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We study a size-structured model proposed recently by C. Barril et al to describe the dynamics of trees growth in the forest. Our approach to the associated renewal equation is rather different from the methods in the cited work and is based on ideas developed in earlier authors' work on the relation between dynamics of one-dimensional maps and Gurtin-MacCamy's population model. Assuming relatively weak restrictions on the reproduction, death and growth rates β, µ, g, we establish the permanence properties of the semiflow F t generated by the renewal equation and prove that it possesses a compact global attractor of points A. Next we show that the opposite types of monotonicity of β, g assure that F t is also monotone and that in this case A coincides with a unique asymptotically stable equilibrium attracting neighbourhoods of compact sets with non-zero initial data. In particular, by establishing good permanence properties of the semiflow F t , our results additionally supports well-posedness of the model elaborated by C. Barril et al.

Introduction and main results

A temperate forest can be provided with a collective order based on the size (height) of trees. In this order, due to the better conditions for the photosynthesis, the taller trees have higher hierarchy in comparison with the smaller ones. This consideration allows to model the forest dynamics within frameworks of the theory of physiologically structured populations, see [START_REF] Magal | Competition for light in a forest population dynamic model: from computer model to mathematical model[END_REF][START_REF] Metz | The dynamics of physiologically structured populations[END_REF][START_REF] Smith | Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study[END_REF][START_REF] Webb | Population models structured by age, size, and spatial position[END_REF] where further references can be found. One of such models was recently proposed by C. Barril et al [START_REF] Barril | On competition through growth reduction[END_REF] in form of the renewal equation

b(t) = ∞ 0 β x m + a 0 g e -µ(τ -a)
∞ a e -µs b(t -s) ds dτ e -µa b(t -a)da,

where b(t) is the tree's population birth rate at time t, g(x) denotes the growth rate of an individual of height x, the positive parameter µ > 0 represents the per capita death rate and β(x) is the per capita reproduction rate (depending only on height x). It is also assumed in [START_REF] Barril | On competition through growth reduction[END_REF] that all newborn individuals have the minimal height x m ≥ 0 and that (M) Mappings β : [x m , +∞) → [0, +∞), g : [0, +∞) → (0, +∞) are continuous, β is increasing and g is decreasing one with g(+∞) = 0. Moreover, the monotone function

R(b) := ∞ 0 β x m + a 0 g e -µτ µ b dτ e -µa da
is such that the pre-image R -1 (1) is either a single point b * or the empty set.

Model [START_REF] Atkinson | On determining phase spaces for functional differential equations[END_REF] is considered as an integral equation with infinite memory and is provided with a non-negative initial condition b(s) = φ(s) ≥ 0, s ≤ 0. Even if φ is a continuous function, b(t) can have a jump discontinuity at t = 0. In part, this explains the choice of the Banach space of measurable functions (instead of spaces of continuous functions of fading memory type [START_REF] Atkinson | On determining phase spaces for functional differential equations[END_REF])

L 1
ρ (R -) = {φ : |φ| ρ < ∞}, where we use the notation |φ| q := 0 -∞ |φ(s)|e qs ds, with ρ < µ as an appropriate phase space for equation [START_REF] Atkinson | On determining phase spaces for functional differential equations[END_REF]. Fixing an initial function φ ≥ 0, we can rewrite equation [START_REF] Atkinson | On determining phase spaces for functional differential equations[END_REF] in the Volterra's form b(t) = (V φ b)(t) + r φ (t), where ∞ a e -µs φ(t -s)ds dτ e -µa φ(t -a)da.

(V φ b)(t) =
Then a standard argumentation (outlined in Appendix) yields the following existence and uniqueness result. 

→ φ 0 in L 1 ρ (R -) then b φ (t) → b φ0 (t) uniformly on compact subsets of [0, +∞).
By relaxing assumptions of growth and continuity on β and g, Proposition 1 improves [2, Theorem 3.2] and shows that if β is locally Lipschitizian then the renewal equation (1) generates a continuous semiflow F :

L 1 ρ (R -) × R + → L 1 ρ (R -) by (F t φ)(s) = b(t + s), s ≤ 0.
It has a zero steady state b(t) ≡ 0 while the positive equilibria of this semiflow are defined from the scalar equation

1 = R(b) = ∞ 0 β x m + a 0 g e -µτ µ b dτ e -µa da. (2) 
Note that under hypothesis (M) function R(b) is decreasing on R + and the latter equation has (a unique positive) solution b * if and only if R(0) > 1 and

R(+∞) = β(x m )/µ < 1, cf. [2, Theorem 4.1].
A straightforward application of the comparison argument shows that all solutions of equation ( 1) are exponentially converging to 0 when R(0) < 1, see Theorem 5.2 in [START_REF] Barril | On competition through growth reduction[END_REF] (as we show it later, under hypothesis (M) all solutions vanish at +∞ even if R(0) = 1). Thus R(0) can be interpreted as the basic reproduction number.

We will be interested in eventually positive solutions of equation ( 1) and the following dichotomy result will be sufficient for our purposes. In its statement, we consider the operator F :

L 1 ρ (R -, R + ) → R + defined by Fφ := ∞ 0 β x m + a 0 g e -µ(τ -a)
∞ a e -µs φ(-s) ds dτ e -µa φ(-a)da.

Proposition 2. Assume that β(x) > 0 a.e. on [x 0 , +∞) for some x 0 ≥ x m and either inf x≥0 g(x) > 0 or g(x) > 0 and b(t) is a solution bounded on R + . Then either b(t) = 0 for all t ≥ 0 (so that Fφ = 0) or there exists some t 0 ≥ 0 such that b(t) > 0 for all t ≥ t 0 .

In the sequel, we will use the notation N for the non-empty closed subset of all initial data φ, Fφ = 0, which generate the zero continuation b(t) ≡ 0 on R + .

Assume now that equation (1) has a positive equilibrium b * (i.e. R(0) > 1, β(x m ) < µ). One of basic questions concerns its stability properties (with respect to semiflow F t φ). Using the principle of linearised stability for delay equations from [START_REF] Diekmann | Equations with infinite delay: blending the abstract and the concrete[END_REF], the authors of [START_REF] Barril | On competition through growth reduction[END_REF] proved the local asymptotical stability of the positive equilibrium b * for the particular case when x m = 0 and β(x) = max{0, x -x A } with some x A > 0 (see Theorem 5.4 in [START_REF] Barril | On competition through growth reduction[END_REF]). In particular, their approach required certain technical efforts while establishing the continuous differentiability of the operator F :

L 1 ρ (R -, R + ) → R + .
Clearly, the local asymptotical stability of the positive equilibrium does not exclude other and more complex (for example, periodic or unbounded) types of dynamical behaviour of trajectories for the semiflow F t φ. This question was not considered in [START_REF] Barril | On competition through growth reduction[END_REF] and it is the main object of studies in the present work. Here, by invoking several ideas from [START_REF] Herrera | Dynamics of one-dimensional maps and Gurtin-MacCamy's population model. Part I: asymptotically constant solutions[END_REF] (where they were used to study the renewal equation associated with a specific Gurtin-MacCamy's population model), we describe the general structure of the semiflow F t φ under relatively weak assumptions on functions β and g.
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In our main result the monotonicity assumption (M) is not required though similarly to [START_REF] Barril | On competition through growth reduction[END_REF] we impose the global Lipschitz condition on the function β : [x m , +∞) → [0, +∞). Theorem 3. Assume that 0 ≤ β(x m ) < µ, x m ≥ 0, R(0) > 1, that β(x) > 0 a.e. on [x 0 , +∞) for some x 0 ≥ x m , that β satisfies the global Lipschitz condition on R + and that positive continuous function g vanishes at +∞. Then on the open set L 1 ρ (R -, R + ) \ N the semiflow F t φ has a compact global attractor A attracting each solution with initial datum in L 1 ρ (R -, R + )\N. Furthermore, restricted on any compact interval [-n, 0] ⊂ R -, n ∈ N, this convergence is uniform in the sup-norm. Next, each element of A is a differentiable function and there are universal positive numbers θ 1 ≤ θ 2 , θ 3 such that

0 < θ 1 ≤ ψ(s) ≤ θ 2 , |ψ (s)| ≤ θ 3 , s ≤ 0, for each ψ ∈ A.
In particular, by establishing good permanence properties of the semiflow F t φ, this result additionally supports the well-posedness of model ( 1). An explicit (constructive) upper bound θ 2 for A in the sup-norm is given in Corollary 10. According to the classification of global attractors in [START_REF] Smith | Dynamical systems and population persistence[END_REF]Chapter 2], the compact set A in Theorem 3 is a global attractor of points. In view of the possibility of complete positive orbits connecting the zero equilibrium and A, this attractor does not attract every bounded set. Thus F t φ restricted on the open subset L 1 ρ (R -, R + ) \ N is not asymptotically smooth, cf. [START_REF] Smith | Dynamical systems and population persistence[END_REF]Theorem 2.33]. Still, as the next theorem shows, A can be a compact attractor of neighbourhoods of compact sets, cf. [START_REF] Magal | Global attractors and steady states for uniformly persistent dynamical systems[END_REF][START_REF] Smith | Dynamical systems and population persistence[END_REF]. In this theorem, similarly to [START_REF] Barril | On competition through growth reduction[END_REF] assuming the hypothesis (M), we describe the structure of the global attractor A. The key fact here is that (M) implies the monotonicity of semiflow F t φ [START_REF] Smith | Monotone dynamical systems[END_REF] (see Section 2 for even more general result).

Theorem 4. Assume that µ > 0, x m ≥ 0, that β is globally Lipschitzian function, and that the assumption (M) is satisfied. Then (a) the inequalities R(0) > 1 and β(x m ) < µ guarantee that the unique positive equilibrium b * attracts all non-zero solutions and is locally stable in the uniform norm: i. e. for each > 0 there exists δ > 0 such that each solution b(t, φ) of the initial value problem b(s, φ

) = φ(s), s ≤ 0, satisfies |b(t, φ) -b * | < , t ≥ 0, once |φ -b * | ρ < δ. Moreover, if δ > 0 is sufficiently small then lim t→+∞ |b(t, φ) -b * | = 0 uniformly on the open ball |φ -b * | ρ < δ. In particular, A = {b * } attracts neighbourhoods of compact sets in L 1 ρ (R -, R + ) \ N.
(b) the inequalities R(0) > 1 and β(x m ) ≥ µ imply that each non-zero solution of equation ( 1) is unbounded;

(c) R(0) ≤ 1 guarantees that each solution of equation ( 1) vanishes at +∞.

Note that the type of local stability used in the statement (a) of the above theorem is stronger than that one used in [START_REF] Barril | On competition through growth reduction[END_REF] where the closeness |b t -κ| ρ < , t ≥ 0, in the weighted integral norm | • | ρ is obtained instead of the closeness in the uniform norm. Finally, let us add a few words about the organisation of the paper. In the next section, we analyse the monotonicity property of the operator F. Theorems 3 and 4 are proved in the Sections 3. The proofs of Propositions 1 and 2 are outlined in Appendix.

Monotonicity of the operator F

Theorem 5. Suppose that β is an increasing continuous function of polynomial growth and g : R + → R + is continuous and bounded. Then the operator F :

L 1 ρ (R -, R + ) → R + defined by (3) is increasing with respect of the natural order in L 1 ρ (R -, R + ) for each ρ < µ.
Proof. First we assume that φ(s) > 0 a.e. on R -. Set h(s) = φ(s)e µs and θ = H

(u) = u -∞ h(s)ds, a straightforward computation shows that Fφ = ∞ 0 β x m + a 0 g e -µ(τ -a) ∞ a e -µs φ(-s) ds dτ e -µa φ(-a)da = 0 -∞ β x m + 0 u g(e -µs H(u))ds h(u)du = H(0) 0 β x m + 0 H -1 (θ)
g(e -µs θ)ds dθ.

In general, the latter integral is an improper Riemann integral (can have a singularity at θ = 0) and H(u) is strictly increasing and positive on R, with H(-∞) = 0.

If φ 2 (s) ≥ φ 1 (s) > 0, almost everywhere on R -, then clearly

H 2 (u) = u -∞ h 2 (s)ds ≥ H 1 (u) = u -∞ h 1 (s)ds, u ≤ 0, so that H -1 2 (θ) ≤ H -1 1 (θ) ≤ 0, 0 < θ ≤ H 1 (0). Consequently, Fφ 2 = H2(0) 0 β x m + 0 H -1 2 (θ)
g(e -µs θ)ds dθ ≥

H1(0) 0 β x m + 0 H -1 1 (θ)
g(e -µs θ)ds dθ = Fφ 1 .

Now, if φ 2 (s) ≥ φ 1 (s) ≥ 0, then the above argument shows that F(φ 2 + δ) ≥ F(φ 1 + δ) for each positive constant function δ. Since F(φ j + δ) depends continuously on δ we obtain that Fφ 2 ≥ Fφ 1 by considering δ → 0 + . This completes the proof of Theorem 5. Proof. 

Indeed, Fb = bR(b) while for b 2 > b 1 we have H 2 (0) = b 2 /µ > H 1 (0) = b 1 /µ.
F (m) ≤ m ≤ M ≤ F (M ).
3. Uniform ultimate boundedness and uniform persistence of solutions. Proofs of Theorems 3 and 4

Theorem 8. Assume that β(x m + x) ≤ β(x m ) + cx for some c > 0 and for all x ≥ 0, β(x m ) < µ, that g is a non-negative continuous function with g(+∞) = 0. Let b(t) denote continuous solution of the initial value problem b 0 = φ ∈ L 1 ρ (R -, R + ) for equation [START_REF] Atkinson | On determining phase spaces for functional differential equations[END_REF]. Then there are constant α j > 0 depending only on β, g, µ such that 

lim sup t→+∞ b(t) ≤ α 1 and 0 ≤ b(t) ≤ α 2 |φ| ρ + α 3 , t ≥ 0. Proof. Consider the Volterra form b(t) = (V φ b)(t) + r φ (t) of equation (1). Note that (V φ b)(t) = t 0 β x m + t-a 0 g e -µ(τ -t+a) ∞ t-a
A = β(x m )|φ| µ + c 0 -∞ e µτ G e -µτ τ -∞
e µs φ(s)ds dτ.

Setting B(t) = e µt b(t), we can rewrite the latter inequality as

B(t) ≤ A + β(x m ) t 0 B(τ )dτ + c t 0 e µτ G e -µτ |φ| µ + e -µτ τ 0 B(s)ds dτ.
Now, since g(+∞) = 0, we find that G(x)/x → 0 as x → ∞. This implies that for each ε ∈ (0, 1) there exists a constant C ε such that G(x) ≤ C ε + εx for all x ≥ 0. Thus 

= C ε µ -1 (e µt -1) + ε|φ| µ t + ε t 0 τ 0 B(s)dsdτ, A ≤ β(x m ) + c µ -ρ |φ| ρ + cC ε µ , so that B(t) ≤ A + εc|φ| µ t + cC ε µ -1 (e µt -1) + β(x m ) t 0 B(τ )dτ + εc t 0 τ 0 B(s)dsdτ = A + εc|φ| µ t + cC ε µ -1 (e µt -1) + t 0 [β(x m ) + εc(t -s)]B(s)ds, t ≥ 0.
Iterating this inequality where the right-hand side define a Volterra type operator, we find that B(t) ≤ ξ(t), where ξ(t) is a positive function satisfying the integral equation

ξ(t) = A + εc|φ| µ t + cC ε µ -1 (e µt -1) + t 0 [β(x m ) + εc(t -s)]ξ(s)ds, t ≥ 0.
Clearly, ξ(t) also solves the initial value problem

ξ (t) = µcC ε e µt + β(x m )ξ (t) + εcξ(t) ξ(0) = A, ξ (0) = εc|φ| µ + cC ε + β(x m )A.
Solving this problem we obtain that

ξ(t) = α 1 e µt + a 1 e λ+t + a 2 e λ-t ,
where

α 1 = µcC ε µ 2 -µβ(x m ) -εc , λ ± = β(x m ) ± β 2 (x m ) + 4εc 2 ,
and a 1 , a 2 are constants determined from the linear system

a 1 + a 2 = A -α 1 , λ + a 1 + λ -a 2 = -α 1 µ + εc|φ| µ + cC ε + β(x m )A.
Since β(x m ) < µ we can take ε > 0 small enough to have λ -< λ + < µ. Thus we conclude that

b(t) ≤ α 1 + a 1 e (λ+-µ)t + a 2 e (λ--µ)t ≤ α 1 + |a 1 | + |a 2 | ≤ α 2 |φ| ρ + α 3 , t ≥ 0, lim sup t→+∞ b(t) ≤ α 1 = µcC ε µ 2 -µβ(x m ) -εc ,
with some α j independent of the initial data φ.

Corollary 9. Suppose that β(x) is a globally Lipschitzian function with the Lipschitz constant L (so that β(x m + x) ≤ β 1 (x) := β(x m ) + Lx for all x ≥ 0), that β(x m ) < µ and that g is a non-negative continuous function with g(+∞) = 0. Then there are constant α 4 , α 5 > 0 depending only on β, g, µ and such that continuous solution b(t) of the initial value problem b 0 = φ ∈ L 1 ρ (R -, R + ) for equation ( 1) is differentiable on (0, +∞) and has uniformly bounded derivative: Thus, using the estimate 0 ≤ b(t) ≤ α 2 |φ| ρ + α 3 , t ≥ 0, we find that

|b (t)| ≤ α 4 |φ| ρ + α 5 , t > 0. ( 4 
|b (t)| ≤ (µ -β(x m ))(α 2 |φ| ρ + α 3 ) + L max x≥0 g(x)e -µt |φ| ρ + t 0 e µa b(a)da ≤ (µ -β(x m ))(α 2 |φ| ρ + α 3 ) + L max x≥0 g(x) |φ| ρ + (α 2 |φ| ρ + α 3 ) µ ,
and the estimate (4) follows.

Now, consider the operator F 1 defined by (3) where β(x m + x) is replaced with β 1 (x) = β(x m ) + Lx ≥ β(x + x m ), x ≥ 0 (cf. Corollary 9) and g(+∞) = 0. Clearly, Fφ ≤ F 1 φ for each φ ∈ L 1 ρ (R -, R + ). By Theorem 5, the functional F 1 is monotone on L 1 ρ (R -, R + ) and the monotone scalar function F 1 (c) = F 1 c (here c is considered as a constant element of

L 1 ρ (R -, R + )) has the representation F 1 (c) = cR 1 (c) where R 1 (c) := ∞ 0 β(x m ) + L a 0 g e -µτ
µ c dτ e -µa da.

We have that R

1 (0) ≥ R(0) > 1, R 1 (+∞) = R(+∞) = β(x m )/µ < 1, so that F 1 (c) has the biggest positive equilibrium θ 2 .
Corollary 10. Assume all conditions of Corollary 9. If R(0) > 1 then each continuous non-zero bounded function b(t) satisfying equation ( 1) for all t ∈ R has θ 2 as an upper bound:

0 ≤ b(t) ≤ θ 2 , t ∈ R.
Proof. Without loss of generality, after using an appropriate translation or a limiting argument, we can assume that b(0) = max s∈R b(s). But then b(0) ≤ θ 2 as a consequence of the chain of inequalities b(0

) = Fb 0 ≤ F 1 b 0 ≤ F 1 b(0) = F 1 (b(0)).
Corollary 11. Assume all conditions of Corollary 9 and that g(x) > 0 for all x ≥ 0, β(x) > 0 a.e. on [x 0 , +∞) for some x 0 ≥ x m . If R(0) > 1 then the semiflow F t φ is uniformly persistent: i.e. there exists θ 1 > 0 such that lim inf t→∞ b(t) ≥ θ 1 for each non-zero solution b(t). is clearly continuous at c = 0 and therefore there exists some δ > 0 such that

ρ := inf {R(c) : c ∈ C b , c(a) ∈ [0, δ], a ≥ 0} > 1.
We start by proving the impossibility of the convergence lim t→∞ b(t) = 0 for an eventually positive solution b(t). Due to Proposition 2, without loss of generality we can assume that b(t) > 0 for all t ≥ 0. If b(+∞) = 0, there exists an increasing sequence of numbers t j → ∞, such that b(t j ) → 0 and 0 < b(t j ) ≤ b(t) for all t ∈ [0, t j ]. Then we get from (1) that b(t j ) ≥ (

) 5 
Taking the limit in the latter inequality as j → ∞, we obtain that

1 ≥ ∞ 0 β(x m + ag(0))e -µa da = R(0) > 1,
a contradiction. Consequently, lim sup t→∞ b(t) > 0 for each non-zero solution b(t).

Let assume now that the semiflow F t φ is not uniformly persistent, i.e. for each n there exists a non-zero solution b n (t) such that lim inf t→∞ b n (t) < 1/n. Using, if necessary, appropriately shifted solutions b n (t + s n ) with s n ≥ 0 and invoking the ultimate uniform boundedness result of Theorem 8, without loss of generality we can assume that b n (t) > 0 for all t ≥ 0 and that the sequence of the initial segments

φ n (s) = b n (s), s ≤ 0, is bounded in L 1 ρ (R -, R + ).
In view of ( 4), this implies the uniform boundedness of the sequence {b n (t)} on R + .

We will consider the following two situations: Case 1. For some m ∈ N it holds that 

0 ≤ ζ 1 =: lim inf t→∞ b m (t) ≤ lim sup t→∞ b m (t) := ζ 2 ≤ δ, ζ 2 > 0. ( 6 
If ζ 1 > 0, we can modify the previous argumentation as follows. Take ∈ (0, 1) small enough to satisfy (1 -)ρ > 1. We also can assume that b m (t) ≥ ζ 1 (1 -) for all t ≥ 0. Then there exists a monotone sequence

s k → +∞ such that lim k→∞ b m (s k ) = ζ 1 . Choose a continuous function b * (t) as above. Then b m (s k )/(ζ 1 (1 -)) ≥ s k 0 β x m + a 0 g e -µ(τ -a)
∞ a e -µs b m (s k -s) ds dτ e -µa da.

After taking the limit in this inequality as k → ∞, we get the following contradiction

1/(1 -) ≥ ∞ 0 β x m + a 0 g e -µ(τ -a)
∞ a e -µs b * (-s) ds dτ e -µa da ≥ ρ, in view of [START_REF] Magal | Global attractors and steady states for uniformly persistent dynamical systems[END_REF]. Thus the situation presented in formula (6) cannot happen. Case 2. For each n ∈ N, n > 1/δ, it holds that

0 ≤ ζ n =: lim inf t→∞ b n (t) < 1/n < δ < lim sup t→∞ b n (t).
Then for each fixed n > 1/δ there are increasing sequences of positive numbers 1) is translation invariant, the functions b n,j (t) = b n (t+s j ) are also solutions of it. By invoking the Arzelá-Ascoli theorem and using Theorem 8 and Corollary 9, we may conclude that some subsequence b n,j k (t) is converging, uniformly on compact subsets of R, to a continuous bounded function d n (t) such that d n (0) = δ = max s∈[0,τn] d n (s) and lim sup t→∞ d n (t) > 0. But then the option τ n = +∞ is not possible in view of the analysis done in the Case 1. Therefore τ n is a finite positive number and d n (τ n ) = 1/n. Clearly, the sequences d n (t) and d n (t) are uniformly bounded on R. Therefore, once more applying the Arzelá-Ascoli theorem, we find some subsequence i k and an extended positive number τ ∈ [0, +∞] such that τ i k → τ and d i k (t) is converging, uniformly on compact subsets of R, to a continuous bounded function d (t) such that d (0) = δ = max s∈[0,τ ] b(s) and lim sup t→∞ d (t) > 0. Again, the option τ = +∞ is not possible in view of the analysis done in the Case 1. Therefore τ is a finite positive number and d (τ ) = 0. However, since d (t) satisfies (1) for all t ∈ R and d (0) = δ > 0 we know that d (t) > 0 for all t ∈ R. The obtained contradiction completes the proof of Corollary 11.

{s j }, {t j }, s j < t j such that s j , t j → ∞, b n (s j ) = δ, b n (t j ) = 1/n and 1/n ≤ b n (t) ≤ δ for all t ∈ [s j , t j ]. Choose some converging subsequence t j k -s j k → τ n ∈ [0, +∞]. Since equation (
Proof of Theorem 3. Let B comprises all continuous functions φ : (-∞, 0] → [0, +∞) such that 0.5θ 1 ≤ φ(t) ≤ 2θ 2 , t ≤ 0, with θ j defined in Corollaries 10 and 11. Then B is bounded in L 1 ρ (R -, R + ) by 2θ 2 /µ. Next, consider the subset D of B consisting from all lipschitzian functions with the Lipschitz constant which is less or equal to θ 3 := 2α 4 θ 2 /µ + α 5 with α 4 , α 5 being defined in Corollary 9. Clearly, D is a compact subset of L 1 ρ (R -, R + ) attracting every positive solution due to Corollaries 9, 10 and 11. This fact implies the existence of the compact attractor A of points (e.g. see [START_REF] Smith | Dynamical systems and population persistence[END_REF]Theorem 2.17 

Conclusion

In recent study [START_REF] Barril | On competition through growth reduction[END_REF], C. Barril et al proposed a phenomenological size-structured model describing the dynamics of trees growth in the forest. This model is given in the form of relatively complex integral renewal equation with infinite delay. Importantly, it nicely agrees with the classical PDE formulation derived by invoking a conservation law [START_REF] Barril | On competition through growth reduction[END_REF].

In this manuscript, which can be considered as a companion paper for [START_REF] Barril | On competition through growth reduction[END_REF], we provide additional arguments justifying the well-posedness of the mentioned renewal equation. In particular, under more realistic conditions imposed on the growth and reproduction rates g and β we establish the ultimate uniform boundedness and uniform persistence of tree's population birth rate. In the case when g and β are monotone and the associated basic reproduction number is bigger than 1, we also prove the global asymptotic stability of the model. We believe that this result can be further extended for certain unimodal functions β, cf. [START_REF] Herrera | Dynamics of one-dimensional maps and Gurtin-MacCamy's population model. Part I: asymptotically constant solutions[END_REF].

It should be noted that our approach is rather different from the principle of linearised stability for delay equations used in [START_REF] Barril | On competition through growth reduction[END_REF]. Here we follow the techniques developed in [START_REF] Herrera | Dynamics of one-dimensional maps and Gurtin-MacCamy's population model. Part I: asymptotically constant solutions[END_REF] to study some renewal equation associated with a specific Gurtin-MacCamy's population model.

Appendix

Proof of Proposition 1. Note that the condition of polynomial growth of β is sufficient to ensure that r φ (t) is well defined for all t ≥ 0. Indeed, we have that Clearly, K(a) > 0 for all a such that a > (x 0 -x m )/g * and r φ (t) is continuous on R + , with r φ (0) = b(0) > 0. Then applying Corollary B.6 in [START_REF] Smith | Dynamical systems and population persistence[END_REF], we conclude that b(t) > 0 for all large t.

r φ (t) = 0 -∞ β x m + t a g e -µτ

e

  -µs b(t -s)ds + e -µt |φ| µ ) dτ e -µa b(t-a)da,

Proposition 1 .

 1 Assume that continuous function β : [x m , +∞) → [0, +∞) has at most polynomial growth and g : [0, +∞) → [0, +∞) is continuous and bounded. Then (a) there exists at least one non-negative function b φ (t) which is continuous on [0, +∞) and solves the initial value problem b(s) = φ(s) ≥ 0, s ≤ 0 for (1); (b) in addition, if β is locally Lipschitizian function then the solution b φ is a unique one, it is continuously differentiable on (0, +∞) and the derivative b φ (t) is uniformly bounded on each interval (0, T ]. (c) Moreover, if the assumption of item (b) is satisfied and φ

Corollary 6 .

 6 For b ≥ 0 set F (b) = bR(b). If β and g satisfies all assumptions of Theorem 5 and β(x m + x) > 0 for x > 0 then F (b) is a strictly increasing function.

Corollary 7 .

 7 Assume that b(t) is a bounded continuous solution of the integral equation (1) (i.e. b(t) = Fb t , t ∈ R, where we use the standard notation b t (s) = b(t + s), s ≤ 0). Set m = inf t∈R b(t) ≤ M = sup t∈R b(t). If β and g satisfies all assumptions of Theorem 5, then [m, M ] ⊆ [F (m), F (M )]:

eeeeeee

  e -µs b(t -s)ds dτ e -µ(t-a) b(a)da = e -µt t 0 β x m + t-a 0 g e -µ(τ -t+a) a -∞ e -µ(t-s) b(s)ds dτ e µa b(a)da = e -µt t 0 β x m + t a g e -µτ a -∞ e µs b(s)ds dτ e µa b(a)da ≤ e -µt t 0 β(x m ) + c t a g e -µτ a -∞ e µs b(s)ds dτ e µa b(a)da = β(x m ) t 0 e -µ(t-a) b(a)da + ce -µt t µs b(s)ds e µa b(a)dτ da =: J 1 + J 2 . Then setting G(x) = x 0 g(t)dt, we find that J 2 = ce -µt t µs b(s)ds e µa b(a)dadτ = µs b(s)ds da dτ = ce -µt t 0 e µτ G e -µτ τ -∞ e µs b(s)ds -G e -µτ 0 -∞ e µs b(s)ds dτ = c t 0 e -µ(t-τ ) G e -µτ |φ| µ + τ 0 e -µ(τ -s) b(s)ds dτ -c t 0 e -µ(t-τ ) G(e -µτ |φ| µ )dτ. Next, r φ (t)e µt = ∞ t β x m + a 0 g e -µ(τ -a) ∞ a e -µs φ(t -s)ds dτ e µ(t-a) φ(t -a)da = µs φ(s)ds dτ e µa φ(a)da ≤ β(x m ) µs φ(s)ds e µa φ(a)dτ da = β(x m )|φ| µ + c µs φ(s)ds e µa φ(a)dadτ µs φ(s)ds e µa φ(a) dadτ = β(x m )|φ| µ + c t 0 e µτ G(e -µτ |φ| µ )dτ + c 0 -∞ e µτ G e -µτ τ -∞ e µs φ(s)ds dτ, because of lim a→-∞ G e -µτ a -∞ e µs φ(s) ds = G(0) = 0. Consequently, e µt b(t) ≤ A + β(x m ) t 0 e µτ b(τ )dτ + c t 0 e µτ G e -µτ |φ| µ + e -µτ τ 0 e µs b(s)ds dτ, where

t 0 e

 0 µτ G e -µτ |φ| µ + e -µτ τ 0 B(s)ds dτ ≤ t 0 e µτ C ε + εe -µτ |φ| µ + εe -µτ τ 0 B(s)ds dτ

eee

  µs b(s)ds dτ e -µ(t-a) b(a)da. Since |β (x m + x)| ≤ L a.e. on R + and φ ∈ L 1 ρ (R -), by differentiating the last equality, we obtain b (t) = β(x m )b(t) + µs b(s)ds dτ e -µ(t-a) b(a) da = β(x m )b(t) -µb(t)+ µs b(s)ds dτ g e -µt a -∞ e µs b(s)ds e -µ(t-a) b(a)da.

Proof.

  Let C b denote the space of all continuous bounded functions c : R + → R + endowed with the sup-norm. The functional R : C b → R + defined by dτ e -µa da

  b(t j -s) ds dτ e -µa b(t j -a)da ≥ b(t j -s) ds dτ e -µa b(t j )da. b(t j -s) ds dτ e -µa da.

) If ζ 1 e

 1 = 0 then there exists a monotone sequences k → +∞ such that lim k→∞ b m (s k ) = 0 and 0 < b m (s k ) ≤ b m (t) for all t ∈ [0, s k ]. Since equation (1) is translation invariant, the functions b m,j (t) := b m (t + s j ) are also solutions of it. By invoking the Arzelá-Ascoli theorem and using Theorem 8 and Corollary 9, we may conclude that some subsequence b m,j k (t) is converging, uniformly on compact subsets of R, to a continuous function b * (t) such that b * (t) ≤ ζ 2 ≤ δ, t ∈ R. Arguing as above of the formula (5), we also obtain b m (s j k -s) ds dτ e -µa da.After taking the limit in this inequality as k → ∞, we get the following contradiction 1 ≥ -µs b * (-s) ds dτ e -µa da > 1, since e -µ(τ -a) ∞ a e -µs b * (-s) ds ≤ δ µ e -µτ , a ≥ 0.

8 )e

 8 (c)]) possessing properties mentioned in the statement of Theorem 3. Proof of Theorem 4. (a) Set θ 1 ≤ m = inf φ∈A φ(0); M = sup φ∈A φ(0). Clearly, θ 1 ≤ m ≤ M ≤ θ 2 and, by Corollary 7, we find that [m, M ] ⊆ [F (m), F (M )]. In view of the monotonicity properties of both F (x) and R(x), this can happens if and only if m = M = b * . Thus A = {b * }. Let now suppose that the equilibrium b * is not stable as indicated in the statement of the theorem. Then there exists > 0 a sequence φ n → b * such that corresponding solutions b n (t) satisfy the estimate sup t≥0 |b n (t) -b * | > , n ∈ N. Since φ n → b * , the sequences b n (t), b n (t) are uniformly bounded on R + and b n (t) converges uniformly to b * on the intervals [0, m], m ∈ N. Since b n (+∞) = b * , there exists a sequence s n of positive numbers such that max t∈[0,sn] |b n (t) -b * | = |b n (s n ) -b * | = . (It is clear that s n → ∞. But then, considering a sequence of shifted solutions b n (t + s n ) and using limiting argument, we establish the existence of a bounded continuous function b * (t) satisfying equation (1) for all t ∈ R and such that sup t∈R |b * (t) -b * | ≥ |b * (0) -b * | = = max t≤0 |b * (t) -b * | This means that either M * = sup t∈R b * (t) or m * = inf t∈R b * (t) is different from b * . Moreover, since b * (+∞) = b * , we find that m * > 0. But the inclusion [m * , M * ] ⊆ [F (m * ), F (M * )] then implies m * = M * = b * , a contradiction proving the stability of b * . Next, choose δ > 0 small enough to have θ 1 ≤ b(t, φ) ≤ θ 2 , t ≥ 0, for each initial function φ satisfying |φ -b * | ρ ≤ δ. We claim that b(t, φ) converges to b * uniformly on the ball B δ = {φ : |φ -b * | ρ ≤ δ}. Indeed, otherwise there is γ > 0 and a sequences φ n ∈ B δ and s n → +∞ such that |b(s n , φ n ) -b * | = γ. Then arguing as in the previous paragraph below (8), we obtain a contradiction. Hence, A = {b * } attracts its neighbourhood B δ and therefore it also attracts neighbourhoods of compact sets in L 1 ρ (R -, R + ) \ N, e.g. see [11, Corollary 2.32]. (b) Assume that R(0) > 1 and β(x m ) ≥ µ, then b (t) = (β(x m ) -µ)b(t)+ µs b(s)ds dτ g e -µt a -∞ e µs b(s)ds e -µ(t-a) b(a)da, so that b(t) is an increasing function. If b(+∞) were finite, the constant function b(t) = b(+∞) should be an equilibrium for the equation (1) and therefore it should satisfy the equation R(b(+∞)) = 1 which is not possible. (c) Again, if R(0) ≤ 1 then each solution is eventually bounded (cf. Corollary 10) while [m, M ] ⊆ [F (m), F (M )] implies that m = M = 0. Observe that b * = 0 when R(0) = 1.

eee 1 e

 1 µs φ(s)ds dτ e -µ(t-a) φ(a)da = e µs φ(s)ds dτ e (µ-ρ)a e ρa φ(a)da, so that the latter integral is finite. Moreover, for some m ∈ N, r φ (t) = O(t m e -µt ) at t → ∞.Part (a) Let C([0, T ]) + denote the space of all non-negative continuous functions on the interval [0, T ] provided with the topology of uniform convergence. Fix T > 0,φ ∈ L 1 ρ (R -, R + ) and define A : C([0, T ]) + → C([0, T ]) + by Ab = V φ b + r φ . Itis straightforward to check that A satisfies conditions of the Schauder fixed point theorem. Moreover, there exists norm • in C([0, T ]) generating the topology of uniform convergence and R 0 = R 0 (T ) > 0 for which AB R ⊆ B R for every R ≥ R 0 , where B R ⊆ C([0, T ]) + denotes the subset of functions with norm less or equal to R. Thus equation b = V φ b + r φ has at least one solution b = b(φ) in B R . Next, for each n ∈ N consider continuous solution b n to (1) existing on the finite interval [0, n]. For every fixed N ∈ N the sequence {b n } n≥N is uniformly bounded and equicontinuous in C([0, N ]). In fact, by taking θ > 0 large enough and considering the norm b θ = max t∈[0,N ] |e -θt b(t)| we can prove that there is positive number α such that b n θ ≤ α max t≥0 r φ (t) for every n ≥ N . This property of the family {b n } n≥N assures its equicontinuity. Then the Arzelá-Ascoli theorem allows to construct a continuous solution of (1) on [0, ∞) by means of a diagonal argument. Part (b). Fix again T > 0 and φ ∈ L 1 ρ (R -, R + ). Since the argument of β in the expression for (V φ b)(t) is changing between x m and x m + T sup s≥0 g(s), without loss of generality we may suppose that β is a globally Lipshitzian function. If b 1 (t), b 2 (t) solve equation (1) on [0, T ] with the same initial datum b 2 (s) = b 1 (s) = φ(s), s ≤ 0, then it follows from (a) and the proof of Corollary 9 that |b j (t)| + |b j (t)| ≤ M, t ∈ [0, T ], with some universal constant M . It can be also proved that|b 2 (t) -b 1 (t)| ≤ t 0 K(t, s)|b 2 (s) -b 1 (s)|ds, t ∈ [0, T ],with some non-negative function K(t, s) (depending on b j (t)) which is continuous on the closed triangle {(s, t) : 0 ≤ s ≤ t ≤ T }. Then an application of the Gronwall-Bellman inequality shows that b 1 (t) ≡ b 2 (t) on [0, T ]. The cases φ = 0 and φ = 0 were considered separately by us. The first case is trivial and in the latter case we avoid imposing the Lipschitz condition on g by using the following estimates (where we set B j (a) = a -∞ e µs b j (s)ds) µs b 1 (s)ds dτ = 1 µ e -µt B2(a) e -µa B2(a) (g(s)/s)ds -e -µt B1(a) e -µa B1(a) (g(s)/s)ds = 1 µ -e -µa B2(a) e -µa B1(a) (g(s)/s)ds + e -µt B2(a) e -µt B1(a) |b 2 (s) -b 1 (s)|ds B µs |b 2 (s) -b 1 (s)|ds, 0 ≤ a ≤ t.Part (c). To prove that the solution b φ depends continuously on φ ∈ L 1 ρ (R -, R + ), take an arbitrary initial function φ 0 in this space and consider sequence φ n → φ 0 together with the sequence of respective solutions b n (t) and b 0 (t) for equation (1) on [0, T ]. If the sequence b n (t) does not converge uniformly to b 0 (t) then it contains a subsequence b nj (t) converging uniformly to some b * (t) = b 0 (t), see proofs in (a), (b). Then taking limit as j → +∞ in the renewal equations (1) for b nj (t), we obtain that the limiting function b * (t) also solves[START_REF] Atkinson | On determining phase spaces for functional differential equations[END_REF] with the initial data φ 0 . This, however, contradicts to the uniqueness result established in (b).Proof of Proposition 2. Suppose now that b(s 0 ) > 0 at some point s 0 > 0. Using the shifted solution b 1 (t) = b(t+s 0 ) if necessary, without loss of generality we can assume that s 0 = 0. Considering equation (1) in the Volterra's form b(t) = (V φ b)(t) + r φ (t), we obtain that b(t) ≥ t 0 K(a)b(t -a)ds + r φ (t), where K(a) = inf t≥a≥0 β x m + a 0 g e -µ(τ -a) ( t a e -µs b(t -s)ds + e -µt |φ| µ ) dτ e -µa r φ (t) = φ(t -s)ds dτ e -µa φ(t -a)da. Since for all t ≥ a ≥ τ ≥ 0, it holds that 0 ≤ e -µ(τ -a) t a e -µs b(t -s)ds ≤ Γ := sup s≥0 b(s)/µ + |φ| µ , if b(t) is bounded on R + we find that in every case a 0 g e -µ(τ -a) ( t a e -µs b(t -s)ds + e -µt |φ| µ ) dτ ≥ ag * , where g * := min x∈[0,Γ] g(x) > 0 if b is bounded and g * := inf x≥0 g(x) > 0 otherwise.
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