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Abstract

The relation between gravity and quantum mechanics is investigated
in this work. The link is given by the wave packet expansion process,
rooted from the Uncertainty Principle. The basic idea is to express the
de Broglie wavelength used by Schrodinger for a massive particle in terms
of the associated Compton wavelength which is replaced by the Michell-
Laplace radius Gm/c2 of the spherical object of mass m ≥ mP , where mP

is the Planck mass.
The wave packet spreading is studying in spherical coordinates, having

the width σ(t), expressed in terms of G and c instead of ~. Therefore,
for masses larger than the Planck mass, a faster dispersion rate of σ(t)
is obtained, compared to the standard case. The dispersion of the wave
packet is observed only by a free falling observer and the process breaks
down once the observer hits the surface of the object. Different freely
falling observers notice different rates of expansion of the wave packet
and the source of gravity is in a quantum superposition. We further con-
front the Mita formula for the mean energy of the wave packet with the de
Broglie-Bohm quantum potential energy when the Schrodinger equation
is expressed in the Madelung form.
Keywords: wave packet expansion; Compton wavelength; quantum po-
tential; Uncertainty Principle

1 Introduction

The search for a consistent and testable theory of quantum gravity is among
the most important open problems of fundamental physics. Gravitation is the
oldest of the known interactions and, moreover, the most mysterious one [1]. The
fields in the Standard model all carry energies and so generate a gravitational
field. Being quantum fields, they cannot be inserted directly into the classical
Einstein field equations. Only a full unification of gravity with quantum theory
can describe the interaction of fields at the fundamental level.

According to Kiefer [1], quantum gravity means any theory where the quan-
tum Superposition Principle (SP) is applied to the gravitational field. That
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is so because the SP (which has been confirmed by a huge number of experi-
ments) is at the heart of quantum theory. Usually, the gravitational field of an
object is described by a spatial superposition at different locations. One has
to comprise gravity into the quantum framework, since the quantum fields of
the non-gravitational interactions represent sources for gravitational field. How-
ever, there are no logical arguments that would force us to quantize gravity and
hybrid theories can indeed be constructed [2].

For Marletto and Vedral [3], quantum effects in the gravitational field are
very small. They adopted a quantum information approach to testing quantum
gravity using two masses, each in a superposition of two locations. They proved
that any system (for example, a field), mediating entanglement between two
quantum systems ought to be quantum. Foo et al. [4] investigated the quantum
superposition of different spacetimes not related by a global coordinate transfor-
mation - the so-called ”spacetime superpositions”. Their purpose was to study
the effects induced on quantum matter residing within such spacetimes. Asper-
meyer et al. [5] focused on ”gravitational quantum physics”, an emerging field
of research in which phenomena require both quantum theory and gravity, for
their explanation.

Konishi [6] considers that the centre of mass (CM) of a macroscopic object
is treated as if it were a pure state described by a wave function, neglecting
certain microscopic quantum processes. These microscopic physical processes
represent inessential backgrounds and small corrections. He also stressed the
role played by object’s temperature in cancelling the coherent superposition of
macroscopically distinct states.

Calmet and Hsu [7] stated that the black hole (BH) information is encoded
in entangled macroscopic superposition states of the Hawking radiation, which
retains a memory of the original matter configuration that collapsed to a black
hole. They further consider a burning lump of coal instead of an evaporating
black hole and conclude that the initial coal state evolves into a macroscopic
superposition of radiation states.

The purpose of the present work is to investigate a possible connection be-
tween Newtonian Gravity (NG) and nonrelativistic Quantum Mechanics (QM)
by means of the wave packet expansion phenomenon. The idea is to replace
the Compton wavelength from the Schrodinger equation with a characteristic
radius rg = Gm/c2 of the spherical object, when its mass is bigger than the
Planck mass mP . The Newton constant G and the velocity of light c are rooted
from NG and the Maxwell Equations, respectively. The above length has been
introduced long time ago by J. Michell and P. Laplace [8]. They related it to
the radius of a spherically symmetric body at which the escape velocity is equal
to c.

The above recipe is equivalent with the introduction in the Schrodinger
equation of the fundamental constants G and c , instead of the Planck constant
~. Therefore, the width of the wave packet corresponding to the spherical source
of mass m will depend on the Newtonian acceleration Gm/σ2

0 , where σ0 is the
value of the wave packet width at t = 0. On the grounds of the above slight
modification of the Schrodinger equation we then investigate its consequences
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related to the quantum superposition principle. Using the well-known property
of the NG that radial pulsations of the spherical source preserve the static
feature of the gravitational field outside it, we conjecture that the macroscopic
source of gravity is in superposition of scales, the rate of spreading of the object
being coordinate dependent. The spreading is measured only by free-falling
observers, defined as observers who feel no other force than gravity (in the
Newtonian sense). The free-falling motion is viewed by a static observer on the
surface.

We are working in the framework of Newtonian Gravity, using velocity of
light from electromagnetism, and so the Schrodinger equation will be written in
flat space.

2 Stationary Schrodinger equation for m ≥ mP

It is instructive to see how Schrodinger guessed his equation. He used the Planck
energy formula for a photon E = ~ω, where E is the photon energy and ω its
frequency, and the de Broglie expression relating the momentum p of a particle
with its associate wavelike quantity, its wavelength λ: p = h/λ. Schrodinger
started with the wave equation for a massless particle

∇2f(x, t)− 1

v2
∂2f(x, t)

∂t2
= 0 (2.1)

(v is the wave velocity) and applied it to the de Broglie waves. With f(x, t) =

e−i 2πv
λ tΨ(x), one obtains for Ψ(x)

∇2Ψ(x) +
4π2

λ2
Ψ(x) = 0. (2.2)

For to describe the motion of a massive particle (say, an electron), the above λ
should be replaced by the de Broglie wavelength λ = 2π~/p. For a free particle
we have E = p2/2m such that (2.2) becomes

∇2Ψ(x) +
2mE

~2
Ψ(x) = 0, (2.3)

which is the standard stationary Schrodinger equation for a free particle.
Or aim now is to ”adjust” the above equation for masses m ≥ mP . Let us

write the expression of the de Broglie (dB) wavelength in the following form

λdB =
h

mv
=

h

mc

c

v
=

2π~
mc

c

v
, (2.4)

where c is the velocity of light in vacuo. One notices that the Compton wave-
length λC = ~/mc came out in the above equation. For elementary particles in
microphysics it is reasonable to use it but that is not so in macrophysics. For
instance, λC is completely negligible for the mass of the Moon. Therefore, it
is in our opinion more appropriate to replace the Compton wavelength in (2.4)
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with rg = Gm/c2 associated to the macroscopic mass m, larger than the Planck
mass. In this case λdB from (2.4) acquires the form

λdB =
2πGm2

cp
. (2.5)

Once (2.5) is introduced in (2.2) we get

∇2Ψ(x) +
2c2E

G2m3
Ψ(x) = 0. (2.6)

In other words, for masses bigger than the Planck mass, we replace everywhere
~ by Gm2/c. Two new fundamental constants arose here: the Newton constant
G and the velocity of light c, instead of ~. Of course, with m = mP = 10−5

grams, one obtains ~ = Gm2/c.

3 Wave packet expansion

Let us see now how the expression of the wave packet spreading phenomenon for
a free spherical object looks like, with the new fundamental constants inserted in
the Schrodinger equation. The well known standard radial probability density
in spherical coordinates appears as [9, 10]

ρ(r, t) = |Ψ(r, t)|2 =
e

− r2

σ2
0

(
1+ ~2t2

m2σ4
0

)

π3/2σ3
0

(
1 + ~2t2

m2σ4
0

)3/2 , (3.1)

where σ0 is the width of the wave packet at t = 0 and

σ(t) = σ0

√
1 +

~2t2
m2σ4

0

. (3.2)

Inserting Gm2/c instead of ~ in the above equation, one obtains

σ(t) = σ0

√
1 +

1

c2

(
Gm

σ2
0

)2

t2, (3.3)

where a ≡ Gm/σ2
0 is the Newtonian acceleration at the distance σ0 from the

center of mass (CM) of the macroscopic spherical source with m ≥ mP , namely
the origin of the coordinates.

Let us consider σ0 = R0, the radius of the macroscopic object at t = 0.
When (3.3) is written in terms of R(t) and the acceleration a, we have

R(t) = R0

√
1 +

a2t2

c2
, (3.4)
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which represents a hyperbolic motion.
We take now a static observer O, at rest w.r.t. an observer on the surface of

the object of radius R0, at a height r0 > R0 (say, at the top of a tower, when we
are on the Earth), measured from the origin of spherical coordinates. From r0
the observer O drops radially a closed box. Another observer O′ inside the box
is free-falling (defined to the end of Sec.1) and, from his/her point of view the
source of gravity behaves as a matter wave and so it is subjected to spreading
(as a free electron, for example, when its wave properties start to manifest),
according to (3.4). This is in accordance with Konishi [6] who stated that the
CM of a macroscopic object is treated as if it were a pure state described by a
wave function, neglecting microscopic quantum processes.

From the point of view of O′ the expansion of the source ends when the
surface of radius R(t) (which is approaching O′ according to (3.4)) hits the box
and so O′ becomes a static observer (the collapse of the wave function of the
source takes place). This is equivalent with the moment when the electron from
the double-slit experiment hits the screen and behaves like a particle (it is no
longer free).

With respect to a static observer located on the surface of radius R0, the
equation of motion of O′ is given by

r(t) = r0 +
c2

a

(
1−

√
1 +

a2t2

c2

)
, (3.5)

with r(0) = r0. Our aim now is to find the time T when r(T ) = R0, namely
when O′ hits the surface. Eq. 3.5 yields

b =
c2

a

(√
1 +

a2T 2

c2
− 1

)
(3.6)

where b ≡ r0 −R0. For velocities aT << c we get

b ≈ c2

a

(
1 +

a2T 2

2c2
− 1

)
=

aT 2

2
, (3.7)

which is the well-known Newtonian result. This would represent a confirmation
of the validity of the procedure used above.

It is worth finding the difference between the exact expression (3.6) of b and
its Newtonian approximate expression (3.7) which is valid for low velocities.
One obtains

∆b =
c2

a

(√
1 +

a2T 2

c2
− 1

)
− aT 2

2
≈ c2

a

(
a2T 2

2c2
− a4T 4

8c4

)
− aT 2

2
= −a3T 4

8c2
.

(3.8)
If we take the case of the Earth, with a = 980cm/s2, T = 10s, c = 3 ·1010cm/s,
one obtains ∆b ≈ −1.3 · 10−9cm. That difference ∆b could be checked experi-
mentally using the Einstein-Elevator [11] from the Leibniz Universitat Hannover.
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One notes that Einstein proposed that experiment years before the General Rel-
ativity was born.

Gravity seems to be nothing but a wave packet expansion phenomenon, at
least when the tidal forces are negligible [12]. Note that the rate of spreading
dσ(t)/dt is increasing with time. In other words, longer time means increased
rate. Therefore, from different location a free falling observer sees different
sources with, of course, the same mass m. As we know from Newtonian gravity,
radial pulsation of the source does not change the static state outside. We have
here a quantum superposition of the source, not in position but in scale (or
expansion rate). As Zwirn has noticed [13], each observer builds his/her own
reality to which no other observer has any access.

Related to the subject of the paper, the time elapsed until the width σ(t) be-
comes twice its initial value and the mean value of the energy of the wave packet
are investigated in Appendix A. The properties of the de Broglie-Bohm quan-
tum potential Q are studied in Appendix B and the Generalized Uncertainty
Principle (GUP) is examined in Appendix C.

4 Concluding remarks

The interaction of fields at the fundamental level can be described only after
a full unification of gravity with quantum mechanics. Usually, the quantum
effects of the gravitational field of a body are studied by means of a spatial
superposition at different locations. We report in this paper a different type
of superposition: it is felt only by free falling observers who measure different
rates of expansion of the gravitational source, viewed as a wave packet spreading
process (we are dealing with a superposition ”in scale”).

For m ≥ mP , we replaced ~ in the Schrodinger equation with Gm2/c, a
change coming from the emergence of rg in lieu of the Compton wavelength λC .
The wave packet spreading of the source is analysed in spherical coordinates
and the Newtonian acceleration Gm/σ2

0 is identified in the expression of the
time evolution of the width of the wave packet.

We confronted the Mita formula for the energy of the wave packet in Ap-
pendices A and B with the de Broglie - Bohm quantum potential energy from
the Madelung form of the Schrodinger equation. A direct connection between
the Generalized Uncertainty Principle (GUP) and the role played by gravity is
established in Appendix C, showing that the 2nd term from the GUP might be
interpreted as having a gravitational origin, being important for masses bigger
than the Planck mass.

We stress also that the paper uses two constants in lieu of ~: G from New-
tonian Gravity and c from Maxwell Equations.
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5 Appendix A

Let us compare now the time intervals after which the width σ(t) is twice the
initial value σ0. Inserting σ(t) = 2σ0 in (3.2), we get

tq =

√
3 mσ2

0

~
. (5.1)

But from (3.3) one obtains

tg =

√
3 cσ2

0

Gm
. (5.2)

With a mass, say, m = 106 grams and σ0 = 102 cm, we have tq ≈ 1037s (much
more than the age of the Universe) and tg ≈ 1016s, less than the age of the
Universe. When m = mP we obtain, of course, tq = tg ≈ 1026s.

We wish now to comment on the mean value of the energy of the wave packet.
It was calculated by Mita [14]. His expression of the mean energy in one spatial
dimension is < p2/2m >= mv20/2 + ~2/2mσ2

0 . We have in our situation v0 = 0
(no linear motion) and, for m > mP

<
p2

2m
>=

mc2

2

(
rg
σ0

)2

(5.3)

Mita [14] designated its energy expectation value as ”dispersion oscillations” of
the particle, or energy of localization, without giving a precise nature of those
oscillations. Our expression (5.3) for the mean energy could be interpreted as
”spreading energy” which becomes half of the rest energy when R0 = σ0 = rg.

6 Appendix B

It is instructive to find out another type of energy, the so called de Broglie-
Bohm quantum potential energy Q [15, 16]. Holland [15] suggested that Q may
be regarded as the kinetic energy of additional ”concealed” degrees of freedom.
It is obtained from the Madelung form of the Schrodinger equation, when the
wave function is written as Ψ =

√
ρ exp(iS/~), where ρ is the amplitude squared

and S is the phase of the wave function. One equation is the continuity equation
and the other is equivalent with the Hamilton-Jacobi equation, but with an extra
term given by

Q = − ~2

2m

∇2√ρ
√
ρ

. (6.1)

It is the only term from the two equations containing ~. According to Esposito
[17] (see also [15]), Q is a kinetical energy for an internal motion of the object,
the external motion being interpreted as the motion of the CM. Using ρ from
(3.1) it can be shown that, when m > mP , Q is given by

Q(r, t) =
mc2

2

(
rg
σ(t)

)2 [
3− r2

σ2(t)

]
. (6.2)

7



When Q(r, t) is calculated in terms of ~, one obtains the same expression as that
provided by Rahmani and Golshani [18]. The number ”3” within the square
parantheses comes from the three spatial dimensions (spherical coordinates).
With one spatial dimension x we have ”1” instead of ”3” and x instead of
r. It is clear that the Mita energy is just the quantum potential energy Q at
r = 0, t = 0, when Q equals Qmax = mc2r2g/2σ

2
0 (in one spatial dimension).

We persuade ourselves of that by computing the expectation value of Q0 at
the initial time t = 0 or for a stationary state when the probability density of a
quantum system does not depend on time. We have

< Q0 >≡< Q(r, 0) >=

∫
Ψ∗(r, 0)Q0Ψ(r, 0)dV , (6.3)

where dV is the volume element in spherical coordinates. From (6.3) one obtains

< Q0 >=
1

π
√
πσ3

0

mc2

2

r2g
σ2
0

∫ ∞

0

(
3− r2

σ2
0

)
e
− 2r2

σ2
0 4πr2dr (6.4)

With the help of the well-known relations∫ ∞

0

y2e−
y2

b2 dy =

√
π

4
b3,

∫ ∞

0

y4e−
y2

b2 dy =
3
√
π

8
b5, (6.5)

we get from (6.4)

< Q0 >=
9

32
√
2

r2g
σ2
0

mc2, m ≥ mP , (6.6)

which, for σ0 = rg it will be of the order of mc2. For m < mP , < Q0 > acquires
the form

< Q0 >=
9

16
√
2

~2

2mσ2
0

, (6.7)

which has the same form as the Mita ”localization energy” EL. In our situation,
< Q0 > is not a kinetic energy but a potential one, that will become kinetic
from the point of view of a free falling observer. Let us exhibit an estimation of
the mean value of Q0 from (6.6). Take for m the mass of the Earth, m ≈ 6 ·1027
grams, rg = 2.5 cm, and σ0 = 6.37 · 108 cm. With these values, one obtains
< Q0 >≈ 1031 ergs, a reasonable value. If one uses the formula (6.7) for the
same mass, we get a very tiny value, completely negligible.

From Q(r, t) the expression of the quantum force appears as

FQ = −∇Q = −∂Q(r, t)

∂r
er =

mc2r2g
σ4(t)

r. (6.8)

Note that the quantum force (which is repulsive, being positive) is proportional
to r, as the expansion force in the case of the de Sitter Universe in static
coordinates.
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7 Appendix C

As far as the Uncertainty Principle is concerned, it is worth noting that the
appearance of the Planck constant on the r.h.s. of the Heisenberg uncertainty
relation originates from the commutator of two operators, and there from ex-
periments in Microphysics. Therefore, macroscopically we may replace ~ by its
macroscopic counterpart, namely Gm2/c. It leads us to

∆r∆p =
σ0√
2

√
1 +

a2t2

c2
~√
2σ0

≥ ~
2

→ Gm2

2c
=

1

2
rgmc, (7.1)

with rg ≈ (∆r)min. We notice that the momentum mc in (7.1) plays the role
of the constant ∆p ≈ ~/σ0 and we get the maximal value ∆p = mc when σ0

equals the Compton wavelength of the particle or its radius rg when m ≥ mP .
If we keep track of the Generalized Uncertainty Principle (GUP ) [19] (see

also [20, 21])

∆x ≥ ~
∆p

+ l2P
∆p

~
, (7.2)

where lP = 10−33cm is the Planck length, one observes that the 2nd term of
the r.h.s. of (7.2) does not depend on ~, so it appears as

∆x ≥ ~
∆p

+
G

c3
∆p, (7.3)

If we look for (∆x)min, it is obtained when ∆p = mc, i.e., the value from
(7.1). Taking into consideration that, in our view, for m ≥ mP = 10−5grams,
~ → Gm2/c, Eq.(7.3) yields

(∆x)min =
2Gm

c2
, (7.4)

due to the contribution from both terms. Eq. (7.3) may be also written as

∆x∆p ≥ ~

[
1 +

(
lP∆p

~

)2
]
. (7.5)

We distinguish here two situations:
i) if ∆p << ~/lP = mP c, ∆x∆p ≥ ~ .
ii) if ∆p >> ~/lP = mP c, ∆x∆p ≥ (G/c3)(∆p)2, or ∆x ≥ (G/c3)∆p,
that is always valid if ∆x ≥ (G/c3)(∆p)max = Gm/c2 (the factor of 2 is

missing because we started from Carlip’s [19] equation (7.2)). As we anticipated
before, the Planck mass (or the Planck momentum) decides which term is more
important in the r.h.s. of (7.3). The gravitational term (depending on G)
dominates if the mass of the object is bigger than the Planck mass.
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