms ΣM1
(W1) and ΣM2

(W2), to which we
apply Definition 8.6. We want to show that the associated Seifert hypersurface is dif-
feomorphic to that obtained using Definition 7.8. In order to achieve this, we will show

that the circle-collapsed mapping torus of ΣM1
(W1)

P
⊎

ΣM2
(W2) may be obtained from

the circle-collapsed mapping tori of the factors ΣMi
(Wi) by removing codimension 0 sub-

manifolds which are diffeomorphic to [0, 1]× P , and identifying the resulting boundaries
appropriately.

The difficulty is that those submanifolds do not appear directly with the desired product
structures, but as the unions of several codimension 0 submanifolds. It turns out that all
of them are endowed with product structures and those structures are related in a way
which allows us to achieve our aim.

Rather than working with the circle-collapsed mapping tori Tc(ΣMi
(Wi)), we will use

instead the manifolds obtained by filling the boundaries of the mapping tori T (ΣMi
(Wi))

by the products D2 × ∂Mi. As stated in Lemma 6.13, those are simply different models
of the same Seifert hypersurfaces. Therefore, for i = 1, 2, we denote:

Φ∂Mi
(Wi) := Π∂Mi

(Wi) ∪S1×∂Mi
(D2 × ∂Mi),
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where Π∂Mi
(Wi) is the result of piercing Wi along ∂Mi (see Definition 6.5) and the two

manifolds-with-boundary on the right-hand-side are glued through the canonical identifi-
cations of their boundaries with S1×∂Mi. Similarly, we will fill by a product the boundary

of ΣM1
(W1)

P
⊎

ΣM2
(W2).

We choose stiffenings Vi of ΣMi
(Wi) and identifications of their directing segments that

allow us to perform the sum as in Definition 8.4.
We may now apply the gluing operations described in the Definition 8.4 of the sum

of stiffened cylindrical cobordisms with identified directing segments. Recall that over
I \ (int(C1) ∪ int(C2)) those gluings may be described in several ways. The point here
is to choose the description which is best adapted to our aim.

Denote α± := ∂±I and choose a point β ∈ I which lies strictly between the two cores
C1 and C2. Denote (see Figure 28):

I1 := [α−, β], I2 := [β, α+].

α− β α+

C2 C1

I1 I2

I

Figure 28. The interval I

We will do the gluings of Definition 8.4 by removing P fiberwise from ΣMi
(Wi) over Ii,

for each i ∈ {1, 2}. But we interpret the gluing operations directly on the mapping torus
of ΣMi

(Wi). A simple schematic representation of the operation of summing (M1, P ) and
(M2, P ) is depicted abstractly in Figure 29, in order to help the reader following easily
Figure 30. We denote by Ei the closure in ∂Mi of ∂Mi \Bi, where Bi is the non-attaching
region of (Mi, P ) (see Definition 7.1), and by K the closure of ∂P \ (A1 ∪ A2).

The steps of the construction, interpreted using our filled models Φ∂Mi
(Wi) of (Wi,Mi),

are:

• For each i ∈ {1, 2}, remove (Ii × P ) ∪ (D2 × ∂Mi) from Φ∂Mi
(Wi), then take the

closure.
• Glue through the canonical identification the portions of the resulting boundaries
which are isomorphic to (see Figure 30):

(I1 × A1) ∪ (I2 ×A2) ∪ (α± × P ) ∪ (β × P ).
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P P P

A1 A1 A1

A2A2 A2

P
⊎

=

K K K K

E1

E2 E2

E1

K K

M1 M2 M1

P
⊎

M2

Figure 29. The schematic representation of Ei and K

• Fill then the resulting boundary by:

D
2 × ∂(M1

P
⊎

M2) = (D2 × E1) ∪ (D2 ×K) ∪ (D2 ×E2).

I1 ×A1

β × P

I2 ×A2

α+ × P

I1 ×A1

β × P

I2 ×A2

α− × P

Figure 30. This Figure is to be compared with Figure 11

Note that the pieces D2 × Ei →֒ D2 × ∂Mi are first removed, then inserted back into
the same position (that is, we glue exactly as before to the adjacent pieces). Therefore,
we obtain the same final result without touching them.
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Instead, the piece D2 ×K is removed twice and put back only once. One may obtain
the same result by cutting the disc D2 into two half-discs D1 and D2, as represented in
Figure 31, and only removing two conveniently chosen complementary half-discs. Namely,
we will remove Di ×K from Φ∂Mi

(Wi).

β α

I1

D2

I2

D1

Figure 31. Splitting the unit disk

The reinterpreted construction is:

• Remove (I1 × P ) ∪ (D2 × A2) ∪ (D1 ×K) from Φ∂M1
(W1), then take the closure.

Symmetrically, remove (I2×P )∪ (D2×A1)∪ (D2×K) from Φ∂M2
(W2), then take

the closure.
• Glue the resulting boundaries through the canonical identification.

Notice now that (I1 ×P )∪ (D2 ×A2)∪ (D1×K) is isomorphic to I1 ×P , and similarly
(I2 × P ) ∪ (D2 × A1) ∪ (D2 ×K) is isomorphic to I2 × P . Indeed, in each case we may
apply Lemma 9.2 twice to end up with a description as in Definition 7.8. �

We leave the proof of the following intuitively clear lemma to the reader:

Lemma 9.2. Let Q be a manifold-with-boundary and B →֒ ∂Q be a full-dimensional
submanifold-with-boundary of the boundary. Then the result of gluing [0, 1] × B to Q
through the canonical identification of 0 × B with B is isomorphic to Q through an iso-
morphism which is the identity outside an arbitrarily small neighborhood of B in Q.

Here is our generalization of Stallings’ Theorem 2.2 (recall that the notion of open book
was explained in Definition 6.14):

Theorem 9.3. Let (Wi,Mi, P )i=1,2 be two summable patched Seifert hypersurfaces which
are pages of open books on the closed manifolds Wi. Then the Seifert hypersurface asso-

ciated to the sum (W1,M1)

P
⊎

(W2,M2) is again a page of an open book. Moreover, the

geometric monodromy of the resulting open book is the composition φ1 ◦ φ2 of the mon-

odromies of the initial open books. Here φi : Mi → Mi is extended to M1

P
⊎

M2 by the

identity on (M1

P
⊎

M2) \Mi.
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Proof. Consider the splittings ΣM1
(W1) and ΣM2

(W2) of W1,W2 along the two pages. Let
(∂Mi, θi) be an open book on Wi such that Mi = θ−1

i (0) (that is, such that Mi is the
page of argument 0). The map θi : Wi \ ∂Mi → S1 lifts to an everywhere defined map

θ̃i : Π∂Mi
Wi → S1 which is moreover a locally trivial fiber bundle projection. Therefore,

it lifts to another fiber bundle projection:

Σ(θ̃i) : ΣMi
Wi → [0, 2π]

where the interval [0, 2π] is obtained by splitting the circle S1 at the point of argument 0.

One may choose as stiffening of ΣMi
Wi a preimage Σ(θ̃i)

−1([0, 2π] \ int(Ci)), where
Ci ⊂ (0, 2π) is an arbitrary compact segment with non-empty interior. Moreover, in
order to get the hypothesis of Definition 8.4, we assume that C2 and C1 are disjoint and
situated in this order on the segment [0, 2π] endowed with its usual orientation. One may

take as height functions the projections Σ(θ̃i) themselves.
Definition 8.4 shows that the two height functions glue into a new globally defined

height function:

h : ΣM1
(W1)

P
⊎

ΣM2
(W2) → [0, 2π]

which is again a fiber bundle projection. Its generic fiber is isomorphic to M1

P
⊎

M2.

Therefore, the associated Seifert hypersurface is again an open book, with page isomorphic

to M1

P
⊎

M2.

But, by Proposition 9.1, this Seifert hypersurface is isomorphic to:

M1

P
⊎

M2 →֒ (W1,M1)

P
⊎

(W2,M2).

The proof of the last statement in the theorem is similar to the proof in the 3-dimensional
case (see Section 3). �

Up to diffeomorphisms, all the choices of pages in an open book are equivalent. There-
fore, the previous theorem allows to define a notion of sum (generalized Murasugi sum)
for open books:

Definition 9.4. Assume that (Ki, θi)i=1,2 are open book structures on the closed man-
ifolds Wi of the same dimension. Let Mi be pages of them, and P a common patch of
M1 and M2. Assume that (M1, P ) and (M2, P ) are summable. The sum of the two open

books is the open book on (W1,M1)
P
⊎

(W2,M2) constructed in the previous proof.

The previous theorem may be extended to structures which are analogous to open
books, in the sense that they have bindings and are similar to open books near them, but
which are allowed to have Morse singularities away from the bindings:
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Definition 9.5. A Morse open book in a closed manifold W is a pair (K, θ) consisting
of:

(1) a codimension 2 submanifold K ⊂ W , called the binding, with a trivialized
normal bundle;

(2) a map θ : W \ K → S1 which, in a tubular neighborhood D2 × K of K is the
normal angular coordinate, and which has only Morse critical points. The closure
of any fiber θ−1(θ0) is a page of the Morse open book. A page is called regular
if θ0 is a regular value of θ and singular otherwise.

Remark 9.6. (1) The previous definition extends to arbitrary dimensions the no-
tion of “regular Morse map” introduced in dimension 3 by Weber, Pajitnov and
Rudolph in [43].

(2) The regular pages of Morse open books are Seifert hypersurfaces. Conversely,
any Seifert hypersurface is a regular page of a Morse open book. Therefore, the
problem of defining and finding the minimal complexity of such a Morse open book
arises naturally, which motivates the rest of this section.

(3) All the pages of a classical open book are diffeomorphic, but this is certainly not
true for a Morse open book which has a singular page. Even if one considers only
the regular pages of a Morse open book, we may be sure that they are diffeomorphic
only if they are preimages of points which belong to the same connected component
of the complement of the critical image of θ inside S1.

One has the following extension to this setting of Theorem 9.3:

Theorem 9.7. Let (Wi,Mi, P )i=1,2 be two summable patched Seifert hypersurfaces which
are regular pages of Morse open books on the closed manifolds Wi. Then the Seifert

hypersurface associated to the sum (W1,M1)
P
⊎

(W2,M2) is again a regular page of a

Morse open book, whose multigerm of singularities is isomorphic to the disjoint union of
the multigerms of singularities of the initial Morse open books.

Proof. One may reason along the same lines as in the proof of Theorem 9.3. The difference
is that one has to choose now the core intervals Ci such that int(Ci) contains the critical

values of the maps Σ(θ̃i). One does not touch the neighborhoods of the critical points
of the two Morse maps, which ensures that the new set of singularities are the disjoint
unions of the two initial sets of singularities. �

Inspired by the Morse-Novikov number attached to a Seifert surface in [43, Section 6],
we introduce the following invariants in order to measure how far a Seifert hypersurface
is to being a page of an open book:

Definition 9.8. Let M →֒ W be a Seifert hypersurface in the closed manifold W of
dimension w ≥ 1. For each k ∈ {1, ..., w − 1}, denote by mk(W,M) be the minimal
number of critical points of index k of a map θ : W \ ∂M → S1 such that (∂M, θ) is
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a Morse open book, and M is a regular page. We call it the k-th Morse number of
(W,M).

As an immediate consequence of Theorem 9.7, we have:

Proposition 9.9. Let (Wi,Mi, P )i=1,2 be two summable patched Seifert hypersurfaces in
the closed manifolds (Wi)i=1,2 of the same dimension w ≥ 1. Then:

mk((W1,M1)

P
⊎

(W2,M2)) ≤ mk(W1,M1) +mk(W2,M2)

for each k ∈ {1, ..., w − 1}.
As explained in the introduction of [21], this theorem was proved in dimension 3 by

Goda [18], under a different but equivalent formulation.

10. Questions related to contact topology and singularity theory

We conclude this paper with a list of questions. Almost all of them concern the sum of
open books and its relations with singularity theory and contact topology. That is why
we recall briefly the basics of those relations, developing part of the information given in
Remark 6.15 (4).

Consider a germ of polynomial function f : (Cn, 0) → (C, 0) which has an isolated
singularity at the origin. Let S2n−1(r) →֒ Cn be the Euclidean sphere of radius r > 0
centered at the origin. The argument of f is well-defined outside the 0-level of f . Look
at the restrictions of both objects to the sphere S2n−1(r):

K := f−1(0) ∩ S
2n−1(r), θ : S2n−1(r) \ K → S

1.

Milnor proved in [31] that (K, θ) is an open book on S
2n−1(r), whenever r is sufficiently

small. This result was extended by Hamm [20] to holomorphic functions f with isolated
singularity, defined on any germ of complex analytic space (X, 0) which is non-singular in
the complement of the base point 0. In this case, one replaces S2n−1(r) by the intersection
M(r) of X with a sphere of sufficiently small radius r, centered at 0, once (X, 0) was
embedded in some affine space (CN , 0). For r > 0 small enough, one gets in this way
open books (K, θ) onM(r). In [3], such open books originating in singularity theory were
called Milnor open books.

In 2002 Giroux [15] launched a program of study of contact topology through open
books. Namely, he described a particularly adapted mutual position of a contact structure
and an open book on any closed 3-dimensional manifold, saying that, in that case, the
open book supports the contact structure. In fact, in 1975 Thurston and Winkelnkemper
[41] proved that any open book supports a contact structure. Conversely, Giroux showed
that any contact structure is supported by some open book. Moreover, he proved that
two open books which support the same contact structure are stably equivalent, that is,
one may arrive at the same open book by executing finite sequences of Murasugi sums
with positive Hopf bands, starting from each one of the initial open books.
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In the same paper, Giroux sketched an extension of this theory to higher dimensions. In
particular, he defined higher dimensional analogs of supporting open books. In this case, if
one wants to construct a contact structure starting from an open book, one has to enrich it
with symplectic-topological structures. Namely, the pages are to be Weinstein manifolds
(see the recent monograph [4] for a detailed exploration of this notion), and there should
exist a geometric monodromy respecting in some sense the Weinstein structure.

In 2006, the paper [3] of Caubel, Némethi and the second author related the two
instances where open books appear naturally: singularity theory and contact topology.
Note that there are canonical contact structures on the manifolds M(r), as they are
level sets of a strictly plurisubharmonic function (the square of the distance to 0) on the
complex manifold (X \0). In [3], it was proved that the Milnor open book of any function
f : (X, 0) → (C, 0) with an isolated singularity at 0 supports the canonical contact
structure, whenever the radius r is sufficiently small. This generalized an analogous
result proved before by Giroux [16], for the case where X is smooth and where instead
of round spheres, deformed ones are chosen adapted to a given holomorphic germ f with
isolated singularity.

Here are our questions:

(1) An open book is considered to be trivial if its page is a smooth ball and its
geometric monodromy is the identity. We call an open book indecomposable if it
cannot be written in a non-trivial way as a sum of open books (see Definition 9.4).
Find sufficient criteria of indecomposability.

(2) Find sufficient criteria on germs of holomorphic functions f : (X, 0) → (C, 0) with
isolated singularity to define indecomposable open books.

(3) Find natural situations leading to triples (Xi, fi)1≤1≤3 of isolated singularities and
holomorphic functions with isolated singularities on them, such that the Milnor
open book of (X3, f3) is a sum of the Milnor open books of (X1, f1) and (X2, f2).

(4) Consider an open book and a contact structure supported by this open book on
a closed manifold. Describe an adapted position of a patch inside a page, relative
to the contact structure, allowing to extend the operation of sum of open books
to a sum of open books which support contact structures. Also, prove an analog
of the following result using appropriate patches in higher dimensions:

Theorem 10.1 (Torisu [42]). Let ξi be the contact structure on a 3-manifold
Mi supported by the open book (Σi, φi), for i = 1, 2. Then the connected sum
(M, ξ) = (M1, ξ1)#(M2, ξ2) is supported by the open book (Σ, φ), where Σ is the
Murasugi sum of Σ1 and Σ2 and φ = φ1 ◦ φ2.

Let us point out that Giroux proved a particular instance of Theorem 10.1 for
stabilizations of open books in higher dimensions.
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(5) In analogy with Goda’s results of [18], find lower bounds for the following difference
of Morse numbers (see Definition 9.8):

mk((W1,M1)

P
⊎

(W2,M2))− (mk(W1,M1) +mk(W2,M2))

whenever (Wi,Mi) are Seifert hypersurfaces in closed manifolds of the same di-
mension.
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