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Geodesics in a time dependent domain wall spacetime

The properties of a vacuum domain wall are investigated in this paper. The similarities between planar and spherical domain walls are emphasized. One calculates the equation of motion for free particles, both massive and massless. Their properties are examined for time-dependent geometries.

Introduction

Particle theories suggest that phase transitions of various kinds have taken place in the early Universe and produce important effects. During the inflationary period of the Universe, a phase transition filled the Universe with a false vacuum, causing an exponential de Sitter-type expansion. That phase transition can give birth to solitonlike structures such as monopoles, strings and domain walls.

In the framework of general relativity (GR), domain walls (DWs) seem to be very unusual and exotic objects but have interesting gravitational properties. As Taub has shown [1] the spacetime with planar symmetry (which means translational invariance w.r.t. x and y and rotational invariance around an axis perpendicular to the plane xOy) are quite similar to those with spherical symmetry. That is the reason why there are no spherical symmetry or planar symmetry gravitational waves. Zeldovich et al. [2] studied the properties of the DWs generated after a spontaneous breakdown of a discrete symmetry. They have shown that, due to the equation of state of the domain wall (p = -σ, where -p is the surface tension and σ-the surface energy), the tangential motion is unobservable (the surface stress tensor is invariant under a Lorentz boost) (see also Kibble [3]).

The gravitational field of static vacuum domain walls has been studied by Vilenkin [4], in the weak-field approximation (see also [6] for the exact solution). He computed the energy momentum tensor of a thin domain wall in terms of σ

T a b = σ diag(1, 1, 1, 0) δ(z), (1.1)
where a, b take values (t, x, y, z), the DW is located at z = 0 and the negative signature is used. He found that domain walls repel particles with acceleration κ = 2πGσ. Ipser and Sikivie (IS) [5] used the Gauss-Codazzi formalism to get exact solutions to Einstein's equations in the presence of DWs and have shown that DWs have repulsive gravitational fields. They obtained the general solution not only for planar DWs but also studied the motion of spherical DWs in asymptotically-flat spacetimes. Using a coordinate transformation, the authors of Ref. [5] showed that geometry off the DW acquires a Minkowskian form and the time dependence of its equation of motion is a hyperbola, such that in the Minkowski coordinates the planar domain wall is not a plane at all, but rather an accelerating sphere. They also showed the metric off the wall with the source (1.1) is time dependent. There is no a static exact solution of Einstein's equations when the stress tensor is given by (1.1) In [7] Caldwell et al. consider the pair creation of black holes (BHs) by domain walls. The reason they expect tunnelling processes take place in a DW spacetime is because the gravitational field of it is repulsive (the source (1.1) violates the strong energy condition)). In addition, the t -z part of the metric off the wall is the two-dimensional Rindler metric with the Rindler acceleration κ, and the (z = 0) DW geometry is the 2 + 1-dimensional de Sitter geometry. Chamblin and Eardley [8] noticed that the 2 + 1 de Sitter space has the topology S 2 R; it follows that the DW world sheet has the same topology. Therefore, at each instant of time the DW is topologically a two-dimensional sphere, a property already observed by IS [5]. Recently, Astorino [9] claimed that, due to Einstein's equivalence principle, we may interpret the acceleration of accelerating BHs (giving the C-metric) as caused by presence of another indefinitely large BH located at a finite distance, as if we had a BH close to the horizon of another big BH whose event horizon becomes an accelerating horizon. In other words, the equivalence principle allows us to interpret accelerating BH as a BH immersed into the gravitational field of a larger companion black hole which grows indefinitely large, becoming a Rindler horizon.

Motivated by the special properties of the domain walls, I found interesting to calculate the timelike and null geodesics, both for the timelike and null ones, for the geometry (2.1). Sec.2 is devoted to the general properties of the spacetime outside the domain wall. Sec.3 refers to the timelike geodesics and Sec.4 covers the null geodesics, firstly along the z-direction and then along x-and y-directions. In Sec.5 general properties of the physical system are displayed.

Throghout the paper we use geometrical units G = c = 1, unless otherwise specified.

Geometry off the wall

The time-dependent metric off the domain wall is given by [8] 

ds 2 = e -2κz (dt 2 -dz 2 ) -e 2κ(t-z) (dx 2 + dy 2 ), z > 0, κ > 0 (2.1)
where the constant acceleration κ = 2πσ and we have chosen z > 0 in the Chamblin an Eardley metric, to get rid of |z|. The spacetime has a horizon at z → ∞. With the coordinates used by Caldwell et al. [7] for the same spacetime, the horizon is located at their z = 1/2πσ. Let us consider a "static observer" with 4-velocity u a = (e κz , 0, 0, 0), u a u a = 1.
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The corresponding acceleration of that observer is given by

a b ≡ u a ∇ a u b = (0, 0, 0, -κe 2κz ), √ -a b a b = κe κz . (2.3)
One observes from (2.3) that a z = -κe 2κz < 0. Therefore, the domain wall repels test particles (to maintain the same distance from the wall, the particle would accelerate towards the wall). Because of the time dependence of the metric the "static" observer measures nonzero expansion scalar Θ ≡ ∇ a u a = 2κe κz . As we already noticed [1,5,8], the geometry (2.1), valid outside the DW, is flat (the Riemann tensor R a bcd = 0). The nonzero acceleration comes from the boundary stress tensor (1.1), with σ ̸ = 0. The observer sees also nonzero shear and vorticity tensors [10] σ a b and ω a b , respectively, with the following nonzero components

σ x x = σ y y = - 1 2 σ z z = κ 3 e κz , σ t z = -σ z t = κe κz , ω t z = ω z t = -κe κz . (2.4)
It is worth noting that the two quantities σ a b and ω a b have very simple and finite nonzero components.

Timelike geodesics

We found in the previous section that a "static" observer is not geodesic (the acceleration a z is nonzero). We look now for an observer to whom a b = 0. The Lagrangean for timelike geodesics can be written as

L = ( ds dτ ) 2 = e -2κz ( ṫ2 -ż2 ) -e 2κ(t-z) ( ẋ2 + ẏ2 ) = 1, (3.1) 
where a dot means derivative w.r.t. the proper time τ . The Euler-Lagrange equation reads

∂L ∂x a - d dτ ∂L ∂ ẋa = 0. (3.2)
Inserting a = t and a = z in (3.2) one obtains

ke 2κ(t-z) ( ẋ2 + ẏ2 ) + d dτ ( e -2κz ṫ) = 0 (3.3)
and, respectively

-ke -2κz ( ṫ2 -ż2 ) + ke 2κ(t-z) ( ẋ2 + ẏ2 ) + d dτ ( e -2κz ż) = 0 (3.4)
The coordinates x, y are cyclic. Therefore, for a = x and a = y we get from (3.2)

ẋ = - C 1 2 e -2κ(t-z) , ẏ = - C 1 2 e -2κ(t-z) , ( 3.5) 
where C 1 and C 2 are integrating constants. Let us take firstly, for simplicity i) ẋ = 0, ẏ = 0 Eq. 3.3 gives us ṫ = C 3 e 2κz , with C 3 an integration constant. We consider C 3 = 1 from now on. From (3.1) results that ṫ2 -ż2 = e 2κz . Using now (3.4) we get d dτ

( e -2κz ż) = κ, ( 3.6) 
whence dz/dτ = κτ e 2κz , with appropriate initial conditions. Consequently,

e -2κz = -κ 2 τ 2 -2κC 4 . With the choice C 4 = -1/2κ we obtain e -2κz = 1 -κ 2 τ 2 (3.7)
Eq. 3.6 gives us the possibility to get rid of τ from the expression of ż. We have ż = e κz √ e 2κz -1. We finally obtain

u a = ( e 2κz , 0, 0, e κz √ e 2κz -1 ) (3.8) 
It is an easy task to check that (3.8) corresponds to a timelike geodesic along the z-direction. Indeed, one obtains a b ≡ u a ∇ a u b = 0. Let us find now the equation of motion of the test particle. From dz/dt = √

1 -e -2kz one obtains z(t) = 1 κ ln(cosh kt), z(0) = 0. (3.9)

From (3.9) we have always z(t) > 0, as it should be. Moreover, dz/dt = tanh kt ≤ 1 as required, and z → ∞ (where the horizon is located) when t → ∞.

With u a from (3.8), the kinematical quantities scalar expansion, nonzero components of the shear tensor and vorticity tensor can be computed.

Θ = 2κe κz ( e κz - e 2κz √ e 2κz -1 + 3 2 √ e 2κz -1 ) (3.10)
The vorticity tensor is vanishing but the shear tensor has the nonzero components

σ t t = - 2κ 3 e 2κz √ e 2κz -1 ( e κz - √ e 2κz -1
)

σ x x = σ y y = - κ 3 e 2κz ( e κz - √ e 2κz -1 ) √ e 2κz -1 σ z z = 2κ 3 e 4κz ( e κz - √ e 2κz -1 ) √ e 2κz -1 σ t z = -σ z t = 2κ 3 e 3κz ( e κz - √ e 2κz -1
) , A new change q = η/w leads us to

(3.11) with σ a a = 0. ii) ẋ ̸ = 0, ẏ ̸ = 0 If one chooses C 1 = C 2 = √ 2 in (3.
dq dη = 2 η q -κ 3 η 2 -κ. (3.19)
q(η) could be find by the method of variation of constant. One obtains We have finally

q(η) = κη + κ 2 η 2 -κ 3 η 3 , ( 3 
z(t) = t + 1 2κ ln 1 2 ( √ 5 + 4e -2κt -1
) .

(3.24)

Note that z(0) = 0 and z → ∞ at infinity. The velocity is given by

dz dt = 1 - 2e -2κt √ 5 + 4e -2κt (√ 5 + 4e -2κt -1
) .

(3.25)

We see that dz/dt = 2/3 at t = 0, it tends to unity when t → ∞ and 0 < dz/dt < 1 for any positive time t. Therefore, z(t) is a monotonically increasing function of t. This is due also to the repulsive character of the domain wall.

As far as the equations of motion along x-and y-directions, we consider, for symmetry reasons, that x(t) = y(t). From (3.15) and(3.21) we can find that

e 2κt = (1 + κτ ) 2 1 -κτ -κ 2 τ 2 (3.26)
To escape from τ between (3.16) and (3.26), one can have x(t). One obtains

2κ 2 x 2 + κ √ 2 x -1 = e -2κt (3.27) 
From (3.27) it is clear that its l.h.s. should be positive and less than unity. One finds that only the positive root of (3.27) is convenient, such that

x(t) = √ 2 4κ ( √ 5 + 4e -2κt -1 ) , (3.28) 
with x(0) = ( √ 2/2κ) and x → ( √ 2/4κ)( √ 5 -1) at infinity. The velocity of the geodesic particle along x-and y-directions is given by

dx dt = - √ 2 e -2κt √ 5 + 4e -2κt , (3.29) with dx dt | t=0 = - √ 2 3 < 1, dx dt | t→∞ = 0. (3.30) 
From the above equations we find that the components of the velocity 4-vector v a = ( ṫ, ẋ, ẏ, ż) are given by ṫ = 1 2

( e -κ(t-z) + e -κ(t-3z) + e κ(t+z) ) ż = 1 2 
( -e -κ(t-z) + e -κ(t-3z) + e κ(t+z) ) ẋ = ẏ = 1 √ 2 e -2κ(t-z) (3.31)
From (3.31) we obtain indeed that the covariant acceleration a b = v a ∇ a v b = 0, as it should be.

Null geodesics

The Euler-Lagrange (EL) equations are as in the previous section but now we have L = 0. We distinguish two cases:

i) ẋ = 0, ẏ = 0 From ds 2 = 0 one immediately obtains ṫ2 -ż2 = 0, namely z(t) = ±t + t 0 , as in Minkowski spacetime, using Cartesian coordinates. For the equations of motion in terms of λ-the affine parameter along a null geodesic, we get , from the Lagrange equations, z(λ) = ±t(λ) = κλ 2 .

ii) ẋ ̸ = 0, ẏ ̸ = 0 Eq. ds 2 = 0 yields now ẋ2 + ẏ2 = e -2κt ( ṫ2 -ż2 ), (

where we have now ẋ = dx/dλ, etc. (λ > 0) The EL equation yields e -2κz ż = const. ≡ A 1 , which gives us

e -2κz = -2κ(A 1 λ + A 2 ). (4.2)
The other EL equation appears as

(A 1 λ + A 2 ) ẗ + A 1 ṫ + κ(A 1 λ + A 2 ) ṫ2 - A 2 1 4κ(A 1 λ + A 2 ) = 0. (4.3) 
If we insert ṫ ≡ T in the above equation, one obtains

Ṫ = -κT 2 - A 1 A 1 λ + A 2 T + A 2 1 4κ(A 1 λ + A 2 ) 2 = 0. (4.4)
Let us choose A 2 = 0 in (4.4). We get

Ṫ = -κT 2 - 1 λ T + 1 4κλ 2 = 0, (4.5) 
which is a Ricatti equation. One notices that T (λ) = ṫ = 1/(2κλ) is a solution of the Eq.(4.5). However, that leads to ż = -1/(2κλ). From here we obtain ṫ2 -ż2 = 0, which is in contradiction with ẋ ̸ = 0, ẏ ̸ = 0 (see Eq.(4.1)). Therefore, we check a solution of the form

T = 1 2κλ + 1 ξ(λ) , ( 4.6) 
When we insert it in (4.5), the equation for ξ acquires the form

ξ = 2 λ ξ + κ, ( 4.7) 
which is a linear differential equation. One obtains ξ(λ) = -κλ + βλ 2 , where β is an integration constant. We have

T = 1 2κλ + 1 βλ 2 -κλ (4.8)
Keeping in mind that T = ṫ, an integration gives us Getting rid of λ from (4.10) and (4.17), the equation of motion looks like

t(λ) == 1 κ ln |βλ -κ| 2κ √ κλ (4.9) A convenient choice is β = κ 2 , leading us to t(λ) = 1 κ ln 1 -κλ 2 √ κλ , 0 < λ < 1/κ. ( 4 
x(t) = - √ 2 κ ( 1 + √ 1 + e -2κt
) , (4.18) with x(0) = -( √ 2/κ)(1 + √ 2) and x → -2 √ 2/κ at infinity. Concerning the velocity of the null particle along the x-and y-directions, we have

V ≡ dx dt = √ 2e -2κt √ 1 + e -2κt , ( 4.19) 
with V (0) = 1 and V → 0 at infinity.

Conclusions

Domain walls have very nusual properties. The geometry off the wall is Minkowskian. The 2-dimensional t-z metric is of Rindler type but z = const. 2+1 dimensional geometry is de Sitter space. The authors of Ref. [8] observed that de Sitter space has the topology S 2 R and so the DW worldsheet has the same topology. In other words, at any time the DW geometry is topologically a 2-dimensional sphere.

Because the source (1.1) violates the strong energy condition, the gravitational field of the DW is repulsive.

The main part of the paper is devoted to the investigation of the geodesics, be they null or timelike.
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