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Abstract. We present a highly efficient method for the numerical solution of

coupled Gross-Pitaevskii equations describing the evolution dynamics of a multi-

species mixture of Bose-Einstein condensates in time-dependent potentials. This

method, based on a grid-scaling technique, compares favorably to a more standard

but much more computationally expensive solution based on a frozen-resolution grid.

It allows an accurate description of the long-time behavior of interacting, multi-species

quantum mixtures including the challenging problem of long free expansions relevant

for microgravity and space experiments. We demonstrate a successful comparison to

experimental measurements of a binary Rb-K mixture recently performed with the

payload of a sounding rocket experiment.

1. Introduction

Degenerate atomic mixtures are a very rich system and have inspired a wealth of

theoretical [1–13] and experimental research [14–25]. They may consist of two (or more)

components, which can be the internal spin states of a single species of a Bose-Einstein

condensate [5], two isotopes of a single species [19], or two different species [7,8,22,25].

In recent years, interest in binary mixtures has spread from pure quantum gas physics

to metrology, and in particular to their use in high-precision atomic interferometry

experiments. Indeed, two atomic species could be used as input states of a dual-

atom interferometer to test fundamental principles such as the universality of free

fall. In this context, recent proposals [26–29] predict the manipulation of quantum

mixtures over large distances, in weak traps or in free fall, which could last tens of

seconds, thus increasing the sensitivity of the atomic sensor [30]. These time scales

challenge the current state of the art in computational resources, since one has to solve

at least a coupled set of Gross-Pitaevskii equations in the mean-field framework to
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reproduce the complex dynamics driven by the interaction of the two quantum gases.

Indeed, approaches based on a Thomas-Fermi approximation or dimension reduction,

e.g. by adopting spherical coordinates, remain specific to a few examples of experimental

settings and cannot be generalized to time-dependent situations where the interactions

lead to exotic states or symmetry breaking.

In this work, we generalize grid scaling techniques developed in the single-species

case [31–35] to the multi-species case in order to efficiently handle the transport,

or expansion dynamics of these systems. This method turns out to be numerically

very efficient and allows access to time regimes that are inaccessible with static grid

arrangements. We expect this scheme to be instrumental in describing quantum gases

at long expansion times as proposed in microgravity or space experiments [36–45]. We

illustrate our findings by solving the ground states and dynamics of mixtures of K-41

and Rb-87, as these are the systems considered in these projects. Finally, to validate

the theoretical treatment, we compare our results with the detected images of BEC

mixtures recorded by the MAIUS-2 sounding rocket team during the ground tests of its

payload [46]. We find an excellent agreement and prove the relevance of the developed

toolbox for microgravity and space investigations.

This paper is organized as follows: Section 2 is devoted to the development of

our theoretical approach aimed at solving the coupled multi-species BEC dynamics in

a general 3D time-dependent trap or during a free expansion stage. In section 3, we

first present two generic examples: the transport of a Rb-K two-species condensate in

microgravity and its free expansion in the presence of gravity. The results obtained

with our grid-scaling approach are systematically compared with the more standard,

but much more time-consuming, calculations obtained with a fixed grid. In the same

section, we also compare the predictions of our efficient numerical approach with

experimental test measurements performed on the ground with the MAIUS-2 sounding

rocket platform. Finally, a summary and conclusion are given in section 4.

2. Theoretical Approach

2.1. Theoretical Model

At zero temperature and within the mean-field approximation, the time evolution of a

multispecies mixture of Bose-Einstein condensates is described by the time-dependent

coupled Gross-Pitaevskii equations

iℏ ∂tΨj(r, t) =

[
− ℏ2

2mj

∇2
r + Uj(r, t) +

nsp∑
j′=1

Nj′ gjj′|Ψj′(r, t)|2
]
Ψj(r, t) (1)

where j and j′ = 1, 2, ..., nsp are the labels associated with the nsp different atomic

species. In this expression r = (x, y, z)T denotes the position vector in a fixed frame of

reference, and T is a simple notation used here to indicate transposition. Ψj(r, t) is the

normalized wave function of the species number j, of mass mj. Nj and Uj(r, t) are the
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Figure 1. Schematic representation of the condensate (in blue) associated with the

species j, centered on the point of coordinates rj = (xj , yj , zj)
T in the fixed reference

frame (x, y, z). The reference frame (Xj , Yj , Zj) associated with the eigenaxes of the

harmonic trap Vj is shown in orange.

atom number and the external potential of species j. The scattering amplitudes gjj′ are

related to the corresponding s-wave scattering lengths ajj′ by the relation

gjj′ =
2πℏ2ajj′
mjj′

, (2)

where mjj′ denotes the reduced mass

mjj′ =
mjmj′

mj +mj′
. (3)

In the following we will consider that the multispecies condensate is trapped in a

general external potential given by the functions Uj(r, t), that we decompose into the

sum of a harmonic and an anharmonic part, according to

Uj(r, t) = Vj(r, t) +Wj(r, t) , (4)

where

Vj(r, t) =
1

2
mj

(
r− rj(t)

)T
Ω2

j(t)
(
r− rj(t)

)
. (5)

In this expression, rj(t) = (xj(t), yj(t), zj(t))
T is the position of the trap minimum

for species j at time t in the fixed reference frame. The axis and coordinate systems

introduced here are shown schematically in Fig. 1. We assume that at each time t

the harmonic traps Vj(r, t) associated with the different species are characterized by

eigenaxes pointing in the directions Xj(t), Yj(t) and Zj(t). The unitary rotation matrix

that allows to pass from the particular system of eigenaxes (Xj(t), Yj(t), Zj(t)) to the

fixed frame of reference (x, y, z) at time t is denoted by Mj(t). The 3 × 3 squared

harmonic frequency matrices Ω2
j(t) are then defined in the fixed reference frame (x, y, z)

as

Ω2
j(t) = Mj(t)

ω2
j,Xj

(t) 0 0

0 ω2
j,Yj

(t) 0

0 0 ω2
j,Zj

(t)

Mj(t)
T . (6)
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The eigenvalues of Ω2
j(t) thus coincide with the squared instantaneous eigenfrequencies

ω2
j,Xj

(t), ω2
j,Yj

(t) and ω2
j,Zj

(t) of the traps along their principal axes (Xj(t), Yj(t), Zj(t)).

In our study, the calculation of the dynamics is carried out in the reference frame

corresponding to the eigenaxes of a particular species, the species of index j = j∗,

which in principle can be chosen freely. In all that follows, we will assume that for

this particular species, the eigenaxes of the trap do not rotate during the dynamics.

Thus, the rotation matrix Mj∗(t) will simply be denoted Mj∗ , and will be assumed to

be independent of time. In practice, this approach can be used as long as the rotation

of these eigenaxes is sufficiently slow so that the effect of non-inertial forces due to the

rotation of the eigenaxes associated with this reference species j∗ can be neglected. This

is the case in most situations, especially when the rotation is slow enough not to induce

the appearance of vortices, as shown for example in Refs. [34,47,48].

In the reference frame associated with the eigenaxes of the species j∗, the matrix

of the squared harmonic frequencies associated with each species j writes

Ω′ 2
j (t) = MT

j∗ Ω
2
j(t) Mj∗ . (7)

This matrix is generally a non-diagonal but symmetric matrix. In fact, the matrix

Ω′ 2
j (t) is diagonal only if the trap associated with the species j has the same principal

axes as the trap associated with the reference species j∗. We can also verify by a simple

use of equations (6) and (7) that Ω′ 2
j∗(t) is the diagonal matrix of the squares of the

instantaneous eigenfrequencies ω2
j∗,Xj∗

(t), ω2
j∗,Yj∗

(t) and ω2
j∗,Zj∗

(t), as expected.

2.2. Moving the Grid

When a temporal variation in the position and/or frequency of the traps induces

a displacement of the multispecies condensate, and when the amplitude of this

displacement is large, it can be extremely useful to shift the grid (or equivalently the

reference frame) in which the dynamics is computed in order to save computational time.

This is especially important when implementing condensate transport over distances

significantly larger than the characteristic size of the condensate, as in the recent space

atom chip manipulation of a BEC of Ref. [37]. For this purpose, we impose on the

computational grid to follow the global displacement dictated by the classical evolution

of the condensate center of mass of the reference species j = j∗. This approach consists

in a further development of the treatments that have already been presented in the

Refs. [13,33,34,49]. The change of variable associated with this transformation results

in the introduction of the new coordinate

R = r− rcm,j∗(t) (8)

where rcm,j∗(t) denotes the classical position of the center of mass of the condensate

associated with the species j∗ at time t, computed by simply solving Newton’s equation

for a classical particle of mass mj∗ initially at rest and subjected to the time-dependent
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harmonic potential Vj∗(r, t) of Eq. (5).This allows us to define the quantum displacement

operator in coordinate and momentum space

D̂j(t) = exp
(
i
[
kcm,j(t) · r̂− rcm,j∗(t) · k̂

])
(9)

where k̂ = −i∇r and kcm,j(t) = pcm,j(t)/ℏ. In this expression, we find the

classical momentum pcm,j(t) = mj ṙcm,j(t) with ṗcm,j(t) = −mj Ω
′ 2
j (t) [rcm,j(t) − rj(t)].

Following [34], the unitary transformation

Ψj(r, t) = ei Sj(t)/ℏ D̂j(t)Ψ
D
j (R, t) (10)

with an adapted global phase Sj(t) which satisfies

dSj

dt
= −ṗcm,j ·rcm,j∗+

1

2

d

dt

[
rcm,j∗ ·pcm,j

]
−p2

cm,j

2mj

−mj∗

2
(rcm,j∗−rj)

TΩ′ 2
j (rcm,j∗−rj) (11)

leads to the following transformed Gross-Pitaevskii equation for the species j, written

in the frame associated with the motion of the classical center of mass of the species j∗

iℏ ∂tΨD
j (R, t) =

[
− ℏ2

2mj

∇2
R +

mj

2
RT Ω′ 2

j (t)R+Wj(R, t) + V cor
j (R, t)

+

nsp∑
j′=1

Nj′ gjj′|ΨD
j′ (R, t)|2

]
ΨD

j (R, t) , (12)

where Wj(R, t) = Wj(r − rcm,j∗ , t) and where V cor
j (R, t) is a linear correction term

written as

V cor
j (R, t) = mj

[
(rcm,j∗ − rj)

T Ω′ 2
j (t)− (rcm,j∗ − rj∗)

T Ω′ 2
j∗(t)

]
R . (13)

Equation (12) shows as a unique coordinate the translated coordinate R = r− rcm,j∗(t),

enabling us to see that the new computational grid follows the global motion of the

center of mass of the condensate associated with the reference species j∗. In practice, if

we now substitute j for j∗ in Eq. (13), we see that the correction term (13) disappears

and as a consequence Eq. (12) reduces to

iℏ ∂tΨD
j∗(R, t) =

[
− ℏ2

2mj∗
∇2

R +
mj∗

2
RTΩ′ 2

j∗(t)R+Wj∗(R, t)

+

nsp∑
j′=1

Nj′ gj∗j′ |ΨD
j′ (R, t)|2

]
ΨD

j∗(R, t) . (14)

Eq. (12) can thus be considered as a general equation applicable to any species, whether

or not it is the reference species in the displacement operation being performed.
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2.3. Expanding or Compressing the Grid

If the condensate size varies significantly during the dynamics, it may also be useful

to compress or expand the grid accordingly during the course of the propagation to

save computational time. This approach is especially important when considering a free

expansion of the condensate. To define the time-dependent scaling factors applied to

the computational grid, we choose the same reference species as before, corresponding

to the index j = j∗, and we define a new rescaled coordinate ξ satisfying

Λ(t) ξ = R (15)

where

Λ(t) =

λXj∗(t) 0 0

0 λYj∗(t) 0

0 0 λZj∗(t)

 (16)

is a diagonal matrix whose elements are three scalar and adimensional time-dependent

scaling functions λXj∗(t), λYj∗(t) and λZj∗(t) that we apply to the three coordinates

associated with the eigenaxes of the trap experienced by the species number j∗. Since

the definition of these scaling functions is arbitrary, we chose to force the computational

grid to compress or expand according to the dynamics that can be predicted by the

so-called “scaling law” approximation obtained in the Thomas-Fermi regime [31, 32].

For a single species BEC with a high number of atoms such that the Thomas-Fermi

approximation holds, one can indeed use a classical scaling approximation to describe

the 3D size evolution of the BEC in a time-dependent harmonic trap. This amounts to

solving the differential equation (written here in a matrix form for a diagonal scaling

matrix Λ(t))

Λ(t)Λ̈(t) +Ω′ 2
j∗(t)Λ

2(t) =
Ω′ 2

j∗(0)

det[Λ(t)]
(17)

where det[Λ(t)] stands for the determinant of the matrix Λ(t) of Eq.(16). Provided that

at time t = 0 the initial conditions verify Λ(0) = 1 and Λ̇(0) = 0, the scaling factors

λI(t) with I ∈ {Xj∗ , Yj∗ , Zj∗} usually give a good estimate of the evolution of the BEC

size in the three directions {Xj∗ , Yj∗ , Zj∗}.
To take into account the introduction of the scaled coordinate ξ, inspired by [34]

we perform the following unitary transformation to the wave function associated with

each reference species j

ΨD
j (R, t) =

e
i
ℏ

[
ξTAj(t) ξ−βj(t)

]
√

det[Λ(t)]
ΨS

j (ξ, t) , (18)

where

Aj(t) =
1

2
mj Λ(t) Λ̇(t) , (19a)

βj(t) =

∫ t

0

µj

det[Λ(t′)]
dt′ . (19b)
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This transformation leads to an adapted set of coupled time-dependent Gross-Pitaevskii

equations for all species, which reads

iℏ ∂tΨS
j (ξ, t) =

[
− ℏ2

2mj

∇T
ξ Λ

−2∇ξ +
mj

2
ξTΛT

(
Ω′ 2

j (t)−Ω′ 2
j∗(t)

)
Λ ξ + V cor

j (Λ ξ, t)

+Wj(Λ ξ, t) +

mj

2
ξTΩ′ 2

j∗(0) ξ +
∑

j′ Nj′ gjj′|ΨS
j′(ξ, t)|2 − µj

det[Λ(t)]

]
ΨS

j (ξ, t) , (20)

where µj is the chemical potential associated with the species j at time t = 0 and where

Λ−2 is a notation for the diagonal matrix [Λ−1Λ−1]. Note that for the reference species

j = j∗, this equation simplifies to

iℏ ∂tΨS
j∗(ξ, t) =

[
− ℏ2

2mj∗
∇T

ξ Λ
−2∇ξ +Wj∗(Λ ξ, t)

+

mj∗

2
ξTΩ′ 2

j∗(0) ξ +
∑

j′ Nj′ gj∗j′ |ΨS
j′(ξ, t)|2 − µj∗

det[Λ(t)]

]
ΨS

j∗(ξ, t) . (21)

These series (20) and (21) of coupled differential equations, which constitute the

main result of this paper, are solved numerically using the second-order split-operator

technique [50]. This technique is first used in imaginary time [51, 52] to compute the

ground state of the binary mixture, which is taken as the initial state of the system

at time t = 0. It is then used in real time to compute the temporal dynamics

of the system [11, 53]. Although in a multi-species mixture the individual species j

are typically trapped in potentials with different trap frequencies leading to unequal

expansion dynamics, the scaling introduced in Eqs. (20) and (21) still absorbs most of

the dynamics such that the numerical solution of the time evolution can be obtained

much faster compared with a static grid. Moreover, in the special case of equal trap

frequencies for both species, which could be realized with dedicated optical traps [13],

Eqs. (20) and (21) further simplify.

3. Applications

In sections 3.1 and 3.2 we discuss two typical examples of the dynamics of a binary

mixture of K-41 and Rb-87 that strongly benefit from applying our scaling techniques

for an efficient numerical simulation. Furthermore, in section 3.3 we present a direct

comparison of this theoretical approach with experimental measurements recently

carried out on ground with the payload of the sounding rocket MAIUS-2.

3.1. Transporting a Binary Mixture in Microgravity

The first example consists of a transport of the mixture confined on an atom chip

by shifting the trap minimum over a distance of about 20µm in 10 ms, followed by a

holding period of 20ms in the final trap. Throughout the transport duration, we assume

that the trap remains almost cylindrically symmetric, and the size of the condensate
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varies only slightly. Such transport protocols are mandatory for preparing the mixture

as a source for subsequent atom interferometry measurements for conducting a test

of the universality of free fall [28], where transports up to millimeter distances are

needed [53,54].

3.1.1. Sequence details: We consider that the atoms are trapped by the magnetic field

produced by a Z-shaped atom chip configuration [53, 55–58] in the presence of a time-

dependent homogeneous magnetic field generated by magnetic coils through which flows

a tunable current. The transport dynamics considered in this example is induced by

a linear variation of the coil current during 10ms. Since the relative variation of this

current remains small, the trajectory followed by the center of the trap during these

10ms is also linear and it is uniform, and the evolution of the trapping frequencies over

time is also linear. The dynamics is assumed to take place in microgravity, and the

position of the center of the trap is therefore the same for potassium and rubidium. At

time t = 0 its initial position is 314.97 µm above the atom chip. The transport consists

of a translation in the z direction, perpendicular to the chip, bringing the center of the

trap to the distance z = 333.56 µm from the chip. The total length of the transport is

thus 18.59 µm, to be compared with the initial width (FWHM) of the atomic density

distribution along z of about 2µm. In the following, we will associate index 1 with

rubidium and index 2 with potassium. For rubidium, the trapping frequencies vary

from

ω1,X1(0) = 2π × 24.8Hz (22a)

ω1,Y1(0) = 2π × 378.3Hz (22b)

ω1,Z1(0) = 2π × 384.0Hz (22c)

to

ω1,X1(tf ) = 2π × 24.9Hz (23a)

ω1,Y1(tf ) = 2π × 340.9Hz (23b)

ω1,Z1(tf ) = 2π × 346.4Hz (23c)

The initial and final trapping frequencies ω2,Σ2 for potassium are given by the relation

ω2,Σ2(t) =

(
m1

m2

)1
2

ω1,Σ1(t) (24)

valid for magnetic trapping with Σ = X, Y or Z.

We consider a binary mixture of 43,900 rubidium atoms with 14,400 potassium

atoms similar to what can be achieved regularly with the MAIUS-2 experiment on

ground [46]. To explore different miscibility regimes, we consider the case of 3 values

of the interspecies scattering length a12 = 0nm, 1 nm or 8.747 nm. This variation of

the scattering length can, in principle, be realized experimentally using the Feshbach
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Figure 2. Calculated ground state of a dual Rb-K condensate in microgravity in two

miscible phases (left and central columns) and one immiscible phase (right column),

in a cigar-shaped trap. The 3D representations are shown in the first row (panels a,

b and c) and the integrated longitudinal and transverse density profiles Px, Py and

Pz for Rb and K are shown in the next three rows (along x: panels d, e, f ; along y:

panels g, h, i ; along z: panels j, k, l). The density profiles of rubidium and potassium

are shown in blue and red, respectively. The intraspecies interaction parameters are

a11 = 5.237 nm and a22 = 3.204 nm. The interspecies scattering length is a12 = 0

in the left column, a12 = 1nm in the central column and a12 = 8.747 nm in the right

column. The trap frequencies are given in Eqs. (22) and (24). The number of rubidium

and potassium atoms are 43,900 and 14,400, respectively. The center of the trap is

marked in each subplot by a black vertical dotted line.

resonances observed in K-41 and Rb-87 mixtures around 35G and 79G using a dipole

trap [20]. The last value a12 = 8.747 nm corresponds to the natural scattering length

between K-41 and Rb-87 in the absence of any Feshbach resonance.
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3.1.2. Ground state: Before the transport dynamics of this double-species condensate

can be studied, it is necessary to determine the steady state of the binary mixture

confined in the initial trap. The ground state of this quantum mixture depends non-

trivially on the respective strengths of the inter-species and intra-species interactions,

which condition the miscibility of the two quantum fluids [2,59,60]. This dependence is

illustrated in Fig. 2, which shows the influence of the value of the interspecies scattering

length a12 on the spatial distribution of the ground state atomic density obtained by

solving the coupled Gross-Pitaevskii equation (1) in imaginary time [51, 52]. The first

two columns correspond to two miscible cases associated with a12 = 0 and a12 = 1nm,

respectively. The third column corresponds to the immiscible case a12 = 8.747 nm

which fulfills the immiscibility condition g212 > g11g22 [16, 61]. The first row shows a

3D representation of the atomic density associated with Rb (blue) and K (red). The

immiscible nature of the mixture in the a12 = 8.727 nm case is clearly visible in this

3D representation, which shows a discriminating hamburger-like structure. In contrast

to the separation observed in this case between K and Rb, the two miscible cases are

characterized by a large spatial overlap of the two condensates. The last three rows in

Fig. 2 show the average atomic densities

Px(x, t) =

∫ ∞

−∞

∫ ∞

−∞
Nj |Ψj(r, t)|2 dy dz (25a)

Py(y, t) =

∫ ∞

−∞

∫ ∞

−∞
Nj |Ψj(r, t)|2 dx dz (25b)

Pz(z, t) =

∫ ∞

−∞

∫ ∞

−∞
Nj |Ψj(r, t)|2 dx dy (25c)

for Rb (blue) and K (red) along the three directions x, y and z at initial time t = 0.

These plots lead to the conclusion that the two miscible cases considered here are very

similar. Hence, compared to the non-interacting case (a12 = 0, left column of Fig. 2),

the introduction of a weak repulsive interaction between Rb and K (a12 = 1 nm, central

column of Fig. 2) has very little impact on the initial spatial distribution of the atomic

densities. In comparison with these miscible cases, the non-miscible case shows spatial

distributions along y and z (panels i and l, right column in Fig. 2) that are relatively

unaffected by the introduction of a strong repulsion between Rb and K atoms, with

a12 = 8.747 nm. The spatial discrimination is only observed in the direction of the weak

axis of trapping, i.e. in the x direction (see panel f in Fig. 2).

3.1.3. Transport dynamics: Fig. 3 shows the calculated probability densities for Rb and

K at the end of the transport and holding, at time t = tf = 30ms. The first row shows

a 3D representation of the atomic densities. The next three rows show the averaged

probability densities Px, Py and Pz calculated with the present grid-scaling method

(blue and red solid lines for Rb and K, respectively) and with a fixed grid (green and

black dashed lines for Rb and K, respectively). The probability densities calculated with

these two different methods are perfectly superimposed, demonstrating the validity of

the grid-scaling approach, whatever the chosen interaction regime, whether the mixture



Dynamics of interacting multispecies quantum gases 11

0 0.5 1

0

0.5

1

a12 = 0nm

a
x

z

y

0 0.5 1

0

0.5

1

a12 = 1nm

b

0 0.5 1

0

0.5

1

a12 = 8.747nm

c

·103

x (µm)

P
x

(µ
m

−
1
)

d

x (µm)

e

x (µm)

f

·104

y (µm)

P
y

(µ
m

−
1
)

g

y (µm)

h

y (µm)

i

·104

z (µm)

P
z

(µ
m

−
1
)

j

z (µm)

k

z (µm)

l

−40 −20 0 20 40
0

1

2

−40 −20 0 20 40 −40 −20 0 20 40

−2 0 2 4 6
0

1

2

−2 0 2 4 6 −2 0 2 4 6

328 330 332 334 336 338
0

1

2

328 330 332 334 336 338 328 330 332 334 336 338

Rb scaling Rb fixed K scaling K fixed

Figure 3. Probability density of a dual Rb-K condensate in microgravity after 10ms

of transport and 20ms of holding. Shown are the 3D representations (first row) and

the integrated longitudinal and transverse density profiles Px, Py and Pz for Rb and

K (next 3 rows). The interspecies scattering length is a12 = 0 in the left column,

a12 = 1nm in the central column and a12 = 8.747 nm in the right column. The

number of Rb and K atoms are 43,900 and 14,400, respectively. The center of the

trap is marked in each subplot by a black vertical dotted line. In panels d to l, the

Rb probability densities calculated with the present grid-scaling approach and with a

fixed grid are shown as solid blue lines and dashed green lines, respectively. Similarly,

the K probability densities calculated with the present grid-scaling approach and with

a fixed grid are shown as solid red lines and dashed black lines, respectively.

is miscible or not. It can be noted that if the results of these two approaches are

identical, it is because these two methods are mathematically equivalent and therefore

they can, in principle, differ only by the numerical errors induced by the limited precision

of the calculations. A comparison of the panels d and e in Fig. 3 also shows that the
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Table 1. Transport dynamics computation (cpu) time. The calculations were

performed parallelizing 16 cores of an Intel Xeon Gold 6230 processor running at 2.1

GHz. The real calculation time is roughly the displayed values of the table divided by

the number of cores.

Ground State Calculation Ramp & Holding Dynamics

a12 (nm) Fixed Grid Scaled Grid Fixed Grid Scaled Grid

0 9 h 10min 3 h 02min 9 h 25min 3 h 03min

1 9 h 39min 3 h 00min 9 h 37min 2 h 58min

8.747 24 h 19min 8 h 03min 9 h 23min 3 h 04min

introduction of a weak interaction between Rb and K (a12 = 1nm in panel e, 0 in

panel d) induces significant perturbations in the spatial density profile in the x direction

corresponding to the weakest trapping axis, whereas the effect of these interactions was

negligible in the ground state (see panels d and e in Fig. 2). We can therefore conclude

that the transport acts here as a detector of these interspecies interactions, even if they

are relatively weak. Comparing panels j and k, we also see that this weak interspecies

interaction induces a shift in the average position of the two atomic species in the

z-direction of transport, which is not the case in the absence of such interaction.

It can already be noted that in order to converge the calculation, it was necessary

to use a larger number of grid points in the fixed-grid approach than in the grid-scaling

approach. In fact, the fixed-grid approach uses (Nx = 256, Ny = 64, Nz = 576) grid

points, while the grid-scaling approach uses (Nx = 256, Ny = 64, Nz = 192) grid points.

The total number of Nx×Ny×Nz grid points required is thus 3 times larger for the fixed-

grid approach than for the grid-scaling approach. As shown in Table 1, this variation

in the number of grid points obviously has a strong impact on the computational time.

In fact, for the present calculation, the computation time, either for obtaining the

fundamental state using the imaginary time approach [51, 52] or for calculating the

dynamics, is on average 3 times longer with the fixed grid than with the grid-scaling

approach. The ratio of 3 obtained here is due to the necessity of increasing the size of the

grid in the z direction, i.e. in the direction in which the transport takes place. In this

example it is limited to the value 3 because the transport achieved (with a displacement

of about 18µm) is not very large compared to the initial size of the condensate (about

2 µm FWHM in the z direction, as shown in panels j, k and l of Fig. 2). However, many

experiments in the past have required the realization of condensate displacements over

distances of the order of a millimeter [37, 40, 41]. It can thus be estimated that the

calculation of transport dynamics in such situations would require the use of 100 to

200 times more grid points in a fixed-grid calculation than in the grid-scaling approach,

making this type of calculation extremely demanding in terms of memory resources as

well as computational time, or even impossible with standard computing facilities.

We will now present a more precise study of the displacement dynamics by

calculating the average positions of the two condensates over time (quantities that we
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Figure 4. Evolution of the atomic clouds average positions along z during the

transport and holding dynamics for the 3 values of interspecies scattering lengths

considered here: a12 = 0 left column, a12 = 1nm central column, and a12 = 8.747 nm

right column. The first row shows the average position ⟨z⟩ for Rb and K as a function

of time. The second row shows the offset between this average position ⟨z⟩ and the

trajectory zcl(t) expected if Newton’s law applied independently for each species. The

third row shows the offset between the average position ⟨z⟩ and the center of the trap.

The color code associated with Rb and K is the same as in Fig. 3. The end of the

transport and the beginning of the holding time is marked in each subplot by a black

vertical dotted line.

will consider as the “trajectories” followed by the two atomic clouds), and by calculating

the evolution of the average “size” of the two condensates, defined as the standard

deviations of the Rb and K atomic densities. The average trajectories followed by the

two condensates defined as

⟨z⟩ =
∫∫∫

Ψ∗
j(r, t) zΨj(r, t) dr (26)

are shown in the first row of Fig. 4 using the same color coding as in Fig. 3. We see in

the panels a, b and c that the fixed-grid calculations and the grid-scaling approach give

the same results regardless of the interaction regime considered. It can be seen in panels

g, h and i of Fig. 4 that the condensates start to oscillate in their respective potential

wells from the beginning of the transport. This is because the transport is too fast to
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Figure 5. Evolution of the size (atomic density standard deviation) of the Rb and K

clouds along x, y and z during the transport and holding dynamics for the 3 values

of interspecies scattering lengths considered here: a12 = 0 left column, a12 = 1nm

central column, and a12 = 8.747 nm right column. The color code associated with Rb

and K is the same as in Fig. 3. The end of the transport and the beginning of the

holding time is marked in each subplot by a black vertical dotted line.

be adiabatic. Furthermore, these oscillations, which occur at different frequencies for

Rb and K, continue into the holding phase. When Rb and K do not interact, we see

in panel g that the two condensates collide at regular time intervals. In the presence

of interspecies interactions these collisions strongly perturb the trajectories followed by

the two condensates. Consequently, even if the average positions of the two condensates

obey the classical laws of motion when the interspecies interaction is suppressed (see

panel d), this is no longer the case in the presence of an interaction (see panel f), even

if this interaction is relatively weak (see panel e). Finally, panels g, h and i show that

the remaining oscillations observed in the holding phase are characterized by multiple

modes that differ as a function of the interspecies scattering length.

The evolution of the average sizes of the two condensates, defined as the standard

deviations of the Rb and K atomic densities along x, y and z, are shown in Fig. 5 using

the same color coding as in Fig. 3. We see in this figure that also for the evolution of the

sizes, the fixed-grid calculations and the multi-species grid-scaling approach presented
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here give identical results, regardless of the interaction regime. During transport, the

trapping frequencies for Rb and K in the x direction remain nearly constant, while the

trapping frequencies along the y and z axes decrease by slightly less than 10%. This

relatively small evolution of the trap frequencies during the transport leads to a smooth

evolution of the size of the two atomic clouds when the interspecies interaction is absent

(a12 = 0, left column of Fig. 5). In contrast, panels e, f, h and i in Fig. 5 show that the

presence of a non-zero interspecies interaction (a12 = 1nm in the middle column and

a12 = 8.747 nm in the right column) leads to relatively strong collective excitations of

the two condensates in the y and z directions, which continue into the holding phase.

Since the change of the trap frequencies along the x direction is close to zero, no such

perturbation effect is observed in this particular direction (see panels b and c in Fig. 5).

3.2. Free Expansion of a Binary Mixture under Gravity

The second exemplary application of this multi-species grid-scaling approach is a free

expansion of a binary Rb-K mixture in the presence of gravity. The number of atoms

considered is again 43,900 for Rb and 14,400 for K. We simulate the free expansion

of the Rb-K mixture, starting at t = 0 from the ground state of this binary mixture.

Due to the gravitational sag, the centers of the trapping potentials associated with each

species are shifted, mainly in the z direction, which is the direction in which gravity

acts. In addition, the eigenaxes of the traps associated with Rb and K are very slightly

rotated. The initial trap uses the same electric current flowing through the magnetic

coil as in the example presented earlier in section 3.1, which discussed the dynamics of

transport and holding in microgravity. In the case of Rb, the initial trap is positioned

at x = −1.62 µm, y = 2.23 µm, z = 332.43 µm. The trapping frequencies are

ω1,X1(0) = 2π × 25.3Hz (27a)

ω1,Y1(0) = 2π × 345.1Hz (27b)

ω1,Z1(0) = 2π × 347.1Hz (27c)

For K, the initial trap is positioned around x = −1.76 µm, y = 2.24 µm, z = 331.35 µm,

and the trapping frequencies are

ω2,X2(0) = 2π × 36.5Hz (28a)

ω2,Y2(0) = 2π × 504.1Hz (28b)

ω2,Z2(0) = 2π × 509.8Hz (28c)

The first row of Fig. 6 shows the spatial distribution of the dual-species condensate

at time t = 0, to be compared with the distribution shown in the last column of Fig. 2,

which shows the same data in a microgravity environment. From this comparison,

we can already conclude that the presence of gravity significantly affects the initial

structure of the condensate. The first notable change is that, in the presence of gravity,

the symmetry of the hamburger-like structure of the condensate is broken. There are
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Figure 6. Probability density of a dual Rb-K condensate in the presence of gravity.

Shown are the 3D representations (first column) and the integrated longitudinal Px

and transverse Py and Pz density profiles for Rb and K (second column: along x,

third column: along y, fourth column: along z). The first row shows the initial (t = 0)

ground state, while the second row shows the same density after 5ms of free expansion.

The intraspecies interaction parameters are a11 = 5.237 nm and a22 = 3.204 nm. The

interspecies scattering length is a12 = 8.747 nm. In the first row, the centers of the Rb

and K traps are marked by blue and red vertical dotted lines, respectively. The trap

frequencies at t = 0 are given in the text. The number of rubidium and potassium

atoms is 43,900 and 14,400, respectively. Gravity points in the positive z direction. In

the second row, the Rb probability densities calculated with the present grid-scaling

approach and with a fixed grid are shown as solid blue lines and dashed green lines,

respectively. Similarly, the K probability densities calculated with the present grid-

scaling approach and with a fixed grid are shown as solid red lines and dashed black

lines, respectively.

also significant areas where the two atomic clouds overlap. This was not the case in

microgravity and this is due to the fact that in the presence of gravity the two traps are

spatially offset from each other.

Since the size of the two-species condensate increases rapidly as the trap is released,

we have limited the duration of the time-of-flight to 5ms only, so that a fixed grid

calculation remains feasible. The second row of Fig. 6 shows the spatial distribution of

the dual-species condensate at time t = 5ms, i.e. at the end of this expansion. It can be

seen that during this time, the sizes of the Rb and K clouds typically grow by a factor of

about 10 in both the y and z directions. On the contrary, in the weak axis direction x, the

sizes of the clouds remain almost unchanged. Finally, the second row of Fig. 6 compares

the probability densities calculated at the end of the expansion with the present grid-

scaling method (blue and red solid lines for Rb and K, respectively) with those obtained

using a fixed grid (green and black dashed lines for Rb and K, respectively). The

probability densities calculated with these two methods are in perfect agreement, thus

confirming the validity of the grid-scaling approach in this example, where the atomic
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expansion dynamics occurs in the presence of gravity.

As with the transport and holding example discussed in the previous section 3.1,

describing the expansion with a fixed grid required a larger number of grid points

than with the grid-scaling approach in order to achieve convergence. In fact, in this

example, the fixed-grid approach uses (Nx = 64, Ny = 256, Nz = 256) grid points,

while the grid-scaling approach uses (Nx = 64, Ny = 64, Nz = 64) grid points. The

total number of Nx × Ny × Nz grid points required is therefore 16 times greater for

the fixed-grid calculation (4,194,304) than for the grid-scaling approach (262,144). As

shown in Table 2, this variation in the number of grid points has a strong impact on

the computation time, dramatically favouring the grid-scaling approach in terms of

both CPU time and, of course, memory consumption. One can note that the increase

in the number of grid points affects the y and z directions along which the condensate

expansion is most significant in the first 5ms. The computation time, both for obtaining

the ground state and for computing the dynamics, is on average 18 times larger with the

fixed grid than with the grid-scaling approach, which is consistent with the ratio of grid

sizes. Of course, this factor of 18 depends on the expansion time, since the size of the

condensate increases linearly with time after the initial acceleration phase. As shown in

Table 2, for an expansion time of 8ms, the computation time in a fixed grid is on average

68 times larger than in the grid-scaling approach. In fact, this computation requires

64× 512× 512 grid points, i.e. 64 times more than with the grid-scaling approach. In

practice, many free expansion experiments are performed over durations of several tens

of milliseconds [37, 40, 41]. A simple extrapolation of the results obtained here gives

a gain in computational time of the order of 600 for a free expansion of 25ms and of

10,000 for a time of flight of 100ms. Such calculations quickly become cumbersome in

the standard fixed-grid approach, which confirms the importance of developing the grid-

scaling approach proposed here for an efficient treatment of the expansion dynamics of

multispecies quantum mixtures. Reaching the regime of few seconds of free expansion is

also within reach since the scaled grid calculation time scales linearly with the expansion

time and would amount to less than one hour of real computation time for 1s (last row

of table 2).

3.3. Comparison with Experiment: Free Expansion of a Binary Mixture under Gravity

The successful launch of the MAIUS-1 mission led to the first demonstration of Bose-

Einstein condensation in space [41] and to the realization of the first interference

experiments on board a sounding rocket [62]. The MAIUS-2 and MAIUS-3 missions

aim to study the dynamics of Rb-87 and K-41 mixtures in zero gravity and to prepare

a quantum test of the universality of free fall in space. These missions have led to the

development of a new atom chip device for trapping, condensing and manipulating Rb-

87 and K-41 atoms together [46]. Using this setup, quantum degenerate mixtures with

variable ratios of Rb to K atom numbers could be prepared, and this has led recently to

the realization of several free expansion experiments of these binary mixtures on ground
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Table 2. Computation (cpu) time for the calculation of a dual-species condensate free

expansion dynamics in gravity. The calculations were performed parallelizing 16 cores

of an Intel Xeon Gold 6230 processor running at 2.1 GHz. The real calculation time

is roughly the displayed values of the table divided by the number of cores.

Ground State Expansion Dynamics

TOF (ms) Fixed Grid Scaled Grid Fixed Grid Scaled Grid

5 11 h 06min 31min 00 s 55min 00 s 3min 40 s

8 39 h 07min 31min 00 s 6 h 12min 6min 06 s

25 16 days∗ 31min 00 s 7 days∗ 18min 32 s

100 266 days∗ 31min 00 s 432 days∗ 78min 31 s

1000 N/A 31min 00 s N/A 13 h∗

∗ Estimation based on the number of grid points required.

[46]. Here, we present a small subset of these results to verify the applicability of our

computational method by comparing its predictions with experimental measurements.

The first column of Fig. 7 shows measured absorption images of the K (first row,

panel a) and Rb (second row, panel d) clouds after a free expansion of 25ms. The

bright red regions correspond to density maxima and the dark blue regions to low atomic

densities. The numbers of Rb and K atoms, calibrated by experimental measurements,

are 43,900 and 14,400, respectively. Comparing panels a and d we can see that the

experimental image of K is characterized by a background noise that is more important

than for Rb because there are about 3 times less atoms of K than of Rb. The intensity of

the peak is therefore lower for K than for Rb, and the signal-to-noise ratio is thus lower.

The vertical direction XC of the camera corresponds to the direction z of gravity. The

horizontal axis YC of the camera is in the (x, y) plane, and makes an angle of 46 degrees

with the x-axis of Fig. 6. The initial Rb and K trapping frequencies are given in Eqs. (27)

and (28) and the initial state of the condensed binary mixture has already been shown

in the first row of Fig. 6. The second column of Fig. 7 shows the condensate atomic

densities calculated after 25ms of free expansion by numerical solution of the coupled

Gross-Pitaevskii Eqs. (1) in the present grid-scaling approach, with K in the first row

(panel b) and Rb in the second row (panel e). The grid used in the numerical calculation

has been translated so that the position of the maximum K density is the same for

the experimental and simulated data. A comparison of the Rb panels d and e then

shows a slight shift between the measured position for the Rb cloud and its calculated

position. This shift is about 81.6 µm in the XC direction of gravity and about 16.3µm
in the transverse YC direction. Compared to the distance of 3,066 µm covered by the

atoms during the 25 ms of free fall, this global shift of 83.2 µm between experiment and

theory remains relatively limited, since it represents only 2.7% of the total displacement.

This small shift may be due to an initial oscillation of the atoms before the expansion

stage in the experiment, or to an additional kick experienced by the atoms during the

trap suppression, two effects that are not considered in the simulation. Nevertheless,
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Figure 7. Atomic densities of K (first row) and Rb (second row) after a free expansion

of 25ms, starting from the initial trap described in section 3.2. First column: False-

color absorption images measured by the MAIUS-2 apparatus in a ground-based

experiment [46]. The direction of gravity, indicated by white arrows, is vertical, along

the camera axis XC , and the plane of the atom chip is perpendicular to gravity. The

Rb and K images are normalized for better visibility. The fitted atom numbers are

43,900 for Rb and 14,400 for K [46]. Second column: Condensate probability densities

calculated with the present grid-scaling approach in the plane (XC , YC) of the camera,

after 25ms of free expansion. Third column: Calculated total probability densities,

including thermal atoms.

it can be concluded that the comparison of the experimental measurements with the

numerical simulation shows at this stage a good qualitative agreement between theory

and experiment in the region of interest captured by the CCD camera. It should also be

noted that an efficient simulation of the 3D dynamics of the mixture was only possible

by considering the scalings for the center of mass and the size expansion presented in

sections 2.2 and 2.3.

A more quantitative study was then performed to refine this comparison. The size

of the image shown in Fig. 7 corresponds to the region of interest taken for data analysis,

and the intensity information given by the pixels of the camera was then integrated in

each direction to obtain the integrated 1D signals shown as blue solid lines in Fig. 8.

These integrated experimental data are characterized by bimodal structures, with quasi-

Gaussian pedestals corresponding to the presence of a thermal cloud. These pedestals

observed for both Rb and K were fitted by 2-dimensional Gaussian functions using the

2D camera-recorded data shown in Fig. 7 a and d, and their integrals are shown as green
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Figure 8. Integrated atomic densities of Rb (first row) and K (second row) in arbitrary

units. In the first column the integration of the 2D images shown in Fig. 7 is performed

along YC and in the second column the integration is performed along XC . The solid

blue line is the experimental measurement and the green dashed line is the Gaussian

fit describing the thermal component of the atomic cloud. The solid red line is the

adjusted numerical simulation, which includes both the computed condensed and the

fitted thermal components. The vertical lines correspond to the average position of

the condensed part of the atomic cloud for the solid red line, and to the centre of the

thermal part for the dash-dotted green line. The offsets between the positions of the

condensed and thermal parts in the directions (XC , YC) are (+33.54 µm, −0.41 µm)

for Rb, and (−40.93 µm, −5.25 µm) for K.

dash-dotted lines in each subplot of Fig. 8. The same integration is also performed on

the simulated condensed atomic densities, followed by a numerical convolution by a

Gaussian function with standard deviation (RMS width) σ = 15µm to mimic the effect

of camera resolution. The simulated Rb peak was shifted by 81.6µm in the XC direction

and by 16.3 µm in the YC direction, in agreement with the observations made previously

in Fig. 7. This shift was introduced to account for the initial velocity difference between

Rb and K, which is not included in the simulation. Using this procedure, the simulated

data describing the total density associated with the thermal and condensed atoms are

finally plotted as solid red lines in Fig. 8. The comparison between the experimental

measurement (solid blue line) and the result of the numerical simulation using the grid-

scaling approach presented here (solid red line) shows a very good agreement. The result

of this numerical model taking into account simulated condensed and fitted thermal

atoms is also shown in the right column of Fig. 7, which also compares very favorably



Dynamics of interacting multispecies quantum gases 21

with the image captured by the camera (see left column of Fig. 7). As a result, we

conclude that our numerical approach enables efficient and accurate simulation of the

dynamics of BEC mixtures in a wide range of realistic situations. It is worth noting

that the centers of the condensed and thermal fraction distributions do not coincide,

as is commonly expected, especially for the lighter K species (see Fig. 8). This non-

obvious effect is due to the repulsion between the dense, interacting, degenerate parts

of the clouds, which causes a shift of the centre of each BEC with respect to its thermal

counterpart. This can be seen as a signature of the bimodal distributions of interacting

quantum mixtures.

4. Conclusion

This article presents an efficient method for describing the dynamics of quantum

interacting mixtures. It is based on the translation and rescaling of the computational

grid during the simulation of the coupled multi-species Gross-Pitaevskii equations.

Perfect agreement with previous methods is shown in regimes where they could

be computed. In addition, experimental validation was performed for time scales

that would have been very challenging with previously used static-resolution grids.

The validity of the developed approach allows its implementation in the context of

microgravity and space experiments, where transports over long distances are realized at

very low frequencies (a few Hz) and for long free expansion times of seconds, necessary

in metrology applications such as fundamental physics tests [26, 29] or in the Earth

observation context with space quantum gravimeters [63]. In these latter cases, our

method would take few hours whereas fixed-grid ones are not possible to implement at

reasonable time scales.
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