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VARIATIONS ON INVERSION THEOREMS FOR NEWTON-PUISEUX SERIES

EVELIA ROSA GARCÍA BARROSO, PEDRO DANIEL GONZÁLEZ PÉREZ, AND PATRICK POPESCU-PAMPU

Abstract. Let fpx, yq be an irreducible formal power series without constant term, over an algebraically
closed field of characteristic zero. One may solve the equation fpx, yq “ 0 by choosing either x or y as
independent variable, getting two finite sets of Newton-Puiseux series. In 1967 and 1968 respectively,
Abhyankar and Zariski published proofs of an inversion theorem, expressing the characteristic exponents
of one set of series in terms of those of the other set. In fact, a more general theorem, stated by Halphen
in 1876 and proved by Stolz in 1879, relates also the coefficients of the characteristic terms of both sets
of series. This theorem seems to have been completely forgotten. We give two new proofs of it and we
generalize it to a theorem concerning irreducible series with an arbitrary number of variables.

This paper appeared online in Mathematische Annalen on 3.12.2016. The final
publication is available at Springer via http://dx.doi.org/10.1007/s00208-016-1503-1
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1. Introduction

Let fpx, yq be a polynomial with complex coefficients and without constant term. In his Treatise
of fluxions and of infinite series [29, Sect. XXIX-XXXIII], Newton described an iterative method to

compute a formal power series η P Crrtss, such that fpx, ηpx1{nqq “ 0 for certain positive integer n. In
his 1850 paper [32], Puiseux proved that the series produced by Newton’s algorithm were convergent
whenever one starts from a convergent series fpx, yq P Crrx, yss. Since then, the series whose exponents
are positive rational numbers with bounded denominators, be they convergent or not, are called either
Newton-Puiseux series or Puiseux series. In the sequel we will use the first denomination.

In the years 1870, Smith [34] and Halphen [20] realized that for several questions about the singular-
ities of plane algebraic curves, a finite number of the exponents of a Newton-Puiseux series were more
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important than the others. Halphen called those special exponents characteristic. Their modern defi-
nition is the following one: if one looks at the sequence of exponents taken in increasing size, then the
characteristic ones are exactly those at which jumps the lowest common denominator which may be used
for the exponents up to that point. It is a basic fact that if fpx, yq P Crrx, yss is irreducible, then all the
associated Newton-Puiseux series have the same sequence of characteristic exponents. Let us call it the
characteristic sequence of fpx, yq relative to x.

Nowadays, one describes usually the importance of this notion as follows. Consider a branch C (that
is, an irreducible germ of curve) on a germ of smooth complex analytic surface S. If px, yq are local
coordinates on S and fpx, yq P Crrx, yss is a defining function of C relative to those coordinates, then
one may consider its characteristic sequence relative to x. This sequence is independent of px, yq once
the y-axis is transversal to the branch C, that is, once its tangent does not coincide with the reduced
tangent cone of C, which is a line. One speaks then of the generic characteristic sequence of C. Its main
property is that it is a complete invariant of the embedded topological type of the branch in the ambient
germ of surface (see for instance [38, Theorem 5.5.8]). In fact, most computations of other topological
invariants of the pair pS,Cq are done in terms of its generic characteristic sequence.

It is nevertheless important to work also with Newton-Puiseux series computed relative to non-generic
coordinate systems. For instance, another usual way to study the branch C is to perform its process of
embedded resolution by blow-ups of points (see for instance [38, Chapter 3]). A basic problem is then
to express the generic characteristic sequence of the strict transform of C obtained after one blow up in
terms of that of C. If one starts from a generic Newton-Puiseux series ηpx1{nq of C, then x´1 ¨ ηpx1{nq
is a Newton-Puiseux series of the strict transform of C. This series is generic for the strict transform if
and only if the x-order of ηpx1{nq is at least 2. In this case, it is immediate to get from it the generic
characteristic sequence of the strict transform. But how to proceed when this is not the case?

One gets the following problem, in whose formulation we replaced for simplicity the strict transform
by the initial branch: to compute the generic characteristic exponents of C in terms of those of a Newton-
Puiseux series ηpx1{nq of a defining function fpx, yq, when C is tangent to the y-axis. But in this case C
is necessarily transversal to the x-axis. Therefore, if ξpy1{mq is a Newton-Puiseux series of fpx, yq relative
to y, that is, if fpξpy1{mq, yq “ 0, then its characteristic sequence is exactly the generic characteristic
sequence of C. Consequently, it is enough to express the characteristic sequence of ξpy1{mq in terms of
that of ηpx1{nq. Such an inversion theorem (called in this way because one inverts the roles of x and y
in passing from ηpx1{nq to ξpy1{mq) is well-known and it is often attributed to Abhyankar’s paper [2] of
1967 or to Zariski’s paper [40] of 1968. Proofs of this inversion theorem can be also found in [7, Section
5.6], [10, Theorem 5.2.21], [31, Proposition 4.3] and [3, Page 111].

We were very surprised to discover that in his 1876 paper [20, page 91], Halphen had already formulated
a stronger result than the previous inversion theorem. He did not provide a proof of it. As far as we know,
the first proof was given by Stolz [36, Sect. 3] in 1879. For this reason, we will speak in the sequel about
the Halphen-Stolz inversion theorem. It is stronger than the inversion theorem of Abhyankar-Zariski
because it does not only provide formulae for the characteristic exponents of ξpy1{mq in terms of those
of ηpx1{nq, but also for the corresponding coefficients. The previous papers of Halphen and Stolz seem to
be forgotten, even though they were mentioned in Halphen’s appendix [21] to Salmon’s treatise on plane
algebraic curves, which is cited sometimes nowadays.

The aim of our paper is to extend the Halphen-Stolz inversion theorem to an arbitrary number of
variables. We achieve this aim in Corollary 5.21 of our Inversion Theorem 5.20.

In order to arrive at those results, we give first two new proofs of the classical Halphen-Stolz inversion
theorem (stated by us as Corollary 4.5 of Theorem 4.4). The first one is based on the relations between
the coefficients associated to the irreducible exponents of an invertible power series (see Definition 3.2),
those of its powers and those of its dual (see Proposition 3.16). A flow-chart representing our line of
reasoning for this first proof is drawn in diagram (4.17). Our second proof uses a formula expressing all
the coefficients of the Newton-Puiseux series ξpy1{mq in terms of those of ηpx1{nq (see Proposition 4.10).
This formula, based on the Lagrange inversion theorem (see Theorem 4.9), generalizes the Halphen-Stolz
inversion formula for the coefficients.
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It is the first proof which we extend into a proof of the several-variables case. We could have given
directly the most general statements and proofs. We preferred to start explaining in a detailed way the
classical case, because it served us as a model for building the general proof, and because we feel that in
this way the paper is easier to read. Its title is inspired by the title of Griffiths’ paper [19].

As the generic characteristic sequence is crucial for understanding the embedded topology of complex
plane branches, we expect that the associated coefficients could play an important role in problems related
not only to their topology, but also to their analytical type. It is the main reason why we considered that
it is important to bring to the attention of researchers the forgotten inversion theorem of Halphen-Stolz.

Zariski’s proof of the inversion theorem in [40] was obtained as an application of the theory of saturation
of local rings, in connexion with the study of topological equisingularity. There exist other notions of
saturation, for instance, the Lipschitz-saturation (see [30, 25]) and also the presaturation of Campillo,
which is better adapted to positive characteristic (see [5, 6]). In the case of irreducible germs of quasi-
ordinary hypersurface singularities, Zariski’s results on saturation and Lipman’s inversion theorem appear
also in the combinatorial characterization of the embedded topological type of this class of singularities
(see [14, 27]). We expect that these lines of research combined with our generalized inversion theorem
will lead to a better understanding of the invariants of singularities of other classes of hypersurface germs.

The article is structured as follows. In Section 2 we recall basic facts about Newton-Puiseux series
associated to plane branches and their characteristic exponents. In Section 3 we introduce the notions of
irreducible and essential exponents of a series and we give some results relating the coefficients of certain
pairs of invertible series. In Section 4 we explain our proofs of the Halphen-Stolz inversion theorem and
of its generalization into an inversion formula for all coefficients, based on a Lagrange inversion formula.
Finally, in Section 5 we prove our generalization concerning an arbitrary number of variables and we
explain in which way it extends the inversion theorem of Lipman concerning the characteristic exponents
of quasi-ordinary series. Note that we work always over a fixed algebraically closed field of characteristic
zero.

Acknowledgements. This research was partially supported by the French grants ANR-12-JS01-
0002-01 SUSI, Labex CEMPI ANR-11-LABX-0007-01 and the Spanish grants MTM2012-36917-C03-0,
MTM2013-45710-C2-2-P,MTM2016-76868-C2-1-P,MTM2016-80659-P.We are grateful to Herwig Hauser
and Hana Kováčová for their translation of parts of Stolz’ paper. The third-named author is grateful to
Mickaël Matusinski for the opportunity to explain our first proof of the Halphen-Stolz theorem at the
Geometry seminar of the University of Bordeaux. We thank him and the anonymous referee for their
remarks on a previous version of this article, which allowed us to improve our presentation. We also
thank Antonio Campillo for the information he sent us about the uses of Abhyankar-Zariski inversion.

2. Newton-Puiseux series and their characteristic exponents

In this section we introduce the notations and vocabulary about power series with integral or rational
exponents which will be used throughout the text. Among the series with rational exponents, we will
be interested only in those with bounded denominators, called Newton-Puiseux series. We conclude the
section introducing the well-known notion of characteristic exponents of a Newton-Puiseux series.

Throughout the paper N denotes the set of non-negative integers, N˚ denotes Nzt0u and K denotes a
fixed algebraically closed field of characteristic zero.

The following definition explains the basic vocabulary and notations about power series with integer
exponents which will be used in the sequel:

Definition 2.1. The ring Krrtss of entire series consists of the formal power series in the variable t,
with coefficients in K and exponents in N. We say that the elements of its field of fractions Kpptqq are
meromorphic series. They are exactly the series with coefficients in K, exponents in Z and a finite
number of terms with negative exponents. If η P Kpptqq and m P Z, we denote by rηsm P K the coefficient
of the monomial tm in ηptq and by Spηq Ă Z its support, consisting of the exponents m with non-zero
coefficients rηsm.
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Therefore, a meromorphic series η P Kpptqq may be written as:

ηptq “
ÿ

mPSpηq

rηsm tm.

We will also use series with rational exponents, but such that their support has bounded denominators :

Definition 2.2. A Newton-Puiseux series ψ in the variable x is a power series of the form ηpx1{nq,
where ηptq P Krrtss and n P N˚. For a fixed n P N˚, they form the ring Krrx1{nss. Its field of fractions is
denoted Kppx1{nqq.

One extends immediately to Newton-Puiseux series ψ the notion of support (which is a set with
bounded denominators in the sense of Definition 3.1) and the notation rψsm for their coefficients (where
now m P Q`).

Denote by:

Krrx1{Nss :“
ď

nPN˚

Krrx1{nss

the local K-algebra of Newton-Puiseux series in the variable x.
The algebra Krrx1{Nss is endowed with the natural order valuation:

ordx : Krrx1{Nss ÝÑ Q` Y t8u

which associates to each series ψ “ ηpx1{nq P Krrx1{nss the minimum of its support. The dominating
coefficient of a Newton-Puiseux series ψ is the coefficient of its term of exponent ordxpψq.

The field of fractions of the ring Krrx1{Nss of Newton-Puiseux series is:

Kppx1{Nqq :“
ď

nPN˚

Kppx1{nqq.

One has the following fundamental theorem (see for instance, [10, Chapter 5.1], [13, Chapter 7], [9,
Chapter 2.1] or [38, Chapter 2] for a proof), which explains the reason why we need to work with
Newton-Puiseux series even if we are interested primarily in series with integral exponents:

Theorem 2.3 (The Newton-Puiseux theorem).
Any monic reduced polynomial f P Krrxssrys of degree n P N˚ has n roots in Krrx1{Nss. If f is moreover
irreducible, then those roots are precisely the series of the form:

(2.1) ψρ :“ ηpρ ¨ x1{nq,

where ψ “ ηpx1{nq P Krrx1{nss is any one of them and ρ P K˚ varies among the multiplicative subgroup
Gn of pK˚, ¨q of n-th roots of 1 P K˚.

Remark 2.4. If f P Krrxssrys is a monic irreducible polynomial of degree n P N˚and if ψ P Kppx1{nqq is
a root of f , then the field extension:

Kppxqq Ă Kppxqqrys{pfq » Kppxqqrψs “ Kppx1{nqq

is Galois. Its Galois group is isomorphic to the group Gn, acting on Kppx1{nqq by:

(2.2) pρ, x1{nq Ñ ρ ¨ x1{n, for all ρ P Gn.

The series ψρ in Theorem 2.3 are precisely the conjugates of ψ under this action.

Given a Newton-Puiseux series ψ, there exists an infinite number of choices of n P N˚ such that
ψ P Krrx1{nss. This is simply due to the fact that Krrx1{nss Ă Krrx1{mss whenever n divides m. One may
get nevertheless a canonical choice of n P N˚ by asking it to be minimal :

Definition 2.5. If ψ P Kppx1{Nqq, a representation ψ “ ηpx1{nq with ηptq P Krrtss and n P N˚ is called
primitive if n is the lowest common denominator of the exponents of ψ.
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Example 2.6. Assume that ψ “ x5{2 ` x8{3. Then ψ “ ηpx1{6q, with ηptq “ t15 ` t16. This defines a

primitive representation of ψ. Writing now ψ “ η1px1{12q with η1ptq “ t30 ` t32, one gets a non-primitive
representation. Let us consider a 6-th root of unity ρ P K˚. Then:

ψρ “ ηpρ x1{6q “ ρ15x5{2 ` ρ16x8{3 “ ρ3x5{2 ` ρ4x8{3.

Among the exponents of a Newton-Puiseux series, several are distinguished by looking at the way they
may be written as quotients of coprime integers:

Definition 2.7. Let ψ P Krrx1{Nss be a nonzero Newton-Puiseux series with zero constant term. The
set Epψq of characteristic exponents of ψ consists of the elements of the support of ψ which, when
written as quotients of integers, need a denominator strictly bigger than the lowest common denominator
of the previous exponents. That is:

Epψq :“ tl P Spψq |Nl ¨ l R Zu , where Nl :“ min

"
N P N˚ | pSpψq X r0, lqq Ă

1

N
Z

*
.

The sequence of characteristic exponents of ψ P Krrx1{Nss is defined by writing the elements of Epψq
in increasing order.

Example 2.8. Both Newton-Puiseux series x5{2 ` x8{3 and 2x ´ x5{2 ` x8{3 ´ 3x7{2 ` x23{6 have the
same set t5{2, 8{3u of characteristic exponents.

Remark 2.9. According to Enriques and Chisini [11, page 375], it was Smith [34] and Halphen [20]
who discovered in the years 1870 that special exponents of a Newton-Puiseux series are particularly
important if one wants to compute the intersection number of two plane branches starting from their
Newton-Puiseux series. This information was repeated by Zariski [39, Ch. 1], but without citing anymore
their precise papers. Those special exponents were called characteristic by Halphen in [20, Sect. 1.1],
which is also the paper in which he stated his inversion theorem for both exponents and coefficients.
This denomination remained, but with slightly variable meanings (see also Remarks 2.12 and 4.8). Let
us mention that Smith did not name those special exponents (which he defined in [34, Sect. 8]).

The set Epψq of characteristic exponents of ψ is necessarily finite, even if the series has infinite support.

More precisely, if ψ P Krrx1{nss, then Epψq has at most as many elements as the number of factors of
the prime factorisation of n. The set Epψq may also be characterized using the Galois action, as the set
of orders ordxpψρ ´ ψq, when ρ varies in Gnzt1u (see for instance [38, Prop. 4.13]). Note that, because
all the conjugates ψρ have the same support (by the explicit description of the Galois action recalled in
Remark 2.4), they also have the same set of characteristic exponents, a fact implicitly used in Definition
2.11 below.

One has the following particular case of the Weierstrass preparation theorem (see for instance [10,
Chap. 3.2] or [13, Chap. 6]):

Theorem 2.10. Let f P Krrx, yss be a series such that ordypfp0, yqq “ n P N˚. Then, there exist a
unique monic polynomial F P Krrxssrys of degree n and a unique unit ǫ P Krrx, yss such that:

(2.3) f “ ǫ ¨ F.

In addition, f is irreducible in Krrx, yss if and only if the polynomial F is irreducible in Krrxssrys.

This theorem allows us to introduce the following vocabulary:

Definition 2.11. Let f P Krrx, yss be an irreducible series such that ordyfp0, yq “ n P N˚. The
polynomial F P Krrxssrys provided by Theorem 2.10 is called the Weierstrass polynomial associated
to the series f P Krrx, yss relative to x. Then, the Newton-Puiseux series of f relative to x are the
roots of the associated Weierstrass polynomial F P Krrxssrys, in the ring Krrx1{Nss. If f is irreducible,
then its characteristic exponents relative to x are the characteristic exponents of any one of those
roots.
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Remark 2.12. Let us explain how the previous algebraic notions apply in the geometrical setting of a
branch, an irreducible germ of complex analytic plane curve C on a germ S of smooth complex analytic
surface. Choose a local system of coordinates px, yq on S. Then, the branch C is defined by an irreducible
series f P Crrx, yss. If the y-axis is transversal to the tangent line of the branch C, then one may show
that the characteristic exponents of f relative to x are always the same (see for instance [38, Thm. 3.5.6]).
One speaks in this case about generic characteristic exponents. The notations used for them by Zariski in

[39, Ch. 1], [40, Sect. 3] and [41, Sect. II.3] are common nowadays:
´

m1

n1

, m2

n1n2

, . . . ,
mg

n1¨¨¨ng

¯
. At least since

[40, Sect. 3], Zariski uses also a characteristic sequence pβ0, β1, ..., βgq of natural numbers instead of the

sequence of generic characteristic exponents, which may then be reconstructed as
´

β1

β0
, ...,

βg

β0

¯
(here β0 is

the multiplicity of the branch C, that is, the minimal degree of the monomials of fpx, yq). We do not use
the previous notations in this paper for two reasons: on one side we never need a genericity hypothesis on
the coordinate system relative to C and on the other side we find the related notion of essential exponent
relative to 1 (see Definition 3.6) better suited to a simple formulation of the Halphen-Stolz inversion
theorem (see Remark 4.7).

3. A calculus for the irreducible terms of invertible entire series

In this section we introduce several notions allowing to study the supports of Newton-Puiseux series
and the semigroups generated by them: their irreducible elements (see Definition 3.2) and their essential
elements (see Definition 3.6) relative to an arbitrary natural number. We concentrate then on the entire

series with non-zero constant terms. If φ is such a series, we introduce its dual qφ and we show that the
coefficients of the monomials with irreducible exponents in the positive integral powers of φ and in the

dual qφ may be deduced from those of φ by simple formulae (see Proposition 3.16). In Section 4 we will
apply those formulae to the essential exponents relative to well-chosen natural numbers, in order to prove
the Halphen-Stolz inversion theorem.

Next definition introduces vocabulary about the sets of rational numbers which may appear as supports
of Newton-Puiseux series:

Definition 3.1. A set with bounded denominators is a non-empty (possibly infinite) set E Ă Q

such that there exists n P N˚ with E Ă
1

n
N. We denote by N˚ E Ă Q` the semigroup generated by

E, that is, the set of non-empty finite sums of elements of E. Analogously, we denote by Z E Ă Q the
group generated by E.

Note that the semigroup N˚ E contains 0 (that is, it is a monoid for addition) if and only if E does.
Given a set with bounded denominators, we will be interested in its irreducible elements :

Definition 3.2. Assume that E Ă Q` is a set with bounded denominators. We denote by IrrpEq the
set of irreducible elements of E, that is, the subset of E formed by those elements which cannot be
written as sums of at least two elements of Ezt0u. The elements of E which are not irreducible are called
reducible. If E is the support Spψq of a Newton-Puiseux series ψ, then we write also Irrpψq :“ IrrpSpψqq,
and we call it the set of irreducible exponents of ψ.

Remark 3.3. Let E Ă Q` be a set with bounded denominators. Notice that if E contains 0, then 0 is
by definition an irreducible element of E. More generally, the minimum of E is always irreducible in E.

Example 3.4. Assume that E “ t6, 15, 16, 21, 23u. Then IrrpEq “ t6, 15, 16, 23u. Note that 21 is
reducible in E, because it is equal to the sum 6 ` 15 and 6, 15 P E.

The sets of irreducible elements of E and of the semigroup it generates coincide:

Lemma 3.5. Assume that E Ă Q` is a set with bounded denominators. Then:

(1) IrrpEq “ IrrpN˚ Eq and this set is the minimal generating set of the semigroup N˚ E, relative to
the inclusion partial order on the set of its generating sets.

(2) The set IrrpEq is finite.
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Proof. Multiplying E by a convenient rational number, we may restrict to the sets E Ă N whose elements
are globally coprime.

(1) Both inclusions between IrrpEq and IrrpN˚ Eq are immediate to check, therefore we will assume
from now on that the two sets are equal.

Let us prove the minimality property of IrrpN˚Eq. Consider another generating set A of N˚E

and a P IrrpN˚ Eq. As A is generating, a may be written as a sum of elements of A. If this sum
were non-trivial, then a would not be irreducible in N˚ E. Therefore a P A, which shows the
desired inclusion IrrpN˚ Eq Ă A.

(2) In order to show that IrrpEq is finite, it is enough to show that IrrpN˚Eq is finite. The semigroup
N˚ E being generated by globally coprime elements, it has finite conductor, that is, there exists
c P N such that all natural numbers greater than or equal to c belong to N˚ E (see [38, page
82]; in this case, the smallest such c is called the conductor of the numerical semigroup N˚ E).
But this implies that IrrpN˚ Eq Ă t0, 1, ..., 2c´ 1u. Indeed, any element l ě 2c of the semigroup
may be written in the form c ` d, with d ě c, that is, as a non-trivial sum of elements of the
semigroup.

�

We will be especially interested in particular sequences of irreducible elements of a given set E with
bounded denominators:

Definition 3.6. Let us consider a set E Ă Q` with bounded denominators and an integer p P N˚. Then
the sequence esspE, pq :“ pesspE, pqlql of essential elements of E relative to p is defined inductively
by:

‚ esspE, pq0 :“ minE.
‚ If l ě 1, then the term esspE, pql is defined if and only if E is not included in the group

Ztp, esspE, pq0, ..., esspE, pql´1u. In this case:

esspE, pql :“ min pEzZtp, esspE, pq0, . . . , esspE, pql´1uq .

The following basic property of this notion is a direct consequence of the definition:

Lemma 3.7. Assume that E Ă Q` has bounded denominators and take p, q P N˚. Then:

q esspE, pq “ ess pqE, qpq .

One has also:

Lemma 3.8. Assume that E Ă Q` has bounded denominators and that p P N˚. Then the sequence of
essential exponents esspE, pq is finite.

Proof. Lemma 3.7 implies that it is enough to consider the case where E Ă Z. Then one has by definition
the strict inclusions:

Ztp, esspE, pq0, . . . , esspE, pql´1u Ĺ Ztp, esspE, pq0, . . . , esspE, pqlu, for all l ě 1

(for which the term esspE, pql is defined). Any ascending chain of subgroups of Z being stationary, we
deduce that the sequence of essential exponents is finite. �

Example 3.9. Let us consider again the set E “ t6, 15, 16, 21, 23u from Example 3.4. Here are its
sequences of essential elements relative to the numbers p P t1, ..., 12u:

$
’’&
’’%

esspE, 1q “ esspE, 5q “ esspE, 7q “ esspE, 11q “ p6q,
esspE, 2q “ esspE, 4q “ esspE, 8q “ esspE, 10q “ p6, 15q,
esspE, 3q “ esspE, 9q “ p6, 16q,
esspE, 6q “ esspE, 12q “ p6, 15, 16q.

Lemma 3.7 implies that: ess
` 
1, 5

2
, 8
3
, 7
2
, 23

6

(
, 1
˘

“ 1
6
esspE, 6q “

`
1, 5

2
, 8
3

˘
. The set

 
1, 5

2
, 8
3
, 7
2
, 23

6

(
is

precisely the support of the second series considered in Example 2.8, whose sequence of characteristic
exponents is

`
5
2
, 8
3

˘
. Note that its sequence of essential exponents relative to 1 may be obtained from

the characteristic sequence by adjoining to it as initial term the order of this series (which is in this case
equal to 1). We will see in Lemma 3.13 that this is a general fact.
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The following lemma shows that the non-zero essential elements of a set E relative to any positive
integer are irreducible elements of E:

Lemma 3.10. The essential elements of a set E Ă Q` with bounded denominators relative to a number
p P N˚ are irreducible elements of E.

Proof. If esspE, pq “ pǫ0, . . . , ǫdq, then we have that ǫ0 “ minE, which is an irreducible element of E.
Let us show that the property is also true for ǫl, where l ě 1. If ǫl was reducible, then it would be a
non-trivial sum of elements of E, which would therefore be strictly less than ǫl. By the definition of ǫl,
the terms of this sum would belong to the group Ztp, ǫ0, . . . , ǫl´1u. This would imply that ǫl belongs also
to this group, which contradicts Definition 3.6. �

Lemma 3.11. Assume that E Ă Q` has bounded denominators and that p P N˚. Then we have the
following equality of essential sequences:

esspE, pq “ esspIrrpEq, pq.

Proof. If esspE, pq “ pǫ0, . . . , ǫdq and esspIrrpEq, pq “ pǫ1
0, . . . , ǫ

1
d1 q, then Remark 3.3 and Definition 3.6

imply that:

ǫ0 “ minE “ min IrrpEq “ ǫ1
0.

Assume by induction that ǫ0 “ ǫ1
0, . . . , ǫl´1 “ ǫ1

l´1, for 1 ď l ă d. Then we get:

ǫ1
l “ minpIrrpEqzZtp, ǫ0, . . . , ǫl´1uq ď ǫl “ minpEzZtp, ǫ0, . . . , ǫl´1uq,

since ǫl is an irreducible element of E by Lemma 3.10. The inclusion IrrpEq Ă E implies also that ǫl ď ǫ1
l,

hence ǫl “ ǫ1
l. This proves that ǫl “ ǫ1

l for 0 ď l ď d and d ď d1. By Lemma 3.10 and the definition of the
essential exponents, one has the inclusions IrrpEq Ă E Ă Ztp, ǫ0, . . . , ǫdu, which imply that d1 “ d. �

Definition 3.12. If ψ P Krrx1{nss is a non-zero series and p P N˚, then we will write:

esspψ, pq :“ esspSpψq, pq,

and we will speak about the sequence of essential exponents of ψ relative to p.

The characteristic exponents of a Newton-Puiseux series are intimately related to its essential expo-
nents relative to 1:

Lemma 3.13. Let pα1, . . . , αgq be the sequence of characteristic exponents of a series ψ P Krrx1{nss. It
may be obtained from the sequence pǫ0, ǫ1, ..., ǫdq of essential exponents of ψ relative to 1 in the following
way:

‚ If ǫ0 R Z, then g “ d ` 1 and αi “ ǫi´1 for all i P t1, ..., d` 1u.
‚ If ǫ0 P Z, then g “ d and αi “ ǫi for all i P t1, ..., du.

Proof.
‚ Consider first the case in which ǫ0 R Z. As the first characteristic exponent is the minimal non-

integral exponent in the support of ψ, we deduce that α1 “ ǫ0. Assume by induction that αi “ ǫi´1 for
all i P t0, ..., lu. Definition 3.6 implies that ǫl is the first exponent of Spψq which is strictly greater than
ǫl´1 and which cannot be written as a fraction whose denominator is the least common denominator of
the previous exponents in the support of ψ. By Definition 2.7, we get that αl`1 “ ǫl.

‚ Consider now the case in which ǫ0 P Z. By definition, ǫ0 P N cannot be a characteristic exponent of
ψ and α1 “ ǫ1. The result follows by induction, using the same argument as in the first case. �

In the rest of this section we will be especially interested in entire series with non-zero constant term,
that is, in invertible elements of the multiplicative monoid pKrrtss, ¨q. They form a multiplicative group,
which we will denote by pKrrtss˚, ¨q.

Note that the entire series of the form t φptq for φ P Krrtss˚, that is, the entire series of order 1,
form the (non-commutative) group under composition of series which admit a reciprocal (an inverse
for composition). We denote by pt Krrtss˚, ˝q this group. Division by t transforms it bijectively into
pKrrtss˚, ¨q, but is not a morphism of groups. What is essential for us is that the inversion for composition
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becomes an involution of the set Krrtss˚ which has special properties with respect to the terms whose
exponents are irreducible (see Proposition 3.16 (2)). We use the following vocabulary for this involution:

Definition 3.14. If φ P Krrtss˚, then its dual is the unique entire series qφ P Krruss˚ such that u qφpuq
and t φptq are reciprocal.

Remark 3.15. If φ P Krrtss˚, then setting u “ t φptq defines a change of variable in the ring Krrtss.
Notice that Krrtss “ Krruss and by Definition 3.14 the following equivalence holds:

(3.1) u “ t φptq ô t “ u qφpuq.

We use two variables t and u in our notations for a dual pair of series, in order to relate them easily from
the notational point of view to the two sets of Newton-Puiseux series of an irreducible fpx, yq P Krrx, yss,
which depend on the two variables x and y (see Section 4).

The following proposition expresses the coefficients of the positive integral powers and of the dual of
an entire series φ P Krrtss˚ in terms of those of φ. It may be deduced from the statement and the proof
of Wall’s [38, Lemma 3.5.4]. But as we could not find it formulated in the literature and as it lies at the
core of our first proof of the Halphen-Stolz theorem, we give a detailed proof of it.

Proposition 3.16. Let φ P Krrtss˚ and N P N˚. Then:

(1) IrrpφN q “ Irrpφq. Moreover rφN s0 “ rφsN0 and rφN sr “ N rφsN´1
0 rφsr, for all r P Irrpφqzt0u.

(2) Irrpqφq “ Irrpφq. Moreover rqφs0 “ rφs´1
0 and rqφsr “ ´rφs´r´2

0 rφsr, for all r P Irrpφqzt0u.

Proof. One has:

(3.2) φptq “
ÿ

jPSpφq

rφsj t
j .

The hypothesis φ P Krrtss˚ translates into 0 P Spφq, that is, rφs0 ‰ 0.

(1) Consider first the case of φN . By equation (3.2), we have:

(3.3) φN ptq “
ÿ

j1,...,jNPSpφq

rφsj1 ¨ ¨ ¨ rφsjN tj1`¨¨¨`jN .

‚ Let us show first that Irrpφq Ă IrrpφN q and that one has the stated equalities between coefficients.
Consider r P Irrpφq. If r “ 0, one has obviously r P IrrpφN q and rφN s0 “ rφsN0 . Assume therefore that
r ą 0. The only way to write r as a sum of N elements of Spφq, is that one of them be equal to r, and
the other ones vanish. There are N different positions in the sum for the non-vanishing one, therefore:

rφN sr “ N rφsN´1
0 rφsr,

which is the desired formula.
In particular, rφN sr ‰ 0, which shows that r P SpφN q. If r was reducible in SpφN q, it could be written

as a non-trivial sum of elements of SpφN q. By formula (3.3), it would also be a non-trivial sum of elements
of Spφq, which would contradict the fact that it is an irreducible element of Spφq. Therefore r P IrrpφN q.

‚ Let us show now the reverse inclusion IrrpφN q Ă Irrpφq. Consider an element r P IrrpφN q. By
formula (3.3), we know that it may be written as a sum of N elements of Spφq. In particular, it may be
written as a sum of irreducible elements of Spφq. By the previous point, we know that those elements
are also irreducible in SpφN q. Our hypothesis r P IrrpφN q implies that there is only one non-zero term in
this sum, which proves the desired membership r P Irrpφq.

(2) Consider now the case of qφ. Write the analogue of (3.2) for qφ:
(3.4) qφpuq “

ÿ

kPSpqφq

rqφsk u
k.

As t φptq P Krrtss and u qφpuq P Krruss are reciprocal series, one has by definition the identity:

t “ pt φptqq qφpt φptqq,
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which, after division by t and combination with the expansion (3.4), gives:

(3.5) 1 “
ÿ

kPSpqφq

rqφsk t
kφptqk`1.

Expand now the powers φptqk`1 using equation (3.3). We get:

1 “
ÿ

k P Spqφq
j1, ..., jk`1 P Spφq

rqφsk rφsj1 ¨ ¨ ¨ rφsjk`1
tk`j1`¨¨¨`jk`1 .

Therefore:

(3.6)
ÿ

k P Spqφq
j1, ..., jk`1 P Spφq

k ` j1 ` ¨ ¨ ¨ ` jk`1 “ p

rqφsk rφsj1 ¨ ¨ ¨ rφsjk`1
“ 0, for all p P N˚.

‚ Let us show first that Irrpφq “ Irrpqφq. By Lemma 3.5 (1), the irreducible elements of a set are

determined by the semigroup it generates. In order to show that the sets Irrpφq and Irrpqφq coincide, it is
therefore enough to prove that:

(3.7) N˚pSpφqq “ N˚pSpqφqq.

The situation being symmetric between φ and qφ, we may prove only the inclusion:

(3.8) N˚pSpqφqq Ă N˚pSpφqq.

We will argue by contradiction, assuming that the previous inclusion is false. Consider then:

(3.9) r P N˚pSpqφqq z N˚pSpφqq,

which is minimal with this property. As 0 P Spφq , we have r ą 0.
Apply equation (3.6) to p “ r. Consider a tuple:

(3.10) pk, j1, ..., jk`1q P Spqφq ˆ Spφqk`1

such that:

(3.11) k ` j1 ` ¨ ¨ ¨ ` jk`1 “ r.

Let us show that this implies the equality k “ r. Reasoning again by contradiction, assume that k ă r.

As k P Spqφq Ă N˚pSpqφqq, the minimality of r shows that k P N˚pSpφqq. Combining condition (3.10) and
equation (3.11), we deduce that r P N˚pSpφqq, which contradicts the assumption (3.9).

Therefore, if both (3.10) and (3.11) are true, then k “ r, which implies that j1 “ ¨ ¨ ¨ “ jr`1 “ 0.
Hence there is only one term in the sum of the left-hand side of equation (3.6) for p “ r, and we get:

rqφsr rφsr`1
0 “ 0,

which contradicts the assumption that both coefficients rqφsr and rφs0 are non-zero (as they are associated

to elements of the supports of φ and qφ).
Our proof of the inclusion (3.8) is finished. Therefore, as explained above, we get the desired equality

Irrpqφq “ Irrpφq.

‚ Let us prove the identities relating the coefficients associated to the irreducible exponents of φ and
qφ. Consider r P Irrpφq “ Irrpqφq. Look again at the tuples pk, j1, ..., jk`1q satisfying the conditions (3.10)
and (3.11) above.

If k R t0, ru, then at least one of the numbers j1, ..., jk`1 would not vanish. Equation (3.11) gives

a non-trivial decomposition of r inside Spφq Y Spqφq Ă N˚pSpφqq
p3.7q

“ N˚pSpqφqq, which shows that r R
IrrpN˚ Spφqq. This contradicts Lemma 3.5 (1).
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Therefore, one has necessarily k “ 0 or k “ r. Both possibilities determine completely pj1, ..., jk`1q
through equation (3.11). Applying equation (3.6) to p “ r, we get:

(3.12) rqφs0 rφsr ` rqφsr rφsr`1
0 “ 0.

The equalities (3.12) and rqφs0 “ rφs´1
0 imply the formula for rqφsr written in the statement of the propo-

sition. �

Combining Proposition 3.16 with Lemma 3.11, we get:

Corollary 3.17. Let φ P Krrtss˚ and N, p P N˚. Then the sequences of essential exponents of φ, φN and
qφ relative to p coincide.

In the next section we apply Proposition 3.16 and its Corollary 3.17 in order to relate the essential
exponents relative to 1 and their coefficients for the Newton-Puiseux series of an irreducible series fpx, yq P
Krrx, yss.

4. Applications to inversion formulae for Newton-Puiseux series

Let fpx, yq P Krrx, yss be an irreducible formal power series. One has therefore associated Newton-
Puiseux series relative to both coordinates x and y. In this section we prove in two ways the Halphen-Stolz
theorem (Corollary 4.5), which relates the coefficients of the terms with essential exponents relative to
1 in both series. The first proof, summarized in the flow-chart (4.17), applies directly the results of the
previous section. The second one passes through a more general result, allowing to compute recursively
all the coefficients of one series in terms of those of the other one (see Proposition 4.10). In turn, this
proposition is a consequence of a version of the classical Lagrange inversion formula (see Theorem 4.9).

4.1. The first proof of the Halphen-Stolz theorem.

There is no natural bijection between the Newton-Puiseux series of a formal power series fpx, yq
relative to x and y, for the simple reason that their numbers are in general different. We want to explain
first that if one takes adequate roots of them, then one gets two sets which are naturally in a bijective
correspondence (see Proposition 4.2).

Let us denote by ηpx1{nq P Krrx1{nss a Newton-Puiseux series of fpx, yq with respect to x, where
η P Krrtss. We assume that the representation of this Newton-Puiseux power series is primitive (see
Definition 2.5). The series η is of the form:

η “ a ¨ tm ` higher order terms,

with m ą 0 and a P K˚. Let us choose an m-th root ã P K˚ of a. Then, we have a unique m-th root
t η̃ptq P Krrtss of η:

(4.1) ηptq “ pt η̃ptqqm,

such that the series η̃ has constant term rη̃s0 “ ã ‰ 0.

Example 4.1. Start from a branch C with Newton-Puiseux series: ψ “ x3{2 ` c ¨ x7{4, where c P K˚.
Therefore, we get a “ 1, n “ 4 and ψ “ ηpx1{4q, where ηptq “ t6`c¨t7 “ t6p1`c¨tq. This shows thatm “ 6

and if ã “ 1 then η̃ptq “ p1` c ¨ tq1{6. By (4.20) below we have the expansion η̃ptq “ 1`
ř

kPN˚

`
1{6
k

˘
ck ¨ tk.

Let us come back to the general case.

Denote by ξ̃puq P Krruss˚ the dual series of η̃ptq (see Definition 3.14). Hence, one has the following
equivalence (see (3.1)):

(4.2) u “ t η̃ptq ô t “ u ξ̃puq.

As ηpx1{nq is a Newton-Puiseux-series of fpx, yq relative to x, we have:

fpx, ηpx1{nqq “ 0.
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Replacing x by tn and using the equality (4.1), we get:

(4.3) fptn, pt η̃ptqqmq “ 0.

By the equivalence (4.2), we deduce:

(4.4) fppu ξ̃puqqn, umq “ 0.

Consequently, if one defines:

(4.5) ξpuq “ pu ξ̃puqqn

(an equation which is analogous to (4.1)), then one sees that:

fpξpy1{mq, yq “ 0,

that is, ξpy1{mq is a Newton-Puiseux series of fpx, yq with respect to the variable y.
In fact, one has the following proposition:

Proposition 4.2.

(1) The map

x1{nη̃px1{nq ÝÑ y1{mξ̃py1{mq

induced by the duality involution on Krrtss˚, gives a bijection from the set of m-th roots of the
Newton-Puiseux series of fpx, yq relative to x to the set of n-th roots of those relative to y.

(2) If f̃pt, uq :“ fptn, umq P Krrt, uss then:
- the series of the form t η̃ptq P Krrtss are the Newton-Puiseux series of f̃ relative to t.

- the series of the form u ξ̃puq P Krruss are the Newton-Puiseux series of f̃ relative to u.

Proof.
(1) The two sets have both mn elements and the given map is injective because the map η̃ Ñ ξ̃ is an

involution. Therefore the given map is bijective.

(2) Equation (4.3) shows that the Newton-Puiseux series of f̃ relative to the variable t are exactly

those of the form t η̃ptq. The situation is analogous for the series of the form u ξ̃puq. �

The following lemma relates special sequences of essential exponents of the series ηptq and η̃ptq on one

side, and of the series ξpuq and ξ̃puq on another side:

Lemma 4.3. Denote: "
esspη, nq “ pm, ǫ1, ..., ǫdq,
esspξ,mq “ pn, ǫ1

1, ..., ǫ
1
d1q.

Then: "
esspη̃, gcdpn,mqq “ p0, ǫ1 ´m, ..., ǫd ´mq,
esspξ̃, gcdpn,mqq “ p0, ǫ1

1 ´ n, ..., ǫ1
d1 ´ nq.

Proof. By symmetry, it is enough to treat the case of the series η̃. Since η̃ P Krrtss˚, Proposition 3.16
implies that Irrpη̃q “ Irrpη̃mq. Then, by Lemma 3.11, for any integer p P N˚ one has:

esspη̃, pq “ esspIrrpη̃q, pq “ esspIrrpη̃mq, pq “ esspη̃m, pq.

Thus, it is enough to prove that p0, ǫ1 ´m, ..., ǫd ´mq is the sequence of essential exponents of η̃m relative
to gcdpn,mq. By formula (4.1), we have that η̃m “ t´mη, therefore: Spη̃mq “ Spηq ´m. Using Definition
3.6, we see that we have to prove that:

‚ minpSpηq ´mq “ 0.
‚ For all k P t1, ..., du: ǫk ´m “ min ppSpηq ´mqzZt gcd pn,mq, 0, ǫ1 ´m, ..., ǫk´1 ´muq.
‚ Spηq ´m Ă Zt gcd pn,mq, 0, ǫ1 ´m, ..., ǫd ´mu.

But all these facts are immediate from the definition of the essential exponents ǫi, because:

Zt gcd pn,mq, 0, ǫ1 ´m, ..., ǫk´1 ´mu “ Ztn,m, ǫ1, ..., ǫk´1u,

for all 1 ď k ď d, an equality which is immediate to check by double inclusion. �
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We are ready to deduce an inversion formula, expressing the sequence of essential exponents of ξ
relative to m and the associated coefficients in terms of the sequence of essential exponents of η relative
to n and their associated coefficients. We chose to inverse also the order of presentation, by starting
from any pair of dual series pη̃, ξ̃q and any pair of positive integers pm,nq, and by associating to them the
series pη, ξq by the formulae (4.1) and (4.5). In this way, we emphasize only univalued maps, in contrast
to their reciprocals, which involve taking roots.

Theorem 4.4. Let η̃ P Krrtss˚ and ξ̃ P Krruss˚ be dual of each other and m,n P N˚. Let ã be the constant
term of η̃. Denote: "

ηptq “ pt η̃ptqqm,
ξpuq “ pu ξ̃puqqn,

and: "
esspη, nq “ pm, ǫ1, ..., ǫdq,
esspξ,mq “ pn, ǫ1

1, ..., ǫ
1
d1 q.

Then one has the following inversion formulae for exponents and coefficients:

(4.6) d1 “ d,

(4.7) ǫ1
k `m “ ǫk ` n, for all k P t1, ..., du,

(4.8) rξsn “ ã´n and rξsǫ1
k

“ ´
n

m
ã´n´ǫkrηsǫk , for all k P t1, ..., du.

Proof. The entire series η̃ and ξ̃ being dual in the sense of Definition 3.14, Corollary 3.17 shows that
they have the same sequences of essential exponents relative to gcdpn,mq. Then, Lemma 4.3 allows us
to deduce the desired formulae (4.6) and (4.7) relating the two sequences pǫkqk and pǫ1

kqk.

Let us pass to the proof of the inversion formula (4.8) for the coefficients.

Equation (4.5) implies that ξ “ unpξ̃qn. Therefore:

(4.9) rξsǫ1
k

“ rpξ̃qnsǫ1
k

´n.

Combining Proposition 3.16 and Lemma 3.10, we get:

(4.10) rpξ̃qnsǫ1
k

´n “ n rξ̃sn´1
0 rξ̃sǫ1

k
´n “ n ã´n`1rξ̃sǫ1

k
´n.

The same proposition, combined with the equivalent form ǫ1
k ´ n “ ǫk ´ m of the equality (4.7), implies

that:

(4.11) rξ̃sǫ1
k

´n “ ´rη̃s´ǫk`m´2
0 rη̃sǫk´m “ ´ã´ǫk`m´2rη̃sǫk´m.

Combining the equalities (4.9), (4.10) and (4.11), we obtain:

(4.12) rξsǫ1
k

“ ´n ã´ǫk`m´n´1rη̃sǫk´m.

Now, from the analogues of equations (4.9) and (4.10) for η̃, we get:

(4.13) rη̃sǫk´m “
1

m
rη̃s´m`1

0 rη̃msǫk´m “
1

m
rη̃s´m`1

0 rηsǫk “
1

m
ã´m`1rηsǫk .

Combining formulae (4.12) and (4.13), we deduce the inversion formula for the coefficients rξsǫ1
k
, for

k P t1, ..., du. �

Dividing by n all the terms of the sequence pm, ǫ1, ..., ǫdq, one gets the sequence of essential exponents
of η relative to 1 (see Remark 3.7). Similarly, dividing by m all the terms of the sequence pn, ǫ1

1, ..., ǫ
1
dq,

one gets the sequence of essential exponents of ξ relative to 1. Theorem 4.4 translates therefore in the
following inversion formula for the Newton-Puiseux series of fpx, yq relative to x and to y, which is the
theorem of Halphen-Stolz presented in the introduction:
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Corollary 4.5 (The Halphen-Stolz inversion theorem).

Let ηpx1{nq and ξpy1{mq be Newton-Puiseux series of an irreducible formal power series fpx, yq P Krrx, yss
relative to x and y respectively. As before, we assume that ηptq “ pt η̃ptqqm and ξpuq “ pu ξ̃puqqn, where
η̃ptq, ξ̃puq are dual series and rη̃s0 “ ã. Denote:

"
esspηpx1{nq, 1q “ pm{n, e1, . . . , edq,
esspξpy1{mq, 1q “ pn{m, e1

1, . . . , e
1
d1q.

Then one has the following inversion formulae for exponents and coefficients:

(4.14) d1 “ d.

(4.15) mp1 ` e1
kq “ np1 ` ekq for all k P t1, ..., du.

(4.16) rξpy1{mqsn{m “ ã´n and rξpy1{mqse1
k

“ ´
n

m
ã´p1`ekqnrηpx1{nqsek for all k P t1, ..., du.

In the case in which ã “ 1, the inversion formula for the coefficients stated in Corollary 4.5 may be
written in a more symmetric way, easier to remember:

Corollary 4.6. Assume moreover that the constant coefficient ã of η̃ is equal to 1. Then:

rξpy1{mqsn{m “ 1 “ rηpx1{nqsm{n and mrξpy1{mqse1
k

` nrηpx1{nqsek “ 0 for all k P t1, ..., du.

Summary of the previous arguments. In order to understand better the line of reasoning we followed
till now, the reader may find helpful the following flow-chart, in which fpx, yq P Krrx, yss is irreducible:

(4.17)
esspηpx1{nq,1q

tηpx1{nqu oo
pLm.3.7q

x“tn //
esspηptq,nq

tηptqu
esspη̃ptq,gcdpm,nqq

tη̃ptquˆ
pProp.3.16p1q,

Lm.4.3q

˙
η“ptη̃qmoo

OO

pProp.3.16p2qq

u “ t η̃ptq
õ

t “ u ξ̃puq

��

fpx, yq

99tttttttttttt

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

tξpy1{mqu
esspξpy1{mq,1q

oo pLm.3.7q

y“um
// tξpuqu
esspξpuq,mq

tξ̃puqu
esspξ̃puq,gcdpm,nqq

ˆ
pProp.3.16p1q,

Lm.4.3q

˙

ξ“puξ̃qn
oo

Let us explain this diagram:

‚ From the irreducible series fpx, yq P Krrx, yss, one gets symmetrically two sets of Newton-Puiseux
series tηpx1{nqu and tξpy1{mqu. The first one has n and the second one m elements.

‚ Follow now two analogous sequences of transformations of those sets, indicated in the diagram
horizontally. We describe them only for the upper line of the diagram.

‚ The change of variables x “ tn, indicated above the corresponding doubly-arrowed horizontal
segment, puts the set tηpx1{nqu in bijection with the set of entire series tηptqu.

‚ Lemma 3.7, mentioned below the same arrow, allows to pass from esspηpx1{nq, 1q to esspηptq, nq.
The corresponding coefficients are unchanged.

‚ One extracts in all possible ways the m-th roots of the series ηptq. Then one divides the result by
t, arriving at a set tη̃ptqu with mn elements. The composition of the two operations is expressed
by the formula η “ pt η̃qm, written above the corresponding arrow.

‚ Combining Proposition 3.16 (1) with Lemma 4.3, one passes from the sequence esspηptq, nq to
esspη̃ptq, gcdpm,nqq and one relates also the corresponding coefficients.

‚ There is a canonical bijection between the two sets tη̃ptqu and tξ̃puqu, indicated by the left vertical

double-arrowed segment. This bijection associates two series η̃ptq and ξ̃puq whenever η̃ptq and

ξ̃puq are dual of each other, which may be expressed by the two equivalent equalities marked at
the right of the vertical segment.
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‚ Proposition 3.16 (2), indicated to the left of the same segment, shows that the two sequences are
equal, and allows to relate the corresponding coefficients. Note that this proposition allows in
fact to relate the coefficients corresponding to all the irreducible exponents of the two dual series,
not only those which are essential relative to gcdpm,nq. This is understandable if one thinks that,
reading now the diagram from right to left, one may start from any pair pη̃ptq, ξ̃puqq of dual series
and only afterwards choose the pair of positive integers pm,nq, independently of the choice of the
two dual series. One arrives then at the series fpx, yq by taking either the minimal polynomial
of ηpx1{nq or that of ξpy1{mq, and multiplying it with an invertible element of the ring Krrx, yss.

Remark 4.7. Using Lemma 3.13, the Halphen-Stolz inversion theorem (Corollary 4.5) may also be
expressed in terms of the characteristic exponents of η and ξ. That lemma shows that the sequences of
characteristic exponents of η and of ξ do not have necessarily the same lengths, which has as consequence
the fact that the elements of the two series which are related have not necessarily the same position in
both sequences. For this reason, it is easier to express the inversion formulae as we have done in Theorem
4.4 and in Corollary 4.5, in terms of the essential exponents.

Remark 4.8. The part of Corollary 4.5 concerning the exponents is usually expressed nowadays in
terms of the characteristic exponents and is sometimes attributed to Abhyankar’s paper [2] of 1967 or to
Zariski’s paper [40] of 1968. In fact, it was already stated precisely in terms of the sequences of essential
exponents relative to 1 (called there “exposants caractéristiques” from their second term on) by Halphen
[20, page 91] in 1876. But Halphen stated also the previous formulae (of course, with different notations)
for the inversion of the corresponding coefficients. He did not prove those formulae, and as far as we
know, the unique proof was provided by Stolz [36, page 133] in 1879. We searched new proofs because
we were not fully convinced by Stolz’ arguments and because we wanted to extend the theorem to higher
dimensions.

4.2. The second proof of the Halphen-Stolz theorem.

Let us pass now to our second proof of Theorem 4.4. Corollary 4.5 concerns only the terms of the two
Newton-Puiseux series whose exponents are essential relative to 1. We explain now a way to get formulae
for all the coefficients of ξ as rational fractions of those of η.

We recall first a form of Lagrange’s inversion formula which, given two reciprocal entire series X and
Y , allows to express the coefficients of the integral powers of X in terms of those of Y . Several proofs of
it may be found in [35, Theorem 5.4.2], and historical explanations in [35, pages 67-68]. Let us mention
only that the founding result for this kind of formulae was stated by Lagrange in [23, Par. 16].

Theorem 4.9 (Lagrange inversion formula).
Let Xpuq P uKrruss˚ and Y ptq P tKrrtss˚ be two reciprocal series. For any p, q P Z, one has:

p ¨ rXpuqqsp “ q ¨ rY ptq´ps´q.

Note that the lifting to a negative integral power produces a meromorphic series which has a finite
number of terms with negative exponents.

Let us apply Theorem 4.9 in our context.
Recall that ã P K˚ is the constant term of η̃, hence by formula (4.1), we may write:

(4.18) ηptq “ ãmtm

˜
1 `

ÿ

kąm

ckt
k´m

¸
.

Therefore:

(4.19) η̃ptq “ ã

˜
1 `

ÿ

kąm

ckt
k´m

¸1{m

,
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in which the right-hand-side can be computed using the generalized binomial expansion:

(4.20) p1 ` xqr :“ 1 `
ÿ

kPN˚

ˆ
r

k

˙
xk, @ r P R,

where:

(4.21)

ˆ
r

k

˙
“
rpr ´ 1q ¨ ¨ ¨ pr ´ k ` 1q

k!
, for all r P R.

Using formula (4.19), one gets the following consequence of Theorem 4.9, which allows to compute the
coefficients of the Newton-Puiseux series ξ of the irreducible power series fpx, yq P Krrx, yss relative to y
in terms of those η relative to x. Note that one gets rational fractions whose numerators are polynomials
with rational coefficients in the coefficients ck and whose denominators are positive integral powers of ã:

Proposition 4.10. Assume that:

ηpx1{nq “ ãmxm{n

˜
1 `

ÿ

kąm

ckx
k´m

n

¸
.

Then one has the following formula for the coefficients rξs q

m
of the corresponding Newton-Puiseux series

ξpy1{mq P Krry1{mss, for all integer q ě n:

rξs q

m
“
n

q
ã´q

»
–1 `

ÿ

iě1

ˆ
´q{m

i

˙˜
ÿ

sąm

csx
s´m

n

¸i
fi
fl

´1` q

n

.

Proof. By Theorem 4.9 applied after replacing the pair pp, qq by pq, nq, we have:

q ¨ runξ̃puqnsq “ n ¨ rt´qη̃ptq´qs´n.

We get:

(4.22) q ¨ runξ̃puqnsq
p4.19q

“ nã´q

»
–
¨
˝t´q

˜
1 `

ÿ

sąm

cst
s´m

¸´q{m
˛
‚
fi
fl

´n

,

and then by (4.20):

(4.23) q ¨ rξpuqsq “ q ¨ runξ̃puqnsq “ nã´q

»
–
¨
˝1 `

ÿ

iě1

ˆ
´q{m

i

˙˜
ÿ

sąm

cst
s´m

¸i
˛
‚
fi
fl

q´n

.

It is enough now to divide by q, to replace u by y1{m and t by x1{n in order to get the desired formula. �

As a corollary, we obtain:

Second proof of Theorem 4.4. Recall the notation esspη, nq “ pm, ǫ1, . . . , ǫdq. We set then:

ǫ̂0 “ n, ǫ̂1 “ ǫ1 ´m` n, . . . , ǫ̂d “ ǫd ´m` n.

We prove first by induction on the integer q ě n that if

(4.24) ǫ̂k ď q ă ǫ̂k`1 for some k P t0, . . . , du,

then the terms of the sequence esspξ,mq which are lower than or equal to q are precisely ǫ̂0 “ n, ǫ̂1, . . . , ǫ̂k.
Here the case k “ d in (4.24) means simply that ǫ̂d ď q.

If q “ n, we get from (4.23) that rξsn “ ã´n ‰ 0 is the dominant term of the series ξ, hence the
assertion (4.24) holds by Definition 3.12. Assume that (4.24) holds for some q ą n. We distinguish two
cases:

‚ Assume that ǫ̂k ă q, so ǫ̂k ď q´ 1. Then, by the induction hypothesis applied to q´ 1, we have that
the terms of the sequence esspξ,mq which are lower than or equal to q´ 1 are precisely ǫ̂0 “ n, ǫ̂1, . . . , ǫ̂k.
If rξpuqsq “ 0, then there is nothing to prove. Assume that rξpuqsq ‰ 0. Since q ´ n ă ǫk`1 ´ m by
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(4.24), the exponent of a term appearing in the polynomial p
ř

măsăǫk`1
cst

s´mqi must belong to the

group Ztn,m, ǫ1, . . . , ǫku, by the definition of the essential exponents esspη, nq. We deduce from this and
the right hand side of the equality (4.23) that q must belong to the subgroup Ztn,m, ǫ1, . . . , ǫku. Since
by definition we have the equality:

(4.25) Ztn,m, ǫ1, . . . , ǫku “ Ztn,m, ǫ̂1, . . . , ǫ̂ku,

q cannot be an essential exponent of ξ with respect to n (see Definition 3.12).

‚ Assume that ǫ̂k “ q. Then, by the induction hypothesis applied to q ´ 1, we have that the terms
of the sequence esspξ,mq which are lower or equal to q ´ 1 are precisely ǫ̂0 “ n, ǫ̂1, . . . , ǫ̂k´1. We have
to prove that the coefficient rξpuqsq does not vanish. Notice that there is a term with exponent equal to
q ´ n appearing in the polynomial p

ř
măsďǫk

cst
s´mqi if and only if i “ 1 and then this term is equal to

cǫkt
q´n. Indeed, arguing as in the previous case, we see that any other term would provide an expansion

of ǫk “ q´n`m in the group Ztn,m, ǫ1, . . . , ǫk´1u, contradicting the definition of the essential exponent
ǫk. Notice that cǫk “ ã´mrηsǫk , by (4.18). It follows from (4.23) that:

q ¨ rξsq “ nã´ǫk`m´n

ˆ
´q

m

˙
ã´mrηsǫk “ ´q

n

m
ã´ǫk´nrηsǫk ,

thus rξsq “ ´ n
m
ã´ǫk´nrηsǫk is nonzero. This finishes the proof of the assertion.

Theorem 4.4 is proved, since we have also proved the inversion formula (4.8) for the coefficients.
l

Example 4.11. Let us consider again the Newton-Puiseux series ηpx1{4q of Example 4.1. Denote by
ξpy1{6q a Newton-Puiseux series corresponding by inversion to η, through the bijection described in
Proposition 4.2. Applying Proposition 4.10, we get:

rξpy1{6qsp{6 “
4

p

«
1 `

ÿ

iě1

ˆ
´p{6

i

˙
pcx

1

4 qi
ff

´1` p

4

“
4

p

ˆ
´p{6

p´ 4

˙
cp´4.

That is:

ξpy1{6q “
ÿ

pě4

4

p

ˆ
´p{6

p´ 4

˙
cp´4yp{6.

The first two exponents in the support Spξpy1{6qq are therefore 4{6 “ 2{3 and 5{6, which shows that they
constitute the characteristic sequence of ξ. The corresponding terms of ξ are, according to the previous
formula: 1 ¨ y2{3, p´ 2

3
cq ¨ y5{6. One may verify then immediately the correcteness of the formulae stated

in the Halphen-Stolz inversion theorem (Corollary 4.5).

Remark 4.12. In order to compute recursively the coefficients of ξpyq starting from those of ηpxq, one
could also use the method explained by Borodzik [4].

Remark 4.13. We believe that one can use Abhyankar’s [3, First Inversion Theorem, page 111] in order
to obtain a third proof of the Halphen-Stolz inversion theorem. The approach of that paper seems to be
similar in spirit to our first approach.

5. Generalization to an arbitrary number of variables

In this section we generalize our first proof of the Halphen-Stolz theorem to an arbitrary number of
variables. We formulate the needed generalizations of the definitions and propositions used in that proof.
We only sketch their proofs, insisting in the differences with respect to the one-variable case. Finally,
we explain how our result generalizes Lipman’s inversion theorem for the characteristic exponents of
quasi-ordinary branches.

Throughout the section, we consider a fixed number h P N˚ and we work with the Q-vector space
Qh and various free subgroups of it of rank h, which we will call briefly lattices of Qh. We denote by
pν1, ν2, . . . , νhq the canonical basis of Qh.
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5.1. Irreducible exponents of subsets of Qh with bounded denominators.

The notions of set with bounded denominators (Definition 3.1) and of its irreducible elements (Definition
3.2) extend immediately from subsets of Q` to subsets of Qh

`. If E is such a set, it generates again a

semigroup N˚ E Ă Qh
` and a group Z E Ă Qh.

Lemma 3.5 (1) remains true in this setting:

Lemma 5.1. If E Ă Qh
` is a set with bounded denominators, then IrrpEq “ IrrpN˚ Eq and this set

is the minimal generating set of the semigroup N˚ E, relative to the inclusion partial order between its
generating sets.

Notice that point (2) of Lemma 3.5 is not necessarily true for h ě 2, as shown by the following standard
example:

Example 5.2. Take E “ pN˚q2. Then IrrpEq “ pN˚ ˆ t1uq Y pt1u ˆ N˚q . Therefore IrrpEq is infinite.

When h ě 2, we will need also to use special order relations on the group pQh,`q:

Definition 5.3. An additive order on Qh is a partial order relation ĺ on Qh satisfying:

(1) ĺ is a total order;
(2) if α, β, γ P Zh and α ĺ β, then α ` γ ĺ β ` γ.

The additive order ĺ dominates a set θ Ă Qh if any non empty subset of θ with bounded denominators
has a minimum relative to ĺ.

Remark 5.4. If ĺ is an additive order of Qh, then there exist an integer s P r1, hs, linear forms
u1, . . . , us P pRhq˚, and an increasing injective group morphism:

pQh,ĺq Ñ pRh,ďlexq, v Ñ pu1pvq, . . . , uspvqq,

where ďlex denotes the lexicographical order (see [33, Theorem 2.5]). The lexicographical order is additive
and dominates Zh

`. More generally, if ĺ dominates Zh
`, then ĺ defines a well-order on Zh

`, hence Definition
5.3 is a generalization of the notion of term order explained in [8, Chap. 2.2].

Definition 5.3 allows to generalize the notion of sequence of essential elements relative to an integer p
(Definition 3.6) in the following way:

Definition 5.5. Let us consider a set E Ă Qh
` with bounded denominators. LetM be a lattice of pQh,`q

and ĺ be an additive order on Qh dominating its subset Qh
`. Then the sequence

esspE,M,ĺq :“ pesspE,M,ĺqlql of essential elements of E relative to M is defined inductively
by:

‚ esspE,M,ĺq0 :“ minE.
‚ If l ě 1, then the term esspE,M,ĺql is defined if and only if E is not included in the group
M ` ZtesspE,M,ĺq0, ..., esspE,M,ĺql´1u. In this case:

esspE,M,ĺql :“ min pEz pM ` ZtesspE,M,ĺq0, . . . , esspE,M,ĺql´1uqq .

One gets Definition 3.6 by taking h “ 1, M “ pZ and ĺ to be the unique additive order on (Q, +)
which dominates Q`, that is, the usual order. Indeed, then the sequence esspE, pZ,ĺq defined according
to Definition 5.5 is precisely the sequence esspE, pq defined according to Definition 3.6.

Lemma 3.8 about the finiteness of the sequences esspE,Mq holds also in our larger context:

Lemma 5.6. Assume that the subset E Ă Qh
` has bounded denominators, that M is a lattice of Qh and

that ĺ is an additive order dominating Qh
`. Then the sequence of essential exponents esspE,M,ĺq of E

relative to M is finite.

Proof. For every integer l ě 0 for which esspE,M,ĺql is defined, let us denote by Ml the abelian group
M ` ZtesspE,M,ĺq0, . . . , esspE,M,ĺqlu. Since pMlql is an increasing sequence of abelian groups, the
union

Ť
lMl is also an abelian group. The hypothesis that E has bounded denominators implies that

this group
Ť

lMl is a lattice of Qh. Any ascending chain of subgroups of a free abelian group of finite
rank being stationary, the sequence pMlql must be finite. Therefore, the sequence esspE,M,ĺq is also
finite. �
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If q P GLph,Qq and if ĺ is a additive order on Qh, we denote by ĺq the additive order defined by:

α ĺq β ô qpαq ĺ qpβq.

By using this notion, Lemma 3.7 extends immediately into:

Lemma 5.7. Assume that E Ă Qh
` has bounded denominators and that M is a lattice of Qh. Take

q P GLph,Qq such that qpQh
`q Ă Qh

` and let ĺ be a additive order dominating Qh
`. Then:

q pesspE,M,ĺqqq “ ess pqpEq, qpMq,ĺq .

Lemmas 3.10 and 3.11 also extend immediately to our more general context:

Lemma 5.8. The essential elements of a set E Ă Qh
` with bounded denominators relative to any lattice

M of Qh and an additive order ĺ dominating Qh
` are irreducible elements of E.

Lemma 5.9. Let E Ă Qh
` be a set with bounded denominators, M be a lattice of Qh and ĺ be an additive

order dominating Qh
`. Then we have the following equality of essential sequences:

esspE,M,ĺq “ esspIrrpEq,M,ĺq.

5.2. On the notions of dual and reciprocal series in several variables.

Consider now the ring Krrt1, t2, ..., thss, and its subset:

Krrt1, t2, ..., thss˚ “ tφ P Krrt1, t2, ..., thss : φp0, ..., 0q ‰ 0u

consisting of the series with non-zero constant term. It is the group of multiplicatively invertible elements
of the ring Krrt1, t2, ..., thss.

If φ P Krrt1, t2, ..., thss˚ has constant term α ‰ 0, then the map:

(5.1)
Krrt1, t2, ..., thss ÝÑ Krrt1, t2, ..., thss

pt1, t2, ..., thq ÝÑ pt1 φpt1, t2, ..., thq, t2, ..., thq

is invertible for composition, as its linearization pt1, t2, ..., thq Ñ pαt1, t2, ..., thq is invertible in GLph,Kq.
One has the following generalization of the duality of series in Krrtss˚, introduced in Definition 3.14:

Definition 5.10. If φ P Krrt1, t2, ..., thss˚, then its dual relative to the first variable is the unique

entire series qφ P Krru1, t2, ..., th, ss˚ such that the following maps are reciprocal:

pu1, t2, ..., thq Ñ pu1 qφpu1, t2, ..., thq, t2, ..., thq, pt1, t2, ..., thq Ñ pt1 φpt1, t2, ..., thq, t2, ..., thq.

Remark 5.11. Note that the previous definition depends in an essential way on the choice of the first
variable t1, but that it is symmetric in the other variables. If φ P Krrt1, t2, ..., thss˚, then setting u1 “
t1 φpt1, t2, ..., thq defines a change of variables in the ring Krrt1, t2, ..., thss. Notice that Krrt1, t2, ..., thss “
Krru1, t2, ..., thss and by Definition 5.10 one has the equivalence:

(5.2) u1 “ t1 φpt1, t2, ..., thq ô t1 “ u1 qφpu1, t2, ..., thq.

The following proposition generalizes Proposition 3.16 to the case of an arbitrary number of variables:

Proposition 5.12. Let φ P Krrt1, ..., thss˚ and N P N˚. Then:

(1) IrrpφN q “ Irrpφq. Moreover rφN s0 “ rφsN0 and rφN sr “ N rφsN´1
0 rφsr, for all r P Irrpφqzt0u.

(2) Irrpqφq “ Irrpφq. Moreover rqφs0 “ rφs´1
0 and rqφsr “ ´rφs´r1´2

0 rφsr, for all r P Irrpφqzt0u.

Proof. In what follows, if k “ pk1, ..., khq P Nh, we will write simply:

tk :“ tk1

1 ¨ ¨ ¨ tkh

h .

One has the following analogue of equation (3.2):

(5.3) φptq “
ÿ

jPSpφq

rφsj t
j .

The hypothesis φ P Krrt1, ..., thss˚ translates into 0 P Spφq, that is, rφs0 ‰ 0.
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(1) Consider first the case of φN . By equation (5.3), we get the exact analogue of the expansion (3.3):

(5.4) φN ptq “
ÿ

j1,...,jNPSpφq

rφsj1 ¨ ¨ ¨ rφsjN t
j1`¨¨¨`jN .

Then the proof is identical to that of the one-variable case.

(2) Consider now the case of qφ. Write the analogue of the expansion (5.3) for the series qφ:

(5.5) qφpuq “
ÿ

kPSpqφq

rqφsk u
k,

where:

uk :“ uk1

1 t
k2

2 ¨ ¨ ¨ tkh

h for all k “ pk1, . . . , khq P Nh.

By Definition 5.10, if qφpu1, t2, ..., thq is the dual with respect to t1 of the series φpt1, t2, ..., thq, then one
has the identity:

t1 “ pt1 φpt1, t2, ..., thqq ¨ qφpt1 φpt1, ..., thq, t2, ..., thq

which, after division by t1 and combination with the expansion (5.5), gives:

1 “
ÿ

kPSpqφq

rqφsk t
kφptqk1`1.

Expand now the powers φptqk1`1 using equation (5.4). We get:

1 “
ÿ

k P Spqφq
j1, ..., jk1`1 P Spφq

rqφsk rφsj1 ¨ ¨ ¨ rφsjk1`1
tk`j1`¨¨¨`jk1`1 .

Therefore:

(5.6)
ÿ

k P Spqφq
j1, ..., jk1`1 P Spφq

k ` j1 ` ¨ ¨ ¨ ` jk1`1 “ p

rqφsk rφsj1 ¨ ¨ ¨ rφsjk1`1
“ 0, for all p P Nhzt0u.

‚ Let us show first that Irrpφq “ Irrpqφq. Using Lemma 5.1, we reason as in the one variable case. We

must take into account that for h ě 2, the element r P N˚pSpqφqq z N˚pSpφqq chosen to be minimal with
this property (for the componentwise partial order) is not necessarily unique. Let us choose r to be the
smallest element with this property, relative to an additive order ĺ dominating Qh

`. Then the proof of
the assertion follows exactly by the same argument as for h “ 1.

‚ We prove the identities relating the coefficients associated to the irreducible exponents of φ and qφ.
If r P Irrpφq “ Irrpqφq and if: k ` j1 ` ¨ ¨ ¨ ` jk1`1 “ r for k P Spqφq and j1, . . . jk1`1 P Spφq, then we
obtain, by the same argument as in the one variable case, that k “ r or k “ 0. We deduce the following
analogues of equation (3.12):

(5.7) rqφs0 rφsr ` rqφsr rφsr1`1
0 “ 0

from which one gets the stated equality between coefficients of terms with irreducible exponents. �

Combining Proposition 5.12 with Lemma 5.9, we obtain the following extension of Corollary 3.17:

Corollary 5.13. Let φ P Krrt1, t2, . . . , thss˚, N P N˚ and M be any lattice of Qh. Then the sequences of

essential exponents of φ, φN and qφ relative to M coincide.
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5.3. Newton-Puiseux series in several variables.

We will consider the following analogue of the ring of Newton-Puiseux series in one variable:

Krrx1{N
1 , x

1{N
2 , ..., x

1{N
h ss :“

ď

niPN˚, 1ďiďh

Krrx1{n1

1 , x
1{n2

2 , ..., x
1{nh

h ss.

We say that its elements are Newton-Puiseux series in the variables x1, ..., xh. The support Spηq of such
a series η is a subset with bounded denominators of Qh

`.

Definition 5.14. Assume that fpx1, y1, x2, . . . , xhq P Krrx1, y1, x2, . . . , xhss has vanishing constant term.
A Newton-Puiseux series of f relative to px1, x2, . . . , xhq is a series:

ψ P Krrx1{N
1 , x

1{N
2 , . . . , x

1{N
h ss

such that fpx1, ψ, x2, . . . , xhq “ 0. The series ψ is called x1-dominating if it is of the form:

a ¨ xλ1 p1 ` higher order termsq,

where λ P Q˚
`, and a P K˚. A representation of ψ P Krrx1{N

1 , x
1{N
2 , . . . , x

1{N
h ss of the form:

(5.8) ψ “ ηpx
1{n1

1 , x
1{n2

2 , . . . , x
1{nh

h q with η P Krrt1, t2, . . . , thss

is called primitive if it is primitive in each variable separately in the sense of Definition 2.5.

Example 5.15. The Newton-Puiseux series x
3{2
1 ` x

7{4
1 x

1{2
2 ´ 2x21 x

1{3
3 is x1-dominating. But the series:

x
1{2
1 ` x

1{2
2 and x

1{3
2 ` x1 x

2{3
2 are not x1-dominating. Instead, the second one is x2-dominating.

If ψ P Krrx
1{N
1 , . . . , x

1{N
h ss, then there is a series f P Krrx1, y1, x2, . . . , xhss such that fpx1, ψ, x2, . . . , xhq “

0. Indeed, one can get such an f in the ring Krrx1, . . . , xhssry1s (cf. Remark 2.4 in the 1-variable case):

Remark 5.16. Recall that for any n P N˚, we denote by Gn the subgroup of pK˚, ¨q consisting of

the n-roots of unity. Consider n1, . . . , nh P N˚. Let Kppx1{n1

1 , . . . , x
1{nh

h qq be the fraction field of

Krrx1{n1

1 , . . . , x
1{nh

h ss. The field extension Kppx1, . . . , xhqq Ă Kppx1{n1

1 , . . . , x
1{nh

h qq is finite and Galois.

Its Galois group is isomorphic to Gn1
ˆ ¨ ¨ ¨ ˆGnh

, acting on Kppx1{n1

1 , . . . , x
1{nh

h qq by:
´

pρ1, . . . , ρhq, xa1{n1

1 ¨ ¨ ¨xah{nh

h

¯
Ñ ρa1

1 ¨ ¨ ¨ ρah

h ¨ xa1{n1

1 ¨ ¨ ¨xah{nh

h .

If ψ P Krrx1{n1

1 , . . . , x
1{nh

h ss is a Newton-Puiseux series, then the field extension Kppx1, . . . , xhqq Ă
Kppx1, . . . , xhqqrψs is finite and its Galois group G is isomorphic to the quotient of Gn1

ˆ ¨ ¨ ¨ ˆ Gnh

by its subgroup formed by those elements which leave ψ fixed. If n “ |G| and ψ1 “ ψ, ψ2, . . . , ψn are the
different conjugates of ψ under the action of the group G, then the polynomial:

f “
nź

j“1

py ´ ψjq P Krrx1{n1

1 , . . . , x
1{nh

h ssrys

is invariant under the action of Gn1
ˆ ¨ ¨ ¨ ˆ Gnh

on its coefficients. It follows that f must belong to
Krrx1, . . . , xhssrys and that ψ is a Newton-Puiseux series relative to f .

Remark 5.17. Let f P Krrx1, . . . , xhssry1s be an irreducible polynomial such that its discriminant ∆y1
f

is the product of a monomial and of a unit in the ring Krrx1, . . . , xhss. Then, by the Jung-Abhyankar
theorem, all the roots of f are Newton-Puiseux series in the variables x1, . . . , xh (see [1]). Let us mention
that the roots obtained in this way have special properties, for instance, the Newton-Puiseux series

x
3{2
1 ` x

5{2
2 cannot be a root of the polynomial f (see Lemma 5.24). Notice also that if the discriminant

of f is not of this form, the roots may not be expressible as Newton-Puiseux series in the variables
x1, . . . , xh. An example of this last phenomenon is the polynomial f “ x31 ` x32 ` y21 .
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5.4. The generalized Halphen-Stolz inversion theorem.

In this subsection we assume that ψ is a x1-dominating Newton-Puiseux power series with primitive
representation (see Definition 5.14):

ψ “ ηpx1{n1

1 , x
1{n2

2 , ¨ ¨ ¨ , x1{nh

h q.

Then the dominating term a ¨ xλ1 of ψ satisfies:

λ “
m1

n1

,

with m1 P N˚. The series η is therefore of the form:

ηpt1, t2, ..., thq “ a ¨ tm1

1 p1 ` higher order termsq,

with m1 ą 0 and a P K˚. Let us choose an m1-th root ã P K˚ of a. Then, we have a unique m1-th root
t1 η̃pt1, t2, ..., thq P Krrt1, t2, ..., thss of η:

(5.9) ηpt1, t2, ..., thq “ pt1 η̃pt1, t2, ..., thqqm1 ,

with constant term rη̃s0 “ ã ‰ 0.

Example 5.18. Start from the Newton-Puiseux series: ψ “ x
3{2
1 ` x

7{4
1 x

1{2
2 ´ 2 x21 x

1{3
3 . We get a “ 1,

n1 “ 4, n2 “ 2, n3 “ 3 and ψ “ ηpx1{4
1 , x

1{2
2 , x

1{3
3 q where ηptq “ t61 ` t71t2 ´ 2 t81t3 “ t61p1 ` t1t2 ´ 2 t21t3q.

This shows that m1 “ 6 and if ã “ 1 then: η̃ptq “ p1 ` t1t2 ´ 2 t21t3q1{6 :“ 1`
ř

kPN˚

`
1{6
k

˘
pt1t2 ´ 2 t21t3qk.

Let us come back to the general case. Denote by ξ̃pu1, t2, ..., thq P Krru1, t2, ..., thss˚ the dual series of
η̃pt1, t2, ..., thq with respect to t1 (see Definition 5.10). Hence, one has the equivalence (see (5.2)):

(5.10) u1 “ t1 η̃pt1, t2, ..., thq ô t1 “ u1 ξ̃pu1, t2, ..., thq.

We know that there exists a series fpx1, y1, x2, . . . , xh, q P Krrx1, y1, x2, . . . , xhss such that:

fpx1, ηpx1{n1

1 , x
1{n2

2 , ..., x
1{nh

h q, x2, ..., xhq “ 0.

Replacing each xi by t
ni

i and using the equality (5.9), we get:

(5.11) fptn1

1 , pt1η̃pt1, t2, ..., thqqm1 , tn2

2 , ..., tnh

h q “ 0.

By doing the second change of variable of formula (5.10), we deduce that:

(5.12) fppu1 ξ̃pu1, t2, ..., thqqn1 , um1

1 , tn2

2 , ..., tnh

h q “ 0.

Consequently, if one defines:

(5.13) ξpu1, t2, ..., thq “ pu1 ξ̃pu1, t2, ..., thqqn1

(an equation which is analogous to (5.9)), then one sees that:

fpξpy1{m1

1 , x
1{n2

2 , ..., x
1{nh

h q, y1, x2, ..., xhq “ 0,

that is, ξpy1{m1

1 , x
1{n2

2 , ..., x
1{nh

h q is a Newton-Puiseux series of fpx1, y1, x2, ..., xhq with respect to the
variables py1, x2, ..., xhq (see Definition 5.14).

Recall that we denote by pν1, ν2, . . . , νhq the canonical basis of Qh. The following lemma is a multi-
variable analogue of Lemma 4.3, formulated using Definition 5.3:

Lemma 5.19. Let ĺ be an additive order of Qh dominating Qh
`. Denote:

(5.14)

"
esspη, n1Zν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh, ĺq “ pm1ν1, ǫ1, ..., ǫdq,
esspξ, m1Zν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh, ĺq “ pn1ν1, ǫ

1
d, ..., ǫ

1
d1 q.

Then: "
esspη̃, gcdpn1,m1qZν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh, ĺq “ p0, ǫ1 ´m1ν1, ..., ǫd ´m1ν1q,
esspξ̃, gcdpn1,m1qZν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh, ĺq “ p0, ǫ1

1 ´ n1ν1, ..., ǫ
1
d1 ´ n1ν1q.
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Proof. By symmetry, we may treat only the case of the series η̃. As η̃ P Krrt1, t2, ..., thss˚, Proposition
5.12 implies that Irrpη̃q “ Irrpη̃mq. Combining this with Lemma 5.9, we see that for any lattice M of Qh

one has:
esspη̃,M,ĺq “ esspIrrpη̃q,M,ĺq “ esspIrrpη̃mq,M,ĺq “ esspη̃m,M,ĺq.

Thus, it is enough to prove that p0, ǫ1 ´ m1ν1, ..., ǫd ´ m1ν1q is the sequence of essential exponents of
η̃m1 relative to gcdpn1,m1qZν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh and the chosen additive order. By formula (5.9), we
get η̃m1 “ t´m1

1 η. Therefore Spη̃m1 q “ Spηq ´m1ν1. Using Definition 5.5, we see that we are done if we
prove that:

‚ minpSpηq ´m1ν1q “ 0.
‚ For all k P t1, ..., du:

ǫk´m1ν1 “ min ppSpηq ´m1ν1qz pgcdpn1,m1qZν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh ` Zt 0, ǫ1 ´m1ν1, ..., ǫk´1 ´m1ν1uqq .

‚ Spηq ´ m1ν1 Ă gcdpn1,m1qZν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh ` Zt 0, ǫ1 ´m1ν1, ..., ǫd ´m1ν1u,

where the minimum is taken with respect to the additive order ĺ. But all these facts are immediate from
the definition of the essential exponents ǫi, because:

gcdpn1,m1qZν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh ` Zt0, ǫ1 ´m1ν1, ..., ǫk´1 ´m1ν1u “
“ n1Zν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh ` Z tm1ν1, ǫ1, ..., ǫk´1u ,

for all 1 ď k ď d, an equality which may be proved immediately by double inclusion. �

Our extension of Theorem 4.4 to the case of an arbitrary number of variables follows then exactly as
in the one variable case:

Theorem 5.20. Let η̃ P Krrt1, t2, ..., thss˚ and ξ̃ P Krru1, t2, ..., thss˚ be dual relative to the first coordinate
and consider m1, n1 P N˚. Let ã be the constant term of η̃. Denote by pν1, ν2, ..., νhq the canonical basis
of the free abelian group Zh. Introduce the t1-dominating and u1-dominating series:

"
ηpt1, t2, ..., thq “ pt1 η̃pt1, t2, ..., thqqm1 ,

ξpu1, t2, ..., thq “ pu1 ξ̃pu1, t2, ..., thqqn1 ,

and their sequences of essential exponents relative to an additive order ĺ dominating Qh
ě0:"

esspη, n1Zν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh,ĺq “ pm1ν1, ǫ1, ..., ǫdq,
esspξ,m1Zν1 ` Zν2 ` ¨ ¨ ¨ ` Zνh,ĺq “ pn1ν1, ǫ

1
1, ..., ǫ

1
d1 q.

Then one has the following inversion formulae for exponents and coefficients, where we denote by ǫk,1
the first coordinate of ǫk P Qh

` (that is, the coefficient of ν1 in the expansion ǫk “
řh

i“1 ǫk,iνi):

(5.15) d1 “ d,

(5.16) ǫ1
k `m1ν1 “ ǫk ` n1ν1, for all k P t1, ..., du,

(5.17) rξsn “ ã´n1 and rξsǫ1
k

“ ´
n1

m1

ã´n1´ǫk,1rηsǫk , for all k P t1, ..., du.

As a consequence of this theorem, we get the following generalization of the Halphen-Stolz inversion
theorem (Corollary 4.5):

Corollary 5.21 (The generalized Halphen-Stolz inversion theorem).

Let ηpx1{n1

1 , x
1{n2

2 , ..., x
1{nh

h q and ξpy1{m1

1 , x
1{n2

2 , ..., x
1{nh

h q be Newton-Puiseux series of fpx1, y1, x2, ..., xhq
relative to px1, x2, ..., xhq and py1, x2, ..., xhq respectively. As before, we assume that ηpt1, t2, ..., thq “
pt1 η̃pt1, t2, ..., thqqm1 and ξpu1, t2, ..., thq “ pu1 ξ̃pu1, t2, ..., thqqn1 , where η̃pt1, t2, ..., thq and ξ̃pu1, t2, ..., thq
are dual relative to the first coordinate and rη̃s0 “ ã. Let ĺ be a fixed additive order dominating Qh

`.
Denote: $

’’&
’’%

esspηpx1{n1

1 , x
1{n2

2 , ..., x
1{nh

h q,Zh,ĺq “

ˆ
m1

n1

ν1, e1, . . . , ed

˙
,

esspξpy1{m1

1 , x
1{n2

2 , ..., x
1{nh

h q,Zh,ĺq “

ˆ
n1

m1

ν1, e
1
1, . . . , e

1
d1

˙
.
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Then one has the following inversion formulae for exponents and coefficients, where we denote by ek,1
the first coordinate of ek P Qh

` (that is, the coefficient of ν1 in the expansion ek “
řh

i“1 ek,iνi):

(5.18) d1 “ d.

(5.19) m1pν1 ` e1
kq “ n1pν1 ` ekq for all k P t1, ..., du.

(5.20)

rξpy1{m1

1 , . . .qsn1{m1
“ ã´n1 and rξpy1{m1

1 , . . .qse1
k

“ ´
n1

m1

ã´p1`ek,1qn1 rηpx1{n1

1 , . . .qsek for all k P t1, . . . , du.

In the case in which ã “ 1, the inversion formula for the coefficients stated in Corollary 5.21 may be
written in a more symmetric way, easier to remember, and analogous to Corollary 4.6:

Corollary 5.22. Assume moreover that the constant coefficient ã of η̃ is equal to 1. Then:

rξsn1{m1
“ 1 “ rηsm1{n1

, and m1rξsǫ1
k

` n1rηsǫk “ 0 for all k P t1, ..., du.

In order to summarize our reasoning, let us draw the analogue of the flow-chart (4.17) in which
fpx1, y1, x2, . . . , xhq P Krrx1, y1, x2, ..., xhss is an irreducible series:

(5.21)

esspηpx
1{n1

1
,... q,Zhq

tηpx1{n1

1 , . . . qu oo
pLm.5.7q

x1“t1
n1

//
esspηpt1,... q,n1Zν1`¨¨¨ q

tηpt1, t2, . . . qu
esspη̃pt1,... q,gcdpm1,n1qZν1`¨¨¨ q

tη̃pt1, . . . quˆ
pProp.5.12p1q,

Lm.5.19q

˙
η“pt1η̃qm1

oo
OO

pProp.5.12p2qq

u1 “ t1 η̃

õ
t1 “ u1 ξ̃

��

fpx1, y1, x2, . . . , xhq

99sssssssssssss

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

tξpy1{m1

1 , . . . qu
esspξpy

1{m1

1
,... q,Zhq

oo pLm.5.7q

y1“u1
m1

// tξpu1, t2, . . . qu
esspξpu1,... q,m1Zν1`¨¨¨ q

tξ̃pu1, . . . qu
esspξ̃pu1,... q,gcdpm1,n1qZν1`¨¨¨ q

ˆ
pProp.5.12p1q,

Lm.5.19q

˙

ξ“pu1 ξ̃qn1

oo

5.5. The special case of quasi-ordinary series.

Among the Newton-Puiseux series in several variables, the quasi-ordinary ones form a distinguished
subclass, having many special properties. We compare both classes in this section with the help of additive
orders and toric modifications. In particular, we get that Lipman’s inversion theorem for quasi-ordinary
series can be seen as a particular case of our generalized inversion theorem (Corollary 5.21).

Definition 5.23. A series ψ P Krrx1{N
1 , . . . , x

1{N
h ss is quasi-ordinary if ψ is a Newton-Puiseux se-

ries relative to an irreducible polynomial f P Krrx1, . . . , xhssry1s, such that the discriminant, ∆y1
pfq P

Krrx1, . . . , xhss of f with respect to y1, is the product of a monomial and of a unit in the ringKrrx1, . . . , xhss.

If the discriminant ∆y1
pfq of f P Krrx1, . . . , xdssry1s is a monomial times a unit then, by the Jung-

Abhyankar theorem (see [1] and [22]), f factors in the ring Krrx1{N
1 , . . . , x

1{N
h ssry1s as a product of poly-

nomials of degree 1 in the variable y1. If y1 ´ ψ, y1 ´ ψ1 are two different factors of f in this ring, then
ψ ´ ψ1 divides the discriminant ∆y1

pfq, hence ψ ´ ψ1 is the product of a monomial times a unit in the

ring Krrx1{N
1 , . . . , x

1{N
h ss. The monomials obtained in this way:

x
αk,1

1 ¨ ¨ ¨ x
αk,h

h , for k P t1, . . . , gu,

are called the characteristic monomials, and the tuples:

αk “ pαk,1, . . . , αk,hq, for k P t1, . . . , gu,

the characteristic exponents of the quasi-ordinary series ψ. Lipman showed that the characteristic
exponents determine many features of the geometry of the germ of hypersurface defined by f (for precise



VARIATIONS ON INVERSION THEOREMS FOR NEWTON-PUISEUX SERIES 25

definitions and related results, see for instance [24, 26, 27, 14]). He also proved the following combinatorial
characterization of quasi-ordinary power series (see [24, Proposition 1.5] and [14, Proposition 1.3]):

Lemma 5.24. Denote by ď the coordinate-wise order on Qh. A series ψ P Krrx1{N
1 , . . . , x

1{N
h ss is quasi-

ordinary if and only if there exist an integer n ě 1 and elements λ1, . . . , λr P Spψq such that:

(1) The support Spψq is included in 1
n
Zh

`.

(2) Every λ P Spψq belongs to the group Zh `
ř

λjďλ Zλj .

(3) λi ď λi`1, for every i P t1, . . . , r ´ 1u.
(4) λi does not belong to the group Zh `

ř
jďi´1 Zλj , for every i P t1, . . . , ru.

If such elements exist, then they are the characteristic exponents of ψ.

The following lemma is an analogue of Lemma 3.13. Its proof is a consequence of the definitions
of essential exponents and of Lemma 5.24. It shows how to recover the characteristic exponents of a
quasi-ordinary series from a sequence of essential exponents relative to the lattice Zh and any additive
order ĺ dominating Qh

`.

Lemma 5.25. Let ψ P Krrx
1{N
1 , . . . , x

1{N
h ss be a quasi-ordinary series with characteristic exponents

α1, . . . , αg. Let us denote by pe0, . . . , edq the sequence of essential elements of the support Spψq rela-
tive to the lattice Zh and a fixed additive order ĺ dominating Qh

`. Then:

‚ If e0 R Zh, then g “ d ` 1 and αk “ ek´1 for k P t1, . . . , d` 1u.
‚ If e0 P Zh, then g “ d and αk “ ek for k P t1, . . . , du.

Remark 5.26. Lipman proved an inversion theorem for the characteristic exponents of a quasi-ordinary
series ψ, when ψ is x1-dominant. This result appeared in Lipman’s PhD Thesis [24, Lemma 2.3 and table
4.4], see also [26], while its proof was published later in [28]. This proof is written in the two variable case
but it extends naturally to more variables. See also [17, Proposition 5.5]. Thanks to Corollary 5.21 and
Lemma 5.25, we see that Lipman’s inversion theorem for quasi-ordinary series is a particular case of the
part concerning exponents of our inversion theorem (Corollary 5.21) for x1-dominant Newton-Puiseux
series in several variables.

We end this paper with some remarks relating geometrically the Newton-Puiseux series with the quasi-
ordinary series by using methods of toric geometry. They are inspired by the second-named author’s proof
of [16, Théorème 3].

Let f P Krrx1, . . . , xhssry1s be a reduced polynomial such that fp0, . . . , 0q “ 0. Assume that f is
not quasi-ordinary. Then, the discriminant ∆y1

pfq P Krrx1, . . . , xhss is not of the form a monomial
times a unit. It follows that the dual fan associated to the Newton polyhedron of ∆y1

pfq defines a non-
trivial subdivision of the positive quadrant pRhq_

` of the vector space pRhq_ of real weights of monomials

xk1

1 ¨ ¨ ¨xkh

h . Let Σ be a regular subdivision of this dual fan. One has an associated toric modification

XΣ Ñ Kh, which is obtained by patching the monomial maps associated to the h-dimensional cones of
Σ. See for instance [15] or [16] for the basic definitions used in these methods of toric geometry.

Let σ P Σ be a h-dimensional cone of the fan Σ. It is spanned by the forms γ1, . . . , γh, which are the
primitive lattice vectors of the lattice pZhq_ lying on the edges of the cone σ. By the definition of the
dual fan, the following property holds:

Lemma 5.27. All the forms γ1, . . . , γh reach their minimum value on the support of the discriminant
∆y1

pfq at the same vertex λ0 of its Newton polyhedron.

We consider the coordinates pγs,1, . . . , γs,hq of the vectors γs, s P t1, . . . , hu, with respect to the dual
basis of ν1, . . . , νh. Let qσ P GLph,Qq be the linear map defined, with respect to the canonical basis
ν1, . . . , νh of Qh, by the matrix whose rows are pγs,1, . . . , γs,hq, for every s P t1, . . . , hu.

The monomial map

(5.22) Krx1, . . . , xhs Ñ Krv1, . . . , vhs, xλ Ñ vqσpλq
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defines the chart Kh
σ Ñ Kh of the toric modification of XΣ Ñ Kh, associated to cone σ. If:

F “
ÿ

γ“pα,βqPNhˆN

cγx
αy

β
1 P Krrx1, . . . , xh, y1ss

then the pull-back of F on Kh
σ ˆ K is defined by:

Fσ “
ÿ

γ“pα,βqPNhˆN

cγv
qσpαqy

β
1 P Krrv1, . . . , vh, y1ss.

Assume that ψ “
ř
cλx

λ P Krrx1{N
1 , . . . , x

1{N
h ss is a Newton-Puiseux series of f . Then, by definition

ψσ :“
ř
cλv

qpλq P Krrv
1{N
1 , . . . , v

1{N
h ss is a Newton-Puiseux series of the pull-back fσ of f . In addition,

qpλ0q belongs to the support of the discriminant ∆y1
pfσq. By Lemma 5.27, if qpλq belongs to the support

of ∆y1
pfσq, then qpλ0q ď qpλq (for the coordinate-wise order). This implies that the Newton-Puiseux

series ψσ is quasi-ordinary, since the discriminant ∆y1
pfσq is of the form vqσpλ0q times a unit. Using

Lemma 5.7 and the fact that σ is a regular cone (which implies that qσpZhq “ Zh), we obtain also the
relation:

(5.23) qσ pesspψ,Zh,ĺqσqq “ esspψσ,Z
h,ĺq

between the essential exponents of ψ and the essential exponents of the quasi-ordinary series ψσ.

Example 5.28. By Lemma 5.24, the series ψ “ x
3{2
1 ` x

1{4
2 ` x

7{2
1 x

5{2
2 is not quasi-ordinary. If we

consider the chart of the blowing up of 0 P K2 given by x1 “ v1v2 and x2 “ v2, whose associated cone
we denote by σ, then we obtain the series:

ψσ “ v
3{2
1 v

3{2
2 ` v

1{4
2 ` v

7{2
1 v62 .

By Lemma 5.24, the series ψσ is quasi-ordinary. It has essential exponents p0, 1{4q and p3{2, 3{2q with
respect to the lattice Z2 and any additive order ĺ of Q2 dominating Q2

`. By Lemma 5.25, these pairs
are also the characteristic exponents of ψσ. By (5.23), the pairs p0, 1{4q and p3{2, 0q are the essential
exponents of ψ with respect to the order ĺqσ .

Remark 5.29. Tornero studied in [37] a notion of distinguished exponents of the Newton-Puiseux series

ψ P Krrx
1{N
1 , . . . , x

1{N
h ss with respect to a fixed additive order ĺ1 of Nd. In Example 5.28, one can check

that the distinguished exponents of ψ relative to the additive order ĺqσ correspond to the characteristic
exponents of the quasi-ordinary series ψσ. One can prove that this is a general phenomenon. By the
previous discussion, it is enough to show that given a fixed additive order ĺ1, there exists a unique
h-dimensional cone σ P Σ and a unique additive order ĺ dominating Qh

` such that the orders ĺ1 and
ĺqσ coincide. Indeed, the cone σ is the unique h-dimensional cone of Σ such that the additive order ĺ1

dominates σ_ XQh, where σ_ is the dual cone of σ (the existence of σ is a consequence of the properties
of the Zariski-Riemann space of the fan Σ, see [12] and [18, Section 3.5]).
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cias Matemáticas, Universidad Complutense de Madrid, Plaza de las Ciencias 3, Madrid 28070, España.

E-mail address: pgonzalez@mat.ucm.es

Univ. Lille, UMR 8524, Laboratoire Paul Painlevé, F-59000 Lille, France.
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