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Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 . It is considered by many to be the most important unsolved problem in pure mathematics. The hypothesis was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In recent years, there have been several developments that have brought us closer to a proof of the Riemann hypothesis. There are many approaches to the Riemann hypothesis based on analytic number theory, algebraic geometry, non-commutative geometry, etc.

The Riemann zeta function ζ(s) is a function under the domain of complex numbers. It has zeros at the negative even integers: These are called the trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros. Bernhard Riemann conjectured that the real part of every nontrivial zero of the Riemann zeta function is 1 2 .

The Riemann hypothesis's importance remains from its deep connection to the distribution of prime numbers, which are essential in many computational and theoretical aspects of mathematics. Understanding the distribution of prime numbers is crucial for developing efficient algorithms and improving our understanding of the fundamental structure of numbers. Besides, the Riemann hypothesis stands as a testament to the power and allure of mathematical inquiry. It challenges our understanding of the fundamental structure of numbers, inspiring mathematicians to push the boundaries of their field and seek ever deeper insights into the universe of mathematics.

A prime gap is the difference between two successive prime numbers. The nth prime gap is the difference between the (n + 1)st and the nth prime numbers, i.e. q n+1q n . The Cramér's conjecture states that q n+1q n = O((log q n ) 2 ), where O is big O notation and log is the natural logarithm. Nowadays, many mathematicians believe that the Cramér's conjecture is false.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = q≤x log q
with the sum extending over all prime numbers q that are less than or equal to x.

Proposition 1.1. We have [9, pp. 1]:

θ(x) ∼ x as (x → ∞). We know the following inequalities: Proposition 1.2. For r ≥ 0 and -1 ≤ x < 1 r [6, pp. 1]:

(1 + x) r ≤ 1 1 -r • x . Proposition 1.3. For x > -1 [6, pp. 1]: log(1 + x) ≤ x.
Proposition 1.4. For x ≥ -1 and r > 1 [6, pp. 1]:

(1 + x) r ≥ 1 + r • x.
Leonhard Euler studied the following value of the Riemann zeta function (1734) [START_REF] Ayoub | Euler and the Zeta Function[END_REF]. Proposition 1.5. We define [1, (1) pp. 1070]:

ζ(2) = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where q k is the kth prime number (We also use the notation q n to denote the nth prime number). By definition, we have

ζ(2) = ∞ n=1 1 n 2 ,
where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞ n=1 1 n 2 = ∞ k=1 q 2 k q 2 k -1 = π 2 6 ,
where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number theory, geometry, etc.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim n→∞ -log n + n k=1 1 k = ∞ 1 - 1 x + 1 ⌊x⌋ dx.
Here, ⌊. . .⌋ represents the floor function. Franz Mertens discovered some important results about the constant B (1874) [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF].

Proposition 1.6. Mertens' second theorem is

lim n→∞   q≤n 1 q -log log n -B   = 0,
where B ≈ 0.26149 is the Meissel-Mertens constant [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF].

In number theory, Ψ(n) = n • q|n 1 + 1 q is called the Dedekind Ψ function, where q | n means the prime q divides n. Definition 1.7. We say that Dedekind(q n ) holds provided that

q≤qn 1 + 1 q ≥ e γ ζ (2) 
• log θ(q n ).

A natural number N n is called a primorial number of order n precisely when, 

N n = n k=1 q k . We define R(n) = Ψ(n) n•log log n for n ≥ 3. Dedekind(q n ) holds if and only if R(N n ) ≥ e γ ζ ( 
lim n→∞ R(N n ) = e γ ζ(2) . Proposition 1.9. The inequality R(N n ) > R(N n+1
) is violated for infinitely many n's under the assumption that the Cramér's conjecture is true [3, Proposition 4 pp. 5], [3, Proposition 7 pp. 7].

Proposition 1.10. For all prime numbers q n > 5 [2, Theorem 1.1 pp. 358]:

q≤qn 1 + 1 q < e γ • log θ(q n ).
The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [START_REF] Hardy | Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑfunctions[END_REF]. In 1916, they also introduced the two symbols Ω R and Ω L defined as [START_REF]Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes[END_REF]:

f (x) = Ω R (g(x)) as x → ∞ if lim sup x→∞ f (x) g(x)
> 0;

f (x) = Ω L (g(x)) as x → ∞ if lim inf x→∞ f (x) g(x) < 0.
After that, many mathematicians started using these notations in their works. From the last century, these notations Ω R and Ω L changed as Ω + and Ω -, respectively. There is another notation:

f (x) = Ω ± (g(x)) (meaning that f (x) = Ω + (g(x)) and f (x) = Ω -(g(x)) are both satisfied). Nowadays, the notation f (x) = Ω + (g(x)
) has survived and it is still used in analytic number theory as:

f (x) = Ω + (g(x)) if ∃k > 0 ∀x 0 ∃x > x 0 : f (x) ≥ k • g(x)
which has the same meaning to the Hardy and Littlewood older notation. For x ≥ 2, the function f was introduced by Nicolas in his seminal paper as [8, Theorem 3 pp. 376]:

f (x) = e γ • log θ(x) • q≤x 1 - 1 q .
Finally, we have the Nicolas Theorem:

Proposition 1.11. If the Riemann hypothesis is false then there exists a real b with 0

< b < 1 2 such that, as x → ∞ [8, Theorem 3 (c) pp. 376]: log f (x) = Ω ± (x -b ).
Putting all together yields a proof for the Riemann hypothesis.

Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. Nevertheless, there exist some implications in case of the Riemann hypothesis could be false. The following is a key Lemma. Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely many prime numbers q n such that Dedekind(q n ) fails (i.e. Dedekind(q n ) does not hold).

Proof. The function g is defined as [10, Theorem 4.2 pp. 5]:

g(x) = e γ ζ(2) • log θ(x) • q≤x 1 + 1 q -1
.

We claim that Dedekind(q n ) fails whenever there exists some real number x 0 ≥ 5 for which g(x 0 ) > 1 or equivalent log g(x 0 ) > 0 and q n is the greatest prime number such that q n ≤ x 0 . It was proven the following bound [10, Theorem 4.2 pp. 5]:

log g(x) ≥ log f (x) - 2 x .
By Proposition 1.11, if the Riemann hypothesis is false, then there is a real number 0 < b < 1 2 such that there exist infinitely many numbers x for which log f (x) = Ω + (x -b ). Actually Nicolas proved that log f (x) = Ω ± (x -b ), but we only need to use the notation Ω + under the domain of the real numbers. According to the Hardy and Littlewood definition, this would mean that

∃k > 0, ∀y 0 ∈ R, ∃y ∈ R (y > y 0 ) : log f (y) ≥ k • y -b .
The previous inequality is also log

f (y) ≥ k • y -b • √ y • 1 √ y , but we notice that lim y→∞ k • y -b • √ y = ∞
for every possible values of k > 0 and 0 < b < 1 2 . Now, this implies that

∀y 0 ∈ R, ∃y ∈ R (y > y 0 ) : log f (y) ≥ 1 √ y .
Note that, the value of k is not necessary in the statement above. In this way, if the Riemann hypothesis is false, then there exist infinitely many wide apart numbers x such that log f (x) ≥ 1

√

x . Since 1 √ x 0 > 2 x 0 for x 0 ≥ 5, then it would be infinitely many wide apart real numbers x 0 such that log g(x 0 ) > 0. In addition, if log g(x 0 ) > 0 for some real number x 0 ≥ 5, then log g(x 0 ) = log g(q n ) where q n is the greatest prime number such that q n ≤ x 0 . The reason is because of the equality of the following terms:

q≤x 0 1 + 1 q -1 = q≤qn 1 + 1 q -1
and θ(x 0 ) = θ(q n ) according to the definition of the Chebyshev function.

New Criterion

This is a new Criterion for the Riemann hypothesis.

Lemma 3.1. The Riemann hypothesis is true whenever for each large enough prime number q n , there exists another prime q n ′ > q n such that

R(N n ′ ) ≤ R(N n ).
Proof. By Lemma 2.1, if the Riemann hypothesis is false and the inequality

R(N n ′ ) ≤ R(N n )
is satisfied for each large enough prime number q n , then there exists an infinite subsequence of natural numbers n i such that

R(N n i+1 ) ≤ R(N n i ),
q n i+1 > q n i and Dedekind(q n i ) fails. By Proposition 1.8, this is a contradiction with the fact that

lim inf n→∞ R(N n ) = lim n→∞ R(N n ) = e γ ζ (2) 
.

By definition of the limit inferior for any positive real number ε, only a finite number of elements of R(N n ) are less than e γ ζ(2)ε. This contradicts the existence of such previous infinite subsequence and thus, the Riemann hypothesis must be true.

Main Insight

This is the main insight.

Theorem 4.1. The inequality R(N n ) > R(N n+1 ) holds for all primes q n (greater than some threshold).

Proof. For all primes q n (greater than some threshold), we need to prove that the inequality R(N n ′ ) < R(N n ) is satisfied for some prime q n ′ > q n and n ′ = n + 1. In this proof, we will be dealing with the previous inequality on every feasibly value of n ′ ≥ n + 1. Later, we will specifically study the particular case of n ′ = n + 1. For all sufficiently large primes q n , our goal is to reveal the truthfulness of the inequality

q≤q n ′ 1 + 1 q log θ(q n ′ ) < q≤qn 1 + 1 q log θ(q n ) which is log log θ(q n ′ ) > log log θ(q n ) + qn<q≤q n ′ log 1 + 1 q
after of applying the logarithm to the both sides and distributing the terms. That is equivalent to

1 > log log θ(q n ) log log θ(q n ′ ) + qn<q≤q n ′ log 1 + 1 q log log θ(q n ′ )
after dividing both sides by log log θ(q n ′ ). This is possible because of the prime number q n ′ could be large enough and thus, the real number log log θ(q n ′ ) would be greater than 0. We can apply the exponentiation to the both sides in order to obtain that e > exp log log θ(q n ) log log θ(q n ′ )

•   qn<q≤q n ′ 1 + 1 q   1 log log θ(q n ′ )
.

For large enough prime q n ′ , we have e = (log θ(q n ′ ))

1 log log θ(q n ′ ) since e = x 1 log x for x > 0. Hence, it is enough to show that log θ(q n ′ ) > qn<q≤q n ′ 1 + 1 q .
That is equal to

e γ • log θ(q n ′ ) > e γ • qn<q≤q n ′ 1 + 1 q .
By Proposition 1.10, we know that

e γ • log θ(q n ′ ) > q≤q n ′ 1 + 1 q .
So, we deduce that

1 > e γ • q≤qn 1 + 1 q -1
which is trivially true since

lim n→∞   e γ • q≤qn 1 + 1 q -1   = 0.
This is because of

(log θ(q n )) -1 > q≤qn 1 + 1 q -1
.

We can check that lim

n→∞ e γ • (log q n ) -1 = 0 is true since θ(q n ) ∼ q n as (n → ∞)
by Proposition 1.1. Here , the point is the statement

(log θ(q n )) -1 > q≤qn 1 + 1 q -1
should be true for large enough n which is equal to say that R(N n ) > 1 holds. By Proposition 1.8, there exists a value of m 0 so that for all natural numbers m ≥ m 0

lim inf m→∞ R(N m ) -ǫ = e γ ζ(2) -ǫ < R(N m ) < e γ ζ(2) + ǫ = lim sup m→∞ R(N m ) + ǫ
for every arbitrary and absolute value ǫ > 0 by definition of limit superior and inferior due to

lim inf m→∞ R(N m ) = lim sup m→∞ R(N m ) = lim m→∞ R(N m ).
In this way, it should exist some value of n 0 so that for all natural numbers n ≥ n 0 we obtain that R(N n ) > 1 since e γ ζ(2) > 1. We would have

1 + ǫ 1 = exp log log θ(q n ) log log θ(q n ′ ) and e • (1 -ǫ 2 ) =   qn<q≤q n ′ 1 + 1 q   1 log log θ(q n ′ ) .
We only need to prove that

e > (1 + ǫ 1 ) • e • (1 -ǫ 2 ) which is ǫ 2 > ǫ 1 ǫ 1 + 1 .
In addition, we can see that

1 -e -1 •   qn<q≤q n ′ 1 + 1 q   1 log log θ(q n ′ ) = ǫ 2 .
We have

  qn<q≤q n ′ 1 + 1 q   1 log log θ(q n ′ ) =   1 + qn<q≤q n ′ 1 + 1 q -1   1 log log θ(q n ′ ) ≤ 1 1 - qn<q≤q n ′ 1+ 1 q -1 log log θ(q n ′ ) = log log θ(q n ′ ) log log θ(q n ′ ) + 1 -qn<q≤q n ′ 1 + 1 q by Proposition 1.2, since -1 ≤   qn<q≤q n ′ 1 + 1 q -1   < log log θ(q n ′ )
due to q n and q n ′ are large enough. We can show the inequality

  qn<q≤q n ′ 1 + 1 q -1   < log log θ(q n ′ )
could hold for a large enough prime q n as well. We are able to show that is equal to

  qn<q≤q n ′ log 1 + 1 q - 1 q   < -   qn<q≤q n ′ 1 q   + log log log(θ(q n ′ )) e
after of applying the logarithm and adding the term

-   qn<q≤q n ′ 1 q  
to the both sides. By Proposition 1.3, we verify that

0 ≥   qn<q≤q n ′ log 1 + 1 q - 1 q   .
By Proposition 1.6, if we get any large enough prime number q n such that log log log(θ(q n ′ )) e ≥  

qn<q≤q n ′ 1 q   ≈ (log log q n ′ -log log q n ) which is (q n ′ ) 1 1+log log θ(q n ′ )
q n , then this could be quite good based on well-known Bertrand's postulate and the initial supposition that n ′ = n + 1. As a consequence, we obtain that

1 - e -1 • log log θ(q n ′ ) log log θ(q n ′ ) + 1 -qn<q≤q n ′ 1 + 1 q < ǫ 2 .
Putting all together, we show that

1 - e -1 • log log θ(q n ′ ) log log θ(q n ′ ) + 1 -qn<q≤q n ′ 1 + 1 q ≥ ǫ 1 ǫ 1 + 1 .
That could be transformed into

(1e -1 ) • log log θ(q n ′ ) + 1 -

qn<q≤q n ′ 1 + 1 q ≥ ǫ 1 ǫ 1 + 1 •   log log θ(q n ′ ) + 1 - qn<q≤q n ′ 1 + 1 q  
could be satisfied. However, the previous inequality truly holds since

(1 -e -1 ) > ǫ 1 ǫ 1 + 1 = 1 - 1 ǫ 1 + 1 .
Certainly, that would mean that e > ǫ 1 + 1

which is e > exp log log θ(q n ) log log θ(q n ′ ) since

ǫ 1 = exp log log θ(q n ) log log θ(q n ′ ) -1.
Returning to our pre-condition n ′ = n + 1, this implies that

(1 -e -1 ) • log log θ(q n+1 ) - 1 q n+1 ≥ ǫ 1 ǫ 1 + 1 • log log θ(q n+1 ) - 1 q n+1 .
That is the same as (1e -1 ) • log log θ(q n+1 ) -1

q n+1 log log θ(q n+1 ) -1 q n+1 ≥ ǫ 1 ǫ 1 + 1 which is - e -1 • log log θ(q n+1 ) log log θ(q n+1 ) -1 q n+1 ≥ - 1 ǫ 1 + 1 and q n+1 • log log θ(q n+1 ) q n+1 • log log θ(q n+1 ) -1
≤ exp 1 -log log θ(q n ) log log θ(q n+1 ) that could be true for large enough prime q n . That is equal to log q n+1 • log log θ(q n+1 ) q n+1 • log log θ(q n+1 ) -1 ≤ 1 -log log θ(q n ) log log θ(q n+1 ) which is log log θ(q n ) log log θ(q n+1 ) ≤ log e • (q n+1 • log log θ(q n+1 ) -1) q n+1 • log log θ(q n+1 ) after of applying the logarithm to the both sides and distributing the terms. That would be (log θ(q n )) 1 log log θ(q n+1 ) ≤ e • (q n+1 • log log θ(q n+1 ) -1) q n+1 • log log θ(q n+1 ) after of doing a simple exponentiation. We know that (log θ(q n )) 1 log log θ(q n+1 ) < (log θ(q n+1 ))

1 log log θ(q n+1 ) = e.
For that reason, we deduce that log θ(q n ) log θ(q n+1 )

1 log log θ(q n+1 ) ≤ 1 - 1 q n+1 • log log θ(q n+1 ) and log θ(q n ) log θ(q n+1 ) ≤ 1 - 1 q n+1 • log log θ(q n+1 ) log log θ(q n+1 ) . By Proposition 1.4, we have log θ(q n ) log θ(q n+1 ) ≤ 1 - 1 q n+1 since - 1 q n+1 •log log θ(q n+1 ) ≥ -1. That would be log θ(q n+1 ) q n+1 ≤ log θ(q n+1 ) -log θ(q n ).
We notice that [3, pp. 4]: log θ(q n+1 ) -log θ(q n ) = log log N n+1 -log log N n = log 1 + log q n+1 θ(q n ) and therefore, log θ(q n+1 ) q n+1 ≤ log 1 + log q n+1 θ(q n ) which is (θ(q n+1 )) 1 q n+1 ≤ 1 + log q n+1 θ(q n ) and θ(q n ) ≤ (θ(q n+1 ))

1-1 q n+1
that is trivially true for large enough prime q n since 1 -1 q n+1 → 1 as (n → ∞)

and lim n→∞ (θ(q n+1 )θ(q n )) = +∞. Now, the proof is done.

Main Theorem

This is the main theorem.

Theorem 5.1. The Riemann hypothesis is true and the Cramér's conjecture is false.

Proof. By Lemma 3.1, the Riemann hypothesis is true if for all primes q n (greater than some threshold), the inequality

R(N n ′ ) ≤ R(N n )
is satisfied for some prime q n ′ > q n . Therefore, the Riemann hypothesis is true by Theorem 4.1. We also know the the Cramér's conjecture is false as a consequence of Proposition 1.9 and Theorem 4.1.

Conclusion

On the one hand, the Riemann hypothesis has far-reaching implications for mathematics, with potential applications in cryptography, number theory, and even particle physics. Certainly, a proof of the hypothesis would not only provide a profound insight into the nature of prime numbers but also open up new avenues of research in various mathematical fields. On the other hand, our proof of the untruthfully Cramér's conjecture could spur considerable advances in number theory as well.