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Proof of the lemma : Let S (n) = S • • • • • S, n ≥ 0, and C = {ϕ ∈ ∪ n≥1 S (n) , strict contraction}, countable. Each ϕ ∈ C having a unique fixed point f ix(ϕ), the set P = {f ix(ϕ), ϕ ∈ C} is countable.

-If there exists a ∈ R, A = {X = a}, with P (A) > 0, then ω a.-e. on A, there exists n ≥ 1 such that T n ω ∈ A and ϕ ω • • • ϕ T n-1 ω ∈ C. As X(ω) = X(T n ω) = a, we get a = ϕ ω • • • ϕ T n-1 ω (a), so a ∈ P. Now, ω a.-e. on Ω, there exists n ≥ 0 such that T n ω ∈ A, thus X(ω) ∈ {ϕ(c), c ∈ P, ϕ ∈ ∪ n≥0 S (n) } =: Q, a countable set. Therefore P X (Q) = 1 and P X is purely atomic.

-If P X is continuous and if there exists A ∈ B(R) with Leb(A) = 0 and P X (A) > 0, introduce B = ∪ ϕ∈∪ n≥0 S (n) ϕ -1 (A). Clearly Leb(B) = 0. Since X(ω) ∈ B implies X(T ω) = ϕ -1 ω (X(ω)) ∈ B, the set X -1 (B) is T -invariant. As P (X -1 (B)) ≥ P (X -1 (A)) > 0, ergodicity implies that P X (B) = P (X -1 (B)) = 1. Therefore P X ⊥ Leb.

Pure atomicity. Let us discuss the continuity of P X . Clearly, P X = δ c if and only if ∀ϕ ∈ S, ϕ(c) = c. In the independent case, the purely atomic situation reduces to P X a Dirac mass, as follows from the relation (obtained when conditioning with respect to the first step) :

P X (A) = ϕ∈S P (ϕ ω = ϕ)P X (ϕ -1 (A)), A ∈ B(R).
Indeed, if there exists an atom, then the latter implies that the non-empty finite set E of points defining an atom of maximal mass is stable under any ϕ -1 . Finiteness of an orbit under iterations of an affine map forces any c ∈ E to be a fixed point of any ϕ ∈ S. This is far from true in the general ergodic context. Fixing r and any α ∈ L 1 with countable support, when setting b = α -rα • T , we have X = α. As a result, P X can be discrete with even non-finite support. Moreover, as we shall see later, determining the conditions under which P X is continuous can be a non-degenerate problem.

Mention here a recipe for building non-trivial examples of discrete laws when r(ω) = λ ∈ (0, 1) is algebraic. Let for instance λ = 0, 618... be the inverse of the Golden Mean, i.e. λ 2 + λ -1=0. Taking g ∈ L 1 with countable support and b = g

+ g • T -g • T 2 , then b = (g + (1 + λ)g • T ) - λ(g • T + (1 + λ)g • T 2
). This means that X(ω) = g(ω) + (1 + λ)g(T ω).

More generally, if

p k=0 α k λ p-k = 0, p ≥ 1, let b(ω) = p k=0 α k g(T k ω), where g ∈ L 1 has countable support. Then X(ω) = p-1 n=0 g(T n ω)( n k=0 α k λ n-k ), as X(ω) -r(ω)X(T ω) = b(ω).
Recall also the link between the existence of atoms and the Fourier transform. We define :

PX (t) = R e 2iπtx dP X (x), t ∈ R. If P X is continuous, then, by Wiener's theorem : 1 R R 0 |μ(t)| 2 dt → 0, as R → +∞.
A more precise information of local regularity is when P X is a Rajchman measure, meaning that PX (t) → 0, as t → +∞. Equivalently, tX mod 1 → L Leb T , as t → +∞. A classical example of continuous non-Rajchman measures is the uniform measure on the triadic Cantor set. The present paper furnishes a natural class of such measures.

Content of the article. We study the special case when the dynamics is given by an irrational rotation on the 1-torus, with functions b and r locally constant on some finite collection of intervals. For obvious complexity reasons, P X is singular, even of zero-dimensional support, so it remains to decide between continuous singularity and pure atomicity. We show that the latter is equivalent to the simultaneous satisfaction of a finite number of explicit algebraic equations. Generically, P X appears to be continuous, but also not a Rajchman measure. In the last section, we discuss another approach of the continuity problem for general systems.

The case of the Circle

Let T = R\Z be the 1-torus, with uniform measure Leb T and an irrational rotation T of angle α ∈ (0, 1). We recall classical material about continued fractions; see for example Khinchin's book [START_REF] Khinchin | Continued fractions[END_REF]. The angle α can be expanded in infinite continued fraction :

α = 1 a 1 + 1 a 2 + • • • = [0, a 1 , a 2 , • • • ],
where the partial quotients (a i ) i≥1 are obtained by iterations of the Gauss map, starting from α. The successive truncations [0, a 1 , a 2 , • • • , a n ] = p n /q n , n ≥ 1, are the convergents of α. The (p n ) and (q n ) check the same recursive relation:

p n+1 = a n+1 p n + p n-1 , q n+1 = a n+1 q n + q n-1 , n ≥ 0,
with p 0 = 0, p -1 = 1 and q 0 = 1, q -1 = 0. Classical inequalities are (cf [START_REF] Khinchin | Continued fractions[END_REF], chap. 1) :

1 2q n+1 ≤ 1 q n + q n+1 ≤ q n α ≤ 1 q n+1
, where x is the distance from x to Z. Our purpose is to establish the following result.

Theorem 2.1.

Let T be a rotation of angle α = [0, a 1 , a 2 ,

• • • ] ∈ Q on T. Given N ≥ 1 points d 0 < d 1 < • • • < d N -1 < d N = d 0 on T, consider on D = {d 0 , • • • , d N -1 } the partial order "d i → d j iff d j = T p d i for some p ≥ 0". Partition D = ⊔ 1≤k≤K D k into maximal subsets D k = {d 0,k → • • • → d m k ,k }, with m k ≥ 0; define p k ≥ 0 by d m k ,k = T p k d 0,k .
Let b : T → R and r = T → (0, 1) be constant on each interval

[d i , d i+1 ), 0 ≤ i < N . Define X(x) = n≥0 b(T n x)r n (x),
x ∈ T, and denote by P X the image of Leb T by X. Then :

1. Supp(P X ) has box-counting dimension zero, in particular P X ⊥ Leb.

The measure P

X is continuous iff X is discontinuous at some d 0,k , 1 ≤ k ≤ K. Otherwise X is constant on the intervals of the partition determined by {T p d 0,k , 0 ≤ p ≤ p k , 0 ≤ k ≤ K}, hence Supp(P X ) is finite, with at most 1≤k≤K (1 + p k ) elements. 3. If a n ≥ 10N +20N 2 ln 13/(-ln r ∞ ) infinitely often, then P X is not a Rajchman measure. If (a n ) is unbounded, then t n X mod 1 → L 0, along a sequence of integers (t n ) → +∞ .
Proof of the theorem :

1) For any n ≥ 1, x -→ n-1 k=0 r k (x)b(T k x) is constant on each interval of the partition deter- mined by ∪ 0≤k<n T -k D, so takes at most nN values. As | k≥n r k (x)b(T k x)| ≤ r n ∞ b ∞ /(1 -
r ∞ ), Supp(P X ) can be covered for any ε > 0 by at most -C log ε balls of radius ε, for some constant C > 0. This gives the result.

2) In the present context of strict contractions, X is right-continuous and admits a left limit

X(x -) at every x ∈ T. Set ∆ k = X(d 0,k ) -X(d - 0,k ) and K = {1 ≤ k ≤ K, ∆ k = 0}. Supposing that K = ø, we set ∆ = min k∈K |∆ k | > 0. Choose also ε > 0 so that : min k∈K inf x<d 0,k ≤y |y-x|≤ε |X(x) -X(y)| ≥ ∆/2.
(1)

Set ρ ± k = r p k +1 (d ± 0,k ), 1 ≤ k ≤ K, and define ρ max / min = max / min{ρ ± k , 1 ≤ k ≤ K}. For the sequel, fix M > max{p 1 , • • • , p K } such that : X ∞ r M-1 ∞ < ∆ 12N ρ min ρ max 3N . (2) 
For 1

≤ k ≤ K, call (T p d 0,k ) 0≤p≤p k the chain C k .
Choose γ(M ) > 0 such that for any x < y < x + γ(M ), each interval T k (x, y], k ≥ 0, meets at most one element of D and after covering the last element of a chain the (necessarily) first element of the next chain is not met until M steps.

Take x ∈ ∪ l≥0 T -l D and 0 < γ x < min{γ(M ), ε} such that if x < y < x + γ x , then T k (x, y] meets no d j , for 0 ≤ k ≤ M . If T k (x,
y] meets for the first time a chain, it thus has to be at the first element of the chain. For the moment, fix y like this. The choice of x, y is precised later.

We consider X(x) -X(y). This way, let 0 = t 0 < s

1 < t 1 < s 2 < t 2 < • • • , where, for i ≥ 0, the [t i , s i+1 ) are the maximal time intervals of k where T k (x, y] meets no chain. For i ≥ 1, the (T k (x, y]) k∈[si ,ti) cover some chain, say C li , with d 0,li ∈ T si (x, y] and d m l i ,li ∈ T ti-1 (x, y].
Introduce r n (x) = r sn-tn-1 (T tn-1 x), n ≥ 1. We define n 0 ≥ 1 as the first integer n such that l n ∈ K. First of all, we can write :

X(x) -X(y) = r 1 (x)(X(T s1 x) -X(T s1 y)).
In a recursion, suppose now that for some 1 ≤ n < n 0 :

X(x) -X(y) = r 1 (x) • • • r n (x) 0≤u<n ρ * 1 • • • ρ * n-1 (X(x n u ) -X(x n u+1 )), (3) 
with points

T sn x = x n 0 ≤ x n 1 ≤ • • • ≤ x n n = T sn y and ρ * i = ρ ± li .
Since T sn x < d 0,ln ≤ T sn y, let v be the index such that x n v < d 0,ln ≤ x n v+1 . Adding d 0,ln to the (x n i ) 0≤i≤n gives n + 2 points, written in their natural order as (y n u ) 0≤u≤n+1 . Since n < n 0 , we split in the following way the term for u = v in (3) :

X(x n v ) -X(x n v+1 ) = X(x n v ) -X(d - 0,ln ) + X(d 0,ln ) -X(x n v+1 ) = X(y n v ) -X(y n,- v+1 ) + X(y n v+1 ) -X(y n v+2 ). Set ρ * n = ρ - ln if u ≤ v and ρ * n = ρ + ln if u ≥ v + 1. For u = v : X(y n u ) -X(y n u+1 ) = ρ * ln (X(T tn-sn y n u ) -X(T tn-sn y n u+1 )) = ρ * ln r n+1 (x)(X(T sn+1-sn y n u ) -X(T sn+1-sn y n u+1 )).
Now, in the same way :

X(y n v ) -X(y n,- v+1 ) = ρ - ln r n+1 (x)(X(T sn+1-sn y n v ) -X(T sn+1-sn y n,- v+1 )).
As T sn+1-sn y n v+1 = T sn+1-tn+1 d m ln ,ln and s n+1 -t n + 1 ≥ 1, from the continuity of X at any T k d m ln ,ln , k ≥ 1, we get X(T sn+1-sn y n,- v+1 ) = X(T sn+1-sn y n v+1 ). We can now finally set x n+1 u = T sn+1-sn y n u , 0 ≤ u ≤ n + 1, and we obtain when replacing in (3) that the latter is satisfied with n replaced by n + 1. As a result, the formula is true for n = n 0 :

X(x) -X(y) = r 1 (x) • • • r n0 (x)   0≤u<n0 ρ * 1 • • • ρ * n0-1 (X(x u ) -X(x u+1 ))   , (4) 
with, simplifying notations, points

T sn 0 x = x 0 ≤ x 1 ≤ • • • ≤ x n0 = T sn 0 y and ρ * i = ρ ± li .
Again T sn 0 x < d 0,ln 0 ≤ T sn 0 y and let v be the index such that x v < d 0,ln 0 ≤ x v+1 . Now, using [START_REF] Elliott | Probabilistic Number Theory I, mean value theorems[END_REF], by definition, |X(x v ) -X(x v+1 )| ≥ ∆/2, whereas, as before, for u = v :

X(x u ) -X(x u+1 ) = ρ * ln 0 r n0+1 (x)(X(T sn 0 +1-sn 0 x u ) -X(T sn 0 +1-sn 0 x u+1 )).
Since M verifies r n0+1 (x) = r sn 0 +1-tn 0 (T tn 0 x) ≤ r M-1

∞

, when calling A the term between brackets in (4), we deduce from the previous considerations that :

|A| ≥ ∆ 2 (ρ min ) n0-1 -2 X ∞ (n 0 -1)(ρ max ) n0 r n0+1 (x) ≥ (ρ min ) n0 2 ∆ -4n 0 X ∞ ρ max ρ min n0 r M-1 ∞ . (5) 
Suppose P X purely atomic. Let x be a Lebesgue density point in some atom (Leb T a.-e. point is such a point), not in the countable set ∪ l≥0 T -l D. Choose n large enough so that 3 q n α < γ x and take y ∈ x + (2 q n α , 3 q n α ) verifying X(x) = X(y). This is possible, as the proportion of points in x + (0, 3 q n α ) lying in the same atom as x tends to one, as n → +∞.

Recall that the (0, q n α ) + kα, 0 ≤ k < q n+1 , are disjoint and, as a classical consequence of the identity q n q n+1 α + q n+1 q n α = 1, that the x + (0, 2 q n α ) + kα, 0 ≤ k < q n+1 , cover T, each point belonging to at most two intervals.

As a result, the Circle T is covered by the T k (x, y], 0 ≤ k < q n+1 , and each point of T is covered at most 3 times. We deduce that the T k (x, y] will pass at most three times in chains C z , z ∈ K, before finally meeting a chain whose index is in K. Therefore n 0 ≤ 3N . From (5) :

|A| ≥ (ρ min ) n0 2 ∆ -12N X ∞ ρ max ρ min 3N r M-1 ∞ > 0,
using property (2) of M . Since A = 0 and r 1 (x) • • • r n0 (x) = 0, we get a contradiction in (4) with the fact that X(x) -X(y) = 0.

In the other direction, suppose that ∆ k = 0, 1 ≤ k ≤ K. The set {T p d 0,k , 0 ≤ p ≤ p k , 1 ≤ k ≤ K}, the union of the chains, gives a partition of T into K k=1 (1 + p k ) intervals. We show that X is constant on each piece. This way, let M > 2 + max{p 1 , • • • , p k } and take the corresponding γ(M ) > 0. Take x < y interior to the same interval of the partition, with x < y < x + γ(M ). Considering the orbit T k (x, y], k ≥ 0, if a chain is met for the first time, then it is at the first element of the chain. As ∆ k = 0 for all 1 ≤ k ≤ K, formula (3) is true for all n ≥ 1 :

X(x) -X(y) = r 1 (x) • • • r n (x) 0≤u<n ρ * 1 • • • ρ * n-1 (X(x n u ) -X(x n u+1 )),
with, using the same notations for time intervals, points

T sn x = x n 0 ≤ x n 1 ≤ • • • ≤ x n n = T sn y and ρ * i = ρ ± li . As r k (x) ≤ r M-1 ∞ ≤ r ∞ , we get : |X(x) -X(y)| ≤ r n ∞ × nρ n-1 max × 2 X ∞ .
As this goes to 0, as n → +∞, we get X(x) = X(y). Hence X is locally constant, hence constant, on each interval of the partition. This concludes the proof of point 2).

3) We examine the Rajchman character of P X . Set S k (x) = -k-1 l=0 log r(T l x), with S 0 = 0. Then X(x) = k≥0 e -S k (x) b(T k x). Fixing n and 0 ≤ m n ≤ a n+1 , arbitrary for the moment :

X(x) = qn-1 k=0 e -S k (x) m≥0 e -Smq n (T k x) b(T mqn+k x) = qn-1 k=0 e -S k (x) 0≤m≤mn e -Smq n (T k x) b(T mqn+k x) (6) 
+ qn-1 k=0 e -S k (x) m>mn e -Smq n (T k x) b(T mqn+k x). (7) 
Suppose n even (the other case is similar), so q n α mod 1 is on the right side of 0 on the Circle. Consider (6) and 0 ≤ k < q n , as well as m ≥ 1. If [T k+l x, T k+l+(m-1)qn x] contains no d i , for any 0 ≤ l < q n , then S mqn (T k x) = mS qn (T k x). Similarly, b(T mqn+k x) = b(T k x), whenever [T k x, T k+mqn x] contains no d i . Introduce :

Ω n = ∪ 0≤k<2qn,0≤i<N -kα -d i + [-m n q n α, 0], of measure ≤ 2q n N m n q n α ≤ 2N m n /a n+1 . For x ∈ Ω n , one has X(x) = Z n (x) + R n (x)
, with :

Z n (x) = qn-1 k=0 e -S k (x) b(T k x) 1 -e -(mn+1)Sq n (T k x) 1 -e -Sq n (T k x) , R n ∞ ≤ b ∞ r (mn+1)qn ∞ 1 -r ∞ .
For any t n > 0, decomposing e 2iπtn(Zn+Rn) -1 = e 2iπtnZn (e 2iπtnRn -1) + e 2iπtnZn -1 and using that x -→ e ix is 1-Lipschitz on R, we have :

| PX (t n ) -1| ≤ Ω c n |e 2iπtnX -1|dx + 2|Ω n | (8) ≤ Ω c n |e 2iπtnZn(x) -1|dx + t n R n ∞ |Ω c n | + 4N m n /a n+1 .
Now, Z n is constant on each interval of the partition determined by ∪ 0≤l<2qn T -l D and therefore takes at most 2N q n values. Fixing an integer r n ≥ 4, cut the torus T 2N qn in cubes of sides of length 1/r n . This gives r 2N qn n cubes. Considering the integers {nk, 0 ≤ k ≤ r 2N qn n }, by the pigeonhole principle, there exists an integer nt n , with 1 ≤ t n ≤ r 2N qn n , such that nt n Z n (x) ≤ 1/r n , for all x ∈ T. Replacing t n by nt n (arbitrary large) :

| PX (nt n ) -1| ≤ |Ω c n |2π/r n + nt n R n ∞ + 4N m n /a n+1 ≤ 2π/r n + nr 2N qn n b ∞ r (mn+1)qn ∞ 1 -r ∞ + 4N m n /a n+1 .
We shall impose m n ≥ ln(r 2N n )/(-ln r ∞ ), giving :

| PX (nt n ) -1| ≤ 2π/r n + 4N m n /a n+1 + n r qn ∞ b ∞ 1 -r ∞ . ( 9 
) If r n ≥ 4π and m n ≤ a n+1 /(10N ), then | PX (nt n ) -1| ≤ 1/2 + 2/5 + o(1) = 9/10 + o(1)
. Fixing r n = 13 > 4π, then P X is not a Rajchman measure whenever for infinitely many n, one can find an integer m n satisfying the inequalities :

2N ln r n /(-ln r ∞ ) ≤ m n ≤ a n+1 /(10N ). ( 10 
)
Since r n = 13, this is thus true a n+1 /(10N ) ≥ 1 + 2N ln 13/(-ln r ∞ ), along a subsequence.

If the partial quotients are unbounded, take :

r n = a n+1 and m n = [ √ a n+1 ],
along a subsequence where a n+1 → +∞. Then (10) is true for large n. By (9), PX (nt n ) → 1 along a subsequence nt n → +∞. Next, for any integer m ≥ 1, |e 2iπtnmX -1| ≤ m|e 2iπtnX -1|. Keeping the same sequence (nt n ), relation (8) at time nt n for mX gives :

| PX (mnt n ) -1| ≤ m Ω c n |e 2iπntnX -1|dx + 2|Ω n |.
As before, the integral and |Ω n | go to zero, as n → +∞, along the above mentioned subsequence. This completes the proof of point 3).

Remark. -Explicitly, P X is purely atomic if and only if for all 1 ≤ k ≤ K :

p k i=0 r i (d 0,k )b(T i d 0,k ) -r i (d - 0,k )b(T i d - 0,k ) + r p k +1 (d 0,k ) -r p k +1 (d - 0,k ) X(T d m k ,k ) = 0.
Because of X(T d m k ,k ), this value may involve the whole orbit of d 0,k . On the contrary, when r(x) = λ ∈ (0, 1) and writing any maximal set as

D k = {d 0,k → p 0,k • • • → p m k -1,k d m k ,k }, with integers p i,k ≥ 1 such that d i+1,k = T p i,k d i,k
, this simplifies into :

m k i=0 λ p 0,k +•••+p i-1,k b(d i,k ) -b(d - i,k ) = 0, 1 ≤ k ≤ K.
Remark.

-If for example all d i are in distinct orbits, the condition of pure atomicity reduces to Remark. -Concerning point 3), we conjecture that P X is never a Rajchman measure. Here is a classical situation where the result is true for any angle. Recall that a Pisot number ρ > 1 is an algebraic integer, with Galois conjugates of modulus < 1.

b(d i ) -b(d - i ) + [r(d i ) -r(d - i )]X(T d i ) = 0 and, when r(x) is constant, to b(d i ) -b(d - i ) = 0, 0 ≤ i < N , i.

Lemma 2.2.

Let T be a rotation of angle α on T, r(x) = λ ∈ (0, 1), with 1/λ a Pisot number, and b(x) ∈ Z, locally constant on a partition T = ⊔ 0≤i<N [d i , d i+1 ). Then P X is not a Rajchman measure.

Proof of the lemma :

In this case, X(x) = k≥0 λ k b(T k x). If B ⊂ Z denotes the finite set of values of b, then :

Supp(P X ) ⊂    k≥0 λ k b k , b k ∈ B    .
Classically, the latter self-similar set is a set of uniqueness for trigonometric series, hence cannot support a Rajchman measure; cf for example the general result of Varjú-Yu [START_REF] Varjú | Fourier decay of self-similar measures and self-similar sets of uniqueness[END_REF], Theorem 1.4.

For a more elementary proof, introduce the conjugates µ 1 , • • • , µ d of 1/λ and recall that λ

-n + µ n 1 + • • • + µ n d ∈ Z, n ≥ 0.
If P X were a Rajchman measure, we would have in particular λ -n X mod 1 → L Leb T , hence λ -n X • T -n mod 1 → L Leb T . However, modulo 1 :

λ -n X(T -n x) ≡ n k=1 λ -k b(T -k x) + X(x) ≡ X(x) - n k=1 (µ k 1 + • • • + µ k d )b(T -k x).
The term on the right-hand side converges pointwise to the real random variable :

Y (x) = X(x) - k≥1 (µ k 1 + • • • + µ k d )b(T -k x),
We would get P Y mod 1 = Leb T , on T. However, Y n (x) → Y (x), as n → +∞, where :

Y n (x) = n k=0 λ k b(T k x) - n k=1 (µ k 1 + • • • + µ k d )b(T -k x). We have Y -Y n ∞ ≤ Cρ n , where ρ = max{λ, |µ 1 |, • • • , |µ d |} < 1.
Since Y n takes at most (2n + 1)N values, we get Leb(Supp(P Y ) = 0. Hence P Y on R is singular. Therefore P Y mod 1 is singular on T and in particular P Y mod 1 = Leb T . This concludes the proof of the lemma.

A remark for general dynamical systems

For the general setting of the Introduction, we discuss in this last section another approach, relating the continuity of the measure P X to a question of fixed points. We suppose the dynamical system ergodic and invertible.

Changing notations, write ϕ ω = ψ ǫ(ω) , ǫ(ω) ∈ S, where S is a countable set. For simplicity, we suppose that all affine maps ψ j , j ∈ S, are strict contractions. We shall use multi-indices i = (i 0 , • • • , i n-1 ) ∈ S n , for n ≥ 1. We also write ψ

i = ψ i0 • • • ψ in-1 . Definition 3.1. A multi-index i ∈ S n , n ≥ 1, is minimal if P ((ǫ, • • • , T n-1 ǫ) = i) > 0 and for any strict prefix j of i, f ix(ψ j ) = f ix(ψ i ). Let M = {i ∈ ∪ n≥1 S n , minimal}. Remark. -It is easily verified that f ix(ψ i ) = f ix(ψ j ) if and only if ψ i • ψ j = ψ j • ψ i . Lemma 3.2.
Suppose the map : i minimal -→ f ix(ψ i ), from M to R, injective. Then, either P X is continuous or there exists N ≥ 1 and (i 0 , • • • , i N -1 ) such that for a.-e. ω, (ǫ(T n ω)) n≥0 is a left shift of the periodic sequence

(i 0 , • • • , i N -1 , • • • ) ∈ S N , in which case X(Ω) = {ψ i k • • • ψ iN-1 (c), 0 ≤ k < N }, up to a null set, where c = f ix(ψ i0 • • • ψ iN-1 ).
Proof of the lemma : If P X is purely atomic, let c and A = {X = c}, with P X (A) > 0. On A, let τ ≥ 1 be the return time, a.-e. defined. Then, restricting to sequences appearing with positive probability, (ǫ(ω),

• • • , ǫ(T τ (ω)-1 ω)) is minimal, as c = ψ ǫ(ω) • • • ψ ǫ(T τ (ω)-1 ω) (c) and if c = ψ ǫ(ω) • • • ψ ǫ(T m-1 ω) (c)
for some m < τ (ω), then X(T m ω) = c, by injectivity, contradicting the definition of τ (ω).

Since for a.-e. ω ∈ A, (ǫ(ω), • • • , ǫ(T τ (ω)-1 ω)) is minimal and c is the corresponding fixed point, the hypothesis implies that there exists N ≥ 1 and (i 0 , • • • , i N -1 ) ∈ S N such that τ (ω) = N and (ǫ(ω), • • • , ǫ(T N -1 ω)) = (i 0 , • • • , i N -1 ), for a.-e. ω in A. Also, clearly, X = c, a.-e. on A.

By ergodicity and invertibility, we now have, up to a null set, Ω = ⊔ 0≤k<N T k A. Then, for a.-e. ω, the sequence (ǫ(T n ω)) n≥0 is periodic, being a left shift of (i 0 , • • • , i N -1 , • • • ), depending on the 0 ≤ k < N for which ω ∈ T k A. It is now quite evident that the values taken by X with positive probability are the

ψ i k • • • ψ iN-1 (c), 0 ≤ k < N .
Remark. -The condition of the Lemma is verified if X(ω) = n≥0 λ n b(T n ω), when b = ±1 and 0 < λ < 1 is not a root of a polynomial with 0, ±1 as coefficients. Indeed, let ǫ = (ǫ 0 , • • • , ǫ n-1 ) and δ = (δ 0 , • • • , δ m-1 ) be minimal, with n ≤ m. If f ix(ψ ǫ ) = f ix(ψ δ ), then :

1 1 -λ n n-1 k=0 λ k ǫ k = 1 1 -λ m m-1 k=0 λ k δ k , or (1 -λ m ) n-1 k=0 λ k ǫ k = (1 -λ n )
m-1 k=0 λ k δ k . We rewrite this as :

n-1 k=0 λ k (ǫ k -δ k ) = λ m n-1 k=0 λ k ǫ k -λ n m-1 k=0 λ k δ k + m-1 k=n λ k δ k = m-1 k=n λ k δ k -λ n m-n-1 k=0 λ k δ k + λ m n-1 k=0 λ k ǫ k -λ n m-1 k=m-n λ k δ k .
On the right-hand side, there are only powers λ that are ≥ n : between n and m -1 in the first parenthesis and between m and n + m -1 in the second one. As λ is not a root of a polynomial with 0, ±2 coefficients, it is necessary on the left-hand side that ǫ k = δ k , 0 ≤ k < n. Therefore ǫ is a prefix of δ, which wouldn't be minimal, unless n = m. Thus ǫ = δ.

  e. b constant, thus giving P X = δ b/(1-λ) . Proceeding as indicated in the Introduction, it is easy to build examples with any finitely supported law.