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1. Introduction

Summer is at its peak, and you spend the day at the beach with your whole family. Unfortunately, you
were not the only one with this idea, and the beach is crowded with optimization specialists. Where
will you put your towels? You should find a place as lovely as possible, sheltered from the wind and
close to the sea, and as isolated as possible from other people to enjoy a little privacy. Optimizing even
more, it could be a good thing to leave no good spots too close to you because a new family coming
to the beach could have the incentive to move there and ruin your spot.

Sit on a bus, a train, or an auditorium: Where should you sit to enjoy privacy and comfort so
that others arriving later will have no incentive to sit too close? Another (more technical and less
antisocial) analogy is to imagine a load-balancing context with local influences. Assume that there are
n processors with m computation tasks to solve but that solving a task on a processor impacts other
processors around (say, for instance, that nearby processors share a resource of energy). How should
the tasks be distributed to processors? Can this distribution be efficiently computed?

1.1. Our model

Many problems in wireless communication networks have been modelled using game-theoretic ap-
proaches and have received considerable attention (see [22] for an overview). To handle access to the
communication medium, one must consider interference problems. For example, in the base station
selection [2]], a user’s cost (throughput) depends simultaneously on the number of users associated
with the base station and its neighbourhood.

To model these situations, we introduce the notion of Neighbourhood Balancing Game (NBG).
In such a game, players must choose a single resource in a set of n possibilities. They endure a cost
depending on how many players chose the same resource, but also nearby resources (as opposed, for
instance, to congestion games where the cost of players depends only on the number of players who
chose the same resource). Thus stated, the model of NBG is quite general, so we shall consider par-
ticular cases and use graph-theoretic terminology to model this notion of proximity between resources
and infer results from the graph topology.

We shall be very interested in equilibria, configurations of players’ choices such that no player
can improve its situation by changing location if other players do not move. We shall examine these
equilibria’s existence, structure, and computational tractability.

While we can develop a similar theory with atomic players, here we focus on the nonatomic case
and consider a continuum of players, or mass distribution, to avoid side effects based on divisibility
issues. As will be seen, this case is rich enough to provide many interesting examples.

Our model of nonatomic Neighbourhood Balancing Games lies somewhere between the model
of nonatomic selfish routing (or ”Wardrop model”, see [34]]), selfish load balancing and congestion
games.

As will be seen, our framework is more straightforward than the previous ones in many cases, but
many examples already manifest a great depth of complexity.
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1.2. State of the Art

The general framework of neighbourhood balancing games extends the congestion games defined
by Rosenthal [25]. Congestion games are non-cooperative games in which the players compete to
share a set of resources, and the cost of each player depends on the number of players choosing the
same resource. There are two types of games: atomic (a finite number of players) and nonatomic (a
continuous number of players).

For nonatomic congestion games, a well-known game theoretic traffic model is due to Wardrop [34]].
Wardrop equilibria have been introduced to model network behaviours in which travellers (for trans-
portation context) or packets (telecommunication context) choose routes they perceive as the shortest
(see survey [[14]] for more details). This model was conceived to represent road traffic with the idea of
an infinite number of agents responsible for an infinitesimal amount of traffic each. Beckmann et al.
(S]] proved that Wardrop equilibrium is a solution of a convex optimization program and is unique.

In algorithmic game theory, a question arises about the impact of the degradation of the social cost
of agents, taking into account their interests. This measure is called the price of anarchy [21] (ratio
between the worst equilibria and the optimal solution).

This question has been intensively studied for congestion games.

For nonatomic congestion games with affine costs, the price of anarchy is upper-bounded by 4/3,
and this bound is sharp [28]]. Indeed, the simple game introduced by Pigou is defined as a network
with two parallel routes composed of a single edge connecting a source to a destination. Its price of
anarchy is 4/3. Moreover, using the same topology and considering that the network’s cost functions
are polynomials of degree at most p, Roughgarden [26] proved that the price of anarchy for such
networks is large (the order of magnitude is ©(p/ log p)). Recently, some extensions of the price of
anarchy have been thought about in this type of network, considering the traffic variation [13} 12, 35].

For atomic congestion games, the games that seem most similar to those studied in this work are
load balancing games, or selfish load balancing. The underlying model, known as the KP-model, was
introduced by Koutsoupias and Papadimitriou in [21]], where they define measures for the quality of
equilibria. These problems have been studied widely (see chapter 20 of [24] for a survey). Indeed, be-
sides their conceptual simplicity (some machines are shared between selfish users who decide which
machines they will assign their tasks to), these problems are crucial in distributed environments. Kout-
soupias and Papadimitriou proved the existence of Nash equilibria and computed the price of anarchy
when machines are identical. Czumaj and Vocking [135] gave the tight bound O (log m / log log m) for
the price of anarchy on m uniformly related machines. In such environments, Christodoulou et al. [10]
introduced the coordination mechanisms (a set of scheduling policies, one for each machine) to obtain
socially desirable solutions despite the selfishness of the agents. Several works analyzed the existence
of pure Nash equilibria (see [[17, 20, 32]] for example) and their prices of anarchy [1} 3,18} 27, 30] for
these models (for uniform machines or unrelated machines, for weighted or not players).

Moreover, the price of stability [29] (ratio between the best equilibria and the optimal solution) is
another measure when the game admits several equilibria. Since nonatomic congestion games have
a unique equilibrium, their prices of anarchy and stability are identical. This reason is why it has
been studied only for atomic congestion games; the price of stability is known for congestion games
with linear cost functions [7, 9] and is upper-bounded [[8] for congestion games with polynomial cost
functions.
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One of the closest games related to our model is the facility location game introduced by Vetta [33]].
Competitive facility location games deal with the placement of sites by competing market players.
The facility location game plays on weighted bipartite graphs in which each player chooses to open a
single facility within the set of facilities the suppliers will serve, according to the distribution of users
on some vertices. Given a strategy profile, a supplier s serves the facilities closest to s and receives a
payment from these facilities. Vetta [33]] proved that the facility location game always admitted a Nash
equilibrium and gave an upper bound on the price of anarchy. This has been extended in literature in
several papers.

The discrete Voronoi game corresponding to a simple model for the competitive facility location
is very similar to neighbourhood balancing games. The discrete Voronoi game plays on a given graph
with two players. Every player has to choose a set of vertices, and every vertex is assigned to the
closest player. Diirr and Thang [[16[], and Teramoto et al. [31] independently proved that deciding the
existence of a Nash equilibrium for a given graph is NP-hard. Several works have been devoted to
extending similar results on various types of graphs (cycles [16], trees [4]).

1.3. Outline of the Paper

Section 2] is devoted to defining the games that we shall call NBG and the variants we shall study.
Section [3| will describe the notion of equilibrium and J-strong equilibrium. We shall also prove a
sufficient condition on the costs for the game to admit an equilibrium. Moreover, in Subsection [3.4]
we prove that knowing whether a game admits a strong equilibrium is NP-complete. Furthermore, we
adapt the notion of potential to our games to prove that symmetric graphical games admit a potential
function. Subsections and focus on the efficiency of equilibria. Finally, in Section [4] we
focus on characterizing equilibria in games where very simple graphs represent interactions between
resources.

2. Neighbourhood Balancing Games (NBGs)

In this section, we present and discuss our model, starting from the general case and refining particular
cases and properties that will be needed later.

2.1. General Model

Let n > 1 be an integer. Integers from 1 to n, whose set we denote as [n], will be called vertices ;
those are the resources (we use a graph-theoretical vocabulary for reasons that will appear soon). In
the paper, symbols 4, j are for vertices; if omitted, their scope is the set [n].

A mass distribution on [n] is a vector x = (x1, 2, - - ,Z,) With real nonnegative entries, where
x; is to be thought of as the mass on vertex ¢. The fotal mass of such a distribution is the sum of all
x;’s for i € [n] and will be denoted by r. A mass distribution can be considered as a continuum of
players, each choosing a single vertex as a strategy. We also refer to such an imaginary player by the
expression “infinitesimal unit of mass”.
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We shall denote A,.(n) the set of n-dimensional mass distributions with total mass » > 0. Given
x € Ay(n), we say that a vertex i is charged if x; > 0, otherwise it is uncharged. The support of x is
the set of charged vertices.
A cost function on vertex ¢ is a function

Ci:x— Ci(x) € RT

mapping every mass distribution x € A, (n) (for a given r) to a nonnegative real number, the cost of
vertex © under mass distribution x.

We interpret the cost C;(x) as the price paid by individuals in the continuum of players that have
chosen vertex ¢ as their strategy. Of course, each player has a goal of minimizing such a cost. This
can also be viewed as people in location ¢ enduring a nuisance, based on the total number of people in
their location and other locations.

To aggregate all this, we define a Neighbourhood Balancing Game (NBG for short) as a triple
(n,r,C), where n. > 1, 7 > 0, and C' = (C});¢p is the n-dimensional vector of cost functions
Ci : AT(TL) — RT.

Given this, the definition is quite general, and we shall be interested in NBGs where cost functions
have prescribed forms, which we shall describe afterwards.

2.1.1. A first example: two-commodity dilemma game (see Figure [T))

Let us consider a first, simple NBG: the NBG (2, 1, C') with C(z1, z2) = 4x129 and Cy(z1, 22) =
x1. This can be thought of as a two-commodity dilemma with a total mass 1 of players simultaneously
deciding between commodities 1 and 2, then enduring the cost C; depending on their choice and the
repartition of the mass.

Since for all (x1,x2) € A1(2) we have 1 + xo = 1, we can rewrite these costs as functions of
z1 only i.e. Ci(z1) = 4x1(1 — x1) ans Co(x1) = x1; these are depicted in Figure[l] As can be seen,
costs are equal when 1 = 0 and z; = %. When 21 < %, vertex 2 has a lower, hence better cost.
Hence, the mass on vertex 1 might want to move to 2, decreasing x; in the process. When x; > %, the
cost is better on vertex 1, hence the mass on 2 might want to move to 1, increasing x;. Thus, we can
expect that if we let the mass continuously move, starting from 1 # %, we would obtain stabilization
at either z;1 = 0 or z; = 1 depending on the case. If z; is exactly %, the two costs are equal, and we
can interpret this as a case where no player can improve its cost by switching from one vertex to the
other.

‘We shall define mass distributions such as x1 = 0, 1 = % and x; = 1, where no mass has the
incentive to move, as equilibria, and it will be our main endeavour to try and understand them; see
Section 3| for a definition.

2.2. Graphical NBGs
2.2.1. Definition

In this section, we define a subclass of NBGs, which will be our main focus for the rest of the paper.
In addition to being a natural and more straightforward case, Subsection [3.6] will explain the reason
for this particular class.
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Figure 1. Costs functions for the example in Subsection [2.1.1] The cost C; (resp. C5) is represented by the
dotted curve (resp. solid). The z-axis is the mass of vertex 1.

We now consider only the cost functions of the form
Ci(x) = fi(zi) + Zaj,iiﬁj
J#i
where:

(i) fi:[0,7] = R is a continuous non-decreasing function, such that
t>0= fi(t)>0

(hence values are positive except possibly for ¢ = 0);
(i) «j;, for every ¢ # j in [n], are nonnegative real numbers.

Functions f; are called vertex-cost functions and are not to be confused with proper cost functions C}

that are deduced from f;’s and o ;’s.
We call such a game a graphical NBG and it will be denoted

(n7r7 f? a))

where f = (fi)iejn) and @ = (i j)ije[n) If furthermore for all i, j € [n], 7 # j, we have aj; = a; j,
we say that the game is symmetric.

To a graphical NBG, we can associate an underlying graph (hence the name), which is either a
directed graph (V, A) (in the general, non-symmetric case) or an undirected graph (V, E) (if the game
is symmetric), where V' = [n] and either

A={(i,j):1<i#j<nand o;; > 0}
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is the set of arcs in the directed case or
E={{ij}:1<i#j<nanda;; >0}

is the set of edges in the symmetric case.

Let us go back to the example in Subsection It is not graphical since C'(x) = 4x1x2 is not
of the prescribed form. If we had C}(x) = x; + z2 and still Co(x) = 1, the example would have
been graphical and even symmetric, with fi(z1) = z2, fa(z2) =0and a1 2 = ag; = 1.

2.2.2. Special case where there are two resources (n = 2)

The case n = 2 is, of course, more straightforward than the general case but is still rich enough to
provide examples and counterexamples. We shall represent a symmetric graphical NBG as:

a2 =a
W ()

fi(1) fa(x2)

The following proposition will be used to build examples. It shows that in the case n = 2, if some
regularity conditions are satisfied, we can always find o 2 and vertex-cost functions to obtain any
couple of cost functions on vertices, up to translation.

Proposition 2.1. Let D; and D2 be two continuously differentiable functions on A,.(2) for a given
r > 0. We can find a real number ¢, a positive o > 0 and two functions f; and f5 such that (2,r, f =
(f1, f2), @) is a symmetric graphical NBG with cost functions C; = D 4+ cand Cy = Dy + c.

Proof:
For x € A,(2) we want

D1(x1,22) + ¢ = C1(x1,72) = fi(71) + axy = fi(z1) + a(r — z1),

so we define on |0, 7]
fi(z1) = Dy(x1,7 — 1) + ¢ — ar — x1)

and likewise
fa(x2) = Da(r — x9,x2) + ¢ — ar — x2)

where ¢ and « are to be defined.
What remains to do is to find values a@ > 0 and ¢ such that f; and fs will be positive and non-
decreasing. Both functions are continuously differentiable and for z; € [0, 7] we have

oD oD
f/(ml) - 6711(‘%1771 - 1"1) - 6721($17r - .’El) + «,
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hence if we want f; and fs non-decreasing it is enough to use any « satisfying

8D1 aDl
> = _ =1 _
a > max <xlél[%,;f~] { o (x,r —x)+ Dy (x,r :v)} ,
8D2 aDZ
s { ot -2 - G- n})

and then we can easily find c such that both functions are positive.

2.3. Affine, Linear, Normal, Uniform NBGs

We shall restrict graphical NBGs by considering the following definitions for a graphical NBG G =

(n,r, f,a):
¢ (G is affine if all vertex-cost functions f; for i € V are of the form
filxs) = a5 + by,

where «; ;, b; are nonnegative. Cost functions are then of the form

CZ(X) =b; + Z Q5T

JjeEV

hence are also affine functions. An affine graphical NBG can be symmetric or not.

« if (G is affine and moreover all b;’s satisfy b; = 0, then the NBG is linear and all cost functions

C; for i € V are of the form

Ci(x) = ajimj,

JjEV

where the «; ;’s are nonnegative. A linear NBG is said to be normal if c; ; = 1 for all i.

* G is an a-uniform NBG if it is a normal linear NBG where all nonzero «; ;s for i # j have a

common value «, or in other words all cost functions C};,4 € V, are of the form

Ci(x)=z;+« Z xj,

JENTi]

where N[i] C V' \ {i} is a set of vertices which we call neighbours of i using graph-theoretic
terminology. If the game is symmetric, these neighbours are precisely the neighbours in the
underlying undirected graph (otherwise, they are the in-neighbours in the underlying directed

graph).

We shall recall these definitions when needed.
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2.4. Summary

Here is a table to sum up the different cases:

Class of NBG ‘ condition on cost functions C;

general Ci(x) >0
Ci(x) = fi(wi) + D24 0i%;
graphical fi continuous non-decreasing

t>0= fi(t) >0
fi(0) > 0,5, >0

affine Ci(x) = bi + > ajix;
b >0,a;; >0
linear Ci(x) =32 iz
(675} > 0
normal linear with o; ; = 1
a-uniform normal linear with

j;éi,ozj,i>0:>ozj7¢:oz

Each class contains the classes below it in the table, and all classes included in the Graphical class
can be either symmetric (a;; = « ; for all i # j) or not.

3. Equilibria

Equilibria of NBGs are our main focus in this paper. An equilibrium is a mass distribution such that
no infinitesimal player has the incentive to move because, in that distribution, every player has made
the best choice for itself. This notion relates to the n-player games definition of Nash equilibria and
the definitions of equilibria in other nonatomic games such as Wardrop games or nonatomic conges-
tion games. We consider only pure equilibria here because infinitesimal players do not use mixed
strategies.

In this section, after properly defining equilibria and proving their existence in the general case, we
establish an algorithmic complexity result for the existence of a refined notion of equilibria, §-strong
equilibria. We then introduce the notion of the potential function and prove that symmetric graphical
games enjoy the existence of such a function, which is a tool to compute equilibria.

3.1. Definition

An equilibrium is a mass distribution such that no infinitesimal mass quantity can get a lower cost by
moving from one vertex to another. Formally, x* € A, (n) is an equilibrium if

Vi,j € n], x;>0= C;(x*) < Cj(x").
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1
0 Y r

Figure 2. We consider a game with 2 vertices. The curves represent the costs of the two vertices as a function
of the mass on vertex 1. There are three equilibria in this case: 1 = 0, x1 = 7 (second intersection of the
costs curves) and 1 = r. Equilibria x; = 0 and z; = r are strong; however x; = + is not strong since a small
quantity € of mass can always move from 2 to 1 and improve its cost.

This definition implies that in an equilibrium, all charged vertices share the same cost, while uncharged
vertices have at least the same cost as the charged vertices.

For § > 0, a 0-strong equilibrium is a x* € A,(n) such that no mass quantity 0 < € < § can
improve its cost by moving from one vertex to another. Formally,

VO <e<4,Vi,j€ [n],z; >e= Ci(x*) <Cj(x* —€-e; +€-ej), (1)

where (e;);e[,) is the canonical basis of R". If § < d’, a ¢’-strong equilibrium is §-strong, particularly
all d-strong equilibria are O-strong, which amounts to saying that it is an equilibrium in the sense
defined above.

We say that an equilibrium is strong if it is d-strong for some § > 0. See Figures [2| and [3| for
examples of equilibria, strong or not. Thanks to Proposition [2.1, we do not need to define these
examples explicitly where only the curves’ relative positions and shapes are relevant.

3.2. Existence of Equilibria

Here, we consider general cost functions and show the existence of an equilibrium under the condition
of continuity. The proof is adapted from Nash’s proof of the existence of a mixed symmetric Nash
equilibrium in a symmetric game [23].

Theorem 3.1. Let (n,7,C) be a general NBG, and suppose that cost functions (C;);c,) are continu-
ous. Then, the game admits an equilibrium.

Proof:
Define, for all 4, j € [n], a function g; j : A;(n) — R by

gij(x) = x; - max (0, C;(x) — C(x))
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T
0 r

Figure 3. We consider a game with 2 vertices. The curves represent the costs of the two vertices as a function
of the mass on vertex 1. There is only one equilibrium in 27 = 0, which is not strong.

and F; : A, (n) — Rt by
Ti 7Y e 905 (X)
143 jem) 900 (%)
This definition guarantees that F' = (F, Fy, - - - , F},) takes values in A, (n) and is continuous, hence

has a fixed point x* by Brouwer’s fixed point theorem. Consider & € [n] such that Ck(x*) =
max{Cj(x*) : 7 > 0} and 3 > 0. Then

Fi(x) =

Cj(x*) > Cr(x*) = 25 =0,
so that gy, j(x*) = 0 for all j € [n]. In particular, we have F},(x*) = x}, hence
7
L+ 225 jern) 905 (X7)

Since xy > 0, this implies that g; j(x*) = 0 for all 4,5 € [n]. In particular, for i, j with 2} > 0, we
have max(0, C;j(x*) — C;(x*)) = 0, which is the definition of an equilibrium. O

3.3. Games with no Equilibria

A non-continuous game does not need to have an equilibrium. Consider for instance (2,1, C) with
C1(x) = 1, and C2(x) = 2 when z1 < 3, and Ca(x) = 0 otherwise. When 7 < 3, we have 25 > 0
but C1(x) < Ca(x), hence not an equilibrium, and for z; > 3 we have 21 > 0 and C(x) < C1(x)
hence also not an equilibrium.

3.4. Structure and Complexity of Equilibria

Here, we study the structure of equilibria in one particular case, namely normal linear NBGs. This
enables us to derive complexity results for the problem of finding an equilibrium in a given NBG.
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So we consider a (possibly non-symmetric) normal linear NBG G and its underlying directed
graph D), i.e. its cost functions are of the form

Ci(x) =x; + Z Q55 T, (2)
JF
where «; ; may be different from «; ;.
Let us recall that for a directed graph D = (V, A), a kernel is a set of vertices K C V such that:

« for any two distinct vertices v, w € K, arcs (v, w) and (w, v) do not belong to A (hence K is a
directed stable set);

* if 2 ¢ K, then there is v € K with (v, z) € A (K is a directed dominating set).

Proposition 3.2. Let G = (n,r,C) be an NBG with normal linear cost functions and underlying
graph D; suppose furthermore that

Qi > 0= QG5 > 1 and Q5+ Qi > 2 (Z #+ ])
Then, the supports of strong equilibria are exactly the kernels of D.

Proof:
First, consider a kernel K of D of size k and define x* by 2] = 1 if i € K and xj = 0 otherwise.
Since K is a stable set, the cost inside K is exactly %, and since K is dominating and any nonzero
o j 1s at least one, the cost is at least % outside K. Let0 < e < % and consider a mass € moving from
vertex ¢ € K to j.

If j € K, the cost in j after the change will be  + ¢, which is worse. If j ¢ K, then there is an
arc (7', 7) from a vertex ' € K to j. The worst case is when i = i, and in this case, the cost in j will

be at least
r r r r

€+ O‘m‘(% —€) = (qij — 1)(% —e)+ P
which is also not better. Hence, K is the support of a 7-strong equilibrium.

Conversely, suppose now that x* is a d-strong equilibrium of G fora é > 0, and 4, j € [n] are two
charged vertices with «; ; > 0, i.e. (4, ) is an arc of D. Consider an € > 0 as in Definition , and
suppose furthermore that € < min(d, z;,z7). Then

Ci(x") < Cj(x*" +e-ej—€-€)

and
Cij(x") < Ci(x" +€-e —€-ej).

Let A; = Zkﬁj aypxy and Aj = Zkﬁ ; ay, ;. Then, the inequalities above can be written
T+ ajr; + A < x5+ et gz —€) + A
and

r; + o ry + Ay <ap +et+aji(e —€) + A
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Summing these two inequalities, we obtain after cancellations
0 <2e—e(;+ aj),

so that a;; j +«vj; < 2, contradicting our hypothesis. So, there can be no arc between charged vertices,
and the support of the equilibrium is a stable set.

Moreover, if j is uncharged, then its cost must be positive by the definition of equilibria; hence,
there must be some charged vertex ¢ with «; ; > 0. Therefore, the support of a strong equilibrium is a
kernel of D. O

For a normal linear NBG or even an affine NBG, checking if a mass distribution is a strong equilibrium
is a simple task and amounts to checking a quadratic number of inequalities. Now, observe that
determining whether a given digraph admits kernels is NP-complete ([11]], [19, p. 204]). Also, there
is a straightforward polynomial reduction from kernels to strong equilibria by changing a digraph into
a normal linear NBG simply by choosing some «; ; > 1 on all arcs. Hence:

Corollary 3.3. Determining whether an affine NBG admits a strong equilibrium is NP-complete.

In general, checking if a distribution is a strong equilibrium depends on the model used to define
functions. However, we still have that:

Corollary 3.4. Determining whether an NBG admits a strong equilibrium is NP-hard.

As a conclusion to this subsection, let us mention a simple example where the game admits an
equilibrium (not strong), and the graph has no kernel. We consider the normal linear NBG on three
vertices {1,2,3} with arcs (1,2), (2,3) and (3, 1), with a coefficient & > 0 on each arc. Consider the
mass distribution (1/3,1/3,1/3): it is an equilibrium. However, this equilibrium is not strong, and
the graph admits no kernel.

3.5. Potential Function

Let G = (n,r,C) be an NBG. A potential function for G is a differentiable function ® defined on a
neighbourhood of A,.(n) such that

0P(x)
Bxl-

A potential function is a tool to study equilibria. In particular

Vi € [n],

= C;(x).

Proposition 3.5. If an NBG, G = (n,r, C'), admits a potential function ®, then the local minima of
® on A, (n) are equilibria of the game.

Proof:
Let x* denote a local minimum of ® on A, (n). In particular, if 7 > 0 and j € [n], j # 1, there is an
€ > 0 such that if 27 — € > 0, we have

O(x") < P(x* —t-e-e+t-€-e)
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cost
2 — (s
1 lime 1
r1
0 r=1

Figure 4. Withn = 2 and r = 1 (so that zo = 1 — x1), consider @12 = a1 = 1, fi(z1) = 1 and
f2(@2) = 1+ x5. This gives Cy(x) = 2 — x1, Ca(x) = 2, and D(x) = z1 + (v2 + 523) + z122 = (3 — x})/2
(this potential function is given by Equation in the upcoming Proposition we can check that this is
indeed a potential. Otherwise, other potentials are equal to this one up to an additive constant; also note that a
potential can be expressed with ; alone, with x5 alone, or with both z; and x5). There are two equilibria, one
in z1 = 1 which is a minimum of the potential function, and one in £; = 0, which is a maximum.

forall t € [0,1]. Defining
ft)=2(x") —P(x" —t-c-e;+1-€-ej),

we see that f is differentiable on [0, 1] and is nonpositive while f(0) = 0. Hence, we have f'(0) < 0
and thus
€ CZ(X*) — € Cj(X*) S O,

which is the definition of equilibria. a

Remark. Following the proof above, an interpretation of the potential function & is that for |¢| small
enough, if x; > 0 we have

Blx+t-e; —t-ej) — B(x) = t- (Ci(x) — Cj(x)) + o)),

hence the total quantity of cost variation when moving between ¢ and j can be deduced from the
difference of potential.

Remark. An equilibrium corresponding to the minimum of a potential function is not necessarily
strong. See Figure [3|for an example with a unique, not strong, equilibrium, which must be the global
minimum of the potential function (this example is a graphical symmetric NBG, so it admits a potential
function by Proposition [3.6).

Remark. The converse is false: an equilibrium does not always correspond to a local minimum of the
potential. See a counterexample in Figure

Note that since ® is continuous on the compact set A, (n), it admits a global minimum on A, (n),
which gives another, more constructive, proof of the existence of an equilibrium when there is a
potential function.
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3.6. Potential Function and Graphical NBGs

To build examples where there is a potential function, one could consider a differentiable function ®
0P(x)
and define C;(x) as =5~
However, to identify classes of games where there always exists a potential function, we can

restrict our attention to cost functions which are decomposable in the following natural way:

Ci(x) = filxs) + Y fala;)
J#
where the f;’s and f; ;’s are continuously differentiable functions (for practical reasons).
Supposing that the game admits a potential function ®, by Schwarz’s theorem, we must have for

all i # j ; ;
0°P ) — 0°P %),
Baciaxj 895]6951

SO
Ofji(x;) _ 0fi(xi)
8$]’ 8:]52

Therefore, these functions must be linear, of the form f;; = cz; and f; ; = cx; for a ¢ € R; whence
the definition of symmetric graphical games.
The following is then easy to check.

Proposition 3.6. Let G = (n,r, f,«) be a symmetric graphical game. Define:

d:A(n) — R

(I)(X) = Z /Oxl fi(t)dt + Z Qi LT 3)

i<j
Then @ is a potential function for G.

Remark. A graphical NBG which is not symmetric may admit no potential. Indeed, by the discussion
above, if o; ; # «; and the f;’s are continuously differentiable, then we see by Schwarz’s theorem
that a potential function cannot exist.

In the following, we investigate how our model of NBG leads to equilibria that can be good or bad
from a social viewpoint.

3.7. Social Costs

A social cost is a way to average all the costs paid by the infinitesimal players in the game and quantify
by a single number the cost, hence the quality of equilibria, if we want to compare them.
We define two social costs:
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e The utilitarian social cost, defined as

Cul) =+ 3 i),

1€[n]

is simply the average cost of an infinitesimal mass in the graph. It can be low even if a small
fraction of the mass pays a high cost.

» The egalitarian social cost, defined as

Ce(x) = max Cj(x)
i€[n],z;>0
is the maximum cost encountered among vertices with a positive quantity of mass. Minimizing
this cost is more complicated than minimizing the utilitarian cost since it considers all infinites-
imal players.

We should note that for all x € A,(n), we have C,(x) < C.(x), and that there is equality if x is an
equilibrium.

3.8. A Braess-like Paradox

Braess’s Paradox was discovered by Braess [6] in the context of nonatomic selfish routing. In this
model of routing a continuous mass of vehicles from a source to a destination, one shows the paradox-
ical phenomenon that opening a new road leads to a dramatic increase in the social cost of the (unique)
equilibrium of the model.

Despite being even more straightforward than the nonatomic selfish routing model, we show that
our NBG model admits examples that lead to similar conclusions.

Consider the following example with two vertices:

1
Q12 =%
O —(2)

fi(z) =1 fa(z2) = 22 + bo

with total mass » = 1. We can write a mass distribution as x = (1,1 — z1) and costs, as a function
of x1, are:

1 1 5
Cl(X) =1+ 1(1 — .’L'l) = —1.’151 + Z
and
1 3
CQ(X) = 1—$1—|—bg—|—1I1 = —13314-1—}-(72.
Ifb, € [i, %] costs intersect in 2by — % and there are no other equilibria (see Figure . The common

value of both costs is then % — %2, which grows when by decreases; it is also the social cost (utilitarian
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cost
cost
cost 7/4
3/2
Co
7
C 1 1
1 o
3/4
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I L T R e I 13 |
0 r—=1 0 1/2 r=1 0 r=1
by =1/4 by =1/2 by =3/4

Figure 5. The costs and equilibria for three different values of bo.

or egalitarian) in this equilibrium. This means that a lower vertex-cost function can lead to a worse
equilibrium in the sense of both social costs.

Note that for each mass distribution x, social costs C,(x) and C.(x) always decrease when we
reduce by or, more generally, vertex-cost functions; here, what increases when we reduce b2 is the
social cost of the unique equilibrium. Also, note that we obtained this paradox in the simple context
of a symmetric affine NBG. In this case, a potential function with a unique minimum exists (so it is
not a protection against these paradoxes).

3.9. The Price of Anarchy

The concept of a price of anarchy (PoA) is a popular measure for the inefficiency of equilibria in
games. If there are multiple equilibria, we consider the worst case and quantify the cost of this worst
equilibrium regarding the best configuration of the game, i.e. an optimal outcome where we do not
have the constraints of equilibria.

Let Eq C A,(n) denote the set of equilibria of an NBG G = (n,r,C). We define the price of
anarchy for the utilitarian social cost, PoA, (G), as follows:

néaEXCu(x)

_ _Xenq

PoA,(G) = min Co(x)’ “4)
XEA(n)

and PoA.(G) is defined likewise for the egalitarian social cost. Unfortunately, the existence of several
equilibria in NBGs leads to the price of anarchy unbounded even in elementary classes of NBGs.

Proposition 3.7. The price of anarchy (with both social costs) is unbounded on normal «-uniform
NBGs.
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Proof:
Consider the following example on two vertices, where r = 1.

@ a172:a>1 @

fi(z1) =21 fa(x2) = 22

We can write both cost functions as functions of x; and obtain
Ci(r1)=1—a)r1 +

and
02(.%1) = ((X — 1)1’1 +1

There are three equilibria:
* inz; = 0 we have C1(0) = a > 1 = C3(0) ; the social cost is 1;

* likewise in z; = 1, the social cost is 1 also. It is easy to see that this is a global optimum for the
social cost;

* in z; = 0.5, we have C1(0.5) = C2(0.5) = HTO‘, this common value being the social cost.

Hence, we see in this example that the price of anarchy is HTC“, but we can consider « as large as

needed. O

We could derive bounds on the price of anarchy in simple cases (for normal linear NBGs, for
instance) based on the size of the coefficients that appear. But instead, we shall now focus on another
measure, more suited to the case of NBGs.

3.10. The Price of Stability
The price of stability (PoS) of the game, for the utilitarian social cost, is defined as

mibg Cu(x)
PoS,(G) = =21 (5)
min  Cy(x)
XEA(n)

The price of stability of the egalitarian social cost, PoS,.(G), is defined similarly, using C.. The so-
called stability corresponds to the fact that we require the mass distribution to be an equilibrium, hence
stable concerning unilateral deviation of infinitesimal players; hence the price of stability is a measure
of the increase of global social cost due to this stability.

Note that for both social costs, we have PoA(G) > PoS(G) > 1. It is also easily noted that

PoS.(G) < PoS,(G). (6)

We now give upper bounds on PoS(G) in different cases.
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Proposition 3.8. Let C be a class of vertex-cost functions and 0 < v < % such that, for all f € C, one
has

/Oxf(t)dt > v f(2).

Then, the price of stability for all graphical symmetric NBGs with cost functions in C is at most % for
both social costs.

We prove the result for the utilitarian social cost, and the other case follows from (6). To prove
Proposition (3.8} we first prove the following lemma.

Lemma 3.9. With v as defined in the previous Proposition, and for all mass distributions x of a
graphical symmetric NBG G with potential function @ (as defined in Proposition [3.6), one has

v Cu(x) < O(x) < Cyu(x).

Proof:
In the case of a symmetric graphical game (n,r, f, «), the utilitarian social cost is equal to:

CU<X) = szfl({m) + QZO&Z‘J{L‘Z‘JJ]'. @)
i i<j

Since vertex-cost functions f; are non-decreasing, the upper bound is clear from (3) and (7). The lower

bound comes from the definition of v and v < % a

Proof of Proposition Let x; be a best equilibrium, i.e. an equilibrium that minimizes the util-
itarian social cost Cy; let x4 be a mass distribution that minimizes the potential function ®, which
is an equilibrium by Proposition and let x* be a mass distribution that minimizes C,,, so that
P0S,(G) = £2%) Then we have

Culx)"
Cu(xp) < Cu(xy) (since x;, minimizes C,, among equilibria)
< ’1YCI)(X¢) (by Lemma[3.9)
< l<I>(x*) (by definition of x)
Y
< iCU(X*) (by Lemma[3.9),

hence
PoS,(G) <

2=

Using the previous relation and Inequality (6)), we can deduce that:

Corollary 3.10. On the class of polynomial functions with real nonnegative coefficients of degree
d > 1, both prices of stability are at most d + 1.
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cost

242X

1+2A &
1+ A Cy
1

0 r=1

Figure 6. A family of graphical games reaching the maximum price of stability of 2 for affine vertex-cost
functions. With n = 2 and r = 1, consider a1 2 = ao1 = 1, fi(z1) =1+ 2X and fo(x2) = (2+ N)z2 + A
This gives C(x) = 242X — z7 and C2(x) = 242X — (1 4+ A)z;. The only equilibrium of the game has cost
2 + 2), while the best utilitarian social cost is obtained for x; = 1 and is equal to 1 + 2\ (this social cost is
decreasing on [0, 1] if 0 < A < 1). Thus, we can reach the bound of 2 for PoS(G) by letting A go to 0.

For d = 0, the price of stability is at most 1, hence equal to 1. For d = 1 (the affine case), the price of
stability is between 1 and 2, and we can give a family of examples reaching asymptotically the bound
2, see Figure[6]

We can be more specific when all vertex-cost functions are linear: the utilitarian social cost and
the potential functions (as defined by Equations (3)) and (7)) are related by:

Cu(x) = 29(x).

Observe by Proposition [3.5] that there exists an equilibrium corresponding to the minimum of .
Since C,, and ® are minimum on the same mass distributions and using Inequality (6], we get

Corollary 3.11. On the class of linear functions with real nonnegative coefficients, both prices of
stability are 1.

4. The a-Uniform Graphical NBG for Some Graphs

This section considers that the underlying undirected graph can be path, cycle and complete bipartite
graph. From the example of the path, we derive the embryo of an algorithm outputting an equilibrium,
which could be adapted to general graphs. Using the linearity of the cost functions, without loss of
generality, we can assume that the total mass is equal to 1 (r = 1).

We can observe that, in a a-uniform NBG,

Rule 1. An equilibrium cannot have an uncharged vertex with only uncharged neighbours.

Indeed, the cost of an uncharged vertex with uncharged neighbours is zero, and the mass distribu-
tion cannot be an equilibrium because the costs of vertices are strictly positive.
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Rule 2. An equilibrium cannot have one uncharged vertex with only one charged neighbour, unless
a>1.

Indeed, the cost of an uncharged vertex with only one charged neighbour is less than that of the
charged neighbour itself when o < 1, and the mass distribution cannot be an equilibrium by definition.

Rule 3. If an equilibrium x has an uncharged vertex ¢ with k charged neighbours, then a@ > % If

a= %, then all the neighbours of ¢ have the same mass, and none of them has charged neighbours.

Indeed, suppose that vertex 7 is not charged in x. The definition of equilibrium in a--uniform NBGs
implies these inequalities: for any neighbour j of i, Cj(x) > z;, and C;(x) = o } e vy 20 = Cj(x) .
These inequalities are valid when @ > 7. If @ = 1, then C;(x) = %ZZENM xy > xjforall j € Ni,
i.e., the average of the k neighbours masses is at least the mass of each neighbour, so all masses are
equal. Moreover, Cj(x) = C}j(x) for all j, so no neighbour of ¢ can receive an additional cost from a
neighbour.

Rule 4. Let u and v be two vertices having the same neighbourhood. If a mass distribution x is an
equilibrium, then z,, = x,,.

Indeed, if we let N = o), N T = & > e NJv) T¢» then the definition of equilibrium in a-
uniform NBGs implies the equalities C,(x) = x, + N and Cy(x) = x, + N. Then z, # z,, say
Ty > Xy, implies that Cy, (x) > C(x), so z,, is uncharged, contradicting x,, > .

4.1. The Case When the Underlying Graph is a Path

In this subsection, we consider the a-uniform case for different values of «, in a quite simple graph:
the path with n vertices, P,.

Paths are seemingly harder to deal with than cycles; even in the uniform case, they provide differ-
ent interesting cases: for instance, for given n and «, one may have infinitely many equilibria. In the
following, we do not necessarily provide the complete computations.

First, we can look for equilibria x = (z1, ..., z,) where all vertices are charged or, if uncharged,
have the same cost as charged vertices. We shall call such equilibria uniform-cost or simply uniform.
Hence:

Vi,jeV, Ci(x)=Cjx).

Let c denote this common cost. To calculate this type of equilibrium, we shall consider it as a solution
to the system of equations () below. This allows having a system of equalities rather than inequalities;
on the other hand, there are more unknowns. The first three equations represent the fact that the costs
of the vertices are identical: the first and the third correspond to the vertices 1 and n. The fourth one
corresponds to the constraint that the total mass equals 1.
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‘We then have:
r1+axre =c

Vi<i<n, ari—1+x;+axs1 =c
ALp—1+ Ty =¢C
> a-
i€[n]
Vi<i<n, z;>0.

®)

If we denote M, o the (n + 1) x (n + 1) matrix

l «o -1
a 1 « -1
-1

« 1 « —-11,
-1
a 1 -1
1 1 - 1 1 1 1 0

where all blank entries are 0, a solution of System () above gives in particular a solution to the linear
system

which will help us to find an equilibrium in P,, (we know that there exists at least one). The same is
true for cycles, with only a slight modification of the matrix (see Section 4.2).

The solutions corresponding to uniform-cost equilibria depend on the determinant of matrix M,
and thus also on the value of a.

Case when n = 2. We have det(Msz,) = —2a + 2.
For o = 1, we have det(M> ) = 0 and any mass distribution is a uniform-cost equilibrium. For
« # 1, we have at most one uniform-cost equilibrium. For reasons of symmetry this equilibrium is

(3:3).

Case when n = 3. By computation, we get det(M3,) = —4a + 3. Hence, using the same argu-
ment as previously, there is at most one uniform-cost equilibrium for o # %. By computation, this
equilibrium would be
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N a—1 2a—-1 a-1
Xy = .
07 \4a—3"4a -3 40— 3
For this to be an equilibrium, its entries must be nonnegative, which is the case if and only if 0 < o <
ora > 1.

For a = %, System (9) has no solution. Hence, there is no uniform-cost equilibrium. We can look
for non-uniform equilibria (with at least one uncharged vertex). Two cases are possible:

1
2

1,0, 3), and this

* if the middle vertex 2 is uncharged, then the only equilibrium must be x7 = (5,

is a valid equilibrium only if o > %

* there is no equilibrium where vertex 1 or 3 is uncharged, say 1 = 0, x2 > 0, x3 > 0, since
the cost in vertex 1 would be less than the cost in vertex 3. The equilibrium x5 = (0, 1,0) is
possible only if « > 1.

So, to sum up, there are three equilibria, xj, x] and x3 if o > 1. Otherwise, if a = 1, there are two
equilibria, x3 (= x}) and x}. If 1 > « > 3, then x] is the only equilibrium. If & = 1, the only
equilibrium is x] (= x{). And if % > a > 0, then xj is the only equilibrium.

Case when n = 4:  We have det(My,) = 2(a? + a — 1)(a — 2), whose nonnegative roots are 2
and ¢ = Y3=1 ~ 0.618.

Hence, if & # 2 and o # ¢, we have at most one uniform-cost equilibrium. The solution to
System (9) is then z; = 24 = ﬁ, To = X3 = 41 50 which yields nonnegative values, i.e., a
uniform equilibrium when 0 < a < 1. As mentioned above, a search for non-uniform equilibria can
be easily done, but we prefer to focus on the case o = ¢ because it leads to infinitely many equilibria.

First, any quadruple (x1, x2, 3, x4) such that

1

T+ @y = s~ 0724, (10)

2y — 2_j§¢>+m4( +$) ~ —0.447 + 1.618 24, (11)
1

T3 = o x4(1+¢) = 0.724 — 1.618 24 (12)

+1)(2

ie. ~ 0.276 < x4 <= 0.447; then any triple (x1, x2, x3) verifying glves to—

%}
(¢+1)(2—-9)

is a solution to System @) The nonnegativity condition then implies that x4 €
gether with z4, a uniform equilibrium. All these solutions have the same cost, namely —‘;; ~ 0.447.

Case whenn = 5:  We obtain det(M; ) = (a+1)(a—1)(a? + 8« — 5), whose nonnegative roots
are 1 and ¢ = v/21 — 4 =~ 0.583.

Calculations show that there is no solution to System (9) when o« = ¢, implying that there is no
uniform equilibrium. More calculations lead to the following results for o € [0, 1]:
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e if0<a< %, there is a unique solution: a uniform equilibrium.

< o < 1, then x5 = (%7 0, %, 0, %) is the only equilibrium, and it is non-uniform unless

e if @ = 1, x{) is an equilibrium, and any 5-tuple (z1, 2,0, 24, x5) such that z1 + 22 = x4+ x5 =
% and zo + x4 > % (e.g., (%, %, 0, i, %)) is a non-uniform equilibrium, except the distributions

(1, x2,0,x1, x2), which are uniform, with cost 21 + x3 = %

General case: We observe that the four previous determinants, det(Ms ), det(M3 ), det(Myq),
det(Mg,’a), show no regularity, and it looks hard to find a general form for them, for their roots, and
for the solutions to System (9).

The first three Rules given above have the following implications when the graph is a path.

Rule [T] implies that an equilibrium cannot have three or more consecutive uncharged vertices.
Rule 2] implies that an equilibrium cannot have two consecutive uncharged vertices unless a > 1.
Rule 3| implies that no equilibrium has uncharged vertices when 0 < o < %

Because such a game has at least one equilibrium by Theorem [3.1] we have that

* either det(M,, o) # 0: the unique solution to System (9) is nonnegative;

* or det(M,, ) = 0: among the solutions to System (9), at least one is nonnegative.

From these three Rules and the above results on small values of n, we can conjecture that:
Conjecture 1. Forn > 2and o < % we have det(M,, o) # 0; therefore, there is a unique equilibrium
(which has a uniform cost) in P,.

Example 4.1. In path Py with o = %, the unique equilibrium is %(157 11,12,12,11,15), with cost

3%’14 ~ .23; for a = %, it is 3—18(8,5,6,6,5,8), with cost % ~ .25. In P; with o = %, it is
S15(41,30, 33,32, 33,30, 41), with cost 25 ~ .20; and for @ = 4, it is £ (13,8,10,9,10,8,13),
with cost &7 ~ .22.

213

The above rules lead to a starting point for an algorithm finding an equilibrium in a path with n
vertices, which, however, has too high a worst-case complexity due to Step 2:

* Step 1: compute det(M,, ).
(a) if det(M,, o) # 0, there is a unique solution to System (9).
— if the solution is nonnegative, we have a uniform equilibrium. We know that this is always
the case if a < %
— if the solution is negative, we must search for non-uniform equilibria (see Step 2).
(b) if det(M,, o) = 0, either there is no solution to System (9)), or infinitely many. In the latter

case, if some of these solutions are nonnegative, we have obtained uniform equilibria (see the
example when n = 4). Otherwise, we are back to the search for non-uniform equilibria.
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» Step 2: search for a non-uniform equilibrium: try with uncharged vertices, respecting Rules
and [2 above (Rule [3]is respected because we are in a case when no uniform equilibrium has
been found).

This sketch of an algorithm can be adapted to general graphs, with modification of the determinant.
Note that uncharged vertices mean fewer unknowns but induce inequalities on the costs instead of
equalities.

Now, we restrict ourselves to the cases o = p L and a = 1, the study of general « being seemingly out
of reach. We recall Conjecture I when o <

General case for a = % Both ends of the path must be charged. Rule|3[above shows that if there

is one uncharged vertex x; = 0, then ;1 = x;41, and either the vertex ¢ — 1 or ¢ 4+ 1 is an end, or
Ti—g = Tita = 0; similarly, ZTi—3 = Tij+3 = T;—1, and so on. There are two cases.

If n is odd, then (2=, 0, %H, 0, %H, .., 0 is the only equilibrium, with uniform cost equal
to /=

n+1
If n is even, n = 2gq, then all vertices are charged, and the only equilibrium is given by

2
n+1’ ’ n+1)

xop = kxo, 1 <k <gq
Top+1 =01 —kxo, 0 <k <g—1

1
T = ——
qg+1

!
q(qg+1)’

with uniform cost equal to %. For instance, the equilibrium for n = 10 is

11 2 1 1 1 1 2 11 1

(65015 15°10°10° 15" 15°30°6) ~ 300
its uniform cost is %. Observe that the odd positions are 5,4,3,2,1 and the even positions are

1,2,3,4,5.

5,1,4,2,3,3,2,4,1,5);

General case for o = 1.

Remark 4.2. Let x = (z1,...,x,) be an equilibrium. When o = 1, a simple observation is that (in
paths as well as in cycles) if x; = 0, ;4.1 > 0 and z;42 > 0, then z;413 = 0.

The search for uniform-cost solutions is straightforward (no need to compute the determinant) and
divides into three cases.

» If n = 3k + 2, there is a simple infinity of solutions (x7, .%'2, 0,21, Ta, 0, oy X1, x2,0,21, T2),
with 1 > 0, z9 > 0, and 1 +:1:2 = 3 . This includes ( +1,0 0, n+1,0 0,. ..,nil,()) and
its symmetric (0, +1,0 0, n+1 ,0,... 70, n+1) The cost for all vertices is x1 + 29 = T+1 We

can see that this means that o — 1 divides det(M,, o).
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e Whenn = 3k+1 or n = 3k, there is a unique solution, respectively (niﬁ, 0,0, n%r?, 0,0,..., ni+2

or (0, %, 0,0,2,0,...,0, %, 0), which means that in both cases det(M,, 1) # 0.

‘n?

Still for o = 1, the study of non-uniform-cost equilibria is similar to that for cycles. See below.

4.2. The Case When the Underlying Graph is a Cycle

We apply here the same argument as for paths: we build a new matrix

« a —1

a 1 « -1

- 1

M, = a 1 « -1
-1

o a 1 -1

1 1 - 1 1 1 1 0

and its corresponding linear system @*)

Cycles and their determinants are more regular than paths, but no general pattern has been found
for their determinants, roots, or solutions to @)

Rules and[3] as well as the sketch of the algorithm above, can be adapted to cycles. Conjec-
ture [Ilbecomes:

Conjecture 2. Forn > 2and o < % we have det(M,; ) # 0; therefore there is a unique equilibrium
(which has a uniform cost) in C,.

Unlike what happens for paths, we can observe that in C),, the mass distribution described by x; = %,

1 <7 < n, is always a uniform-cost equilibrium. We sketch some results for o = % and o = 1.

General case for o = % There is a simple infinity of equilibria with uniform cost when n is even,
given by (z1,22,...,21,22), with 1 > 0, 9 > 0, 21 + z2 = % This includes (0, %, ...,0, %)
and (Tli, cee %) The cost of each vertex is 1 + z2 = % When n is odd, the unique solution is with

General case for « = 1.  As for paths, it is straightforward to see that:

— If n = 3k, there is a double infinity of solutions, (z1,x2,x3,...,%1, T2, x3), With 21 > 0,
xy >0, z3 > 0and z1 + z2 + z3 = 2. This means that (v — 1)? divides det(M,; ).

—If n = 3k + 1 or 3k + 2, the only solution is with z; = L.

n
Using Remark [4.2] one can see that non-uniform solutions are combinations of configurations of the
type
(...0,2,0,0,2,0,z,0,az, (1 — a)x,0,bzx, (1 — b)x,0,...),

with 0 < a < 1, a < b < 1, and the sum of charges equal to 1.

)
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4.3. The Case When the Underlying Graph is a Complete Bipartite Graph

We consider the complete bipartite graph K, , with p +-¢ = n, p > ¢, and a mass distribution
X = (Z1,...,%p, Tpt1s--.,Tptq) Withr = 1.

Using Rulegiven above, wehave z; = xjfor1 <i < j<pandz, =a,forp+ 1<k <l <
p+gq. Leta=x1and b = x,41.

We start with the search for equilibria with uncharged vertices. We may assume that either ¢ = 0 (and
b= é) orb=0(anda = %). We can apply Ruleto determine when the equilibrium exists according

to the value «. In the former case, the equilibrium with ¢ = 0 exists when oo > %. Similarly in the
latter case, the equilibrium with b = 0 exists when o > %.

We see that if none of these two conditions on « is fulfilled, i.e., o < %, then, since an equilibrium
always exists, we must have a uniform equilibrium with no uncharged vertices.

Now we search for a uniform equilibrium with no uncharged vertices. By definition, we have a +
agb = b+ apa, ie., a(l — ap) = b(1 — aq), and pa + gb = r = 1. Since a # 0 and b # 0, we can
consider two cases: (i) 1 —ap =1 — aq = 0, (ii) both 1 — ap and 1 — «aq are nonzero.

@)Ifl—ap=1—aqg=0,then p = g and the only condition remaining is @ + b = = : there is

"@"—"E\M

an infinity of equilibria, given by (a,b) = (a, % a),0<a < =, and the common cost is

(ii) If both 1 — ap and 1 — «q are nonzero, then a = b} ZZ
1

Q8 }D <a < o Then a and b have different signs, and no uniform equilibrium with no
uncharged Vertices exists.

Q)a< = or « > =. If p+ g — 2apq has the same sign as 1 — ap and 1 — agq, then

B 1—aq B 1—ap
p+q—2apq’ P+ q—2apgq

1—oz2pq

gives the only uniform equilibrium, with common cost ———5——.
p+q—2apq

non-uniform equilibrium.

Otherwise, we have to search for a

Note that the case p = ¢ = 1 gives the path P», p = ¢ = 2 gives the cycle Cy, and ¢ = 1 gives the
star, see below.

Particular case of the star. The graph now is K,,_1 1.

(1) If , = 0, i.e., only the center is uncharged, then x; = ﬁ, 1 <7 < n —1, and necessarily
a> ﬁ In this case, we have an equilibrium, which is uniform only for o = ﬁ

(2) If all leaves are uncharged, then x,, = 1. This leads to an equilibrium whenever o > 1, and
this equilibrium is uniform for oo = 1.

(3) If there is no uncharged vertex, then b(1 — @) = a(1 — (n — 1)a) and b+ (n — 1)a = 1. If
a=1,thena=0andb=1 Ifa= n% henb =0and a = #1 These are two uniform equilibria

1
but with uncharged Vertices

If « < 1and a > =, then a and b have opposite signs and no uniform equilibrium exists.
Ifa>lora<  — then a has the same sign as b. We obtain a = m and b = %

Both numbers are posmve and yield a uniform equilibrium.
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For all o > ﬁ, there is one equilibrium with the centre uncharged, which is uniform for o = -
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Summarizing for the star: if o < ﬁ, there is one uniform equilibrium, with all vertices charged.

1

If @ = 1, there is one uniform equilibrium with all uncharged leaves. If o > 1, there is one uniform
equilibrium with all charged vertices and one non-uniform equilibrium with all uncharged leaves.
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