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Random self-similar series over a rotation

Julien Brémont

Université Paris-Est Créteil, janvier 2024

Abstract

We study the law of random self-similar series defined above an irrational rotation on

the Circle. This provides a natural class of continuous singular non-Rajchman measures.

1 Introduction

Dynamical setting. Consider a probability space (Ω,F , P ), with a measurable transformation
T : Ω → Ω, preserving P . The dynamical system (Ω,F , P, T ) is supposed to be ergodic.

Given real random variables b(ω) and r(ω) > 0 on (Ω,F), define for ω ∈ Ω the real affine map
ϕω(y) = b(ω) + r(ω)y, y ∈ R. We assume that {ϕω, ω ∈ Ω} = S is countable (with ∀ϕ ∈ S,
P (ϕω = ϕ) > 0), b ∈ L1, log r ∈ L1 and

∫

Ω
log r dP < 0. Setting rn(ω) = r(ω) · · · r(T n−1ω),

with r0(ω) = 1, introduce the a.-e. defined random variable :

X(ω) =
∑

n≥0

rn(ω)b(T
nω).

The law, or occupation measure, of X on (R,B(R)) is denoted by PX , i.e. PX(A) = P (X−1(A)),
A ∈ B(R). The “self-similar” relation X(ω) = ϕω(X(Tω)), equivalently rewritten in the
“coboundary” form b(ω) = X(ω) − r(ω)X(Tω), will be central. It differs from the usual re-
lations of self-similarity for measures, which require some form of independence, not supposed
here. Note that if b(ω) = α(ω)− r(ω)α(Tω), for some random α, then necessarily α = X , a.-e..

Such a setting includes the traditional self-similar measures (cf Varjú [5] for a survey), corre-
sponding to the independent case, i.e. Ω a product space with the left shift T , P a product
measure and b, r functions of the first coordinate. Bernoulli convolutions are a famous example,
cf the review of Solomyak [4]. The present ergodic extension can be motivated by the case when
all affine maps are strict contractions. There is then a self-similar set associated with S and this
broader class of measures, supported by S, may help studying its properties.

A fundamental question concerns the type of PX with respect to Lebesgue measure Leb and,
first of all, the purity of the Radon-Nikodym decomposition. The law of pure types of Jessen
and Wintner may be applied to some extent (cf Jessen and Wintner [2], Theorem 35, or Elliott
[1], Lemma 1.22), but it seems clearer to give a direct proof in the present situation.

Lemma 1.1. The law PX is of pure type.

AMS 2020 subject classifications : 37E10, 42A38.
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Proof of the lemma :

Let S(n) = S ◦ · · · ◦ S, n ≥ 0, and C = {ϕ ∈ ∪n≥1S
(n), strict contraction}, countable. Each

ϕ ∈ C having a unique fixed point fix(ϕ), the set P = {fix(ϕ), ϕ ∈ C} is countable.

- If there exists a ∈ R, A = {X = a}, with P (A) > 0, then ω a.-e. on A, there exists n ≥ 1 such
that T nω ∈ A and ϕω · · ·ϕTn−1ω ∈ C. As X(ω) = X(T nω) = a, we get a = ϕω · · ·ϕTn−1ω(a), so
a ∈ P . Now, ω a.-e. on Ω, there exists n ≥ 0 such that T nω ∈ A, thus X(ω) ∈ {ϕ(c), c ∈ P , ϕ ∈
∪n≥0S

(n)} =: Q, a countable set. Therefore PX(Q) = 1 and PX is purely atomic.

- If PX is continuous and if there exists A ∈ B(R) with Leb(A) = 0 and PX(A) > 0, introduce
B = ∪ϕ∈∪n≥0S(n)ϕ−1(A). Clearly Leb(B) = 0. Since X(ω) ∈ B implies X(Tω) = ϕ−1

ω (X(ω)) ∈
B, the set X−1(B) is T -invariant. As P (X−1(B)) ≥ P (X−1(A)) > 0, ergodicity implies that
PX(B) = P (X−1(B)) = 1. Therefore PX ⊥ Leb. �

Pure atomicity. Let us discuss the continuity of PX . Clearly, PX = δc if and only if ∀ϕ ∈ S,
ϕ(c) = c. In the independent case, the purely atomic situation reduces to PX a Dirac mass, as
follows from the relation (obtained when conditioning with respect to the first step) :

PX(A) =
∑

ϕ∈S

P (ϕω = ϕ)PX(ϕ−1(A)), A ∈ B(R).

Indeed, if there exists an atom, then the latter implies that the non-empty finite set E of points
defining an atom of maximal mass is stable under any ϕ−1. Finiteness of an orbit under iterations
of an affine map forces any c ∈ E to be a fixed point of any ϕ ∈ S.

This is far from true in the general ergodic context. Fixing r and any α ∈ L1 with countable
support, when setting b = α− rα ◦T , we have X = α. As a result, PX can be discrete with even
non-finite support. Moreover, as we shall see later, determining the conditions under which PX

is continuous can be a non-degenerate problem.

Mention here a recipe for building non-trivial examples of discrete laws when r(ω) = λ ∈ (0, 1)
is algebraic. Let for instance λ = 0, 618... be the inverse of the Golden Mean, i.e. λ2 + λ− 1=0.
Taking g ∈ L1 with countable support and b = g + g ◦ T − g ◦ T 2, then b = (g + (1 + λ)g ◦ T )−
λ(g ◦ T + (1 + λ)g ◦ T 2). This means that X(ω) = g(ω) + (1 + λ)g(Tω).

More generally, if
∑p

k=0 αkλ
p−k = 0, p ≥ 1, let b(ω) =

∑p
k=0 αkg(T

kω), where g ∈ L1 has

countable support. Then X(ω) =
∑p−1

n=0 g(T
nω)(

∑n
k=0 αkλ

n−k), as X(ω)− r(ω)X(Tω) = b(ω).

Recall also the link between the existence of atoms and the Fourier transform. We define :

P̂X(t) =

∫

R

e2iπtxdPX(x), t ∈ R.

If PX is continuous, then, by Wiener’s theorem :

1

R

∫ R

0

|µ̂(t)|2dt→ 0, as R → +∞.

A more precise information of local regularity is when PX is a Rajchman measure, meaning that
P̂X(t) → 0, as t → +∞. Equivalently, tX mod 1 →L LebT, as t → +∞. A classical example
of continuous non-Rajchman measures is the uniform measure on the triadic Cantor set. The
present paper furnishes a natural class of such measures.

Content of the article. We study the special case when the dynamics is given by an irrational
rotation on the 1-torus, with functions b and r locally constant on some finite collection of
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intervals. For obvious complexity reasons, PX is singular, even of zero-dimensional support, so
it remains to decide between continuous singularity and pure atomicity. We show that the latter
is equivalent to the simultaneous satisfaction of a finite number of explicit algebraic equations.
Generically, PX appears to be continuous, but also not a Rajchman measure. In the last section,
we discuss another approach of the continuity problem for general systems.

2 The case of the Circle

Let T = R\Z be the 1-torus, with uniform measure LebT and an irrational rotation T of angle
α ∈ (0, 1). We recall classical material about continued fractions; see for example Khinchin’s
book [3]. The angle α can be expanded in infinite continued fraction :

α =
1

a1 +
1

a2 + · · ·

= [0, a1, a2, · · · ],

where the partial quotients (ai)i≥1 are obtained by iterations of the Gauss map, starting from
α. The successive truncations [0, a1, a2, · · · , an] = pn/qn, n ≥ 1, are the convergents of α. The
(pn) and (qn) check the same recursive relation:

pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1, n ≥ 0,

with p0 = 0, p−1 = 1 and q0 = 1, q−1 = 0. Classical inequalities are (cf [3], chap. 1) :

1

2qn+1
≤ 1

qn + qn+1
≤ ‖qnα‖ ≤ 1

qn+1
,

where ‖x‖ is the distance from x to Z. Our purpose is to establish the following result.

Theorem 2.1.

Let T be a rotation of angle α = [0, a1, a2, · · · ] 6∈ Q on T.

Given N ≥ 1 points d0 < d1 < · · · < dN−1 < dN = d0 on T, consider on D = {d0, · · · , dN−1} the

partial order “di → dj iff dj = T pdi for some p ≥ 0”. Partition D = ⊔1≤k≤KDk into maximal

subsets Dk = {d0,k → · · · → dmk,k}, with mk ≥ 0; define pk ≥ 0 by dmk,k = T pkd0,k.

Let b : T → R and r = T → (0, 1) be constant on each interval [di, di+1), 0 ≤ i < N . Define

X(x) =
∑

n≥0 b(T
nx)rn(x), x ∈ T, and denote by PX the image of LebT by X. Then :

1. Supp(PX) has box-counting dimension zero, in particular PX ⊥ Leb.

2. The measure PX is continuous iff X is discontinuous at some d0,k, 1 ≤ k ≤ K. Otherwise

X is constant on the intervals of the partition determined by {T pd0,k, 0 ≤ p ≤ pk, 0 ≤
k ≤ K}, hence Supp(PX) is finite, with at most

∑

1≤k≤K(1 + pk) elements.

3. If an ≥ 10N+20N2 ln 13/(− ln‖r‖∞) infinitely often, then PX is not a Rajchman measure.

If (an) is unbounded, then tnX mod 1 →L 0, along a sequence of integers (tn) → +∞ .

Proof of the theorem :

1) For any n ≥ 1, x 7−→ ∑n−1
k=0 rk(x)b(T

kx) is constant on each interval of the partition deter-
mined by ∪0≤k<nT

−kD, so takes at most nN values. As |∑k≥n rk(x)b(T
kx)| ≤ ‖r‖n∞‖b‖∞/(1−
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‖r‖∞), Supp(PX) can be covered for any ε > 0 by at most −C log ε balls of radius ε, for some
constant C > 0. This gives the result.

2) In the present context of strict contractions, X is right-continuous and admits a left limit
X(x−) at every x ∈ T. Set ∆k = X(d0,k)−X(d−0,k) and K = {1 ≤ k ≤ K, ∆k 6= 0}. Supposing
that K 6= ø, we set ∆ = mink∈K |∆k| > 0. Choose also ε > 0 so that :

min
k∈K

inf
x<d0,k≤y
|y−x|≤ε

|X(x)−X(y)| ≥ ∆/2. (1)

Set ρ±k = rpk+1(d
±
0,k), 1 ≤ k ≤ K, and define ρmax /min = max /min{ρ±k , 1 ≤ k ≤ K}. For the

sequel, fix M > max{p1, · · · , pK} such that :

‖X‖∞‖r‖M−1
∞ <

∆

12N

(

ρmin

ρmax

)3N

. (2)

For 1 ≤ k ≤ K, call (T pd0,k)0≤p≤pk
the chain Ck. Choose γ(M) > 0 such that for any x < y <

x+ γ(M), each interval T k(x, y], k ≥ 0, meets at most one element of D and after covering the
last element of a chain the (necessarily) first element of the next chain is not met until M steps.

Take x 6∈ ∪l≥0T
−lD and 0 < γx < min{γ(M), ε} such that if x < y < x+γx, then T

k(x, y] meets
no dj , for 0 ≤ k ≤ M . If T k(x, y] meets for the first time a chain, it thus has to be at the first
element of the chain. For the moment, fix y like this. The choice of x, y is precised later.

We consider X(x) − X(y). This way, let 0 = t0 < s1 < t1 < s2 < t2 < · · · , where, for i ≥ 0,
the [ti, si+1) are the maximal time intervals of k where T k(x, y] meets no chain. For i ≥ 1, the
(T k(x, y])k∈[si,ti) cover some chain, say Cli , with d0,li ∈ T si(x, y] and dmli

,li ∈ T ti−1(x, y].

Introduce rn(x) = rsn−tn−1(T
tn−1x), n ≥ 1. We define n0 ≥ 1 as the first integer n such that

ln ∈ K. First of all, we can write :

X(x)−X(y) = r1(x)(X(T s1x)−X(T s1y)).

In a recursion, suppose now that for some 1 ≤ n < n0 :

X(x)−X(y) = r1(x) · · · rn(x)
∑

0≤u<n

ρ∗1 · · · ρ∗n−1(X(xnu)−X(xnu+1)), (3)

with points T snx = xn0 ≤ xn1 ≤ · · · ≤ xnn = T sny and ρ∗i = ρ±li . Since T snx < d0,ln ≤ T sny, let
v be the index such that xnv < d0,ln ≤ xnv+1. Adding d0,ln to the (xni )0≤i≤n gives n + 2 points,
written in their natural order as (ynu)0≤u≤n+1. Since n < n0, we split in the following way the
term for u = v in (3) :

X(xnv )−X(xnv+1) = X(xnv )−X(d−0,ln) +X(d0,ln)−X(xnv+1)

= X(ynv )−X(yn,−v+1) +X(ynv+1)−X(ynv+2).

Set ρ∗n = ρ−ln if u ≤ v and ρ∗n = ρ+ln if u ≥ v + 1. For u 6= v :

X(ynu)−X(ynu+1) = ρ∗ln(X(T tn−snynu)−X(T tn−snynu+1))

= ρ∗lnrn+1(x)(X(T sn+1−snynu)−X(T sn+1−snynu+1)).
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Now, in the same way :

X(ynv )−X(yn,−v+1) = ρ−lnrn+1(x)(X(T sn+1−snynv )−X(T sn+1−snyn,−v+1)).

As T sn+1−snynv+1 = T sn+1−tn+1dmln ,ln and sn+1 − tn + 1 ≥ 1, from the continuity of X at

any T kdmln ,ln , k ≥ 1, we get X(T sn+1−snyn,−v+1) = X(T sn+1−snynv+1). We can now finally set
xn+1
u = T sn+1−snynu , 0 ≤ u ≤ n + 1, and we obtain when replacing in (3) that the latter is

satisfied with n replaced by n+ 1. As a result, the formula is true for n = n0 :

X(x)−X(y) = r1(x) · · · rn0(x)





∑

0≤u<n0

ρ∗1 · · · ρ∗n0−1(X(xu)−X(xu+1))



 , (4)

with, simplifying notations, points T sn0x = x0 ≤ x1 ≤ · · · ≤ xn0 = T sn0y and ρ∗i = ρ±li . Again
T sn0x < d0,ln0

≤ T sn0y and let v be the index such that xv < d0,ln0
≤ xv+1.

Now, using (1), by definition, |X(xv)−X(xv+1)| ≥ ∆/2, whereas, as before, for u 6= v :

X(xu)−X(xu+1) = ρ∗ln0
rn0+1(x)(X(T sn0+1−sn0xu)−X(T sn0+1−sn0xu+1)).

Since M verifies rn0+1(x) = rsn0+1−tn0
(T tn0x) ≤ ‖r‖M−1

∞ , when calling A the term between
brackets in (4), we deduce from the previous considerations that :

|A| ≥ ∆

2
(ρmin)

n0−1 − 2‖X‖∞(n0 − 1)(ρmax)
n0rn0+1(x)

≥ (ρmin)
n0

2

[

∆− 4n0‖X‖∞
(

ρmax

ρmin

)n0

‖r‖M−1
∞

]

. (5)

Suppose PX purely atomic. Let x be a Lebesgue density point in some atom (LebT a.-e. point
is such a point), not in the countable set ∪l≥0T

−lD. Choose n large enough so that 3‖qnα‖ < γx
and take y ∈ x+(2‖qnα‖, 3‖qnα‖) verifying X(x) = X(y). This is possible, as the proportion of
points in x+ (0, 3‖qnα‖) lying in the same atom as x tends to one, as n→ +∞.

Recall that the (0, ‖qnα‖) + kα, 0 ≤ k < qn+1, are disjoint and, as a classical consequence of the
identity qn‖qn+1α‖+ qn+1‖qnα‖ = 1, that the x+(0, 2‖qnα‖)+ kα, 0 ≤ k < qn+1, cover T, each
point belonging to at most two intervals.

As a result, the Circle T is covered by the T k(x, y], 0 ≤ k < qn+1, and each point of T is covered
at most 3 times. We deduce that the T k(x, y] will pass at most three times in chains Cz, z 6∈ K,
before finally meeting a chain whose index is in K. Therefore n0 ≤ 3N . From (5) :

|A| ≥ (ρmin)
n0

2

[

∆− 12N‖X‖∞
(

ρmax

ρmin

)3N

‖r‖M−1
∞

]

> 0,

using property (2) ofM . Since A 6= 0 and r1(x) · · · rn0(x) 6= 0, we get a contradiction in (4) with
the fact that X(x)−X(y) = 0.

In the other direction, suppose that ∆k = 0, 1 ≤ k ≤ K. The set {T pd0,k, 0 ≤ p ≤ pk, 1 ≤
k ≤ K}, the union of the chains, gives a partition of T into

∑K
k=1(1+pk) intervals. We show that

X is constant on each piece. This way, let M > 2+max{p1, · · · , pk} and take the corresponding
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γ(M) > 0. Take x < y interior to the same interval of the partition, with x < y < x + γ(M).
Considering the orbit T k(x, y], k ≥ 0, if a chain is met for the first time, then it is at the first
element of the chain. As ∆k = 0 for all 1 ≤ k ≤ K, formula (3) is true for all n ≥ 1 :

X(x)−X(y) = r1(x) · · · rn(x)
∑

0≤u<n

ρ∗1 · · · ρ∗n−1(X(xnu)−X(xnu+1)),

with, using the same notations for time intervals, points T snx = xn0 ≤ xn1 ≤ · · · ≤ xnn = T sny
and ρ∗i = ρ±li . As rk(x) ≤ ‖r‖M−1

∞ ≤ ‖r‖∞, we get :

|X(x)−X(y)| ≤ ‖r‖n∞ × nρn−1
max × 2‖X‖∞.

As this goes to 0, as n→ +∞, we get X(x) = X(y). Hence X is locally constant, hence constant,
on each interval of the partition. This concludes the proof of point 2).

3) We examine the Rajchman character of PX . Set Sk(x) = −
∑k−1

l=0 log r(T lx), with S0 = 0.
Then X(x) =

∑

k≥0 e
−Sk(x)b(T kx). Fixing n and 0 ≤ mn ≤ an+1, arbitrary for the moment :

X(x) =

qn−1
∑

k=0

e−Sk(x)
∑

m≥0

e−Smqn(Tkx)b(Tmqn+kx)

=

qn−1
∑

k=0

e−Sk(x)
∑

0≤m≤mn

e−Smqn (Tkx)b(Tmqn+kx) (6)

+

qn−1
∑

k=0

e−Sk(x)
∑

m>mn

e−Smqn (Tkx)b(Tmqn+kx). (7)

Suppose n even (the other case is similar), so qnα mod 1 is on the right side of 0 on the Circle.
Consider (6) and 0 ≤ k < qn, as well as m ≥ 1. If [T k+lx, T k+l+(m−1)qnx] contains no di, for
any 0 ≤ l < qn, then Smqn(T

kx) = mSqn(T
kx). Similarly, b(Tmqn+kx) = b(T kx), whenever

[T kx, T k+mqnx] contains no di. Introduce :

Ωn = ∪
0≤k<2qn,0≤i<N

− kα− di + [−mnqnα, 0],

of measure ≤ 2qnNmn‖qnα‖ ≤ 2Nmn/an+1. For x 6∈ Ωn, one has X(x) = Zn(x)+Rn(x), with :

Zn(x) =

qn−1
∑

k=0

e−Sk(x)b(T kx)
1 − e−(mn+1)Sqn (Tkx)

1− e−Sqn(Tkx)
, ‖Rn‖∞ ≤ ‖b‖∞‖r‖(mn+1)qn

∞

1− ‖r‖∞
.

For any tn > 0, decomposing e2iπtn(Zn+Rn)− 1 = e2iπtnZn(e2iπtnRn − 1)+ e2iπtnZn − 1 and using
that x 7−→ eix is 1-Lipschitz on R, we have :

|P̂X(tn)− 1| ≤
∫

Ωc
n

|e2iπtnX − 1|dx+ 2|Ωn| (8)

≤
∫

Ωc
n

|e2iπtnZn(x) − 1|dx+ tn‖Rn‖∞|Ωc
n|+ 4Nmn/an+1.

6



Now, Zn is constant on each interval of the partition determined by ∪0≤l<2qnT
−lD and therefore

takes at most 2Nqn values. Fixing an integer rn ≥ 4, cut the torus T2Nqn in cubes of sides of
length 1/rn. This gives r2Nqn

n cubes. Considering the integers {nk, 0 ≤ k ≤ r2Nqn
n }, by the

pigeonhole principle, there exists an integer ntn, with 1 ≤ tn ≤ r2Nqn
n , such that ‖ntnZn(x)‖ ≤

1/rn, for all x ∈ T. Replacing tn by ntn (arbitrary large) :

|P̂X(ntn)− 1| ≤ |Ωc
n|2π/rn + ntn‖Rn‖∞ + 4Nmn/an+1

≤ 2π/rn + nr2Nqn
n

‖b‖∞‖r‖(mn+1)qn
∞

1− ‖r‖∞
+ 4Nmn/an+1.

We shall impose mn ≥ ln(r2Nn )/(− ln ‖r‖∞), giving :

|P̂X(ntn)− 1| ≤ 2π/rn + 4Nmn/an+1 + n‖r‖qn∞
‖b‖∞

1− ‖r‖∞
. (9)

If rn ≥ 4π and mn ≤ an+1/(10N), then |P̂X(ntn)− 1| ≤ 1/2 + 2/5+ o(1) = 9/10 + o(1). Fixing
rn = 13 > 4π, then PX is not a Rajchman measure whenever for infinitely many n, one can find
an integer mn satisfying the inequalities :

2N ln rn/(− ln ‖r‖∞) ≤ mn ≤ an+1/(10N). (10)

Since rn = 13, this is thus true an+1/(10N) ≥ 1 + 2N ln 13/(− ln ‖r‖∞), along a subsequence.

If the partial quotients are unbounded, take :

rn = an+1 and mn = [
√
an+1],

along a subsequence where an+1 → +∞. Then (10) is true for large n. By (9), P̂X(ntn) → 1
along a subsequence ntn → +∞. Next, for any integer m ≥ 1, |e2iπtnmX − 1| ≤ m|e2iπtnX − 1|.
Keeping the same sequence (ntn), relation (8) at time ntn for mX gives :

|P̂X(mntn)− 1| ≤ m

∫

Ωc
n

|e2iπntnX − 1|dx+ 2|Ωn|.

As before, the integral and |Ωn| go to zero, as n→ +∞, along the above mentioned subsequence.
This completes the proof of point 3).

�

Remark. — Explicitly, PX is purely atomic if and only if for all 1 ≤ k ≤ K :

pk
∑

i=0

[

ri(d0,k)b(T
id0,k)− ri(d

−
0,k)b(T

id−0,k)
]

+
[

rpk+1(d0,k)− rpk+1(d
−
0,k)
]

X(Tdmk,k) = 0.

Because of X(Tdmk,k), this value may involve the whole orbit of d0,k. On the contrary, when
r(x) = λ ∈ (0, 1) and writing any maximal set as Dk = {d0,k →p0,k

· · · →pmk−1,k
dmk,k}, with

integers pi,k ≥ 1 such that di+1,k = T pi,kdi,k, this simplifies into :

mk
∑

i=0

λp0,k+···+pi−1,k

[

b(di,k)− b(d−i,k)
]

= 0, 1 ≤ k ≤ K.
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Remark. — If for example all di are in distinct orbits, the condition of pure atomicity reduces
to b(di)−b(d−i )+[r(di)−r(d−i )]X(Tdi) = 0 and, when r(x) is constant, to b(di)−b(d−i ) = 0, 0 ≤
i < N , i.e. b constant, thus giving PX = δb/(1−λ). Proceeding as indicated in the Introduction,
it is easy to build examples with any finitely supported law.

Remark. — Concerning point 3), we conjecture that PX is never a Rajchman measure. Here is
a classical situation where the result is true for any angle. Recall that a Pisot number ρ > 1 is
an algebraic integer, with Galois conjugates of modulus < 1.

Lemma 2.2.

Let T be a rotation of angle α on T, r(x) = λ ∈ (0, 1), with 1/λ a Pisot number, and b(x) ∈ Z,

locally constant on a partition T = ⊔0≤i<N [di, di+1). Then PX is not a Rajchman measure.

Proof of the lemma :

In this case, X(x) =
∑

k≥0 λ
kb(T kx). If B ⊂ Z denotes the finite set of values of b, then :

Supp(PX) ⊂







∑

k≥0

λkbk, bk ∈ B







.

Classically, the latter self-similar set is a set of uniqueness for trigonometric series, hence cannot
support a Rajchman measure; cf for example the general result of Varjú-Yu [6], Theorem 1.4.

For a more elementary proof, introduce the conjugates µ1, · · · , µd of 1/λ and recall that
λ−n + µn

1 + · · ·+ µn
d ∈ Z, n ≥ 0. If PX were a Rajchman measure, we would have in particular

λ−nX mod 1 →L LebT, hence λ
−nX ◦ T−n mod 1 →L LebT. However, modulo 1 :

λ−nX(T−nx) ≡
n
∑

k=1

λ−kb(T−kx) +X(x) ≡ X(x)−
n
∑

k=1

(µk
1 + · · ·+ µk

d)b(T
−kx).

The term on the right-hand side converges pointwise to the real random variable :

Y (x) = X(x)−
∑

k≥1

(µk
1 + · · ·+ µk

d)b(T
−kx),

We would get PY mod 1 = LebT, on T. However, Yn(x) → Y (x), as n→ +∞, where :

Yn(x) =
n
∑

k=0

λkb(T kx)−
n
∑

k=1

(µk
1 + · · ·+ µk

d)b(T
−kx).

We have ‖Y − Yn‖∞ ≤ Cρn, where ρ = max{λ, |µ1|, · · · , |µd|} < 1. Since Yn takes at most
(2n+ 1)N values, we get Leb(Supp(PY ) = 0. Hence PY on R is singular. Therefore PY mod 1 is
singular on T and in particular PY mod 1 6= LebT. This concludes the proof of the lemma.

�

3 A remark for general dynamical systems

For the general setting of the Introduction, we discuss in this last section another approach,
relating the continuity of the measure PX to a question of fixed points. We suppose the dynamical
system ergodic and invertible.
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Changing notations, write ϕω = ψǫ(ω), ǫ(ω) ∈ S, where S is a countable set. For simplicity,
we suppose that all affine maps ψj , j ∈ S, are strict contractions. We shall use multi-indices
i = (i0, · · · , in−1) ∈ Sn, for n ≥ 1. We also write ψi = ψi0 · · ·ψin−1 .

Definition 3.1. A multi-index i ∈ Sn, n ≥ 1, is minimal if P ((ǫ, · · · , T n−1ǫ) = i) > 0 and for

any strict prefix j of i, fix(ψj) 6= fix(ψi). Let M = {i ∈ ∪n≥1Sn, minimal}.

Remark. — It is easily verified that fix(ψi) = fix(ψj) if and only if ψi ◦ ψj = ψj ◦ ψi.

Lemma 3.2.

Suppose the map : i minimal 7−→ fix(ψi), from M to R, injective. Then, either PX is continuous

or there exists N ≥ 1 and (i0, · · · , iN−1) such that for a.-e. ω, (ǫ(T nω))n≥0 is a left shift of the

periodic sequence (i0, · · · , iN−1, · · · ) ∈ SN, in which case X(Ω) = {ψik · · ·ψiN−1(c), 0 ≤ k < N},
up to a null set, where c = fix(ψi0 · · ·ψiN−1).

Proof of the lemma :

If PX is purely atomic, let c and A = {X = c}, with PX(A) > 0. On A, let τ ≥ 1 be the
return time, a.-e. defined. Then, restricting to sequences appearing with positive probability,
(ǫ(ω), · · · , ǫ(T τ(ω)−1ω)) is minimal, as c = ψǫ(ω) · · ·ψǫ(T τ(ω)−1ω)(c) and if c = ψǫ(ω) · · ·ψǫ(Tm−1ω)(c)
for some m < τ(ω), then X(Tmω) = c, by injectivity, contradicting the definition of τ(ω).

Since for a.-e. ω ∈ A, (ǫ(ω), · · · , ǫ(T τ(ω)−1ω)) is minimal and c is the corresponding fixed point,
the hypothesis implies that there exists N ≥ 1 and (i0, · · · , iN−1) ∈ SN such that τ(ω) = N and
(ǫ(ω), · · · , ǫ(TN−1ω)) = (i0, · · · , iN−1), for a.-e. ω in A. Also, clearly, X = c, a.-e. on A.

By ergodicity and invertibility, we now have, up to a null set, Ω = ⊔0≤k<NT
kA. Then, for a.-e.

ω, the sequence (ǫ(T nω))n≥0 is periodic, being a left shift of (i0, · · · , iN−1, · · · ), depending on
the 0 ≤ k < N for which ω ∈ T kA. It is now quite evident that the values taken by X with
positive probability are the ψik · · ·ψiN−1(c), 0 ≤ k < N .

�

Remark. — The condition of the Lemma is verified ifX(ω) =
∑

n≥0 λ
nb(T nω), when b = ±1 and

0 < λ < 1 is not a root of a polynomial with 0,±1 as coefficients. Indeed, let ǫ = (ǫ0, · · · , ǫn−1)
and δ = (δ0, · · · , δm−1) be minimal, with n ≤ m. If fix(ψǫ) = fix(ψδ), then :

1

1− λn

n−1
∑

k=0

λkǫk =
1

1− λm

m−1
∑

k=0

λkδk,

or (1− λm)
∑n−1

k=0 λ
kǫk = (1− λn)

∑m−1
k=0 λ

kδk. We rewrite this as :

n−1
∑

k=0

λk(ǫk − δk) = λm
n−1
∑

k=0

λkǫk − λn
m−1
∑

k=0

λkδk +
m−1
∑

k=n

λkδk

=

(

m−1
∑

k=n

λkδk − λn
m−n−1
∑

k=0

λkδk

)

+

(

λm
n−1
∑

k=0

λkǫk − λn
m−1
∑

k=m−n

λkδk

)

.

On the right-hand side, there are only powers λ that are ≥ n : between n and m− 1 in the first
parenthesis and between m and n+m− 1 in the second one. As λ is not a root of a polynomial
with 0,±2 coefficients, it is necessary on the left-hand side that ǫk = δk, 0 ≤ k < n. Therefore ǫ
is a prefix of δ, which wouldn’t be minimal, unless n = m. Thus ǫ = δ.
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