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Abstract: Mismatch repair deficiency (d-MMR)/microsatellite instability (MSI), KRAS, and BRAF
mutational status are crucial for treating advanced colorectal cancer patients. Traditional methods like
immunohistochemistry or polymerase chain reaction (PCR) can be challenged by artificial intelligence
(AI) based on whole slide images (WSI) to predict tumor status. In this systematic review, we
evaluated the role of AI in predicting MSI status, KRAS, and BRAF mutations in colorectal cancer.
Studies published in PubMed up to June 2023 were included (n = 17), and we reported the risk of bias
and the performance for each study. Some studies were impacted by the reduced number of slides
included in the data set and the lack of external validation cohorts. Deep learning models for the
d-MMR/MSI status showed a good performance in training cohorts (mean AUC = 0.89, [0.74–0.97])
but slightly less than expected in the validation cohort when available (mean AUC = 0.82, [0.63–0.98]).
Contrary to the MSI status, the prediction of KRAS and BRAF mutations was less explored with a less
robust methodology. The performance was lower, with a maximum of 0.77 in the training cohort,
0.58 in the validation cohort for KRAS, and 0.82 AUC in the training cohort for BRAF.

Keywords: digital pathology; artificial intelligence; colorectal cancer; deep learning; microsatellite
instability; mismatch repair deficiency; KRAS and BRAF mutations

1. Introduction
1.1. Epidemiology

Adenocarcinoma is the most frequent histology for colorectal cancer. Europe has one
of the highest incidence rates (28.8–32.1 per 100,000) after New Zealand and Australia [1,2].
The risk for colorectal cancer increases with age (median age 50 years old). Europe has a
cumulative risk of 2–2.41% and 1.17–1.55% between 0 and 74 years for colon and rectum,
respectively. Colorectal cancer is the second cancer in women and the third in men, making
colorectal cancer a burden in Western countries [2].
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1.2. Treatment

Depending on the stage, colorectal cancer has different treatments. When it turns
out to be an invasive adenocarcinoma, surgical treatment is needed to remove a vast
part of the intestine and its lymphatic nodes [3]. For advanced stages (II-III-IV), a non-
surgical treatment (chemotherapy, radiotherapy, biologic therapy, immunotherapy, or any
combination of these therapies) can be additionally proposed. The last guidelines for
managing colorectal cancer emphasize the importance of biomarkers (MSI status, KRAS,
and BRAF mutations) in advanced stages (stage II-III-IV). A delay of less than 28 days after
surgery is recommended for the d-MMR/MSI status. In the case of an inoperable patient
or metastatic situation, the status should be less than 14 days for the d-MMR/MSI status
and KRAS, BRAF mutational status (Figure S1).

1.3. d-MMR/MSI Status

Detecting the d-MMR/MSI status enables patients to receive immunotherapy and
the screening test for Lynch syndrome [4,5]. DNA mismatch repair (MMR) is the most
important system for repairing DNA along with homologous recombination. Microsatellites
are short DNA sequences of repeated nucleotides with a high probability of error. The
DNA mismatch repair comprises the following genes: MLH1, PMS2, MSH2, and MSH6.
The alteration of one of these genes results in a state named deficient MMR (d-MMR) and
increases the probability of mutations in microsatellite regions [6,7]. A deficient MMR status
has been reported in 5 to 20% of colorectal cancers [8]. Currently, to evaluate the deficient
DNA mismatch repair, the techniques frequently used are immunohistochemistry of the
four proteins (MLH1, PMS2, MSH2, and MSH6) in the MMR system or the polymerase
chain reaction test (PCR) to detect microsatellite instability. The polymerase chain reaction
test analyzes two mononucleotides (BAT-25 and BAT-26) and three dinucleotides (D5S346,
D2S123, and D17S250) or five poly-A mononucleotide repeats (BAT-25, BAT-26, NR-21,
NR-24, and NR-27) according to the centers [9]. An approach for the testing could be to
screen the colorectal tumors using immunohistochemistry and, when a d-MMR status is
detected, a molecular test such as the multiplex PCR coild be performed to confirm the MSI
status [10].

1.4. KRAS and BRAF Mutational Status

There are multiple biomarkers used in therapeutic decisions (KRAS and BRAF). For
instance, there is a correlation between a high MSI status and BRAF or KRAS mutation [11].
Although BRAF and KRAS are usually exclusive, rare cases of concomitant mutations were
described [12]. In the case of KRAS mutations, patients are resistant to anti-EGFR therapy.
KRAS mutations are well known and represent 42% of cases in Western countries [13]. The
most common mutations of KRAS are located in codons 12 and 13 of exon 2, but there
are also hot spot mutations in exons 3 and 4 [14]. The BRAF mutation in colorectal cancer
(CRC) is associated with a poor prognosis [15]. The main hot spot mutation BRAF V600E is
approximately present in 8% of CRC. Interestingly, contrary to melanoma, patients with
BRAF V600E in their tumors seem to not respond to BRAF inhibitors [16]. However, the
newest guidelines proposed the combination of anti-BRAF and anti-EGFR in the second
line [10].

1.5. Artificial Intelligence Applied to Digital Pathology

Artificial intelligence has emerged as a transformative force in healthcare, especially
in processing images from radiology to pathology. Indeed, in radiology, AI can be used
to improve ultrasound image quality using denoising methods [17,18]. With the advent
of digital pathology, it is now possible to process whole slide images (WSI) with comput-
ers [19]. Artificial intelligence (AI) is able to learn image features that are used to predict
molecular status [20–36]. In pathology, the use of deep learning with WSI has created a new
field of research called pathomics. More precisely, deep neural networks can be trained
to predict a mutational status, known due to a molecular test, which provides the ground
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truth in machine learning from input WSI. In order to obtain good performance, AI needs a
large amount of training data. Training is performed by comparing the output of a model
iteratively over the training data with the ground truth and by updating the estimated
weights in the model to minimize the error between the output and the ground truth. After
training, the obtained AI model can be applied to new patients to predict their mutational
status. A deep learning model approach can be separated into two distinct phases: in the
developmental phase, the model is given a dataset and a ground truth (wanted outcomes)
for training, testing, and validation purposes. Two validation methods may be used: ei-
ther the developmental dataset is randomly split between a training, a validation, and a
testing set, or cross-validation can be performed. This phase enables the fine-tuning of the
algorithm but does not provide generalization. To that end, the model must be validated
on an external validation dataset with different pre-analytic conditions, i.e., a dataset from
another center or database. There are many key factors in making a performant deep
learning model, one of the most critical lying in the constitution of the developmental
dataset. This dataset must be large enough and representative of the targeted population.
The “ground truth”, which serves as a reference for the algorithm, needs to be defined
by precise, objective, if possible, multipara metric and consensual criteria. As such, “MSI
status ground truth” may be defined via either immunohistochemistry, molecular biology,
or both; the mutational status of KRAS and BRAF may be defined using next-generation
sequencing. Proprietary software can finally be marketed if the results are robust enough
and well generalized. Some algorithms are used for diagnostic purposes, such as detecting
or grading tumors and quantifying biomarkers, such as the proliferation index (Ki67).
Others are used to predict molecular alterations for therapeutic or prognosis.

1.6. Performance Evaluation

There are different metrics to evaluate the performance of algorithms. The area
under the curve (AUC) of the receiver operating characteristic (ROC) is the most common.
The ROC is obtained using increasing thresholds on predicted probabilities to define the
sensitivity, the ratio between the true positives and the sum of true positives and false
negatives, the false positive rate, and the ratio between false positives and the sum of false
positives and true negatives. Performance can also be evaluated using the ratio between the
correct predictions and the total number of predictions (accuracy (ACC)). No performance
metric is recognized as superior, for each provides different information. Therefore, they
are often used in conjunction. Since AUC is useful for evaluating the diagnostic ability
of a binary classifier, it is of great interest for deep-learning-based histological models
(diagnostic/screening purposes being the most common). However, it is to be noted that
two models cannot be compared to one another through their respective performance
metrics unless they have been validated on the same dataset.

1.7. Aim of the Review

The present study aims to provide a synthetic and comprehensive review of deep
neural networksmodels for predicting the d-MMR/MSI status and BRAF/KRAS mutational
status in colorectal cancer.

2. Materials and Methods

This review is a systematic review and follows the Preferred Reporting Items for
Systematic Review and Meta-Analysis (PRISMA) statement (Table S1) [37,38].

2.1. Inclusion and Exclusion Criteria

We searched for studies from PubMed using the following search terms:
(Artificial intelligence OR machine learning OR deep learning OR computer-assisted

OR digital image analysis) AND (microsatellite instability OR MSI OR MMR OR mismatch
repair OR molecular alterations OR KRAS OR NRAS OR BRAF) AND (whole slide image
OR digital slides OR slide). All studies released up to June 2023 using artificial intelligence
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to predict the instability of microsatellites or other key mutations on WSI were included. If
relevant, a manual selection could be performed. We excluded review articles, articles that
were not published in English, and studies that were not related to colorectal cancer.

2.2. Data Extraction and Assessment of the Risk

For each article, we extracted information about the authors, years of publication,
type of neural network, performance outcome such as area under the curve or accuracy,
magnification, training set, validation set, and how the ground truth was established. To
be more precise, one author extracted data from each study, and a second independent
author validated the extracted data. The quality of all the articles was evaluated using the
quality assessment of diagnostic accuracy studies (QUADAS-2) and shortened in a table
(Tables S2 and S3) [39]. We applied the following criteria to stratify, as recommended by the
QUADAS-2, all studies with a high risk. For domain 1 (patient selection), studies with only
one data set were evaluated as high risk. Regarding domain 2 (index test), the absence of
either a cross-validation or an external validation was considered a high risk. For domain 3
(reference standard), a high risk was considered if the ground truth was not specified or
did not use a proper technique. To be classified as a “proper technique”, the PCR must
have used a pentaplex PCR and/or immunochemistry must have used the set of the four
proteins. We also evaluated every article using the PROBAST checklist (Table S4) [40,41].

3. Results
3.1. Flowchart

The PubMed search allowed us to find 156 articles from 1999 to June 2023, Figure 1. A
total of 136 articles were excluded from screening titles and abstracts, and 6 were removed
after reading the full articles. A total of 11 were removed because they were literature
reviews. We found 3 articles via manual reference checking and obtained 17 articles for
systemic review (Figure 1). All studies used retrospective collected data sets on colorec-
tal cancer. Among the studies, 14 only predicted the MSI status, 2 both the MSI and
BRAF/KRAS status, and 1 of them focused on KRAS. All studies were summarized in
Table 1.
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Table 1. Comparison of studies.

Auteur Year Molecular
Alteration Data set Neural

Network Magnification Internal
Validation

External
Validation

Performance
Metrics

Reference
Molecular Status

Zhang et al. [29] 2018 MSI TCGA Inception-V3 x20
magnification Random split no TCGA CRC Accuracy:

98.3% not specified
(CRC n = 585)

Schmauch et al.
[20] 2019

MSI TCGA CRC FFPE HE2RNA with
ResNet50

x40
magnification

3-fold cross
validation no PCR

(n = 465 pts) TCGA CRC FFPE: 0.82

Echle et al. [23] 2020 random split no MSIDETECT CRC: 0.92
(0.90–0.93) DACHS: PCR(1)

MSIDETECT CRC Shuffle net MSIDETECT CRC: 0.92
(0.91–0.93) TCGA: PCR

(n = 6406 pts) 3-fold cross
validation

YCR-BCIP-RESECT
(n = 771 pts): 0.96

QUASAR and
NLCS: IHC (3)

MSI not specified (0.93–0.98) YCR-BCIP: IHC
yes YCR-BCIP-BIOPSY

(n = 1531 pts): 0.78
(0.75–0.81)

YCR-BCIP-BIOPSY 3-fold cross
validation no YCR-BCIP-BIOPSY: 0.89

(0.88–0.91)
(n = 1531 pts)

Kather et al. [28] 2020 MSI TCGA CRC FFPE ShuffleNet x20
magnification

3-fold cross
validation yes

DACHS FFPE
(n = 379 pts): 0.89

(0.88–0.92)
TCGA: PCR

(n = 426 pts) DACHS: PCR (1)
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Table 1. Cont.

Auteur Year Molecular
Alteration Data set Neural

Network Magnification Internal
Validation

External
Validation

Performance
Metrics

Reference
Molecular Status

Cao et al. [26] 2020 TCGA-COAD Frozen Random split yes TCGA-COAD: 0.8848
(0.8185–0.9512)

Total number including
test cohort:

Asian-CRC FFPE
(n = 785 WSIs): 0.6497

429 WSIs (0.6061–0.6933)
TCGA-COAD Frozen

(90%) + no Asian-CRC FFPE
(n = 785 WSIs): 0.8504

TCGA-COAD:
NGS (2)

Asian-CRC FFPE (10%) (0.7591–0.9323) Asian-CRC: PCR
TCGA-COAD Frozen

(70%) + no Asian-CRC FFPE
(n = 785 WSIs): 0.8627

MSI Asian-CRC FFPE (30%) ResNet-18 x20
magnification (0.8208–0.9045)

TCGA-COAD Frozen
(60%) + no Asian-CRC FFPE

(n = 785 WSIs): 0.8967
Asian-CRC FFPE (40%) (0.8596–0.9338)
TCGA-COAD Frozen

(30%) + no Asian-CRC FFPE
(n = 785 WSIs): 0.9028

Asian-CRC FFPE (60%) (0.8534–0.9522)
TCGA-COAD Frozen

(30%) + no Asian-CRC FFPE
(n = 785 WSIs): 0.9264

Asian-CRC FFPE (70%) (0.8806–0.9722)

Jang, H.-J et al.
[34]. 2020 TCGA-COAD/TCGA-

READ
TCGA:FFPE:

0.645(0.594–0.736)

n = 249 no TCGA: Frozen:
0.778(0.675–0.937)

KRAS Inception-v3
models

x20
magnification

10-fold cross
validation Sequencing

SMH yes SMH: 0.58
n = 75

Yamashita et al.
[25]. 2021 Random split no Stanford dataset

(n = 15 pts): 0.931
Stanford dataset:

IHC/PCR
(0.771–1.000) Four-fold TCGA:

PCR
MSI Stanford dataset

(n = 85 pts) MSInet x40
magnification

4- fold cross
validation

Stanford dataset
(n = 15 pts): 0.936

yes TCGA (n = 479 pts):
0.779 (0.720–0.838)
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Table 1. Cont.

Auteur Year Molecular
Alteration Data set Neural

Network Magnification Internal
Validation

External
Validation

Performance
Metrics

Reference
Molecular Status

Lee et al. [27] 2021 TCGA FFPE TCGA FFPE: 0.892
(0.855–0.929)

(n = 470,825 patches) no SMH FFPE: 0.972
(0.956–0.987)

SMH FFPE
MSI (n = 274 WSIs) x20

magnification TCGA: PCR

TCGA FFPE Inception-V3 10-fold cross
validation yes TCGA FFPE: 0.861

(0.819–0.903) SMH: PCR/IHC

(n = 470,825 patches) SMH FFPE: 0.787
(0.743–0.830)

TCGA Frozen no
(n = 562,837 patches) TCGA Frozen: 0.942

(0.925–0.959)

Krause et al.
[24] 2021 MSI TCGA FFPE

(n = 256 pts) ShuffleNet x20
magnification Random split no

TCGA FFPE
(n = 142 pts): 0.742

(0.681–0.854)
PCR

Bilal et al. [31] 2021 MSI TCGA-CRC-DX: 0.86
(0.82–0.90) PCR

TCGA-CRC-DX yes PAIP: 0.98
BRAF n = 499 Resnet 34 x20

magnification
4-fold cross
validation 0.79 (0.78–0.80) NGS

PAIP no
KRAS n = 47 0.60 (0.56–0.64) NGS

Schrammen
et al. [35] 2021 MSI YCR-BCIP DACHS: 0.909

(0.888–0.929) DACHS: PCR (1)

n = 889 yes YCR-BCIP: 0.900
(0.864–0.931) PCR

KRAS DACHS: 0.609
(0.579–0.623) not specified

DACHS SLAM not specified 3-fold cross
validation no

BRAF n = 2448 DACHS: 0.821
(0.786–0.852) not specified
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Table 1. Cont.

Auteur Year Molecular
Alteration Data set Neural

Network Magnification Internal
Validation

External
Validation

Performance
Metrics

Reference
Molecular Status

Echle et al. [21] 2022 DACHS DACHS: 0.89
(0.87–0.92) PCR(1)

n = 2039

MUNICH MUNICH: 0.88
(0.80–0.95) IHC

n = 287

TCGA TCGA: 0.91 (0.87–0.95) PCR
n = 426

QUASSAR QUASSAR: 0.93
(0.91–0.95) IHC

MSI n = 1774 Resnet-18 not specified 8-fold cross
validation no

UMM UMM: 0.92 (0.69–1.00) PCR
n = 35

MECC MECC: 0.74 (0.69–0.80) PCR
n = 683

NLCS NLCS: 0.92 (0.90–0.94) IHC
n = 2098

DUSSEL DUSSEL: 0.85 (0.74–0.93 IHC
n = 196

YORK SHIRE yes YORK SHIRE:0.96
(0.94–0.98) IHC

n = 805

Wu Jiang et al.
[22] 2022 TCGA TCGA validation:

0.8888 (0.8531–0,9245)
n = 441

SYSUCC-surgical SYSUCC-surgical:
0.8457 (0.8224–0.8690)

MSI n = 355 IHC

SYSUCC-biopsy MIL not specified 3-fold cross
validation yes SYSUCC-biopsy: 0.7679

(0.7337–0.8021)
n = 341
PAIP PAIP: 0.8806

(0.8574–0.9038)
n = 78
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Table 1. Cont.

Auteur Year Molecular
Alteration Data set Neural

Network Magnification Internal
Validation

External
Validation

Performance
Metrics

Reference
Molecular Status

Schirris et al.
[30] 2022 MSI TCGA-CR

n = 360 DeepSMile not specified Random Split no TCGA CR: 0.82
(0.77–0.86) PCR

Lou et al. [32] 2022 MSI Shandong Hospitals PPsNET x20
magnification Random Split no Shandong Hospitals:

0.9429 IHC
n = 144

Chang et al. [33] 2023 TSMCC TSMCC: 0.954
(0.94–0.96)

MSI n = 1579 WiseMSI not specified 10-fold cross
validation PCR

TCGA TCGA: 0.632
(0.703–0.733)

n = 609 yes

Saillard et al.
[36] 2023 MSI TCGA TCGA: 0.93 (0.90–0.96)

n = 859
PAIP MSIntuit not specified PAIP: 0.97 (0.90–0.99) PCR
n = 47 yes

MPATH MPATH-DP200: 0.88
(0.84–0.91) IHC

n = 600 MPATH-UFS: 0.86
(0.83–0.90)

AUC, Area Under the Curve;TCGA, The Cancer Genome Atlas study; CRC, ColoRectal Cancer; WSI, Whole Slide Images; FFPE, Formalin-Fixed Paraffin-Embedded; DACHS, Darmkrebs:
Chancen der Verhütung durch Screening (CRC prevention through screening study abbreviation in German); Stanford dataset, Stanford University Medical Center (USA); MSIDETECT:
A consortium composed of TCGA, DACHS, the United Kingdom-based Quick and Simple and Reliable trial (QUASAR), and the Netherlands Cohort Study (NLCS); YCR-BCIP: Yorkshire
Cancer Research Bowel Center Improvement Programme; SMH, Saint Mary’s Hospital (South Korea);TSMCC: TongShu MSI colorectalcancer;MPATH, medipath. 1–3-plex PCR (BAT25,
BAT26, CAT25); 2-MSI sensor algorithm, 3- 2-plex IHC.
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3.2. Prediction of d-MMR/MSI Status

All the studies used retrospective data, and in the majority of the studies, the Cancer
Genome Atlas (TCGA) was included as part of the study or the only data set (training or
validation data set) except in four studies [23,25,32,35]. The ground truth for assessing the
MSI/dMMR status was different from one cohort to another. In some studies, data were
collected from different data sets, so the ground truth method, either IHC or PCR, could
differ within one study [21]. Eight studies used PCR, five used IHC, three used both PCR
and IHC, and one used NGS (next-generation sequencing). One study did not mention
the technique that was used [29]. Within the same technique, there was a variation in the
methodology: the number of proteins targeted by IHC and microsatellites targeted. For
instance, the data set DATCH (Darmkrebs Chancen der Verhütung durch Screening) in
Kather et al., Schrammen et al., and Echle et al. used a 3-plex PCR for its confirmation of
the dMMR status. The NLCS data group (the Netherlands Cohort Study) in Echle et al.
(2020;2022) and the DUSSEL data group (Dusseldorf, Germany) in Echle et al. (2022) used
2-plex IHC antibodies [19,22,27,34]. Concerning the validation, some studies (n = 5) split
their data into training set/test set, most studies (n = 8) used cross validation and rare
studies (n = 2) used both methods to compare their performances. Most studies (n = 11)
used an external validation data set to predict the performance of the MSI/dMMR status.
Only one study performed a blind validation on two data sets [36].

All the studies included were based on deep learning. Various architectures have
been used for prediction: shuffle-net, ResNet-based, and Inception-V3 were the most
frequently used. HE2RNA, MSInet, SLAM, MILwere, PPsnet, DeepSmile, MSIntuit, and
Wise MSI were all used only once. Most studies (n = 15) have reported their performance
metrics using the AUC (Figure 2); only a conference paper has published its results using
accuracy [29].

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

intern validation extern validation

Figure 2. Overview of the AUC (area under the curve) for each MSI study between intern and extern
validation [20–28,30–33,35,36].

Among the studies, Echle had included the largest number of slides (n = 6406 for
one study and n = 8343 in the second) for model development (Shuffle Net or Resnet 18,
depending on the study) [21,23]. They demonstrated encouraging results in both studies
for the prediction of the MSI status with an AUC (area under the curve) of 0.96 for the
external cohort. The cohort of Lee et al. used Inception-V3, which was trained on two data
sets (TGCA and Saint Mary’s Hospital) and obtained one of the highest performances of all
the studies for MSI status prediction on an internal cohort (0.97 on the SMH) [27]. However,
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the performance dropped when the model was only trained on the TCGA cohort and was
validated on the SMH data set as an external validation (0.787).

3.3. Prediction of KRAS and BRAF Mutations

Some studies (n = 3) also explored the mutational status of KRAS and BRAF. The TCGA
data set was used in two out of three studies, and the DACHS data set was used in the other
study. To define the ground truth of biomarkers, NGS was used in two studies. One study
did not specify which technique was used. All studies performed a cross-validation on the
training data set, and only one used an external validation. Different deep learning models
were used, such as Resnet, Inception V3, and SLAM. All performances were evaluated
using the AUC. Schrammen et al. used the most data with DACHS (n = 2448) and obtained
the best result to determine the BRAF mutation with an AUC of 0.82 [35]. All studies had
almost similar results when determining the KRAS mutation with an AUC of 0.6 in Bilal
et al. and Schrammen et al. and 0.58 in Jang et al. [31,34,35].

3.4. Assessment of the Risk of Bias and Applicability

With the QUADAS-2 tool, we were able to assess the reviewed studies (Figure 3). Most
of the studies had at least one high-risk factor, and six studies did not have any high-risk
factor. Regarding the studies about MSI status, nine studies had a high risk of bias in
the patient selection. Out of 17 studies, 6 had a high risk of bias in the index test and 1
in reference standard studies. Of the three studies about KRAS and/or BRAF mutations,
all had a high risk of bias in the patient selection, two out of three had a high risk in the
domain index test, and only one had a high risk for the reference standard.
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Figure 3. QUADAS 2 overview evaluating the risk of MSI studies.

4. Discussion
4.1. Summary of the Review

The d-MMR/MSI and mutational status in colorectal cancers are crucial for the prog-
nosis, therapy, and detection of Lynch syndrome [42]. Over the past few years, recent
studies have emerged and shown how deep-learning-based tools could predict the MSI
status and mutational status from WSI [43]. Park et al. published a systematic review of
deep learning models for predicting microsatellite instability based on tumor histomor-
phology, comprising studies up to September 2021 [44]. However, publications on artificial
intelligence in pathology are rapidly increasing; therefore, we aimed to provide an updated
systematic review on the subject. Park et al.’s review included 13 studies, 8 of which are
reported in the present study; the others were not available through our institution.
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4.2. Present Review Limitations

Our systematic review does present some limitations. We extracted studies from only
one database (PubMed) because our institution had no access to other databases such as
Medline. Hence, we might have missed papers published in other journals. Our study
follows the PRISMA guidelines, and therefore, we strived to provide an analysis of the
risk of bias and assessment across our reviewed studies using the QUADAS-2 tool. [39].
This tool is well known and usually used in clinical research for diagnosis. However, the
questions raised by QUADAS-2 (Table S2) are not always applicable to AI studies. We also
evaluated each study with PROBAST [41]. Unfortunately, this tool has been developed
to evaluate the risk of bias and the applicability of predictive model studies and is better
suited for clinical studies than AI studies. Another QUADAS tool under development,
QUADAS-AI, might be more suited for all studies using deep learning, but it is still not
published [45]. The use of specific checklists, such as the IJMEDI checklist, might also
help improve the quality of AI-related studies, considering many of their specificities and
raising the importance of ethical and ecological considerations [46].

4.3. Limits of Traditional Techniques, Interest in Non-Contributive and Discordant Cases and
AI Tools

Since the “ground truth” is crucial in constructing a deep learning model, it is
paramount to investigate how it is defined across studies. In evaluating a MSI status,
both the PCR and IHC have common limitations regarding pre-analytic conditions, such
as the cold ischemia time and fixation time, impairing the quality of the proteins and the
DNA. Another common limitation is tumor heterogeneity. Inside the same tumor, cells
can have different genetic and protein characteristics in all tumor parts. Concerning IHC,
interpretation can sometimes be difficult due to the inflammation and/or the intensity of
the nuclear labeling associated or not with background noise, making an inter-observer vari-
ability [47,48]. On the counterpart, the multiplex PCR also allows the detection of the MSI
status with good sensitivity in the technical limit of a percentage of 10% of tumor cells [49].
IHC and molecular biology have a high concordance in detecting the d-MMR/MSI status
but sometimes produce discordant results [50]. For such discordant cases, another assay is
warranted with both IHC and molecular techniques, preferably on another tumor region,
to counterbalance potential tumor heterogeneity. If the results remain discordant, a board
of experts comprising molecular biologists, pathologists, and oncologists will be assembled
to rule on the case. Artificial intelligence could help in these discordant cases as third-party
testing to guide the medical’s decision to provide an oncogenetic consultation and closely
monitor family members.

Next-generation sequencing is also impacted by tumor heterogeneity and DNA degra-
dation over time. Moreover, the “mutational status” may be defined regarding one mutation
only (for example, BRAF V600E) or all possible mutations of the targeted gene. This dis-
tinction may explain the difficulties in building an AI tool to predict mutational status
such as KRAS status, for its mutations are spread across a wide range of exons, contrary to
BRAF’s V600 hotspot. In the same spirit, there are many mutations of unknown significance.
Including (or not) multiple mutations in the “ground truth” may complexity the model,
but it might also increase its usefulness and should, therefore, be at least considered.

4.4. AI Approaches Bias and Applicability

The performance of AI is impacted by many adjustable variables such as the architec-
ture, the type of sample, the number of slides in the cohort, the type of validation (internal
vs. external), and the method to define the ground truth. One of the main problems is the
size of the WSI (1.5 GB at high magnification), which prevents the whole slide from being
analyzed at once. Most of the time, WSI are split into multiple tiles used as inputs of a
convolutional neural network (CNN) to extract features (summary of all the information in
the tile) that are used as inputs of a second neural network (NN) to predict, after multiple
trainings, the mutational status. In addition, AI needs a huge number of high-quality slides
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to determine the tumor status with precision [47]. There are inherent biases, one of which
is well known and called overfitting. Overfitting happens when a model cannot generalize
a high performance obtained on the training data to other external data. That is why the
presence or absence of an external validation is crucial. For example, in the study of Lee
et al., the algorithm was only trained on the TCGA data set, and when they tried to validate
their AI network, it showed a poor result (AUC of 0.787) [27]. AI has also shown the same
limitations as usual techniques due to the amount of tumor tissue that can be analyzed.
Most algorithms are developed on surgical specimens, allowing for better prediction due
to the tumor representation. For all these reasons, there is a need to plan ahead in order
to build clinically relevant deep learning models. Suitability between the goal and devel-
opmental dataset needs to be taken into account; for example, an algorithm developed on
surgical specimens will not be suited to handle biopsies and present poor performances.

4.5. Radiomics Interest Alone and Combined with Pathomics

AI applied to radiologic images, called radiomics, was also evaluated to predict the
MSI status in colorectal cancer with no exploration of BRAF and KRAS mutation status [51].
Contrary to pathomics, whole images in radiomics are smaller and consequently less
informative but can be entirely used without preprocessing to train algorithms. Recent
retrospective studies on the subject showed an AUC with a range from 0.78 to 0.96 AUC [51].
Some studies combined imaging with clinical and/or histological data (Ki-67, gender,
age, tumor localization, differentiation degree of tumor, smoking history, hypertension,
diabetes, and family history of cancer), allowing a better prediction of the MSI status [52].
The radiomics model had an AUC of 0.68, the clinical model had an AUC of 0.59, and
the combining model had a better performance with an AUC of 0.75 but still inferior
to pathomics results. Therefore, it might be of interest to build “multi-omics models”
combining pathomics and radiomics

4.6. The Application of an Artificial Intelligence Tool

Interestingly, there is already an AI-based pre-screening tool for MSI detection in
colorectal cancer that recently obtained CE-IVD authorization and is commercialized by
Owkins and described in the Saillard et al. study [36]. The algorithm was trained on the
TCGA data set and performed a high performance on an external validation on the PIAP
(pathology AI platform) with an AUC of 0.97. They also performed a blind validation for
the first AI tool based on d-MMR/MSI detection. To reach this result, they validated their
model development on 600 anonymous slides on two different scanners (Philips and Roche)
with different slide formats (isyntax and ndpi, respectively) from two different sites. The
two sites with different scanners obtained very similar results with an AUC of 0.88 and 0.86.
The MSIntuit reaches a sensitivity of 95% (CI: 95% [93–100%]) based on the IHC ground
truth only and was able to rule out up to 40% of the slides from the PCR or IHC screening.
However, prospective cohorts could be expected to integrate AI into screening guidelines.

4.7. Interpretability

Some histologic criteria were associated with a higher probability of MSI status, such as
the presence of mucinous adenocarcinoma, signet ring cell carcinoma, medullary carcinoma,
poorly differentiated adenocarcinoma, and Crohn’s-type inflammatory infiltration [53]. On
the contrary, no morphologic patterns were described to be associated with KRAS and BRAF
mutations except for mucinous adenocarcinomas, which were associated with a higher
probability of BRAF mutation [54]. Deep learning studies outperformed morphology
alone but are generally considered “black boxes”, which could represent a limitation
in using these algorithms [55]. However, innovative approaches can identify the most
predictive tiles. The interpretation of these tiles could help identify new morphological
patterns associated with the MSI status [56]. The comprehension of the deep learning
model is challenging and a prerequisite to its acceptance by clinicians. Pathologists have
a crucial role in validating and interpreting the results of AI systems in pathology. The
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expertise of pathologists is essential to ensure the accuracy and reliability of AI-based
diagnostics/prediction.

4.8. Artificial Intelligence in Routine and Ethics

With the emergence of new technologies, such as artificial intelligence, a novel ap-
proach to medicine is emerging. Predictive, personalized, preventive, and participatory
medicine (P4) is a new kind of medicine, alimented by new approaches based on the emer-
gence of algorithms [57]. The integration of AI into healthcare is increasing rapidly, and
DNN-based models are seen as promising tools for image analysis. As stated earlier, under-
standing that the deep learning models are obscure, physicians must remain in control of
their decisions [51]. In many studies, certain data sets, such as the Cancer Genome Atlas,
are freely available to enhance the development of artificial intelligence algorithms (Table 1).
One of the main limitations is the quality of the images and the associated lack of clinical
information. Indeed, there is little information on data such as age, sex, and origin. We
need to expand the datasets with significant geographical diversity to enable the algorithms
to predict patients from developing countries [58]. Currently, the majority of algorithms are
developed by companies and organizations based in developed countries. Furthermore, we
need to develop robust algorithms with large data sets, external validation, and solid “gold
standards” to avoid inter-observer variability [59]. For the d-MMR/MSI status, validation
using immunohistochemistry and polymerase chain reaction is required.

5. Conclusions

In conclusion, artificial intelligence and particularly deep learning tools are holding
great promise in healthcare. However, several challenges and considerations need to be
addressed to ensure effectiveness and ethical integration into the clinical routine. Rigorous
study design (various data sets and external validation), collaboration with healthcare
professionals, and ethical awareness are needed. Deep neural networks are a promising
approach to predicting the d-MMR/MSI status but are less performant for KRAS and BRAF
mutations. To predict the d-MMR/MSI status, further prospective studies comparing AI
results with traditional techniques are needed for use in routine activity.
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Abbreviations

ACC accuracy
AI artificial intelligence
AUC area under the curve
CNN convoluted neural network
CRC colorectal cancer
d-MMR/p-MMR deficient/proficient MMR
NN neural network
PCR polymerase chain reaction
ROC receiver operating characteristic
WSI whole slide image
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