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Hintikka and Sandu originally proposed Independence Friendly Logic (IF) as a 
first-order logic of imperfect information to describe game-theoretic phenomena
underlying the semantics of natural language. The logic allows for expressing 
independence constraints among quantified variables, in a similar vein to Henkin 
quantifiers, and has a nice game-theoretic semantics in terms of imperfect
information games. However, the IF semantics exhibits some limitations, at least
from a purely logical perspective. It treats the players asymmetrically, considering 
only one of the two players as having imperfect information when evaluating truth,
resp., falsity, of a sentence. In addition, truth and falsity of sentences coincide 
with the existence of a uniform winning strategy for one of the two players 
in the semantic imperfect information game. As a consequence, IF does admit
undetermined sentences, which are neither true nor false, thus failing the law of 
excluded middle. These idiosyncrasies limit its expressive power to the existential 
fragment of Second Order Logic (Sol). In this paper, we investigate an extension of 
IF, called Alternating Dependence/Independence Friendly Logic (ADIF), tailored 
to overcome these limitations. To this end, we introduce a novel compositional
semantics, generalising the one based on trumps proposed by Hodges for IF. The 
new semantics (i) allows for meaningfully restricting both players at the same time,
(ii) enjoys the property of game-theoretic determinacy, (iii) recovers the law of 
excluded middle for sentences, and (iv) grants ADIF the full descriptive power
of Sol. We also provide an equivalent Herbrand-Skolem semantics and a game-
theoretic semantics for the prenex fragment of ADIF, the latter being defined in 
terms of a determined infinite-duration game that precisely captures the other two 
semantics on finite structures.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Informational independence is a phenomenon that emerges quite naturally in game theory, as players in a 
game make moves based on what they know about the state of the current play [35]. In games such as Chess 
or Go, both players have perfect information about the current state of the play and the moves they and 
their adversary have previously made. For other games, like the card-games Poker and Bridge, the players 
have to make decisions based only on partial (i.e., imperfect) information on the state of the play. In other
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words, in these latter games, players have to make decisions informationally independent of some of the 
choices made by the other players. Given the tight connection between games and logics, think for instance 
at game-theoretic semantics [31,30,16], a number of proposals have been put forward to reason with or
about informational independence, most notably, Independence-Friendly Logic [18], Dependence Logic [40],
and logics derived thereof [8,10,28,6,29].

Independence-Friendly Logic (IF) was originally introduced by Hintikka and Sandu [18], and later exten-
sively studied, e.g., in Mann et al. [32], as an extension of First-Order Logic (Fol) [14] with informational 
independence as first-class notion, and with applications in semantics of natural language in mind. Unlike 
in Fol, where quantified variables always functionally depend on all the previously quantified ones, one 
can force in IF the values of certain quantified variables to be chosen independently of the values of some 
specific variables quantified before in the formula. This is syntactically represented by means of the so called 
slashed operator notation, where, for instance, (∃x/W)ϕ is intended to mean that variable x must be chosen 
independently (i.e., without knowledge) of the values of the variables contained in the set W. The logic has 
a nice game-theoretic semantics [19], given in terms of games of imperfect information, where a sentence 
is true if the verifier player, usually called Eloise, has a strategy to win the semantic game. If the falsifier
player, Abelard, has a winning strategy, then the sentence is declared false. Since games with imperfect
information are considered here, neither situation may occur, as the specific game may be undetermined.
In this case, the corresponding sentence is neither true nor false, therefore establishing a failure of the law
of excluded middle. Hodges [20] later developed a compositional semantics for IF, by defining satisfaction 
w.r.t. a set of assignment, called trump (a.k.a. teams, in later iterations of the idea), instead of a single 
assignment as in classic Tarskian semantics [38,39] of Fol. The high level intuition here is that a trump 
encodes the informational uncertainty about what is the actual current assignment.

Dependence Logic [40] (DL) takes a slightly different approach to the problem, by separating quantifiers 
from dependence specification. This is achieved by adding to Fol the so called dependence atoms of the 
form = (�x, y), with the intended meaning that the value of variable y is completely determined by, hence 
functionally dependent on, the value of variables in the vector �x. The separation of dependence constraints 
and quantifiers can express very naturally dependencies on both quantified and non quantified variables,
and allows for a quite flexible approach to reasoning about dependence and independence. DL has also been 
extended with other types of atoms like, e.g., independence atoms [10] and inclusion/exclusion atoms [8]. The 
logic is expressively equivalent to both IF and the existential fragment of Second Order Logic (Sol) [15,5,36].
As such, DL still allows for undetermined sentences and is not closed under classical negation. To recover
closure under negation and, consequently, the law of excluded middle, Väänänen [40] introduced Team 
Logic (TL), an extension of DL with the so called contradictory negation ∼, an idea already investigated 
by Hintikka [17] in the context of IF, where it was allowed only in front of a sentence. TL is substantially
more expressive than DL, reaching the full descriptive power of Sol, covering, thus, the entire polynomial 
hierarchy [37]. However, in order to recover the nice properties of Fol, such as the duality between Boolean 
connectives and quantifiers, TL requires two different versions of the propositional connectives, ¬ and ∼
for negation, ∧ and ⊕ for conjunction, ∨ and ⊗ for disjunction, as well as an additional pseudo quantifier
!x called shriek. This approach also bears significant consequences. In particular, TL lacks any meaningful 
direct game-theoretic interpretation, as also pointed out by Väänänen [40], which DL still retains, mainly
thanks to its equivalence with existential Sol.

There is a well-known connection between logics to reason with or about informational independence 
and the extension of first-order logic with the partially ordered (a.k.a. branching or Henkin) quantifiers,
originally proposed by Henkin [13] to overcome the linear dependence intrinsic in classic quantifier prefixes 
(see also Krynicki and Mostowski [27] for a comprehensive survey on the topic). For instance, the sentence (
∀x1∃y1
∀x2∃y2

)
ϕ states that for all x1 and x2, there exists a value for y1, that only depends on x1, and a value for

y2, that only depends on x2, such that ϕ is true. Sentences like this can easily be expressed in IF by means of 
suitable variable independence schemata. For the sentence in the example, ∀x1∀x2∃(y1/{x2})∃(y2/{x1}). ϕ is 
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an equivalent IF sentence. Similarly to IF, the prenex fragment of the logic with Henkin quantifiers, where 
a Henkin quantifier prefix is followed by a quantifier-free Fol formula [41], is known to be expressively
equivalent to Σ1

1, the existential fragment of Sol, while the full (non-prenex) logic was proved to be able 
to express Δ1

2-properties by Enderton [7].
As observed by Blass and Gurevich [2], logics with Henkin quantifiers exhibit an asymmetric nature from 

a game-theoretic viewpoint, in that they typically consider only whether the existential player, Eloise, has 
a winning strategy that proves a formula true. This is, instead, solved in IF, at the cost of indeterminacy of 
the logic, by introducing two satisfaction relations, one for truth and one for falsity, and by defining them 
in terms of uniform strategies for the players [32]. More specifically, a strategy for a player, either Eloise 
or Abelard, is said to be uniform if for every variable x, which is controlled by that player and is required 
to be independent of a set of variables W, the strategy always chooses the same value in all the states of 
the game that differ only for the values of the variables in W. To win the game and prove the sentence 
true, Eloise is required to have a uniform strategy that wins every play induced by her strategy. These 
compatible plays need not be compatible with any uniform strategy of the adversary, meaning that when 
evaluating truth of a sentence, no restrictions to the universal quantifiers controlled by Abelard actually
apply. A similar situation happens when evaluating falsity of a sentence. In this case, Abelard, needs to have 
a uniform strategy that wins all the compatible plays. Here, the constraints on the existential variables are 
ignored. The imperfect information nature of these games manifests itself in the uniformity requirements 
that leads to indeterminacy of the logic. This, in turn, implies that some sentences are neither true nor false.
For instance, ∀x∃(y/{x}). x = y is undetermined as Eloise cannot copy the value of x when choosing for y
and Abelard cannot guess the future value of y when choosing for x.

The situation described above is also reflected in Hodges’ separate use of trumps and co-trumps in the 
compositional semantics he proposed for IF. His idea of using sets of assignments allows for mimicking the 
uniformity constraints on the strategies in a compositional way. Essentially, a trump records all the states,
represented here as assignments, the game could be in, depending on the possible choices made by Abelard 
and the corresponding responses by Eloise. These assignments correspond, intuitively, to the (partial) plays 
compatible with the strategy followed by Eloise when evaluating the formula. A trump can, then, encode 
the uncertainty that Eloise has about the actual current state of the play, in that assignments that only
differ for the variables in W are indistinguishable to Eloise when she has to choose the value of a variable 
x that is independent of the variables in W. This allows Eloise to make her choice in each such state in a 
uniform way and adhere to the constraints on her variables when trying to prove the truth of the formula.
Analogously, a co-trump encodes the states induced by the possible choices of Eloise and allows Abelard to 
behave uniformly when he wants to falsify the formula.

In this work we investigate a conservative extension of IF, called Alternating Dependence/Independence 
Friendly Logic (ADIF), tailored to take the restrictions of the two players into account at the same time,
namely both when evaluating truth and when evaluating falsity, and to overcome the indeterminacy of 
the logic. To this end, we generalise trumps/teams in such a way that the choices of both players are 
recorded in the semantic structure w.r.t. which formulae are evaluated, enabling both of them to make their
choices in accordance with the uniformity constraints required by the independence restrictions specified in 
the quantifiers. This approach leads to the notion of hyperteam, defined as a set of teams, which provides 
a two-level structure, where each level is intuitively associated with one of the two players and encodes 
the uncertainty that the opponent has about the actual choices up to that stage of the play. From another
perspective, the structure can be viewed as encoding all the possible plays in the underlying game, comprising 
the choices of one player as well as the possible responses of the opponent. With all this information at hand,
then, we can easily obtain the plays of the dual game, namely the one in which the two players exchange 
their roles. The change of roles between the players, in turn, precisely corresponds to the game-theoretic 
interpretation of negation. This allows us to include negation to the logic in a very natural way and, at the 
same time, recover the law of the excluded middle, which is lost in IF, by avoiding undetermined sentences,
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and have a fully symmetric treatment of the independence constraints on the universal and existential 
quantifiers. This form of logical symmetry, where the constraints on both players are taken into account
at the same time, allows ADIF to simulate arbitrary alternation of second-order quantifiers by means of 
restricted first-order ones and reach the full expressive power of Sol and, obviously, of TL. This allows, in 
turn, to directly compare uniform strategies of the players and define within the logic properties such as 
indeterminacy and the presence of signalling phenomena.

We also provide a novel game-theoretic semantics for the prenex fragment of the logic, by means of a 
determined infinite-duration game with a parity-like winning condition, that we call independence game.
For any ADIF-sentence ϕ and finite relational structure A, we can build an independence game �A

ϕ such 
that Eloise has a winning strategy iff ϕ is true in A. As a byproduct, given that there exists a translation 
of TL into ADIF, independence games indirectly provide a game-theoretic interpretation for TL.

2. Alternating Dependence/Independence-Friendly Logic

Alternating Dependence/Independence-Friendly Logic (ADIF, for short) is defined as an extension of Fol.
Therefore, throughout the work we shall assume, as it is customary, a countably infinite set of variables 
Vr and a generic signature L � 〈R, ar〉 comprised of a set R of relation symbols, including the interpreted 
relation ‘=’ for equality, and a function ar : R → N providing the arity of each relation in R. We also fix,
if not stated otherwise, an L-structure A �

〈
A, {RA}R∈R

〉
, with domain of the discourse A, interpretation 

RA⊆ Aar(R) of each relation R ∈ R, and size |A| � |A|.

2.1. Syntax

In the same vein as IF, ADIF augments Fol with restricted quantifiers, where restrictions specify possible 
dependence/independence constraints. Basically, these restrictions allow for formulae of the form ∃+Wx. ϕ
and ∃−Wx. ϕ, whose intuitive reading is best understood in game-theoretic terms, where the existential 
quantifiers are controlled by player Eloise (the verifier), while universal quantifiers are controlled by player
Abelard (the falsifier). Then, the intended meaning of ∃+Wx. ϕ (resp., ∃−Wx. ϕ) is that Eloise has to choose 
a value for x, solely depending on (resp., independently of) the values of the variables in W, that makes ϕ
true. Similarly, ∀+Wx. ϕ (resp., ∀−Wx. ϕ) means that Abelard has to be able to choose, solely depending on 
(resp., independently of) the variables in W, a value for x that allows him to prove the argument ϕ false.
In other words, the decoration ±W specifies what information is available to the player associated with the 
logic quantifier when she or he has to make the choice. In case of +W, only the variables in that set are 
available, when −W is present, instead, only the variables outside the set, i.e., in the complement Vr \ W,
are visible.

Definition 1 (ADIF Syntax). The Alternating Dependence/Independence-Friendly Logic (ADIF, for short)
is the set of formulae built according to the following grammar, where R ∈ R, �x ∈ Vrar(R), x ∈ Vr, and 
W ⊆ Vr with |W|<ω:

ϕ := ⊥ | � | R(�x) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃±Wx. ϕ | ∀±Wx. ϕ.

ADF (resp., AIF) denotes the fragment were only dependence (+W) (resp., independence (-W)) constructs
are permitted.

Predicative logics usually rely on a notion of free placeholder to correctly define the meaning of a formula 
and ADIF is no exception. In ADIF, however, we distinguish between support and free variables. Specifically,
support variables are the ones occurring in some atom R(�x) that needs to be assigned a value in order
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to evaluate the truth of the formula. The free variables, instead, also include those occurring in some 
dependence/independence constraint. By sup : ADIF → 2Vr we denote the function collecting all support
variables sup(ϕ) of a formula ϕ, defined as follows:

• sup(⊥) , sup(�) � ∅; • sup(R(�x)) � �x; • sup(¬ϕ) � sup(ϕ);
• sup(ϕ1�ϕ2) � sup(ϕ1) ∪ sup(ϕ2), for all connective symbols � ∈ {∧, ∨};
• sup(Q±Wx. ϕ) � sup(ϕ) \ {x}, for all quantifier symbols Q ∈ {∃, ∀}.

The free-variable function free : ADIF → 2Vr is defined similarly, except for the quantifier case, which is 
reported in the following:

• free(Q±Wx. ϕ) � (free(ϕ) \ {x}) ∪ �±W�, if x ∈ free(ϕ), and free(Q±Wx. ϕ) � free(ϕ), otherwise, for all 
quantifier symbols Q ∈ {∃, ∀}, with �±W� denoting the set W, for the symbol ‘+’, and its complement
Vr \ W, for the symbol ‘−’.

Obviously, it holds that sup(ϕ) ⊆ free(ϕ). A sentence ϕ is a formula with free(ϕ) = ∅. If sup(ϕ) = ∅, but
free(ϕ) �= ∅, then ϕ is just a pseudo sentence. As an example, ϕ = ∀+∅x. ∃+∅y. (x = y) is a sentence, while 
ϕ′ = ∀+∅x. ∃+zy. (x = y) is a pseudo sentence, since sup(ϕ′) = ∅, but free(ϕ′) = {z}. Another example of 
pseudo sentence is ϕ′′ = ∀+∅x. ∃−xy. (x = y). In general, every formula with empty support and containing a 
quantifier of the form Q−W. v is clearly a pseudo sentence. We also define ∃x. ϕ �∃+Wx. ϕ and ∀x. ϕ �∀+Wx. ϕ,
where W�sup(ϕ)\{x}. From now on, by Fol we mean the syntactic fragment of ADIF composed of formulae 
that only use the last two quantifiers. For such formulae, it holds that sup(ϕ) = free(ϕ). As we shall show in 
Section 3, this fragment semantically corresponds to classic Fol as defined by Tarski [38]. Similarly, we shall 
later identify a richer fragment of ADIF that semantically corresponds to IF as formalised by Hodges [20].

Before giving the formal definition of the compositional semantics, it is worth providing just few examples 
of properties expressible in ADIF. In discussing these examples, then, we shall rely on the informal game-
theoretic interpretation of the quantifiers given above.

Let us picture a two-turn game where Player 1, who chooses first, controls the variable x and Player 2,
who chooses second, controls y. Let ψ(x, y) be the goal of Player 2 and consider the following two ADF

sentences:

ϕ1 := ∀x.∃+xy. ψ(x, y); ϕ2 := ∃x.∀+xy.¬ψ(x, y).

Sentence ϕ1, whenever true, requires Player 2, in this case Eloise, to be able to respond to every choice for
x made by Player 1, in this case Abelard, so that goal ψ(x, y) is always satisfied. This corresponds to the 
existence of a winning strategy for Eloise, namely a strategy that wins every induced play in the game, for
the objective ψ(x, y). On the contrary, with inverted roles, the truth of ϕ2 ensures that there is a choice of 
Eloise such that, no matter what Abelard chooses, ψ(x, y) cannot be achieved. This means that Abelard 
cannot have a winning strategy for ψ(x, y). If ϕ2 is false, instead, it is Abelard who has a winning strategy
for ψ(x, y), while the falsity of ϕ1 ensures the existence of a choice of Abelard such that, no matter what
Eloise chooses, ψ(x, y) cannot be achieved. Note that both sentences belong to the Fol fragment introduced 
above and their semantics also corresponds to the Tarskian one. However, the ADF sentences

ϕ3 := ∀x.∃+∅y. ψ(x, y); ϕ4 := ∃x.∀+∅y.¬ψ(x, y)

add imperfect information to the picture and have no Fol analogue. Sentence ϕ3 still postulates the existence 
of a winning strategy for Eloise, but this time also requires that, when making the choice for y, the player
has no access to any information and, in particular, to the value chosen for x by the opponent. We call 
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such a strategy ∅-uniform. Similarly, ϕ4, when true, witnesses the non-existence of such a ∅-uniform winning 
strategy for Abelard. The ADIF pseudo sentences

ϕ5 := ∀x.∃−xy. ψ(x, y); ϕ6 := ∃x.∀−xy.¬ψ(x, y)

have a very similar meaning to ϕ3 and ϕ4, respectively, with the exception that y, while still required to be 
independent of x, may now depend on any variable different from x. Indeed, free(ϕ5) = free(ϕ6) = Vr \ x,
hence, in principle, y can depend on any of these free variables. As a general rule, a quantifier Q−W. v
occurring inside a formula ϕ allows v to depend on any free variable of ϕ that is not in the set W.

Consider now a three-turn game, extending the previous one, where, after the move of Player 2, Player 1
chooses the value for another variable under its control, let us call this z. The ADF sentence

ϕ7 := ∃x.∀+∅y. ∃+xz. (ψ1(x, y) ∧ ψ2(y, z))

is a bit more involved. First of all, it states that Player 2, i.e., Abelard, cannot see the choice made for x.
In addition, while Player 1, i.e., Eloise, is not aware of y, she has access to the value previously chosen for
x by herself. The sentence, whenever true, ensures the existence of a choice by Eloise which ensures that
Abelard cannot prevent ψ1(x, y) from happening, no matter what he chooses. Moreover, Eloise can respond 
to any of these latter choices for y and win objective ψ2(y, z) by only looking at the value of x. This means 
that Abelard is not able to prevent ψ1(x, y) and, at the same time, Eloise has an x-uniform strategy to win 
ψ2(y, z).

2.2. Semantics

The semantics we define for ADIF follows an approach similar to [20], where a compositional semantics for
IF was first proposed. Hodges’ idea was to expand an assignment for the free variables to a set of assignments,
a trump in his terminology (a.k.a. team [40]), with the intuition of capturing Eloise’s uncertainty on the 
actual state of the semantic game underlying the logic [18]. This is obtained by first recording in the 
assignments the possible choices made by the opponent, i.e., Abelard, for its own variables and, then,
by using the (possible) restrictions on Eloise’s variables to extract an indistinguishability relation among 
assignments that encodes her uncertainty on the actual situation. Clearly, if no restrictions are present,
the player can distinguish each assignment and, therefore, has perfect information on the play. Hodges’
semantics, though able to correctly capture IF, is, however, not adequate for our purposes. Indeed, by
design, it is intrinsically asymmetric, treating the two players differently. More specifically, a single set of 
assignments only provides complete information about the choices of one of the two players (i.e., Abelard 
in trumps and Eloise in co-trumps) and only allows to restrict the choices of the adversary. This is also 
connected with the lack of classic properties of negation, specifically the law of excluded middle.

We propose here a generalisation of Hodges’ approach that allows us to incorporate negation into ADIF

in a natural way and obtain a fully determined logic. The semantics is also inspired by a previous work
providing a novel semantics for Quantified Propositional Temporal Logic [1] to capture game-theoretic 
properties, though in a perfect information setting. To interpret an ADIF formula ϕ, we then proceed as 
follows. Similarly to Hodges, the idea is that the interpretations of the free variables correspond to the 
choices that the two players could make up to the current stage of the game, i.e., the stage where the 
formula ϕ has to be evaluated. These possible choices are organised in a two-level structure, i.e., a set of 
sets of assignments, each level summarising the information about the choices a player may have made in 
previous turns. In order to evaluate the formula ϕ, then, a player chooses a set of assignments, while its 
opponent chooses one assignment in that set where ϕ must hold. We shall use a flag α ∈ {∃∀, ∀∃}, called 
alternation flag, to keep track of which player is assigned to which level of choice. If α = ∃∀, Eloise chooses 
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Fig. 1. Two hyperteams with X1 � X2, but X2 �� X1.

the set of assignments, while Abelard chooses one of those assignments; if α = ∀∃, the dual reasoning applies.
In a sense, the level associated with a given player, say Eloise, encodes the uncertainty that the opponent
Abelard has about her actual choices up to that stage.

Given a flag α ∈ {∃∀, ∀∃}, we denote by α the dual flag, i.e., α ∈ {∃∀, ∀∃} with α �= α. Let Asg �
Vr⇀A be the set of (partial) assignments over Vr, namely partial functions from variables to values in 
the structure domain A. Given a set of variables V ⊆ Vr, we denote by Asg(V) � {χ ∈ Asg | dom(χ) = V}
the assignments defined on V and by Asg⊆(V) � {χ ∈ Asg |V ⊆ dom(χ)} the set of assignments defined 
on some superset of V. A team (of assignments) is a set of assignments all defined on the same set of 
variables. Formally, TAsg � {X ⊆ Asg(V) |V ⊆ Vr} collects all possible teams over some subset V of Vr,
TAsg(V) � {X ∈ TAsg |X ⊆ Asg(V)} contains those over V and TAsg⊆(V) �

{
X ∈ TAsg

∣∣X ⊆ Asg⊆(V)
}

the teams defined on supersets of V. The idea described above is, then, captured by the notion of hyperteam 
(of assignments), namely a set of teams defined over some arbitrary set V ⊆ Vr:

HAsg � {X ⊆ TAsg(V) |V ⊆ Vr} .

By HAsg(V) � {X ∈ HAsg |X ⊆ TAsg(V)} we denote the set of hyperteams over V, while HAsg⊆(V) �{
X ∈ HAsg

∣∣X ⊆ TAsg⊆(V)
}

contains the hyperteams defined on supersets of V. All the assignments inside 
a team X ∈ TAsg or hyperteam X ∈ HAsg are defined on the same variables, whose sets are indicated 
by vr(X) and vr(X), respectively. We shall call the empty set of teams ∅ the empty hyperteam, every set
containing the empty team, e.g., {∅}, a null hyperteam, and the set { {∅} } containing a single team comprised 
only of the empty assignment the trivial hyperteam. Essentially, the trivial hyperteam encodes the situation 
in which none of the players has made any choice yet and, hence, contains the minimal “consistent” state 
of a game. In this sense, then, null and empty hyperteams do not convey any meaningful information about
the possible state of a game and are included here mainly for technical reasons, as they allow for a cleaner
formal definition of the semantics. For this reason, we shall refer to every hyperteam which is neither the 
empty hyperteam nor a null hyperteam with the term proper hyperteam.

For any pair of hyperteams X1, X2 ∈ HAsg, we write X1 � X2 to state that, for all teams X1 ∈ X1, there 
exists a team X2 ∈ X2 such that X2 ⊆ X1 (observe that the inclusion of the teams is the reversed of the 
square inclusion of the hyperteams). As usual, X1 ≡ X2 denotes the fact that both X1 � X2 and X2 � X1
hold true. Obviously, X1 ⊆ X2 implies X1 � X2, which, in turn, implies vr(X1) = vr(X2). It is clear that
the relation � is both reflexive and transitive, hence it is a preorder; as an immediate consequence, ≡ is an 
equivalence relation. In particular, we shall show (see Corollary 1 later in this section) that ≡ captures the 
intuitive notion of equivalence between hyperteams, in the sense that two equivalent hyperteams w.r.t. ≡
do satisfy the same ADIF formulae. Fig. 1 provides a graphical representation of the preorder relation �.

Example 1. In Fig. 1, the hyperteam X1 is �-included in the hyperteam X2, since, for each team X in X1,
there is a team in X2 that is set-included in X. For instance, the team X11 of X1 contains the assignments 
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χ1, χ2, χ3, χ4, and χ5, so, it includes the team X21 of X2 composed of χ2 and χ4. Note that not all teams 
in X2 are included in a team in X1 and different teams of X1 can choose the same team of X2 to include.

Since we are dealing with imperfect information, we need a way to define a notion of indistinguishability
relative to dependence constraints, intuitively, those specified in quantifiers. Given a hyperteam X ∈ HAsg
and a set of variables W ⊆ Vr, we define X �W � {X�W |X ∈ X} and X�W � {χ�W |χ ∈ X}, where χ �W is the 
restriction of the assignment χ to the domain dom(χ) ∩ W. We can, then, compare hyperteams relative to 
W by writing X1 =W X2 for X1�W = X2�W, meaning that the two hyperteams are indistinguishable when 
only variables in W are considered. Similarly, X1 ≡W X2 stands for X1�W ≡ X2�W and means that they are 
equivalent on W, while X1 �W X2 abbreviates X1�W � X2�W and relativises the ordering to a dependence 
constraint. Obviously, X1 =W X2, X1 ≡W X2, and X1 �W X2 imply X1 =W′ X2, X1 ≡W′ X2, and X1 �W′ X2,
respectively, for all W′ ⊆ W.

Example 2. In Fig. 1, X2 is not �-included in X1, as none of the teams of X2 includes a team of X1. Now,
assume the existence of a set of variables W that makes {χ1, χ3, χ4, χ5, χ6, χ7, χ10} �W collapse to {χ1} �W.
Then, we have:

X2�W X1�W
X21�W = {χ1�W, χ2�W} X11�W = {χ1�W, χ2�W}
X22�W = {χ1�W, χ9�W} X12�W = {χ1�W, χ2�W, χ8�W}
X23�W = {χ1�W, χ9�W, χ11�W} X13�W = {χ1�W, χ9�W}

Now, team X11�W is included in X21�W and team X13�W is included in both X22�W and X23�W. Therefore,
X2 �W X1 and, so, X1 ≡W X2, since X1 � X2.

The alternating semantics is given by means of a satisfaction relation between a hyperteam X and a 
formula ϕ, w.r.t. a given interpretation of the players in X, that is w.r.t. an alternation flag α ∈ {∃∀, ∀∃}.
As a consequence, we shall introduce two satisfaction relations, |=∃∀ and |=∀∃, one for each interpretation 
of players in the hyperteam. The intuition is that, when the alternation flag α is ∃∀, then a team is chosen 
existentially by Eloise and all its assignments, chosen universally by Abelard, must satisfy ϕ. Conversely,
when α is ∀∃, then all teams, chosen universally by Abelard, must contain at least one assignment, chosen 
existentially by Eloise, that satisfies ϕ.

The definition of the semantics relies on three basic operations on hyperteams: the dualisation swaps the 
role of the two players in a hyperteam, allowing for connecting the two satisfaction relations and a symmetric 
treatment of quantifiers later on; the extension directly handles quantifications; finally, the partition deals 
with disjunction and conjunction.

Let us consider the dualisation operator first. Given a hyperteam X, the dual hyperteam X exchanges the 
role of the two players w.r.t. X. This means that, if Eloise is the player choosing the team in X and Abelard 
the one choosing the assignment in the team, it will be Abelard who chooses the team in X and Eloise 
the one who chooses the assignment. To ensure that the semantics of the underlying game is not altered 
when exchanging the order of choice for the two players, we need to reshuffle the assignments in X so as to 
simulate the original dependencies between the choices. To this end, for a hyperteam X, we introduce the 
set

Chc(X) � {� : X → Asg | ∀X ∈ X. �(X) ∈ X}

of choice functions, whose definition implicitly assumes the axiom of choice, whenever the structure domain 
A is uncountable. Set Chc(X) contains all the functions � that, for every team X in X, pick a specific 
assignment �(X) in that set. Each such function simulates a possible choice of the second player of X
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depending on the choice of (the team chosen by) the first player. The dual hyperteam X, then, collects the 
images of the choice functions in Chc(X). We, thus, obtain a hyperteam in which the choice order of the 
two players is inverted:

X � {img(�) | � ∈ Chc(X)} .

It is immediate to check that the only hyperteams equivalent to the empty or null ones are themselves 
and they are also dual of one another. Therefore, the class of proper hyperteams is closed under dualisation.
In addition, the trivial hyperteam is self-dual.

Proposition 1. 1) X ≡ ∅ iff X = ∅ iff X = {∅}; 2) X ≡ {∅} iff ∅ ∈X iff X = ∅. Moreover, 3) {{∅}} = { {∅} }.
Finally, 4) X is proper iff X is proper as well.

Example 3. Consider the following two dual hyperteams

X =
{ X1 = {χ11, χ12},

X2 = {χ21, χ22},
X3 = {χ3}

}
and X =

⎧⎪⎨⎪⎩
img(�1) = {χ11, χ21, χ3},
img(�2) = {χ11, χ22, χ3},
img(�3) = {χ12, χ21, χ3},
img(�4) = {χ12, χ22, χ3}

⎫⎪⎬⎪⎭ ,

where the teams of X are X1 = {χ11, χ12}, X2 = {χ21, χ22}, and X3 = {χ3}. Every team in X is obtained as 
the image of one of the four choice functions �i ∈ Chc(X), each choosing exactly one assignment from X1,
one from X2, and the unique one from X3. Intuitively, in X the strategy of the first player, say Eloise, can 
only choose the colour of the final assignments (either red for X1, blue for X2, or green for X3), while the 
one for Abelard decides which assignment of each colour will be picked. After dualisation, the two players 
exchange the order in which they choose. Therefore, Abelard, starting first in X, will select one of the four
choice functions, which picks an assignment for each colour. Eloise, choosing second, by using her strategy
that selects the colour will give the final assignment. In other words, the original strategies of the players 
encoded in the hyperteam, as well as their dependencies, are preserved, regardless of the swap of their role 
in the dual hyperteam. The example also shows that, as we shall prove shortly (see Theorem 2 later in this 
section), if we dualise a hyperteam X and, at the same time, swap the original interpretation α ∈ {∃∀, ∀∃}
of the player to α, we obtain that the pair (X, α) gives an equivalent representation of the information 
contained in the original pair (X, α).

Dualisation enjoys an involution property similar to the classic Boolean negation: by applying the dualisa-
tion twice, we obtain a hyperteam equivalent to the original one. This confirms that the operation preserves 
the entire information encoded in the hyperteams.

Lemma 1 (Dualisation I). For all hyperteams X ∈ HAsg, it holds that X ≡W X, for all W ⊆ Vr. In addition,
X ⊆ X, if X is proper.

The proof of this lemma, together with those of all the non-trivial results in the main paper, can be 
found in appendix.

Observe the clear analogy between the structure of hyperteams with alternation flag ∃∀ (resp., ∀∃) and 
the structure of DNF (resp., CNF) Boolean formulae, where the dualisation swaps between two equivalent
forms. The following lemma formally states that this operation swaps the role of the two players, while still 
preserving the original dependencies among their choices.

Lemma 2 (Dualisation II). The following equivalences hold true, for all hyperteams X ∈ HAsg and properties 
Ψ ⊆ Asg.
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1) Statements 1a and 1b are equivalent:

a) there exists a team X ∈ X ( resp., X ∈ X) such that X ⊆ Ψ;
b) for all teams X′ ∈ X ( resp., X′ ∈ X), it holds that X′ ∩ Ψ �= ∅.

2) Statements 2a and 2b are equivalent:

a) there exists a team X ∈ X such that X ∩ Ψ �= ∅;
b) there exists a team X′ ∈ X such that X′ ∩ Ψ �= ∅.

3) Statements 3a and 3b are equivalent:

a) for all teams X ∈ X, it holds that X ⊆ Ψ;
b) for all teams X′ ∈ X, it holds that X′ ⊆ Ψ.

Item 1 provides the semantic meaning of the operation, stating that if there exists a team in X all of 
whose assignments satisfy some property Ψ, then each team in X has an assignment satisfying the property,
and vice versa. This directly connects the two interpretations of hyperteams, ∀∃ and ∃∀. Item 2 establishes 
that no assignment is lost from the original teams in X, while Item 3 asserts that no new assignments are 
added to X. It could be proved that any two operators that satisfies the three conditions in the lemma will 
produce equivalent hyperteams, in the sense of ≡W, when applied to the same hyperteam.

Quantifications are taken care of by the extension operator. Let Fnc�Asg → A be the set of functions that
map assignments to a value in the domain A of the structure A. Essentially, these objects play the role of 
the Skolem functions in Skolem semantics or, equivalently, of the strategies in game-theoretic semantics. To 
account for possible imperfect information, we need to ensure that these functions choose values uniformly
on indistinguishable assignments. This constraint is captured by restricting the functions so that they must
choose the same value for assignments that are indistinguishable w.r.t. some given set of variables W.
Formally:

FncW � {F ∈ Fnc | ∀χ ∈ Asg.F(χ) = F(χ�W)} .

Clearly, Fnc = Fnc�+Vr� = Fnc�−∅�. The extension of an assignment χ ∈ Asg by a function F ∈ Fnc for a 
variable x ∈ Vr is defined as ext(χ,F, x) � χ[x �→ F(χ)], which extends χ with x by assigning to it the value 
F(χ) prescribed by the function F. The extension operation can then be lifted to teams X ∈ TAsg in the 
obvious way, i.e., by setting ext(X,F, x) � {ext(χ,F, x) |χ ∈ X}. This operation embeds into X the entire 
player strategy encoded by F. Finally, the extension of a hyperteam X ∈ HAsg with x is simply the set of 
extensions with x of all its teams by all possible functions:

extW(X, x) � {ext(X,F, x) |X ∈ X,F ∈ FncW} .

The extension operation essentially embeds into X all possible (W-uniform) strategies for choosing the value 
of x, each one encoded by a function F in FncW.

Example 4. Let X = {X1 ={χ1, χ2}, X2 ={χ1, χ3}} be a hyperteam. To extend ∅-uniformly X with variable 
x over the structure domain A = {0, 1}, one needs to extend each team in X with the two ∅-uniform (i.e.,
constant) functions F0(χ) = 0 and F1(χ) = 1:
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ext∅(X, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ext(X1,F0, x) = {χ1[x �→ 0], χ2[x �→ 0]}
ext(X1,F1, x) = {χ1[x �→ 1], χ2[x �→ 1]}
ext(X2,F0, x) = {χ1[x �→ 0], χ3[x �→ 0]}
ext(X2,F1, x) = {χ1[x �→ 1], χ3[x �→ 1]}

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

Conjunctions and disjunctions are dealt with by means of the partition operator. We provide here the 
intuition for disjunction, the dual reasoning applies to conjunction. Assume that the two players of X, defined 
over the variables {x, y}, are interpreted according to the alternation flag ∀∃: Abelard chooses the team and 
Eloise chooses the assignment in the team. In our setting, then, in order to satisfy, e.g., (x = 0) ∨ (x = 1),
Eloise has to show that, for each team X ∈ X chosen by Abelard, she has a way to select one of the disjuncts 
x = i, with i ∈ {0, 1}, so that the given team has an assignment satisfying the disjunct. To capture Eloise’s 
choice on which disjunct to choose based on the team given by Abelard, we define, for a hyperteam X, the 
following set

par(X) �
{
(X1,X2) ∈ 2X × 2X

∣∣X1 ∩ X2 = ∅ ∧ X1 ∪ X2 = X
}
,

which collects all the possible bipartitions of X. Intuitively, the hyperteam X1 will be used to satisfy x = 0,
while X2 will be used for x = 1. Basically, par(X) contains all the possible strategies by means of which 
Eloise can try to satisfy the two disjuncts. Then, we say that Eloise satisfies the disjunction if there is a 
pair (X′

1, X
′
2) (hence, a hyperteam-partition strategy) in that set such that X′

1 satisfies the left disjunct and 
X′

2 satisfies the right one.
The compositional semantics of ADIF can be, then, defined as follows, where �xχ denotes the tuple of 

elements of the underlying structure A obtained by applying the assignment χ to the tuple of variables �x
component-wise.

Definition 2 (ADIF Semantics). The Hodges’ alternating semantic relation A,X |=α
ϕ for ADIF is induc-

tively defined as follows, for all ADIF formulae ϕ, hyperteams X ∈ HAsg⊆(sup(ϕ)), and alternation flags 
α ∈ {∃∀, ∀∃}:

1) a) A, X |=∃∀⊥ if ∅ ∈ X; b) A, X |=∀∃⊥ if X = ∅;
2) a) A, X |=∀∃� if ∅ /∈ X; b) A, X |=∃∀� if X �= ∅;
3) a) A, X |=∃∀ R(�x) if there exists a team X ∈ X such that, for all assignments χ ∈ X, it holds that

�xχ∈ RA;
b) A, X |=∀∃R(�x) if, for all teams X ∈ X, there exists an assignment χ ∈ X such that �xχ∈ RA;

4) A, X |=α¬φ if A, X �|=α
φ;

5) a) A, X |=∃∀
φ1 ∧φ2 if, for all bipartitions (X1, X2) ∈ par(X), it holds that A, X1 |=∃∀

φ1 or A, X2 |=∃∀
φ2;

b) A, X |=∀∃
φ1 ∧ φ2 if A, X |=∃∀

φ1 ∧ φ2;
6) a) A, X |=∃∀

φ1 ∨ φ2 if A, X |=∀∃
φ1 ∨ φ2;

b) A, X |=∀∃
φ1∨φ2 if there exists a bipartition (X1, X2) ∈ par(X) such that A, X1 |=∀∃

φ1 and A, X2 |=∀∃

φ2;
7) a) A, X |=∃∀∃±Wx. φ if A, ext�±W�(X, x) |=∃∀

φ;
b) A, X |=∀∃∃±Wx. φ if A, X |=∃∀∃±Wx. φ;

8) a) A, X |=∃∀∀±Wx. φ if A, X |=∀∃∀±Wx. φ;
b) A, X |=∀∃∀±Wx. φ if A, ext�±W�(X, x) |=∀∃

φ.

Items 1 and 2 take care of the Boolean constants, requiring, e.g., � to be satisfied by all hyperteams,
except for the empty one, under the ∃∀ interpretation, and the null one, under ∀∃. A dual reasoning applies 
to ⊥. The other base case for atomic formulae, Item 3, is trivial and follows the interpretation of the 
alternation flag. Negation, in accordance with the classic game-theoretic interpretation, is dealt with by
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Item 4 by exchanging the interpretation of the players of the hyperteam. The semantics of the remaining 
Boolean connectives (Items 5 and 6) and quantifiers (Items 7 and 8) is a direct application of the partition 
and extension operators previously defined. Observe that swapping between |=∃∀ and |=∀∃ (Items 5b, 6a, 7b 
and 8a) is done according to Lemma 2 and represents the fundamental point where our approach departs 
from Hodges’ semantics [20,21].

Remark 1. An alternative option for the semantics of Boolean connectives is to use coverings instead of 
partitions, i.e., pairs of hyperteams (X1, X2) such that X1 ∪ X2 = X. However, from a covering (X1, X2),
one can extract the partition (X1, X2 \ X1), where X2 \ X1 � X2. Then, an application of Theorem 1 below
would allow to immediately conclude on the equivalence of the two semantics.

For every ADIF formula ϕ and alternation flag α ∈ {∃∀, ∀∃}, we say that ϕ is α-satisfiable in A, in 
symbols A |=α

ϕ, if there exists a proper hyperteam X ∈ HAsg(sup(ϕ)) such that A, X |=α
ϕ. As already

mentioned before, here we are not considering the empty and null hyperteams as potential hyperteams,
since these do not convey meaningful information. We simply say that ϕ is α-satisfiable iff it is α-satisfiable 
in some structure A. Also, ϕ α-implies (resp., is α-equivalent to) an ADIF formula φ in A, in symbols 
ϕ ⇒α

A φ (resp., ϕ ≡α
A φ), whenever A, X |=α

ϕ implies A, X |=α
φ (resp., A, X |=α

ϕ iff A, X |=α
φ), for all 

X ∈ HAsg⊆(sup(ϕ)∪ sup(φ)). If the implication (resp., equivalence) holds for all structures A, we just state 
that ϕ α-implies (resp., is α-equivalent to) φ, in symbols ϕ ⇒αφ (resp., ϕ ≡αφ). Finally, we say that ϕ is 
satisfiable if it is both ∃∀- and ∀∃-satisfiable, and ϕ implies (resp., is equivalent to) φ, in symbols ϕ ⇒ φ

(resp., ϕ ≡ φ), if both ϕ ⇒∃∀ φ and ϕ ⇒∀∃ φ (resp., ϕ ≡∃∀ φ and ϕ ≡∀∃ φ) hold true. These notions of 
satisfiable formulae and of implication are justified by Theorem 2 that make ∃∀- and ∀∃-satisfiable collapse 
to simply satisfiable and ∃∀- and ∀∃-implication to just implication.

2.3. Examples

To familiarise with the proposed compositional semantics of ADIF, we now present few examples of 
evaluation of formulae via a step by step unravelling of all the semantic rules involved.

Example 5. Consider the sentence ϕ4 = ∃x. ∀+∅y. ¬ψ(x, y) from above, where we instantiate ψ(x, y) as 
(x = y). We evaluate ϕ4 in the binary structure A =

〈
{0, 1},=A

〉
against the trivial hyperteam { {∅} }.

The alternation flag is of no consequence, since { {∅} } is self-dual (see Proposition 1), hence, we can choose 
α = ∃∀, without loss of generality. We want to check whether A, { {∅} } |=∃∀

ϕ4. The semantic rule for the 
existential quantifier ∃x requires to compute the extension ext∅({{∅}}, x) of { {∅} }. This results in

A, {{∅}} |=∃∀∃x.∀+∅y.¬(x = y) iff A,X |=∃∀∀+∅y.¬(x = y),

where X = { {x :0}, {x :1} }. The rule for the universal quantifier ∀+∅y requires to dualise the hyperteam and 
switch the flag to ∀∃. Since every team of X is a singleton, there is only one possible choice function, thus,
the result is

A,X |=∃∀∀+∅y.¬(x = y) iff A,X |=∀∃∀+∅y.¬(x = y),

where X = { {x : 0, x : 1} }. Now the quantifier ∀+∅y and the alternation flag ∀∃ are coherent, and we extend 
the hyperteam to obtain ext∅

(
X, y

)
, where only constant functions can be used for the extensions, since y

cannot depend on x. The result is, then,

A,X |=∀∃∀+∅y.¬(x = y) iff A, ext∅
(
X, y

)
|=∀∃¬(x = y),
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where ext∅
(
X, y

)
=

{{
x :0
y :0

,
x :1
y :0

}
,

{
x :0
y :1

,
x :1
y :1

}}
. The rule for the negation operation ¬ dualises the flag and,

in addition, requires the hyperteam ext∅
(
X, y

)
not to satisfy the atom (x = y) under ∃∀. This means that

every team in ext∅
(
X, y

)
must contain an assignment that falsifies the atom. But this is indeed the case,

since every team has an assignment χ such that χ(x) �= χ(y). Hence, ϕ4 evaluates to true in A against
{ {∅} }. Observe that, on the contrary, the sentence ϕ3 = ∀x. ∃+∅y. ψ(x, y) from above evaluates to false in 
A against { {∅} }, being equivalent to the negation of ϕ4. Indeed, in this case, following the semantic rules 
for the quantifiers, we would still end up with the same hyperteam ext∅

(
X, y

)
against which we need to 

evaluate the matrix x = y. However, this time the alternation flag would be ∃∀ and, as we already noted 
above, every team in ext∅

(
X, y

)
contains one assignment falsifying x = y.

We anticipate here a game-theoretic intuition of truth and falsity in ADIF on the simpler case of sentences 
in prenex normal form and with a single alternation of quantifiers. The interpretation of such sentences can 
be viewed as a challenge-response game, where the player associated with the first type of quantifier in the 
prefix is the challenger and the other one the responder. The idea is that for the responder to win the game,
she/he must win the matrix (either satisfy it if she is the existential player or falsify it if he is the universal 
one) while adhering to some uniform strategy, i.e., a strategy compatible with the (in)dependence constraints 
on her/his variables. If she/he cannot, the challenger wins. In a sense, this satisfaction game places on the 
responder the burden of proof that she/he is able to successfully play according to the constraints and win 
the matrix. When the challenger wins the challenge-response game, then the formula is considered true if 
she is the existential player, and false if he is the universal one. This is why, for instance, the two sentences 
of Example 5, namely ϕ4 and ϕ3, are true and false, respectively. Indeed, in ϕ4 the responder is the universal 
player controlling variable y. Since y cannot depend on anything, it must be chosen uniformly regardless 
of the value of x. Clearly, that player does not have a uniform strategy that falsifies the matrix ¬(x = y),
which makes the sentence won by the existential player and, therefore, true. By a similar reasoning, the 
responder in ϕ3 is the existential player controlling y and cannot access the value of x. Hence, that player
does not have a uniform strategy to satisfy the matrix (x = y) either. Therefore, the universal player, who 
is the challenger, wins the sentence, which makes it false.

Observe that the requirements for truth and falsity in ADIF are much weaker than the ones in IF, where 
a sentence is true (resp., false) if the existential (resp., universal) player has a uniform strategy that wins 
all the plays, i.e., regardless of the strategy, uniform or non-uniform, followed by the adversary.

For sentences in prenex normal form with more than one alternation, though, the truth and falsity
conditions in ADIF become more complicated, since the two players may act both as a challenger and as 
a responder against different variables. In this case, one needs to take into consideration the uniformity
constraints of both players and who is ultimately responsible for breaking the (in)dependence constraints 
to try and win the matrix. Here is also where the symmetry requirement on the players comes into play in a 
more significant way, as for both truth and falsity one needs to take into account the restrictions of the two 
players at the same time. We refer the reader to Section 5 for the full presentation of the game-theoretic 
semantics of ADIF, in which the intuitions discussed above are made precise.

Example 6. Consider the pseudo sentence ϕ6 = ∃x. ∀−xy. ¬ψ(x, y) from above, where again we instantiate 
ψ(x, y) as (x = y). The exact same reasoning followed in Example 5 shows that ϕ6 is true in A against
the trivial hyperteam { {∅} }. Consequently, the pseudo sentence ϕ5 = ∀x. ∃−xy. ψ(x, y) is false in A against
{ {∅} }, being equivalent to the negation of ϕ6. These two pseudo sentences, however, are not equivalent to the 
sentences ϕ4 and ϕ3, respectively. To see this, let us evaluate ϕ5 in A against the hyperteam X = { {z :0, z :1} }
w.r.t. the alternation flag α = ∀∃. Note that z ∈ free(ϕ5) = �−x� = Vr \ {x}. The semantic rule for ∀x
requires to compute the extension ext∅(X, x) of X. This results in
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A,X |=∀∃∀x.∃−xy. (x = y) iff A, ext∅(X, x) |=∀∃∃−xy. (x = y),

where ext∅(X, x) =
{{

z :0
x :0

,
z :1
x :0

}
,

{
z :0
x :1

,
z :1
x :1

}}
. The rule for ∃−xy requires to dualise the hyperteam and 

switch the flag to ∃∀. Since both teams in ext∅(X, x) contain two assignments, there are four choice functions 
in total, leading to

A, ext∅(X, x) |=∀∃∃−xy. (x = y) iff A, ext∅(X, x) |=∃∀∃−xy. (x = y),where

ext∅(X, x) =

⎧⎪⎨⎪⎩
X1 ={

z :0
x :0

,
z :0
x :1

}
,

X2 ={
z :0
x :0

,
z :1
x :1

}
,

X3 ={
z :1
x :0

,
z :0
x :1

}
,

X4 ={
z :1
x :0

,
z :1
x :1

}⎫⎪⎬⎪⎭.

The extension X̂ � extVr\x

(
ext∅(X, x), y

)
= ext{z}

(
ext∅(X, x), y

)
with the four functions that can only

depend on z, happens to contains 12 teams and cannot be displayed here. However, it should be easy to 
check that among these teams one can find X � ext(X2,F, y) = {χ1, χ2}, where χ1(z) = χ1(x) = χ1(y) = 0,
χ2(z) = χ2(x) = χ2(y) = 1, and F(χ) = χ(z). Now, the final step requires checking whether A, X̂ |=∃∀ (x = y).
Since every assignment in X satisfies (x = y), the pseudo sentence is proved true in A against X w.r.t. the 
alternation flag α = ∃∀. As an immediate consequence, ϕ6 evaluates to false in A against X. Instead, it is 
possible to show that the evaluations of ϕ3 and ϕ4 remain unchanged on X, i.e., they are again false and 
true, respectively, due to the fact that they are sentences (this is a direct consequence of Corollary 1, proved 
later on).

The above example should clarify the reasoning behind the choice of the name pseudo sentences, for those 
formulae ϕ with sup(ϕ) = ∅, but free(ϕ) �= ∅. As for sentences, a pseudo sentence can be verified against an 
arbitrary hyperteam; however, similarly to formulae, its truth may depend on the specific hyperteam.

Example 7. Consider the sentence ϕ7 = ∃x. ∀+∅y. ∃+xz. (ψ1(x, y)∧ψ2(y, z)) from above, where we instantiate 
ψ1(x, y) as (x = y) and ψ2(y, z) as (y = z). We evaluate this sentence in the same structure A of the previous 
examples and the trivial hyperteam { {∅} }. Observe also that ϕ7 shares most of the quantifier prefix of 
sentence ϕ4 in Example 5. As a consequence, by applying the same steps as before, we end up with the 
following equivalence:

A, {{∅}} |=∃∀
ϕ7 iff A, ext∅

(
X, y

)
|=∀∃∃+xz. (x = y) ∧ (y = z),

where ext∅
(
X, y

)
=

{{
x :0
y :0

,
x :1
y :0

}
,

{
x :0
y :1

,
x :1
y :1

}}
. Applying the rule for ∃+xz requires dualisation first, leading 

to

A, {{∅}} |=∃∀
ϕ7 iff A, ext∅

(
X, y

)
|=∃∀∃+xz. (x = y) ∧ (y = z),where

ext∅
(
X, y

)
=

⎧⎪⎨⎪⎩
X1 ={

x :0
y :0

,
x :0
y :1

}
,

X2 ={
x :0
y :0

,
x :1
y :1

}
,

X3 ={
x :1
y :0

,
x :0
y :1

}
,

X4 ={
x :1
y :0

,
x :1
y :1

}⎫⎪⎬⎪⎭.

The extension X̂� ext{x}
(
ext∅

(
X, y

)
, z
)

can only use functions that depend on x alone and there are four of 

them. Similarly to the previous example, the hyperteam X̂ ends up containing 12 teams. Among these teams 
one can find X � ext(X2,F, z) = {χ1, χ2}, where χ1(x) = χ1(y) = χ1(z) = 0, χ2(x) = χ2(y) = χ2(z) = 1,
and F(χ) = χ(x). Now, the final step requires checking whether A, X̂ |=∃∀ (x = y) ∧ (y = z). By the rule 
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for the conjunction connective, this is true if A, X̂1 |=∃∀ (x = y) or A, X̂2 |=∃∀ (y = z), for all bipartitions 
(X̂1, X̂2) ∈ par

(
X̂

)
. Obviously, any such partition would contain X either in X̂1 or in X̂2. Since every

assignment in X satisfies both (x = y) and (y = z), the sentence is proved true in A against { {∅} }.

2.4. Fundamentals

ADIF enjoys several classic properties, such as Boolean laws and the canonical representation for formulae 
in negation normal form (nnf, for short), that are usually expected to hold for a logic closed under negation.

We start with the following very basic result, characterising the truth of formulae over the null and empty
hyperteams.

Lemma 3 (Empty & Null Hyperteams). The following hold true for every ADIF formula ϕ and hyperteam 
X ∈ HAsg⊆(sup(ϕ)):

1) a) A, ∅ �|=∃∀
ϕ; b) A, X |=∃∀

ϕ, where ∅ ∈ X;
2) a) A, ∅ |=∀∃

ϕ; b) A, X �|=∀∃
ϕ, where ∅ ∈ X.

The preorder � on hyperteams introduced above captures the intuitive notion of satisfaction strength 
w.r.t. ADIF formulae. Basically, if X1 � X2, the hyperteam X1 satisfies, w.r.t. the ∃∀ (resp., ∀∃) semantic 
relation, less (resp., more) formulae than the hyperteam X2. Actually, a stronger version of this property
holds, when the �-preorder is restricted to the set of free variables of the formula. This property is trivial 
for atomic formulae and can easily be proved by structural induction for the non-atomic ones.

Theorem 1 (Hyperteam Refinement). Let ϕ be an ADIF formula and X, X′ ∈ HAsg⊆(sup(ϕ)) two hyperteams 
with X �free(ϕ) X

′. Then:

1) if A, X |=∃∀
ϕ then A, X′ |=∃∀

ϕ;
2) if A, X′ |=∀∃

ϕ then A, X |=∀∃
ϕ.

As an immediate consequence, we obtain the following result.

Corollary 1 (Hyperteam Equivalence). Let ϕ be an ADIF formula and X, X′ ∈ HAsg⊆(sup(ϕ)) two hyper-
teams with X ≡free(ϕ) X

′. Then:

A,X |=α
ϕ iff A,X′ |=α

ϕ.

Since, by definition, an ADIF sentence ϕ satisfies free(ϕ) = ∅, we can test its truth by just looking at
its satisfaction w.r.t. the trivial hyperteam { {∅} }, as every proper hyperteam is equivalent to { {∅} } on the 
empty set of variables. Recall that this property is, instead, not necessarily enjoyed by a pseudo sentence,
as already observed in Example 6.

Corollary 2 (Sentence Satisfiability). Let ϕ be an ADIF sentence. Then, ϕ is α-satisfiable iff A, { {∅} } |=α
ϕ,

for some L-structure A.

As mentioned in Example 3, swapping the players of a hyperteam X, i.e., switching the alternation 
flag, and swapping the choices of the players, i.e., dualising X, have the same effect as far as satisfaction is 
concerned. Recall in addition that, by Lemma 1, the dualisation enjoys the involution property. Consequently,
dualising both the alternation flag α and the hyperteam X preserves truth of formulae. These observations 
are formalised by the following result.
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Theorem 2 (Double Dualisation). For every ADIF formula ϕ and hyperteam X ∈ HAsg⊆(sup(ϕ)), it holds 
that A, X |=α

ϕ iff A, X |=α
ϕ iff A, X |=α

ϕ.

The above property also grants that formulae satisfiability, implication, and equivalence do not depend on 
the specific interpretation α of hyperteams: a positive answer for α implies the same for α. This invariance
corresponds to the intuition that the truth of a sentence, as well as the concept of logical consequence and 
equivalence, do not depend on the point of view of the specific player. One can also see this as a consequence 
of the symmetric treatment of Eloise and Abelard in the semantics.

Corollary 3 (Interpretation Invariance). Let ϕ and φ be ADIF formulae. Then, ϕ is ∃∀-satisfiable iff ϕ is 
∀∃-satisfiable. Also, ϕ ⇒∃∀φ iff ϕ ⇒∀∃φ and ϕ ≡∃∀φ iff ϕ ≡∀∃φ.

Given the game-theoretic nature of hyperteams and negation, ADIF does not enjoy logical determinacy,
i.e., the property stating that a model either satisfies a formula or its negation, w.r.t. the same semantic 
relation. However, it satisfies the game-theoretic determinacy stated below, which corresponds to the follow-
ing intuition: if a player cannot prove the truth of a formula, then the other player can prove the truth of 
its negation.

Corollary 4 (Game-Theoretic Determinacy). Let ϕ be an ADIF formula and X ∈ HAsg⊆(sup(ϕ)) a hyper-
team. Then:

1) either A, X |=α
ϕ or A, X |=α¬ϕ;

2) either A, X |=α
ϕ or A, X |=α¬ϕ.

Since, as observed above, the truth of sentences can be tested against the trivial hyperteam { {∅} },
regardless of the specific alternation flag α, the classic law of excluded middle does hold at least for all 
ADIF sentences. In the following, we denote with A |= ϕ the fact that a (pseudo) sentence ϕ is both 
∃∀-satisfied and ∀∃-satisfied by { {∅} } in A.

Corollary 5 (Law of Excluded Middle). Let ϕ be an ADIF (pseudo) sentence. Then, either A |= ϕ or
A |= ¬ϕ.

Thanks to the above properties, we can establish the following elementary Boolean laws, which, in turn,
allow for a canonical representation of formulae in nnf, as stated in Corollary 6.

Theorem 3 (Boolean Laws). Let ϕ1, ϕ2 and ϕ be ADIF formulae. Then:

1) a) ¬⊥ ≡ �; b) ¬� ≡ ⊥; c) ϕ ≡ ¬¬ϕ;
2) a) ϕ ∧ ⊥ ≡ ⊥ ∧ ϕ ≡ ⊥; b) ϕ ∧ � ≡ � ∧ ϕ ≡ ϕ;
3) a) ϕ ∨ � ≡ � ∨ ϕ ≡ �; b) ϕ ∨ ⊥ ≡ ⊥ ∨ ϕ ≡ ϕ;
4) a) ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1; b) ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1;
5) a) ϕ1 ∧ ϕ2 ⇒ ϕ1; b) ϕ1 ∧ (ϕ ∧ ϕ2) ≡ (ϕ1 ∧ ϕ) ∧ ϕ2;
6) a) ϕ1 ⇒ ϕ1 ∨ ϕ2; b) ϕ1 ∨ (ϕ ∨ ϕ2) ≡ (ϕ1 ∨ ϕ) ∨ ϕ2;
7) a) ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2); b) ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2);
8) a) ∃±Wx. ϕ ≡ ¬(∀±Wx. ¬ϕ); b) ∀±Wx. ϕ ≡ ¬(∃±Wx. ¬ϕ).

Corollary 6 (Negation Normal Form). Every ADIF formula is equivalent to an ADIF formula in nnf.
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Currently, we do not know whether ADIF does enjoy a prenex normal form (pnf, for short). For this 
reason, in Sections 4 and 5, we shall mainly consider formulae that are already in pnf.

Open Problem 1 (ADIF Prenex Normal Form). Is every ADIF formula equivalent to an ADIF formula in 
pnf?

For technical convenience, we shall now generalise the extension operator to quantifier prefixes ℘, whose 
set is denoted by Qn. Notice that, w.l.o.g., we only consider prefixes where each variable x (i) is quantified at
most once, (ii) does not occur in the dependence/independence constraint set �±W� of its quantifier Q±Wx,
and (iii) cannot be quantified in the scope of a quantifier Q±Wy whose dependence/independence constraint
set �±W� includes x itself. With vr(℘) and dep(℘) we denote the set of variables quantified in ℘ and the 
union of all dependence/independence constraint sets occurring in ℘, respectively. Given a hyperteam X
and an alternation flag α, the operator extα(X, ℘) corresponds to iteratively applying the extension operator
to X, for all quantifiers occurring in ℘, in that specific order. To this end, we first introduce the notion of 
coherence of a quantifier symbol Q ∈ {∃, ∀} with an alternation flag α ∈ {∃∀, ∀∃} as follows: Q is α-coherent
if either α = ∃∀ and Q = ∃ or α = ∀∃ and Q = ∀. Now, the application of a quantifier Q±Wx to X, denoted 
by extα(X, Q±Wx), follows the semantics of quantifiers, as defined in Items 7 and 8 of Definition 2. More 
precisely, it just corresponds to the extension of X with x, when Q is α-coherent. Conversely, when Q is 
α-coherent, we need to dualise the extension with x of the dual of X. Formally:

extα(X, Q±Wx) �

⎧⎨⎩ext�±W�(X, x), if Q is α-coherent;

ext�±W�

(
X, x

)
, otherwise.

The operator naturally lifts to arbitrary quantification prefixes ℘: 1) extα(X, ε) � X; 2) extα(X, Q±Wx. ℘) �
extα(extα(X, Q±Wx) , ℘). We also define extα(℘)�extα({{∅}}, ℘). A simple structural induction on a quantifier
prefix ℘ ∈ Qn, shows that a hyperteam X α-satisfies a formula ℘φ iff its α-extension w.r.t. ℘ α-satisfies its 
matrix φ.

Theorem 4 (Prefix Extension). Let ℘φ be an ADIF formula, where ℘ ∈ Qn is a quantifier prefix and φ is an 
arbitrary ADIF formula. Then, A, X |=α

℘φ iff A, extα(X, ℘) |=α
φ, for all hyperteams X ∈ HAsg⊆(sup(℘φ)).

3. Adequacy

In this section, we show that Hodges’ alternating semantics based on hyperteams is adequate, i.e., it is 
a conservative extension, precisely capturing both Tarski’s satisfaction for Fol and Hodges’ semantics of 
IF (see Definitions 3 and 4 for an equivalent syntactic variant of IF), when restricted to the corresponding 
fragments, as formally stated in Theorems 5 and 6 below.

3.1. First-order logic

We can now prove that, when focusing on the Fol fragment of ADIF, as defined in Section 2.1, the 
satisfaction relation of Definition 2 corresponds to the classic Tarskian satisfaction. This Fol adequacy
property holds trivially for atomic formulae and, in order to extend it to the remaining Fol components,
we make use of the following three lemmata, which take care of dualisation, quantifiers, and binary Boolean 
connectives, respectively.

As extensively discussed before, the dualisation swaps the role of the two players, while still preserving 
the original dependencies among their choices. Indeed, if a Fol property is satisfied by a hyperteam w.r.t. a 
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given alternation flag, it is satisfied by its dual version w.r.t. the dual flag, as formally stated in the lemma 
below, where |=

Fol
denotes the usual Fol semantic relation.

Lemma 4 (Fol Dualisation). The following equivalences hold, for all Fol formulae ϕ and hyperteams 
X ∈ HAsg⊆(sup(ϕ)).

1) Statements 1a and 1b are equivalent:

a) there exists a team X∈X such that A, χ |=
Fol

ϕ, for all assignments χ ∈X;
b) for all teams X∈X, there exists an assignment χ ∈X such that A, χ |=

Fol
ϕ.

2) Statements 2a and 2b are equivalent:

a) for all teams X∈X, there exists an assignment χ ∈X such that A, χ |=
Fol

ϕ;
b) there exists a team X∈X such that A, χ |=

Fol
ϕ, for all assignments χ ∈X.

The following lemma states that the extension operator provides an adequate semantics for classic Fol

quantifications, when applied to all support variables. Statement 1 considers Eloise’s choices, when the inter-
pretation of the hyperteam is ∃∀, while Statement 2 takes care of Abelard’s choices, when the interpretation 
is the dual ∀∃.

Lemma 5 (Fol Quantifiers). The following equivalences hold, for all Fol formulae ϕ, variables x ∈Vr, and
hyperteams X ∈HAsg⊆(V) with V � sup(ϕ) \ {x}.

1) Statements 1a and 1b are equivalent:

a) there exists a team X ∈ X such that A, χ |=
Fol

∃x. ϕ, for all χ ∈ X;
b) there exists a team X ∈ extV(X, x) such that A, χ |=

Fol
ϕ, for all χ ∈ X.

2) Statements 2a and 2b are equivalent:

a) for all teams X ∈ X, there exists χ ∈ X such that A, χ |=
Fol

∀x. ϕ;
b) for all teams X ∈ extV(X, x), there exists χ ∈ X such that A, χ |=

Fol
ϕ.

Finally, the partition operator precisely mimics the semantics of the binary Boolean connectives when 
the correct interpretation of the underlying hyperteam is considered.

Lemma 6 (Fol Boolean Connectives). The following equivalences hold, for all Fol formulae ϕ1 and ϕ2 and
hyperteams X ∈HAsg⊆(V) with V � sup(ϕ1) ∪ sup(ϕ2).

1) Statements 1a and 1b are equivalent:

a) there exists a team X ∈ X such that A, χ |=
Fol

ϕ1 ∧ ϕ2, for all χ ∈ X;
b) for each bipartition (X1, X2) ∈ par(X), there exist an index i ∈ {1, 2} and a team X ∈ Xi such that

A, χ |=
Fol

ϕi, for all χ ∈ X.

2) Statements 2a and 2b are equivalent:
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a) for all teams X ∈ X, there exists χ ∈ X such that A, χ |=
Fol

ϕ1 ∨ ϕ2;
b) there exists a bipartition (X1, X2) ∈ par(X) such that, for all indexes i ∈ {1, 2} and teams X ∈ Xi, it

holds that A, χ |=
Fol

ϕi, for some χ ∈ X.

We can now state the Fol adequacy property for ADIF.

Theorem 5 (Fol Adequacy). For all Fol formulae ϕ and hyperteams X ∈ HAsg⊆(sup(ϕ)), it holds that:

1) A, X |=∃∀
ϕ iff there exists a team X ∈ X such that, for all assignments χ ∈ X, it holds that A, χ |=

Fol
ϕ;

2) A, X |=∀∃
ϕ iff, for all teams X ∈ X, there exists an assignment χ ∈ X such that A, χ |=

Fol
ϕ.

3.2. Dependence/Independence-Friendly Logic

Dependence/Independence-Friendly Logic [40,18] can be viewed as a (syntactic variant of a) fragment of 
ADIF, where i) negation can only occur in front of atoms and ii) just one kind of quantifier can be restricted,
depending on a flag β ∈ {∀, ∃}.

Definition 3 (DIF Syntax). The ∃/∀-Dependence/Independence-Friendly Logic (∃/∀-DIF, for short) is the 
set of formulae built according to the following grammar, where R ∈ R, �x ∈ Vrar(R), x ∈ Vr, and W ⊆ Vr
with |W| < ω:

∃-DIF ϕ := R(�x) | ¬R(�x) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃±Wx. ϕ | ∀−∅x. ϕ.
∀-DIF ϕ := R(�x) | ¬R(�x) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃−∅x. ϕ | ∀±Wx. ϕ.

Hodges’ semantics of DIF formulae is defined on teams. There are two types of semantics rules, one 
for each flag β ∈ {∃, ∀}, which are dual of one another. The ∀-semantics is the classic one reported 
in Hodges [20], also denoted as ‘+’-semantics in Mann et al. [32], while the ∃-semantics corresponds to 
the (meta-level) negation of the ‘−’-semantics. Before recalling the definitions of these two semantics, we 
need to provide two additional operators. For the Boolean connectives, we define a partition operation for
teams as follows: par(X) �

{
(X1,X2) ∈ 2X × 2X

∣∣X1 ∩ X2 = ∅ ∧ X1 ∪ X2 = X
}
. The rule for quantifier uses 

the extension operator ext, when the quantifier is not coherent with the flag β. When the quantifier is co-
herent, instead, the semantics requires a cylindrification operator on teams. Intuitively, the cylindrification 
of a team X w.r.t. some variable x extends each of its assignments with every possible value for x. Formally,
cyl(X, x) � {χ[x �→ a] |χ ∈ X, a ∈ A}.

Definition 4 (DIF Semantics). The Hodges’ semantic relation A, X |=β

DIF

ϕ for β-DIF is inductively defined 
as follows, for all β-DIF formulae ϕ and teams X ⊆ Asg⊆(sup(ϕ)), with β, β ∈ {∃, ∀} and β �= β:

1) a) A, X |=∀
DIF

R(�x) if, for all χ ∈ X, it holds that �xχ∈ RA;
b) A, X |=∀

DIF

¬R(�x) if, for all χ ∈ X, it holds that �xχ /∈ RA;
c) A, X |=∀

DIF

ϕ1 ∧ ϕ2 if A, X |=∀
DIF

ϕ1 and A, X |=∀
DIF

ϕ2;
d) A, X |=∀

DIF

ϕ1 ∨ ϕ2 if A, X1 |=∀
DIF

ϕ1 and A, X2 |=∀
DIF

ϕ2, for some bipartition (X1, X2) ∈ par(X);
e) A, X |=∀

DIF
∃±Wx. ϕ if A, ext(X,F, x) |=∀

DIF

ϕ, for some F ∈ Fnc�±W�;
f) A, X |=∀

DIF
∀−∅x. ϕ if A, cyl(X, x) |=∀

DIF

ϕ;
2) a) A, X |=∃

DIF

R(�x) if there exists χ ∈ X such that �xχ∈ RA;
b) A, X |=∃

DIF

¬R(�x) if there exists χ ∈ X such that �xχ /∈ RA;
c) A, X |=∃

ϕ1 ∧ ϕ2 if A, X1 |=∃
ϕ1 or A, X2 |=∃

ϕ2, for all bipartitions (X1, X2) ∈ par(X);

DIF DIF DIF
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d) A, X |=∃
DIF

ϕ1 ∨ ϕ2 if A, X |=∃
DIF

ϕ1 or A, X |=∃
DIF

ϕ2;
e) A, X |=∃

DIF
∃−∅x. ϕ if A, cyl(X, x) |=∃

DIF

ϕ;
f) A, X |=∃

DIF
∀±Wx. ϕ if A, ext(X,F, x) |=∃

DIF

ϕ, for all F ∈ Fnc�±W�.

In order to show that ADIF is indeed a conservative extension of DIF, we need to be able to simulate 
the semantics on teams with hyperteams. As a first step, we lift the cylindrification operator to hyperteams 
in the obvious way, by defining cyl(X, x) � {cyl(X, x) |X ∈ X}. While the semantics of ADIF does not
provide a primitive operator for cylindrification, this operation can easily be simulated by first dualising the 
hyperteam, then by applying the extension for x uniformly over all the variables in the domain of X, and,
finally dualising the result again. The following lemma establishes the equivalence of these two different
operations.

Lemma 7 (Cylindrical Extension). Let X ∈ HAsg be a hyperteam. Then, cyl(X, x) ≡ extW
(
X, x

)
, for all

variables x ∈ Vr and sets of variables W, with vr(X) ⊆ W ⊆ Vr.

A similar problem arises with the team partitioning operator that is not present in the semantics of 
ADIF. Once again, the dualisation operator, together with the hyperteam partitioning operator, allows us 
to simulate it. More specifically, we first apply the dualisation of the hyperteam X, then the partitioning 
to obtain (X1, X2) ∈ par

(
X
)
, and, finally, dualise the two resulting hyperteam and obtain X1 and X2, each 

of which happens to contain teams that would result from the team partitioning operation applied to the 
teams in X.

Lemma 8 (Team Partitioning). Let X ∈ HAsg be a hyperteam. Then:

1) for all hyperteam bipartitions (X1, X2) ∈ par
(
X
)

and teams Y1 ∈ X1 and Y2 ∈ X2, there exists a team 
X ∈ X such that X ⊆ Y1 ∪ Y2;

2) for all teams X ∈ X and team bipartitions (X1, X2) ∈ par(X), there exist a hyperteam bipartition 
(X1, X2) ∈ par

(
X
)

and two teams Y1 ∈ X1 and Y2 ∈ X2 such that Y1 ⊆ X1 and Y2 ⊆ X2.

Based on these two lemmata, one can prove the following theorem, which establishes the required ade-
quacy result.

Theorem 6 (DIF Adequacy). For all DIF formulae ϕ and hyperteams X ∈ HAsg⊆(sup(ϕ)), it holds that:

1) if ϕ is ∃-DIF then A, X |=∃∀
ϕ iff there is a team X ∈ X such that A, X |=∀

DIF

ϕ;
2) if ϕ is ∀-DIF then A, X |=∀∃

ϕ iff, for all teams X∈X, it holds that A, X |=∃
DIF

ϕ.

From now on, for every DIF formula ϕ, we denote by ϕ∃ and ϕ∀ the ∃-DIF and ∀-DIF variants obtained 
from ϕ by removing the constraints on the universal and existential quantifiers, respectively, i.e., by substi-
tuting −∅ for the variable restrictions of such quantifiers. Recall that, Hodges [20] (see also Mann et al. [32])
defines an IF sentence ϕ to be true in a structure A, in symbols A |=

IF

ϕ, if A, {∅} |=+
ϕ, and false in A,

namely A �|=
IF

ϕ, if A, {∅} |=−
ϕ. As observed above, this means that ϕ is true in A, if A, {∅} |=∀

DIF

ϕ∃, and 

false in A, if A, {∅} �|=∃
DIF

ϕ∀. Therefore, thanks to Theorem 6, we can assert the following.

Observation 1. For every DIF-sentence ϕ, we have that:

• A |=
IF

ϕ iff A, { {∅} } |=∃∀
ϕ∃, i.e., A |= ϕ∃, and

• A �|= ϕ iff A, { {∅} } �|=∀∃
ϕ∀, i.e., A �|= ϕ∀.
IF
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The following example illustrates the connection between ADIF and DIF.

Example 8. In Example 5, it has been observed that the two ADIF sentences ϕ3 = ∀x. ∃+∅y. (x = y) and 
ϕ4 = ∃x. ∀+∅y. ¬(x = y) evaluate to false and true, respectively, in the binary structure A =

〈
{0, 1},=A

〉
against the trivial hyperteam { {∅} }. We also claimed that they are the semantic negation of each other,
something that now can be easily proved thanks to Corollary 5 and Theorem 3. Note that all these properties 
hold true for the two ∃-DIF and ∀-DIF sentences ϕ′

3 = ∀−∅x. ∃+∅y. (x = y) and ϕ′
4 = ∃−∅x. ∀+∅y. ¬(x = y)

as well. At this point, we can show that the truth and falsity of ϕ′
3 and ϕ′

4 convey different meanings when 
evaluated in IF (equivalently, DIF). Both ϕ′

3 and ϕ′
4 are IF sentences. Moreover, as previously stated, ϕ′

3
is an ∃-DIF sentence, while ϕ′

4 is a ∀-DIF sentence. Thus, from Observation 1, we immediately obtain 
that, when evaluated in IF, ϕ′

3 is not true and ϕ′
4 is not false. However, again by Observation 1, ϕ′

3 is not
false and ϕ′

4 is not true either, since A, { {∅} } |= ϕ′
3∀ and A, { {∅} } �|= ϕ′

4∃. Therefore, the two sentences are 
undetermined.

The considerations discussed above allow us to characterise elegantly in ADIF some meta-properties 
of IF sentences, such as indeterminacy and sensitivity to signalling phenomena. These results witness the 
expressive advantages of ADIF over IF and substantiate the intuition that ADIF can be thought of as a 
logic to reason about imperfect information, as opposed to IF, which can be viewed more as a language to 
reason with imperfect information.

Let us start with indeterminacy of IF sentences first. Hodges [20] defines an IF sentence ϕ to be undeter-
mined in a structure A if it is neither true nor false in A. Hence, an immediate application of Observation 1
gives us the following corollary.

Corollary 7 (Definability of IF-Indeterminacy). For every IF sentence ϕ, let ϕu be the ADIF pseudo sen-
tence ¬ϕ∃ ∧ ϕ∀ . Then, it holds that

A |= ϕu iff ϕ is undetermined in A.

The second phenomenon is called signalling [20,32]. In game theoretic terms, the phenomenon arises 
in situations where, for instance, one of the existential (resp., universal) players can store inside one of 
his variables, say variable z, the value of some variable x of the opponent that another existential (resp.,
universal) player is not allowed to see. However, by merely being able to access the value of z, this last
player can infer the value of the forbidden variable x and choose a response accordingly.

The logical analogue of this phenomenon is captured in IF by forms of information leaks, where informa-
tion about the value of a variable may leak toward another variable by means of a third, possibly unused,
one. The typical example of this phenomenon already emerges in the simple IF sentence ∀x∃(y/{x}). x = y.
Clearly, Eloise, who cannot see the value of x when choosing the value for y, does not have a uniform 
winning strategy to satisfy for equality. Since also Abelard does not have one to falsify it, the formula is 
undetermined in IF. However, the sentence ∀x∃z∃(y/{x}). x = y, where the dummy quantifier for z has been 
added, becomes determined, and specifically true. The reason is that now Eloise, who intuitively represents 
the team of existential players, does have a winning strategy. Indeed, when choosing z, she is allowed to see 
the value of x and can just copy that value onto z. This time, however, when choosing the value of y, while 
she still has no direct access to the value of x, she does have indirect access to its value through z, which 
she is allowed to see. The winning move here is then to copy whatever value is inside z onto y to satisfy the 
equality.

In general, then, we say that an IF sentence ϕ is sensitive to signalling w.r.t. some variables not in sup(ϕ),
if the introduction of vacuous quantifiers over them in ϕ changes its truth value. For sentences in prenex
normal form this means that, if we change the quantifier prefix ℘ with one of its extensions ℘̂, then the 
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two sentences ℘φ and ℘̂φ have different truth values. In IF, this may only happen when ϕ is undetermined,
while its extension ϕ̂ is determined. In other words, either ϕ is not true, while ϕ̂ is true, or ϕ is not false,
while ϕ̂ is false. Once again, by applying Observation 1, we obtain the following.

Corollary 8 (Definability of IF-Signalling). Let ϕ = ℘φ be an IF sentence in pnf with quantifier prefix
℘ ∈ Qn and quantifier-free matrix φ. Moreover, let ℘̂ ∈ Qn be a quantifier prefix extending ℘ and ϕ℘̂

s the 
ADIF pseudo sentence (¬ϕ∃ ∧ ϕ̂∃) ∨ (ϕ∀ ∧ ¬ϕ̂∀), with ϕ̂ � ℘̂φ. Then, it holds that

A |= ϕ℘̂
s iff ϕ is sensitive to signalling in A w.r.t. ℘̂.

It is important to observe here that the ability of ADIF to restrict both the universal and existential 
quantifiers at the same time, that is to treat the two players in a completely symmetric way, is essential to 
characterise the above definability properties. Both ϕu and ϕ℘̂

s, on the other hand, are undetermined in IF.
It is also worth remarking that the hyperteam semantics and pseudo sentences interact in quite a peculiar

way, giving rise to a new form of information leak, separate from the one occurring in connection with 
signalling and dummy quantifiers. This is evidenced by the pseudo sentences ϕ5 and ϕ6 of Example 6. We 
showed there that A, { {∅} } �|=∃∀

ϕ5 and A, { {∅} } |=∀∃
ϕ6, hence, A, { {∅} } �|=∀∃

ϕ5 and A, { {∅} } |=∃∀
ϕ6.

However, the example also shows that A, X |=∀∃
ϕ5 and A, X �|=∃∀

ϕ6, where X = { {z : 0, z : 1} }. Here, the 
information on z contained in X may leak into y through the hyperteam. Observe that hyperteam X can be 
obtained by means of a suitable dummy quantification of variable z and, therefore, we immediately obtain 
that A, { {∅} } |=∃∀ ∃ z. ϕ5 and A, { {∅} } �|=∀∃ ∀ z. ϕ6. As a consequence, introducing a dummy quantifier for
a variable that is free but not in the support of a pseudo sentence can change the truth value, even if such 
a variable cannot depend on any other variable. Note that this specific form of information leak does not
actually reflect any signalling phenomenon in the classic game-theoretic sense and does not occur in IF
either.

4. Meta theory

We now introduce a meta-level interpretation of the quantifiers by means of a Herbrand-Skolem semantics 
extending the compositional one based on hyperteams, which results to be essential for 1) the solution of 
the model-checking problem, 2) the proof that ADIF covers the entire polynomial hierarchy, by means of an 
encoding of Second-Order Logic (Sol, for short) [15,5,36] and Team Logic (TL, for short) [40], and 3) the 
adequacy of the game-theoretic semantics presented in Section 5.

4.1. Meta extension

The game-theoretic interpretation of the quantifiers ∃±Wx and ∀±Wx implicitly identifies strategies for
Eloise and Abelard satisfying the �±W�-uniformity constraint. The meta extension of ADIF we propose 
here makes these strategies explicit, by augmenting the logic with the two quantifiers, Σ±Wx and Π±Wx,
ranging over �±W�-uniform Herbrand/Skolem functions [4]. Intuitively, Σ±Wx. ϕ ensures the existence of a 
�±W�-uniform Skolem function assigning to x values that satisfy ϕ, while Π±Wx. ϕ verifies ϕ, for all values 
assigned to x by some �±W�-uniform Herbrand function.

Definition 5 (Meta-ADIF Syntax). The ADIF Meta Extension (Meta-ADIF, for short) is the set of 
formulae built according to Definition 1 extended as follows, where x ∈ Vr and W ⊆ Vr with |W| < ω:

ϕ := ADIF | Σ±Wx. ϕ | Π±Wx. ϕ.
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The set of support variables sup(ϕ) of a Meta-ADIF formula ϕ is defined as in ADIF, with the additional 
two simple cases sup(Q±Wx. ϕ) � sup(ϕ) \ {x}, for Q ∈ {Σ, Π}. The definition of free variables is, instead,
quite more intricate and requires the introduction of the following supplemental functions of free variables 
under (meta) dependency context free : Meta-ADIF × (Vr⇀ 2Vr) → 2Vr and dependence variables under
(meta) dependency context dep : Meta-ADIF × (Vr⇀ 2Vr) → 2Vr, where by dependency context we mean 
any partial function ι ∈ Vr⇀ 2Vr. The transitive closure of ι is a dependency context ι∗ ∈ dom(ι) → 2Vr

such that, for each variable x ∈ dom(ι) in its domain, ι∗(x) is the smallest set of variables such that (a)
ι(x) ⊆ ι∗(x) and (b) ι(y) ⊆ ι∗(x), for all variables y ∈ ι∗(x) ∩ dom(ι). Finally, ι is acyclic if x /∈ ι∗(x), for all 
variables x ∈ dom(ι). The functions free and dep can be defined in a mutual recursive fashion as follows.

• free(⊥, ι) , free(�, ι) � ∅;
• free(R(�x), ι) � �x ∪

⋃
{ι∗(x) |x ∈ �x ∩ dom(ι)};

• free(¬ϕ, ι) � free(ϕ, ι);
• free(ϕ1�ϕ2, ι) � free(ϕ1, ι) ∪ free(ϕ2, ι), for � ∈ {∧, ∨};
• free(Q±Wx. ϕ, ι) � (free(ϕ, ι′) \ {x}) ∪ �±W�, if x ∈ free(ϕ, ι′), and free(Q±Wx. ϕ, ι) � free(ϕ, ι′), otherwise,

where ι′ � ι \ {x}, for Q ∈ {∃, ∀};
• free(Q±Wx. ϕ, ι) � free(ϕ, ι′), if x ∈ dep(ϕ, ι′), and free(Q±Wx. ϕ, ι) � free(ϕ, ι′) \ {x}, otherwise, where 

ι′ � ι[x �→ �±W�], for Q ∈ {Σ, Π}.

Intuitively, a variable y can be free in a Meta-ADIF formula ϕ under a dependency context ι only for one 
(or more) of the following three reasons: (i) it is explicitly used in some relational symbol; (ii) it occurs in 
the (transitive) dependency set ι∗(x) of some meta-quantified variable x used in a relational symbol; (iii) it
appears in the dependence/independence constraint set �±W� of some first-order quantifier Q±Wx of a free 
variable x. Notice that a meta quantifier of a variable x masks such a variable only if it does not appear in 
the set of dependence variables of its matrix.

• dep(⊥, ι) , dep(�, ι) , dep(R(�x), ι) � ∅;
• dep(¬ϕ, ι) � dep(ϕ, ι);
• dep(ϕ1�ϕ2, ι) � dep(ϕ1, ι) ∪ dep(ϕ2, ι), for � ∈ {∧, ∨};
• dep(Q±Wx. ϕ, ι) � (dep(ϕ, ι′) \ {x}) ∪ �±W�, if x ∈ free(ϕ, ι′), and dep(Q±Wx. ϕ, ι) � dep(ϕ, ι′), otherwise,

where ι′ � ι \ {x}, for Q ∈ {∃, ∀};
• dep(Q±Wx. ϕ, ι) � dep(ϕ, ι′), where ι′ � ι[x �→ �±W�], for Q ∈ {Σ, Π}.

Intuitively, a variable y belongs to the set dep(ϕ, ι) if it appears in the dependence/independence constraint
set �±W� of some first-order quantifier Q±Wx of a free variable x and, at the same time, is not removed,
i.e., is not under the scope of another first-order quantifier for y itself. Notice that the dependencies of the 
variables quantified by a meta quantifier, which are maintained by the dependency context ι, are not taken 
into account here, as they are only used to determine which variables are free. At this point, the sets of free 
variables free(ϕ) and dependence variables dep(ϕ) of a Meta-ADIF formula ϕ are defined as free(ϕ,∅) and 
dep(ϕ,∅), respectively.

To keep track of the Herbrand/Skolem functions already quantified, we use a function assignment F ∈
FAsg � Vr⇀Fnc mapping each variable x ∈ V � dom(F) to a function F(x) ∈ Fnc. To extend a hyperteam 
X ∈ HAsg(U) with F, we make use of the extension operator ext(X,F) � {ext(X,F) |X ∈ X}, where (i)
ext(X,F)� {χ ∈ cyl(X,V) | ∀x ∈ V \ U. χ(x) = F(x)(χ)} is the extension of the team X over the variables in 
V, so that the value χ(x) given by an assignment χ to each (not yet assigned) variable x ∈ V \U is coherent
with the one prescribed by F(x) and (ii) cyl(X,V) � {χ ∈ Asg(U ∪ V) |χ�U ∈ X} is the cylindrification of a 
team X ∈ TAsg(U) w.r.t. the set of variables V \ U. Finally, a function assignment F ∈ FAsg is acyclic if 
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there is an acyclic dependency context ι ∈ Vr⇀ 2Vr, with dom(F) ⊆ dom(ι), such that F(x) ∈ Fncι(x) for
all variables x ∈ dom(F).

Definition 6 (Meta-ADIF Semantics). The Hodges’ alternating semantic relation A, F, X |=α
ϕ for

Meta-ADIF is inductively defined as follows, for all Meta-ADIF formulae ϕ, function assignments 
F ∈ FAsg, hyperteams X ∈ HAsg⊆(sup(ϕ) \ dom(F)), and alternation flags α ∈ {∃∀, ∀∃}:

1,2,4-8) All ADIF cases, but those ones of the atomic relations, are defined by lifting, in the obvious way,
the corresponding items of Definition 2 to function assignments, i.e., the latter play no role;

3) a) A, F, X |=∃∀ R(�x) if there exists a team X ∈ ext(X,F) such that, for all assignments χ ∈ X, it
holds that �xχ∈ RA;

b) A, F, X |=∀∃ R(�x) if, for all teams X ∈ ext(X,F), there exists an assignment χ ∈ X such that
�xχ∈ RA;

9) A, F, X |=αΣ±Wx. φ if A, F[x �→ F], X |=α
φ, for some function F ∈ Fnc�±W�;

10) A, F, X |=αΠ±Wx. φ if A, F[x �→ F], X |=α
φ, for all functions F ∈ Fnc�±W�.

Essentially, to evaluate an atomic formula R(�x), we extend X with the functions dictated by F and then 
we check the assignments following the alternation given by the flag α ∈ {∀∃, ∃∀} as in plain ADIF. Indeed,
Item 3 above can be re-stated in the following equivalent form, which allows for a unified treatment of the 
alternation flags:

A,F,X |=αR(�x), if A, ext(X,F) |=αR(�x),

where the second occurrence of the satisfaction relation |=α refers to the Hodges’ alternating semantic 
relation for ADIF, as per Item 3 of Definition 2. The semantics of the meta quantifiers Σ±Wx and Π±Wx is 
the classic second-order one, where the functions chosen at the meta level are stored in the assignment F.

The notions of satisfaction, implication, and equivalence, given at the end of Section 2.2 immediately
lift to Meta-ADIF. In addition, all relevant results proved for ADIF in Section 2.4 clearly lift to the 
Meta-ADIF semantics of ADIF formulae. These results are, indeed, proved in this generalised form in 
Appendix C. In particular, satisfaction in ADIF and in Meta-ADIF coincide.

Proposition 2. A, X |=α
ϕ iff A, ∅, X |=α

ϕ, for every ADIF formula ϕ and hyperteam X ∈ HAsg⊆(sup(ϕ)).

At first glance, the semantic rule for the meta quantifiers might seem to mimic the corresponding quantifier
rule of DIF and TL, as in both cases a choice of a Skolem/Herbrand function is involved. However, unlike 
in DIF and TL, the application of the functions to the hyperteam is delayed until the evaluation of an 
atomic formula. This makes the behaviour of quantifications in the two semantics diverge significantly. Such 
a difference is also mirrored in the more complex definition of free variables given above.

The following lemma characterises the connection between the compositional semantics of first-order
quantifications ∃±Wx and ∀±Wx and the corresponding choice of a Skolem/Herbrand function.

Lemma 9 (Extension Interpretation). The following four equivalences hold true, for all hyperteams X ∈
HAsg(V) over V ⊆ Vr, properties Ψ ⊆ Asg(V∪{x}) over V∪{x} with x ∈ Vr\V, sets of variables W ⊆ Vr,
and quantifier symbols Q ∈ {∃, ∀}.

1) Statements 1a and 1b are equivalent, whenever Q is α-coherent:

a) there exists X′ ∈ extα(X, Q±Wx) such that X′ ⊆ Ψ;
b) there exist F ∈ Fnc�±W� and X ∈ X such that ext(X,F, x) ⊆ Ψ.



D. Bellier et al. / Annals of Pure and Applied Logic 174 (2023) 103315 25
2) Statements 2a and 2b are equivalent, whenever Q is α-coherent:

a) for all X′ ∈ extα(X, Q±Wx), it holds that X′ ∩ Ψ �= ∅;
b) for all F ∈ Fnc�±W� and X ∈ X, it holds that ext(X,F, x) ∩ Ψ �= ∅.

3) Statements 3a and 3b are equivalent, whenever Q is α-coherent:

a) there exists X′ ∈ extα(X, Q±Wx) such that X′ ⊆ Ψ;
b) for all F ∈ Fnc�±W�, it holds that ext(X,F, x) ⊆ Ψ, for some X ∈ X.

4) Statements 4a and 4b are equivalent, whenever Q is α-coherent:

a) for all X′ ∈ extα(X, Q±Wx), it holds that X′ ∩ Ψ �= ∅;
b) there is F ∈ Fnc�±W� such that ext(X,F, x) ∩ Ψ �= ∅, for all X ∈ X.

Equivalences 1 and 4, when Q = ∃, implicitly state that an existential quantification can always be 
simulated by an existential choice of a suitable Skolem function, independently of the alternation flag α
for the hyperteam. Dually, Equivalences 2 and 3, when Q = ∀, state that a universal quantification can be 
simulated by a universal choice of a suitable Herbrand function, again regardless of α. These observations 
can be formulated in Meta-ADIF as follows.

Theorem 7 (Quantifier Interpretation). The following equivalences hold true, for all Fol formulae φ, vari-
ables x ∈ Vr, sets of variables W ⊆ Vr with x /∈ �±W�, acyclic function assignments F ∈ FAsg with 
dom(F) ∩ �±W� = ∅, and hyperteams X ∈ HAsg⊆((sup(φ) \ {x}) \ dom(F)) with x /∈ vr(X):

1) A, F, X |=α∃±Wx. φ iff A, F, X |=αΣ±Wx. φ;
2) A, F, X |=α∀±Wx. φ iff A, F, X |=αΠ±Wx. φ.

Given an ADIF formula ℘φ with quantifier prefix ℘ ∈ Qn and Fol matrix φ, we can convert each 
quantification in ℘, from inside out, into the corresponding meta quantification, by suitably iterating the 
result reported above. The meta quantifiers in the obtained prefix are in reverse order with respect to the 
order of corresponding standard quantifiers in the original prefix. To formalise this idea, we introduce the 
Herbrand-Skolem prefix function hsp as follows:

a) hsp(ε) � ε;
b) hsp(℘. ∃±Wx) � Σ±Wx. hsp(℘);
c) hsp(℘. ∀±Wx) � Π±Wx. hsp(℘).

We can show that ℘φ ≡ hsp(℘)φ, by exploiting Theorem 4. This conversion resembles a merging of 
the standard Skolem/Herbrand-isation procedures [12,4] that convert a Fol sentence either into an equi-
satisfiable/equi-valid Fol sentence without existential/universal quantifiers, or into an equivalent Sol

formula. Note that the Herbrandisation approach here is connected with the notion of Kreisel counterexam-
ple [25,26] applied to DIF [32].

Theorem 8 (Herbrand-Skolem Theorem). Let ℘1℘2φ be an ADIF formula in pnf with quantifier prefix
℘1℘2 ∈Qn and Fol matrix φ. Then, A, F, X |=α

℘1℘2φ iff A, F, X |=α hsp(℘2)℘1φ, for all acyclic function 
assignments F ∈ FAsg with dom(F) ∩ dep(℘1℘2φ) = ∅ and hyperteams X ∈ HAsg⊆(sup(℘1℘2φ) \ dom(F))
with vr(X) ∩ vr(℘1℘2) = ∅ and dom(F) ∩ vr(℘1℘2) = ∅.
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Example 9. Let us consider again the sentence from Example 7, i.e., ϕ7 = ∃x. ∀+∅y. ∃+xz. (x = y) ∧ (y = z).
We already saw that the sentence is true in the original binary structure A of the same example. If we 
convert ϕ7 into Meta-ADIF via the function hsp, we obtain Σ+xz. Π+∅y. Σ+∅x. (x = y) ∧ (y = z). To show
this sentence true in A, it suffices to assign to z the identity function that copies the value assigned to x.
Then, whatever value is chosen for y, the same value can be assigned to x. By the semantics of Meta-ADIF,
the result immediately follows.

Thanks to this Herbrand/Skolem-isation procedure, we can transform an ADIF sentence in pnf into a 
Meta-ADIF sentence in pnf, where only the meta quantifiers Σ±Wx and ∀±Wx occur. Since one needs only
polynomial space in the size of the underlying structure to represent the quantified functions, the same 
approach used for Fol model checking is also applicable here.

Theorem 9 (Model-Checking Problem). Let A be a finite structure and ϕ an ADIF sentence in pnf. Then,
the model-checking problem A |= ϕ can be decided in PSpace w.r.t. |A|.

As is the case of ADIF, we do not know whether Meta-ADIF enjoys a prenex normal form, even when 
we only take into consideration the two meta quantifiers Σ±W and Π±W.

Open Problem 2 (Meta-ADIF Prenex Normal Form). Is every Meta-ADIF formula equivalent to a 
Meta-ADIF formula in pnf?

4.2. Second-order & team logics

We have previously shown that ADIF is a conservative extension of DIF. However, its game-theoretic 
determinacy gives us a considerably more expressive logic than DIF, with a full-fledged second-order flavour,
even in the absence of a contradictory negation. Indeed, the meta-theory interpretation allows us to show
that every Sol and TL formula can be interpreted in the ADF fragment of ADIF. Vice versa, every ADF

formula, over a restricted class of hyperteams, can be interpreted by corresponding Sol sentences and TL

formulae. This implies that, from a descriptive-complexity viewpoint, ADF formulae cover at least the 
entire polynomial hierarchy PH [22].

Every non-null hyperteam X ∈ HAsg(�x) defined over a sequence of variables �x ∈ Vr∗, which is at most
equipotent to the domain of the underlying structure A, i.e., |X| ≤ |A|, can be encoded by a k-ary relation 
symbol R, with k � |�x| + 1, whose interpretation RA ⊆ Ak is defined (up to isomorphism) as follows: for
every team X ∈ X, there is an element a ∈ A and, vice versa, for every element a ∈ A, there is a team 
X ∈ X such that

χ ∈ X iff A � {RA}, χ[y �→ a] |=
Fol

R(�xy),

for all assignments χ ∈ Asg(�x). Such an interpretation RA is later on called Rel(X). It is not clear whether
there exist other relational encodings of hyperteams with greater (possibly infinite) cardinality than the 
domain of the structure. Now, by Theorem 8, every ADIF formula in pnf can be translated into an equivalent
Meta-ADIF formula, where the semantics of the meta quantifiers can be easily modelled via second-order
quantifications. This leads to the result below, which implies that every ADF-definable hyperteam (under
the above restriction) is Sol-definable.

Theorem 10 (ADF-Sol Interpretation). For every ADF formula ϕ in pnf with quantifier prefix ℘ ∈ Qn
over a signature L, set of variables sup(ϕ) ⊆ V ⊆ Vr with V ∩ vr(℘) = ∅, and relation symbol R /∈ L with 
ar(R) = |V| + 1, there exist two Sol sentences Φ∃∀ and Φ∀∃ over signature L � {R} such that, for all
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L-structures A and non-null hyperteams X ∈ HAsg(V) with |X| ≤ |A|, the following equivalence holds true:
A, X |=α

ϕ iff A � {Rel(X)} |=
Sol

Φα.

Using a similar approach, every non-empty non-null hyperteam X ∈ HAsg(V) defined over a set of 
variables V ⊆ Vr, with |X| ≤ |A|, can be encoded in a team Team(X, y) ∈ TAsg(V ∪ y), with y /∈ V, as 
follows: for every team X ∈ X, there is an element a ∈ A and, vice versa, for every element a ∈ A, there is 
a team X ∈ X such that

χ ∈ X iff χ[y �→ a] ∈ Team(X, y) ,

for all assignments χ ∈ Asg(V). Since every Sol-definable relation can be encoded in a TL-definable 
team [24,23], the next result easily follows from the previous one.

Corollary 9 (ADF-TL Interpretation). For every ADF formula ϕ in pnf with quantifier prefix ℘ ∈ Qn,
set of variables sup(ϕ) ⊆ V ⊆ Vr with V ∩ vr(℘) = ∅, and variable y /∈ V ∪ vr(℘), there exist two TL

formulae Φ∃∀ and Φ∀∃ with free(Φ∃∀) = free(Φ∀∃) = V ∪ y such that, for all structures A and non-empty
non-null hyperteams X ∈ HAsg(V) with |X| ≤ |A|, the following equivalence holds true: A, X |=α

ϕ iff
A, Team(X, y) |=

TL
Φα.

It is unknown whether the above two interpretation results still hold when the constraint |X| ≤ |A| on 
the size of the hyperteam and the domain of the structure is violated.

Open Problem 3 (ADF-Sol/TL Interpretations). Is it possible to obtain interpretation results in a similar
vein to Theorem 10 and Corollary 9, when |X| > |A|?

In addition, it is not clear what the distinguishability power of ADIF is w.r.t. the cardinality of the 
hyperteams, especially in the infinite case.

Open Problem 4 (Hyperteam Cardinality). Is there an ADIF satisfiable formula ϕ such that, if A, X |=α
ϕ,

then |X| > |A| ≥ ω, for some α ∈ {∃∀, ∀∃}?

For the converse direction of the interpretation results, given an L-structure A, a relation symbol R ∈ L,
and a sequence of variables �x ∈ Vrar(R), we denote by Team

(
RA, �x

)
∈ TAsg(�x) the standard encoding in a 

team (up to isomorphism) of the interpretation RA of R defined as follows:

χ ∈ Team
(
RA, �x

)
iff A, χ |=

Fol
R(�x),

for all assignments χ ∈ Asg(�x). Every Sol sentence can be put in a canonical form, where every quantifica-
tion over functions can be simulated by a meta quantifier that only depends on the variables to which the 
function is applied. Thus, by exploiting Theorem 8, the result below can be proved.

Theorem 11 (Sol-ADF Interpretation). For every Sol sentence Φ over a signature L, relation symbol
R ∈ L, and sequence of variables �x ∈ Vrar(R), with vr(Φ) ∩ �x = ∅, i.e., no variable in �x occurs in Φ,
there exists an ADF formula ϕ in pnf over signature L \ R with sup(ϕ) = free(ϕ) = �x such that, for all
L-structures A, the following equivalence holds true: A |=

Sol
Φ iff A \R, 

{
Team

(
RA, �x

)}
|=∃∀

ϕ.

By using the translation from TL to Sol (see [40,11], for the sentences, and [24,23], for the formulae),
we can show the following.
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Corollary 10 (TL-ADF Interpretation). For every TL formula Φ, there exists an ADF formula ϕ in pnf
with sup(ϕ) = free(ϕ) = free(Φ) such that, for all structures A and teams X ∈ TAsg⊆(free(Φ)), the following
equivalence holds true: A, X |=

TL
Φ iff A, {X} |=∃∀

ϕ.

5. Game-theoretic semantics

As discussed in Section 2, the alternating Hodges semantic relation A |= ϕ implies the existence of a 
semantic game �A

ϕ, played by Eloise and Abelard, with the property that Eloise wins the game iff the ADIF

sentence ϕ is indeed satisfied in the structure A. In that game, basically, the two players battle each other
in challenge-response trials, where each of them tries to win the matrix or force the other one to break
the (in)dependence constraints. In this section, we formalise such a game, thus providing a game-theoretic
semantics for ADIF and a proof of its adequacy w.r.t. both the compositional semantics of Definition 2
and the Herbrand-Skolem semantics of Theorem 8. Thanks to Corollary 10, this result also provides an 
indirect game-theoretic semantics for TL, a result that, as far as we know, was still missing [40]. Note that,
unlike for DIF [19,32], �A

ϕ needs to be a zero-sum perfect-information game in order to comply with the 
game-theoretic determinacy of the logic (see Corollary 4), which for sentences is reflected in the law of 
excluded middle (see Corollary 5).

A two-player turn-based arena A = 〈Ps,PsE,PsA, vI ,Mv〉 is a tuple where (i) Ps is the set of all positions,
(ii) PsE, PsA ⊆ Ps are the sets of positions owned by Eloise and Abelard with PsE ∩ PsA = ∅, (iii) vI ∈ Ps is 
the initial position, and (iv) Mv ⊆ (PsE ∪ PsA) × Ps is the binary left-total relation describing all possible 
moves. A path π ∈ Pth ⊆ Ps∞ is a finite or infinite sequence of positions compatible with the move relation,
i.e., ((π)i, (π)i+1) ∈ Mv, for all i ∈ [0, |π| − 1); it is initial if |π| > 0 and (π)0 = vI . A history for player
α ∈ {E, A} is a finite initial path ρ ∈ Hstα ⊆ Pth ∩ (Ps∗ · Psα) terminating in an α-position. A play
π ∈ Play ⊆ Pth is a maximal (i.e., non-extendable) initial path. A strategy for player α∈{E, A} is a function 
σα ∈ Strα ⊆ Hstα → Ps mapping each α-history ρ ∈ Hstα to a position σα(ρ) ∈ Ps compatible with the 
move relation, i.e., (lst(ρ) , σα(ρ)) ∈ Mv. The induced play of a pair of strategies (σE, σA) ∈ StrE × StrA is 
the unique play π ∈ Play such that (π)i+1 = σE((π)≤i), if (π)i ∈ PsE, and (π)i+1 = σA((π)≤i), otherwise,
for all i ∈ [0, |π| − 1). A game � = 〈A,Wn〉 is a tuple, where A is an arena and Wn ⊆ Play is the set of 
winning plays for Eloise; the complement Play \ Wn is winning for Abelard. Eloise (resp., Abelard) wins
the game if she (resp., he) has a strategy σE ∈ StrE (resp, σA ∈ StrA) such that, for all opponent strategies 
σA ∈ StrA (resp., σE ∈ StrE), the corresponding induced play does (resp., does not) belong to Wn. A game 
is determined if one of the two players wins.

With the notation put in place, we can now describe the semantic game, called independence game, where 
not only the players perform the choices corresponding to the operators in the formula, but also check that
the choices of the opponent conform to the associated independence constraints. Although a specific move 
for each ADIF syntactic construct can be given, for the sake of a simpler presentation, we only define the 
moves for the quantifiers. Any quantifier-free Fol formula ψ, indeed, can be interpreted as a monolithic 
atomic relation, whose truth can be immediately evaluated once an assignment on all its free variables is 
given. For this reason, we assume ϕ = ℘ψ to be in pnf, for some quantifier prefix ℘ ∈ Qn, where no variable 
is quantified twice. Finally, as a standard assumption from a descriptive-complexity viewpoint [22,9], we 
restrict to finite structures only. The general case, as well as the lift of the approach to formulae, will be 
the focus of future work.

The game for ϕ = ℘ψ consists of two recurrent stages/phases, called decision and challenge. The decision 
phase is almost identical to a classic Hintikka’s Fol game [19], where the player associated with the current
subformula φ = Q±Wx. φ′ of ϕ chooses a value for the bound variable x to be stored in the current assignment
χ. Once all quantifiers are eliminated, however, instead of declaring the winner by simply evaluating the 
truth of A, χ |=

Fol
ψ, the game enters the challenge phase. Here the players, following again the order of 

quantification, are asked to confirm or change their choices. Making a change here is intended to allow for
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verifying that the independence constraints declared in ℘ are satisfied; after all, if the opponent’s choice is 
indeed independent of the player’s one, such a change should not make any difference in the satisfaction 
of the formula. In more detail, the player associated with φ can either (i) confirm her/his own choice 
maintaining both the assignment χ and phase unchanged or (ii) challenge the adversary, by modifying the 
value assigned to the variable x in χ, deleting all values for the variables quantified in ℘ after x, and reverting 
to the decision phase. In both cases, the control is passed on to the player of the formula φ′ in the scope 
of the quantifier Q±Wx, so as to allow her/him to reply to the challenge. As it should be evident from the 
alternation of phases, unlike the semantic game for Fol, �A

ϕ is an infinite-duration game that allows for
both finite and infinite plays. The finite ones necessarily terminate in a position of the challenge phase with 
current subformula ψ, where the winner can be determined by evaluating the truth of A, χ |=

Fol
ψ. The 

infinite plays, instead, are won by the player able to force the adversary to change infinitely often the values 
of one of her/his own variables x in a way that violates the independence constraints, without being able,
at the same time, to force the challenger to do the same on a variable subsequent to x in ℘. We clarify this 
point later on.

For an ADIF sentence ϕ = ℘ψ, with quantifier prefix ℘ = Q±W0
0 x0 . . . Q±Wn

n xn, the formalisation of 
the arena AA

ϕ underlying the independence game �A
ϕ is reported in Construction 1 below, where psf(ϕ)

denotes the smallest set of subformulae of ϕ, called prefix subformulae, such that (i) ϕ ∈ psf(ϕ) and 
(ii) if φ = Q±Wx. φ′ ∈ psf(ϕ) then φ′ ∈ psf(ϕ). In addition, mvr(ϕ) is the set of meaningful variables
of ϕ defined as mvr(ϕ) � {x ∈ Vr | Q±Wx. φ ∈ psf(ϕ) and x ∈ free(φ)} and mvrϕ(φ) is its subset defined as 
mvrϕ(φi) � {xj | j < i} ∩ mvr(ϕ), for φi ∈ psf(ϕ) with φi = Q±Wi

i xi. φi+1, and mvrϕ(ψ) � mvr(ϕ), otherwise.
As an example, for the sentence

ϕ = ∃x.∀+∅y. ∀w.∃+xz.∃+wt. (y = z),

we have

psf(ϕ) = { ∃x.∀+∅y. ∀w.∃+xz.∃+wt. (y = z),

∀+∅y. ∀w.∃+xz.∃+wt. (y = z),

∀w.∃+xz.∃+wt. (y = z),

∃+xz.∃+wt. (y = z),

∃+wt. (y = z),

(y = z) },

mvr(ϕ) = {x, y, z}, and, finally,

mvrϕ
(
∃x.∀+∅y. ∀w.∃+xz.∃+wt. (y = z)

)
= ∅,

mvrϕ
(
∀+∅y. ∀w.∃+xz.∃+wt. (y = z)

)
= {x},

mvrϕ(∀w.∃+xz.∃+wt. (y = z)) = {x, y},

mvrϕ(∃+xz.∃+wt. (y = z)) = {x, y},

mvrϕ(∃+wt. (y = z)) = {x, y, z},

mvrϕ((y = z)) = {x, y, z}.

Construction 1 (Independence Arena). For a finite structure A and a pnf ADIF sentence ϕ = ℘ψ, with 
ψ∈Fol, the independence arena AA

ϕ =〈Ps,PsE,PsA,vI ,Mv〉 is defined as prescribed in the following:
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1) the set of positions Ps ⊂ psf(ϕ) × Asg × {�, �} contains those triples (φ, χ, �) of a prefix subformula
φ ∈ psf(ϕ) of ϕ, an assignment χ ∈ Asg, and a phase flag � ∈ {�, �} such that χ ∈ Asg(mvrϕ(φ)), if
� = �, and χ ∈ Asg(mvr(ϕ)), otherwise;

2) the set PsE of Eloise’s ( resp., PsA of Abelard’s) positions contains the triples of the form (∃±Wx . φ′, χ, �)
or (ψ, χ, �) ( resp., (∀±Wx . φ′, χ, �));

3) the initial position vI � (ϕ, ∅, �) contains the original sentence ϕ associated with the empty assignment
∅ and the phase flag �;

4) the move relation Mv ⊆ Ps × Ps contains exactly those pairs of positions (v1, v2) ∈ Ps × Ps satisfying
one of the conditions below:

a) v1 = (Q±Wx. φ′, χ, �) and v2 = (φ′, χ, �), with x /∈ free(φ′);
b) v1 =(Q±Wx. φ′, χ, �) and v2 =(φ′, χ[x �→a], �), for some a ∈A, with x ∈ free(φ′);
c) v1 = (ψ, χ, �) and v2 = (ϕ, χ, �);
d) v1 = (Q±Wx. φ′, χ, �) and v2 = (φ′, χ, �);
e) v1 = (Q±Wx. φ′, χ, �) and v2 = (φ′, χ′[x �→ a], �), for some a ∈ A such that a �= χ(x), with χ′ �

χ �mvrϕ(Q±Wx.φ′) and x ∈ free(φ′).

Intuitively, a position (φ, χ, �) maintains the information about the formula φ that still has to be played 
against, the assignment χ containing the variables whose values have already been chosen, and a flag �
identifying the phase, either � or �. Item 4a forces the trivial move for the vacuous quantifications, Item 4b 
defines the moves for the decision phase, Item 4c switches from the decision to the challenge phase, Item 4d 
defines the confirmation of the choice already made, and, finally, Item 4e describes the challenge to the 
adversary, where the phase is reverted to the decision one, the value for the variable involved in the challenge 
is changed, and all values for the subsequent variables are deleted.

The winning condition for the game is defined as follows. Since the winner of finite plays is easy to 
determine, as it only depends on whether the assignment in the last position satisfies ψ, we shall focus on 
the infinite ones. Let us consider an arbitrary prefix subformula φ = Q±Wx. φ′ ∈ psf(ϕ) with x ∈ free(φ′).
By Fφ : Asg(mvrϕ(φ′)) → 2Fnc±W we denote the map associating each assignment χ ∈ Asg(mvrϕ(φ′)) defined 
over the variables in mvrϕ(φ′) with the set Fφ(χ) �

{
F ∈ Fnc�±W�

∣∣F(χ) = χ(x)
}

of all the ±W-functions 
compatible with the value assigned to x in χ. In addition, by Bφ : Hst → 2Fnc±W , with Hst � HstE ∪ HstA,
we denote the map assigning to each history ρ ∈ Hst the set Bφ(ρ) of all the ±W-functions compatible with 
the most recent assignments along ρ. Formally:

• Bφ(vI) � Fnc±W;

• Bφ(ρ · (φ′, χ, �)) �
{
Fφ(χ), if Bφ(ρ) ∩ Fφ(χ) = ∅;
Bφ(ρ) ∩ Fφ(χ), otherwise;

• Bφ(ρ · v) � Bφ(ρ), in all other cases, i.e., v �= (φ′, _, �).

Essentially, the bucket Bφ(ρ) maintains the most updated set of Herbrand/Skolem functions for the variable 
x that the associated player can use to reply to all the variables which x depends upon. When a play starts,
no choice has been made yet, so Bφ(vI) is full. Once a position (φ′, χ, �) is reached after a history ρ, a fresh 
value χ(x) for x has just been chosen to resolve the quantifier Q, so the bucket is updated by removing from 
Bφ(ρ) all the functions that are not compatible with this new value. If such resulting set becomes empty,
the player is caught cheating and the bucket is replenished taking into account only the choice just made.

In general there are two reasons for a player to cheat. Either she/he is changing the value of the variable 
to challenge the adversary to prove that he/she is complying with the independence constraints (Item 4e),
or she/he chooses a new value because is unable to both satisfy her/his goal and comply with the constraints 
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on her/his variables (Item 4b). Obviously, the second type of cheating, called defensive cheat, can, in turn,
induce one of the first type, called challenge cheat. Hence, complex chains of different types of cheating can 
occur. In order to identify which player is the last one who was forced to cheat, we consider an arbitrary
map pr : psf(ϕ) → N assigning to each prefix subformula φ = Q±Wx. φ′ ∈ psf(ϕ) a priority pr(φ) such that i)
pr(φ) is even iff Q = ∀ and ii) pr(φ) < pr(φ′). To each history ρ ∈ Hst we can then assign the sequence of 
cheats cht(ρ) occurring in it via the map cht : Hst → N∗ as follows:

• cht(vI) � 0;
• cht(ρ·(φ′, χ, �)) � cht(ρ)·pr(φ), whenever Bφ(ρ) ∩ Fφ(χ) =∅, with x ∈ free(φ′) and φ = Q±Wx. φ′;
• cht(ρ · v) � cht(ρ) · 0, in all other cases.

This construction easily lifts to infinite plays π ∈ Playω�Play∩Psω through the map cht : Playω→ Nω such 
that (cht(π))i = cht((π)≤i), for all i ∈ N. Finally, pr(π) denotes the maximal priority seen infinitely often 
along cht(π). Note that every infinite play necessarily contains at least infinitely many challenge cheats 
(Item 4e). Thus, pr(π) uniquely identifies the right-most variable in ℘ over which the corresponding player
cheated, without being able, at the same time, to force the adversary to do the same. If pr(π) is even,
Abelard is cheating infinitely often, so he loses the play π, which is, therefore, won by Eloise.

Construction 2 (Independence Game). For a finite structure A and a pnf ADIF sentence ϕ = ℘ψ, with 
ψ ∈ Fol, the independence game �A

ϕ = 〈A,Wn〉 is defined as prescribed in the following:

1) A is the independence arena AA
ϕ defined in Construction 1;

2) Wn ⊆ Play is the set of all the plays π satisfying the following conditions:

a) if π is infinite then pr(π) is even;
b) if π is finite then lst(π) = (ψ, χ, �) and A, χ |=

Fol
ψ, for some assignment χ ∈ Asg(mvr(ϕ)).

Example 10. Let us consider ϕ7 = ∃x. ∀+∅y. ∃+xz. (ψ1(x, y) ∧ ψ2(y, z)), the sentence of Example 7 from 
Section 2.3, which is true in the binary structure A of that example. Therefore, Eloise, who controls the 
values of the variables x and z, must have a strategy to win the independence game �A

ϕ7
. One possibility is 

to choose, during the decision phase, the constant function fx = 0 for x and the identity function fz(x) = x

for z. Clearly, she wins any finite play where Abelard chooses the constant function fy = 0 for y, since the 
resulting assignment satisfies both (x = y) and (y = z). Let us assume, then, that he chooses fy = 1, instead,
in the decision phase. Since at the end of this phase Eloise knows she is losing, she will challenge Abelard 
by changing her function fx for x to the constant 1. This raises the priority of the current play fragment to 
1. Now, if Abelard sticks to function fy = 1 for y, he loses, since fz(x) = x would now give z value 1 as well,
leading to a finite play. So he needs to modify his choice to fy = 0, this time raising the priority of the play
fragment to 2 and generating a challenge for Eloise on z. Eloise, however, can stick to the identity function 
and make way to a new challenge phase. Now, since Eloise is losing with the current assignment, she will 
challenge once again, choosing fx = 0 and raising priority 1. Abelard is then forced to change function and 
raise priority 2 and we are back to where we started. This cyclic process ends up forming an infinite play
whose maximal priority is 2, since Eloise can force Abelard to defensively change bucket infinitely often,
thus satisfying her winning condition.

It is worth noting that the game devised above bears some similarities with the team-building game pro-
posed by Bradfield [3] for DL [40]. Both ours and his are complete-information games extending Hintikka’s 
game for Fol. In addition, Bradfield’s game also checks the uniformity of the choices made by Eloise by
means of a challenge mechanism, where the sentence is played over repeatedly by the players. The similar-
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ities, however, end here as the two games differ significantly in nature. First, the repeated evaluations of 
a sentence ϕ in Bradfield’s game allow him to build teams during a play, one for each dependence atom 
occurring in ϕ. Each team is then used to check whether Eloise’s choices have been made in accordance to 
the dependency constraint encoded by the corresponding atom. All these teams are explicitly recorded in 
each state of his game, together with the partial assignment recording the choices made by the players so 
far in the current repetition. In this sense, then, Bradfield’s arena is intrinsically second order, as it records 
sets of assignments in each state and contains moves that update such sets. Second, Bradfield’s game on 
finite structures only admits finite plays and its winning condition, then, boils down to a simple reachability.
On the contrary, our game is played in a purely first-order arena, whose states only keep track of players 
choices collected in the partial assignment. Moreover, it always admits infinite plays, where players can 
repeatedly challenge each other forever. The second-order power of our game, then, resides entirely in the 
winning condition, where the priority-based mechanism accounts for the alternation of the quantifiers along 
the, possibly infinite, repeated evaluations of the sentence.

To conclude, by exploiting Theorem 8, it is possible to prove the adequacy of the game-theoretic semantics 
w.r.t. the model-theoretic one of Definition 6 and, in turn, w.r.t. the compositional one of Definition 2, where 
the Skolem (resp., Herbrand) functions obtained by the evaluation of the existential (resp., universal) meta 
quantifiers of the Meta-ADIF sentence hsp(℘)ψ induce a winning strategy for Eloise (resp., Abelard) in 
�A
ϕ, whenever the ADIF sentence ϕ �℘ψ is true (resp., false) in A. This also implies the determinacy of the 

independence game, without the need to rely on topological determinacy theorems, as those of Martin [33,34].

Theorem 12 (Game-Theoretic Semantics). For a finite structure A and an ADIF sentence ϕ in prenex
form, there exists an independence game �A

ϕ such that A |= ϕ ( resp., A �|= ϕ) iff �A
ϕ is won by Eloise ( resp.,

Abelard).

6. Discussion

We have introduced Alternating Dependence/Independence-Friendly Logic (ADIF), a conservative ex-
tension of Independence-Friendly Logic (IF), that incorporates negation in a very natural way and avoids 
the indeterminacy of the logic. This is achieved by means of a generalisation of team semantics, where the 
choices of both players are represented in a two-level structure, called hyperteam. This allows us to treat
the two players symmetrically and force both of them to make their choices according to the (in)depen-
dence constraints specified in the corresponding quantifiers. Thanks to the fully symmetric treatment of the 
(in)dependence constraints, the new semantics allows for restoring the law of excluded middle for sentences 
and enjoys the property of game-theoretic determinacy. Interestingly enough, this also grants ADIF the full 
expressive power of Second Order Logic (Sol) and, as a consequence, also of Team Logic (TL), without the 
need of including additional connectives in the language. The expressive power gained with respect to IF
can be leveraged, for instance, to define directly in the logic notions such as indeterminacy and sensitivity
to signalling of IF sentences. This gives ADIF the flavour of a logic suitable to reason “about” imperfect
information in a general sense. For the prenex fragment, a Herbrand-Skolem semantics is also provided that
directly connects ADIF with Sol, as well as a game-theoretic semantics on finite structures, given in terms 
of a determined turn-based infinite-duration perfect-information game played on a first-order arena.

Interesting questions that remain open concern whether a prenex normal form theorem holds for the 
language. Equally unsettled is the actual expressive power of ADIF. We do show that it is at least as 
expressive as Sol and, thus, covers the full polynomial hierarchy PH. The proof for the other direction,
however, relies upon the assumption of equipotency between the hyperteam X and the domain A of the 
underlying structure A, which allows us to encode hyperteams by means of a suitable relation Rel(X). There 
seems to be no straightforward way to do the same for “big” hyperteams. Yet again, it is not clear whether
such “big” hyperteams actually matter, in the sense of there being a formula that can distinguish between 
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“big” and “small” ones. Usually, similar questions have been addressed by defining suitable Ehrenfeucht-
Fraïssé games (EF) to precisely characterise the expressive power of the logic. For this reason, one may
think to do the same for ADIF as well. The main difficulty we foresee here is, however, the treatment of 
quantifications, for which no explicit commitment to a specific valued is made in the semantics (all choices 
are evenly encoded in the hyperteam). In a classic EF game, instead, the moves corresponding to the choices 
of a value by a quantifier make explicit commitments. Currently, it is not clear to us how to circumvent this 
discrepancy.
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Appendix A. Proofs of Section 2

Before each proof of a theorem, we display its dependency graph: the vertices are the results used to 
prove the theorem (they can be lemmata, propositions, other theorems, etc). There is an edge from Result 1
to Result 2 iff Result 1 is explicitly used in Result 2’s proof.

Let W ⊆ Vr and X ∈ HAsg. For a team X ∈ X �W, we denote by X�W one (arbitrarily chosen) of the teams 
Y ∈ X such that Y�W = X.

Lemma 1 (Dualisation I). For all hyperteams X ∈ HAsg, it holds that X ≡W X, for all W ⊆ Vr. In addition,
X ⊆ X, if X is proper.

Proof. First, observe that, by Proposition 1, X ≡ X holds for every non-proper hyperteam X.
Next, we show that X ⊆ X, for a proper hyperteam X. Let X ∈ X. Observe that, since X is proper,

X′ ∩ X �= ∅ for all X′ ∈ X. For every χ ∈ X, fix a choice function �χ ∈ Chc(X) such that �χ(X) = χ ∈ X.
Now, consider � ∈ Chc

(
X
)

such that �(img(�χ)) = χ for all χ ∈ X, and �(X′) ∈ X ∩ X′ for all the other
teams X′ ∈ X \ {img(�χ) | χ ∈ X}. Clearly, X = img

(
�
)
∈ X, hence X ⊆ X.

Since X ⊆ X implies X � X, it suffices to prove that X � X holds to obtain X ≡ X. To this end, let
X′ = img

(
�
)
∈ X, for some � ∈ Chc

(
X
)
. We show that there is X ∈ X such that X ⊆ X′. Assume, towards 

a contradiction, that this is not the case, i.e., for all X ∈ X there is χX ∈ X \ X′. Then, define � ∈ Chc(X)
as: �(X) = χX for all X ∈ X. Clearly, �(img(�)) /∈ X′, thus raising a contradiction. Now, the thesis follows 
from the observation that X ≡ X is equivalent to X ≡Vr X, which implies X ≡W X, due to W ⊆ Vr. �
Lemma 2 (Dualisation II). The following equivalences hold true, for all hyperteams X ∈ HAsg and properties 
Ψ ⊆ Asg.
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1) Statements 1a and 1b are equivalent:

a) there exists a team X ∈ X ( resp., X ∈ X) such that X ⊆ Ψ;
b) for all teams X′ ∈ X ( resp., X′ ∈ X), it holds that X′ ∩ Ψ �= ∅.

2) Statements 2a and 2b are equivalent:

a) there exists a team X ∈ X such that X ∩ Ψ �= ∅;
b) there exists a team X′ ∈ X such that X′ ∩ Ψ �= ∅.

3) Statements 3a and 3b are equivalent:

a) for all teams X ∈ X, it holds that X ⊆ Ψ;
b) for all teams X′ ∈ X, it holds that X′ ⊆ Ψ.

Proof. We consider the three equivalences separately.

1) First, we show that there exists a team X ∈ X such that X ⊆ Ψ if and only if for all teams X′ ∈ X, it
holds that X′ ∩ Ψ �= ∅.

(only-if direction) Let X′ be a generic element of X. Thus, X′ = img(�) for some � ∈ Chc(X). Thus,
�(X) ∈ X ∩ X′. The thesis follows from X ⊆ Ψ.

(if direction) By Proposition 1, if X = ∅, then ∅ ∈ X, and the thesis immediately follows since ∅ ⊆ Ψ.
If, instead X �= ∅, then assume, towards a contradiction, that for all X ∈ X, there is χX ∈ X \ Ψ. Define 
� ∈ Chc(X) as: �(X) = χX, for all X ∈ X. Since img(�) ∈ X and img(�) ∩ Ψ = ∅, we get a contradiction.

The rest of the claim, i.e., there exists a team X′ ∈ X such that X′ ⊆ Ψ if and only if for all teams 
X ∈ X, it holds that X ∩ Ψ �= ∅, follows from above and the fact that X ≡ X (Lemma 1).

2) (only-if direction) Consider � ∈ Chc(X) such that �(X) ∈ X∩Ψ. The thesis follows from �(X) ∈ img(�) ∈
X.

(if direction) Let X′ = img(�) ∈ X, for some � ∈ Chc(X), be such that X′ ∩Ψ �= ∅ and let χ ∈ X′ ∩Ψ.
Thus, there is X ∈ X such that �(X) = χ ∈ X, which means that X ∩ Ψ �= ∅, hence the thesis.

3) The claim follows by instantiating Ψ with Asg \ Ψ in the previous claim, and observing that 3a and 3b 
correspond to the negations of 2a and 2b, respectively. �

Lemma 3 (Empty & Null Hyperteams). The following hold true for every ADIF formula ϕ and hyperteam 
X ∈ HAsg⊆(sup(ϕ)):

1) a) A, ∅ �|=∃∀
ϕ; b) A, X |=∃∀

ϕ, where ∅ ∈ X;
2) a) A, ∅ |=∀∃

ϕ; b) A, X �|=∀∃
ϕ, where ∅ ∈ X.

Proof. The claim follows from the more general Lemma 10, reported in Appendix C, by instantiating F
with the empty function ∅. �
Theorem 1 (Hyperteam Refinement). Let ϕ be an ADIF formula and X, X′ ∈ HAsg⊆(sup(ϕ)) two hyperteams 
with X �free(ϕ) X

′. Then:

1) if A, X |=∃∀
ϕ then A, X′ |=∃∀

ϕ;
2) if A, X′ |=∀∃

ϕ then A, X |=∀∃
ϕ.
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Theorem 1Theorem 13

Fig. A.2. Dependency graph of Theorem 1.

Theorem 2Theorem 14

Fig. A.3. Dependency graph of Theorem 2.

Theorem 3Lemma 3Lemma 10Proposition 1

Fig. A.4. Dependency graph of Theorem 3.

Proof. (See Fig. A.2.) The claim follows from the more general Theorem 13, reported in Appendix C, by
instantiating both F and ι with the empty function ∅. �
Theorem 2 (Double Dualisation). For every ADIF formula ϕ and hyperteam X ∈ HAsg⊆(sup(ϕ)), it holds 
that A, X |=α

ϕ iff A, X |=α
ϕ iff A, X |=α

ϕ.

Proof. (See Fig. A.3.) The claim follows from the more general Theorem 14, reported in Appendix C, by
instantiating F with the empty function ∅. �
Theorem 3 (Boolean Laws). Let ϕ1, ϕ2 and ϕ be ADIF formulae. Then:

1) a) ¬⊥ ≡ �; b) ¬� ≡ ⊥; c) ϕ ≡ ¬¬ϕ;
2) a) ϕ ∧ ⊥ ≡ ⊥ ∧ ϕ ≡ ⊥; b) ϕ ∧ � ≡ � ∧ ϕ ≡ ϕ;
3) a) ϕ ∨ � ≡ � ∨ ϕ ≡ �; b) ϕ ∨ ⊥ ≡ ⊥ ∨ ϕ ≡ ϕ;
4) a) ϕ1 ∧ ϕ2 ≡ ϕ2 ∧ ϕ1; b) ϕ1 ∨ ϕ2 ≡ ϕ2 ∨ ϕ1;
5) a) ϕ1 ∧ ϕ2 ⇒ ϕ1; b) ϕ1 ∧ (ϕ ∧ ϕ2) ≡ (ϕ1 ∧ ϕ) ∧ ϕ2;
6) a) ϕ1 ⇒ ϕ1 ∨ ϕ2; b) ϕ1 ∨ (ϕ ∨ ϕ2) ≡ (ϕ1 ∨ ϕ) ∨ ϕ2;
7) a) ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2); b) ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2);
8) a) ∃±Wx. ϕ ≡ ¬(∀±Wx. ¬ϕ); b) ∀±Wx. ϕ ≡ ¬(∃±Wx. ¬ϕ).

Proof. (See Fig. A.4.) Proving that an equivalence (resp., implication) ϕ1 ≡ ϕ2 (resp., ϕ1 ⇒ ϕ2) holds 
true amounts to showing that both ϕ1 ≡∃∀ϕ2 and ϕ1 ≡∀∃ϕ2 (resp., ϕ1 ⇒∃∀ϕ2 and ϕ1 ⇒∀∃ϕ2) hold true.
However, as a consequence of Theorem 2, we have that ϕ1 ≡αϕ2 iff ϕ1 ≡αϕ2 (resp., ϕ1 ⇒αϕ2 iff ϕ1 ⇒αϕ2)
for all α ∈ {∃∀, ∀∃}. Therefore, for every claim in the statement of the theorem, it is enough to focus on one 
of the two alternation flags ∃∀ and ∀∃ only. We could avoid the use of Theorem 2 by proving each claim 
for both alternation flag. However, this would not be interesting as for all claims, the arguments for both 
flags are the same.1 In the following, when proving an equivalence ϕ1 ≡ ϕ2 (resp., implication ϕ1 ⇒ ϕ2),
we assume X ∈ HAsg⊆(sup(ϕ1) ∪ sup(ϕ2)).

1) a) A, X |=∃∀¬⊥ sem.⇔ A, X �|=∀∃⊥ sem.⇔ A, X �= ∅ sem.⇔ A, X |=∃∀�.
b) A, X |=∀∃¬� sem.⇔ A, X �|=∃∀� sem.⇔ A, X = ∅ sem.⇔ A, X |=∀∃⊥.
c) A, X |=α¬¬ϕ sem.⇔ A, X �|=α¬ϕ sem.⇔ A, X |=α

ϕ.
2) a) First, we prove that ϕ ∧⊥ ≡ ⊥ holds. To this end, we show that if A, X|=∃∀

ϕ ∧⊥, then A, X|=∃∀⊥, and 
vice versa. By semantics, A, X|=∃∀

ϕ ∧⊥ implies that for all (X1, X2) ∈ par(X), it holds that A, X1|=∃∀
ϕ

or A, X2|=∃∀⊥. In particular, since (∅, X) ∈ par(X) and, by Item 1a of Lemma 3, A, ∅ �|=∃∀
ϕ, we have 

that A, X|=∃∀⊥. Conversely, A, X|=∃∀⊥ means that ∅ ∈ X. Thus, for every (X1, X2) ∈ par(X), it holds 

1 Nonetheless, this is why Theorem 2 does not occur in the dependency graph of Theorem 3.
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that ∅ ∈ X1 or ∅ ∈ X2. Thanks to Item 1b of Lemma 3, we have A, X1|=∃∀
ϕ or A, X2|=∃∀⊥, which,

by semantics of ∧, implies A, X|=∃∀
ϕ ∧ ⊥. To conclude, observe that ϕ ∧ ⊥ ≡ ⊥ ∧ ϕ holds, due to 

commutativity of ∧, formally proved below (Item 4a).
b) First, we prove that ϕ ∧� ≡ ϕ holds. To this end, we show that if A, X|=∃∀

ϕ ∧�, then A, X|=∃∀
ϕ, and 

vice versa. By semantics, A, X|=∃∀
ϕ ∧� implies that for all (X1, X2) ∈ par(X), it holds that A, X1|=∃∀

ϕ

or A, X2|=∃∀�. In particular, since (X, ∅) ∈ par(X) and, by Item 1a of Lemma 3, A, ∅ �|=∃∀�, we have 
that A, X|=∃∀

ϕ. Conversely, assume A, X|=∃∀
ϕ and let (X1, X2) ∈ par(X). If X1 = X, then A, X1|=∃∀

ϕ;
if X1 �= X, then X2 �= ∅, and thus, by semantics of �, it holds that A, X2|=∃∀�. Therefore, for
every (X1, X2) ∈ par(X), it holds that A, X1|=∃∀

ϕ or A, X2 |=∃∀�, which, by semantics of ∧, implies 
A, X|=∃∀

ϕ ∧�. To conclude, observe that ϕ ∧� ≡ � ∧ ϕ holds, due to commutativity of ∧, formally
proved below (Item 4a).

3) a) First, we prove that ϕ ∨� ≡ � holds. To this end, we show that if A, X|=∀∃
ϕ ∨⊥, then A, X|=∀∃�, and 

vice versa. By semantics, A, X|=∀∃
ϕ ∨� implies that there is (X1, X2) ∈ par(X) such that A, X1|=∀∃

ϕ

and A, X2|=∀∃�. By Item 2b of Lemma 3, it must be ∅ /∈ Xi, for each i ∈ {1, 2}, and thus ∅ /∈ X,
which, by semantics of �, implies A, X|=∀∃�. Conversely, assume A, X|=∀∃�. The claim follows from 
the fact that (∅, X) ∈ par(X) is such that A, ∅|=∀∃

ϕ (by Item 2a of Lemma 3) and A, X|=∀∃� (by
assumption), which implies that A, X|=∀∃

ϕ ∨�. To conclude, observe that ϕ ∨� ≡ � ∨ ϕ holds, due 
to commutativity of ∨, formally proved below (Item 4b).

b) First, we prove that ϕ ∨⊥ ≡ ϕ holds. To this end, we show that if A, X|=∀∃
ϕ ∨⊥, then A, X|=∀∃

ϕ, and 
vice versa. By semantics, A, X|=∀∃

ϕ ∨⊥ implies that there is (X1, X2) ∈ par(X) such that A, X1|=∀∃
ϕ

and A, X2|=∀∃⊥. From the latter, it follows X2 = ∅, meaning that X1 = X. Therefore, we have 
A, X|=∀∃

ϕ. Conversely, assume A, X|=∀∃
ϕ. The claim follows from the fact that (X, ∅) ∈ par(X) is such 

that A, X|=∀∃
ϕ (by assumption) and A, ∅|=∀∃⊥ (by semantics of ⊥), which implies that A, X|=∀∃

ϕ ∨⊥.
To conclude, observe that ϕ ∨ ⊥ ≡ ⊥ ∨ ϕ holds, due to commutativity of ∨, formally proved below
(Item 4b).

4) Both Items 4a and 4b follow from the observation that (X1, X2) ∈ par(X) iff (X2, X1) ∈ par(X).
5) a) If A, X|=∃∀

ϕ1 ∧ ϕ2, then for all (X1, X2) ∈ par(X), it holds that A, X1|=∃∀
ϕ1 or A, X2|=∃∀

ϕ2. In 
particular, since (X, ∅) ∈ par(X), we have that A, X|=∃∀

ϕ1.
b) The claim follows from the observation that partitioning is associative.

6) a) Assume A, X|=∀∃
ϕ1. The claim follows from the fact that (X, ∅) ∈ par(X) is such that A, X|=∀∃

ϕ1 and 
A, ∅|=∀∃

ϕ2 (by Item 2a of Lemma 3), which implies that A, X|=∀∃
ϕ1 ∨ ϕ2.

b) The claim follows from the observation that partitioning is associative.
7) a) A, X|=∃∀¬(¬ϕ1 ∨¬ϕ2) 

sem.⇔ A, X �|=∀∃¬ϕ1 ∨¬ϕ2 ⇔ it does not hold that A, X|=∀∃¬ϕ1 ∨¬ϕ2
sem.⇔ there 

is no (X1, X2) ∈ par(X) such that A, X1|=∀∃¬ϕ1 and A, X2|=∀∃¬ϕ2 ⇔ for all (X1, X2) ∈ par(X) it
holds that A, X1 �|=∀∃ ¬ϕ1 or A, X2 �|=∀∃ ¬ϕ2

sem.⇔ for all (X1, X2) ∈ par(X) it holds that A, X1|=∃∀
ϕ1

or A, X2|=∃∀
ϕ2

sem.⇔ A, X|=∃∀
ϕ1 ∧ ϕ2.

b) A, X|=∀∃¬(¬ϕ1 ∧¬ϕ2) 
sem.⇔ A, X �|=∃∀¬ϕ1 ∧¬ϕ2 ⇔ it does not hold that A, X|=∃∀¬ϕ1 ∧¬ϕ2

sem.⇔ there 
is (X1, X2) ∈ par(X) such that A, X1 �|=∃∀¬ϕ1 and A, X2 �|=∃∀¬ϕ2

sem.⇔ there is (X1, X2) ∈ par(X) such 
that A, X1|=∀∃

ϕ1 and A, X2|=∀∃
ϕ2

sem.⇔ A, X|=∀∃
ϕ1 ∨ ϕ2.

8) a) A, X|=∃∀¬(∀±Wx. ¬ϕ) sem.⇔ A, X �|=∀∃∀±Wx. ¬ϕ sem.⇔ A, ext�±W�(X, x) �|=∀∃¬ϕ sem.⇔ A, ext�±W�(X, x) |=∃∀
ϕ

sem.⇔ A, X|=∃∀∃±Wx. ϕ.
b) A, X|=∀∃¬(∃±Wx. ¬ϕ) sem.⇔ A, X �|=∃∀∃±Wx. ¬ϕ sem.⇔ A, ext�±W�(X, x) �|=∃∀¬ϕ sem.⇔ A, ext�±W�(X, x) |=∀∃

ϕ
sem.⇔ A, X|=∀∃∀±Wx. ϕ. �

Theorem 4 (Prefix Extension). Let ℘φ be an ADIF formula, where ℘ ∈ Qn is a quantifier prefix and φ is an 
arbitrary ADIF formula. Then, A, X |=α

℘φ iff A, extα(X, ℘) |=α
φ, for all hyperteams X ∈ HAsg⊆(sup(℘φ)).
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Theorem 4Theorem 15

Fig. A.5. Dependency graph of Theorem 4.

Proof. (See Fig. A.5.) The claim follows from the more general Theorem 15, reported in Appendix C, by
instantiating F with the empty function ∅. �
Appendix B. Proofs of Section 3

Lemma 4 (Fol Dualisation). The following equivalences hold, for all Fol formulae ϕ and hyperteams 
X ∈ HAsg⊆(sup(ϕ)).

1) Statements 1a and 1b are equivalent:

a) there exists a team X∈X such that A, χ |=
Fol

ϕ, for all assignments χ ∈X;
b) for all teams X∈X, there exists an assignment χ ∈X such that A, χ |=

Fol
ϕ.

2) Statements 2a and 2b are equivalent:

a) for all teams X∈X, there exists an assignment χ ∈X such that A, χ |=
Fol

ϕ;
b) there exists a team X∈X such that A, χ |=

Fol
ϕ, for all assignments χ ∈X.

Proof. The first equivalence follows from Lemma 2, Item 1, by letting Ψ=
{
χ ∈ Asg⊆(sup(ϕ))

∣∣A, χ |=
Fol

ϕ
}
.

The second equivalence follows from the first one and from X ≡ X (Lemma 1). �
Lemma 5 (Fol Quantifiers). The following equivalences hold, for all Fol formulae ϕ, variables x ∈Vr, and
hyperteams X ∈HAsg⊆(V) with V � sup(ϕ) \ {x}.

1) Statements 1a and 1b are equivalent:

a) there exists a team X ∈ X such that A, χ |=
Fol

∃x. ϕ, for all χ ∈ X;
b) there exists a team X ∈ extV(X, x) such that A, χ |=

Fol
ϕ, for all χ ∈ X.

2) Statements 2a and 2b are equivalent:

a) for all teams X ∈ X, there exists χ ∈ X such that A, χ |=
Fol

∀x. ϕ;
b) for all teams X ∈ extV(X, x), there exists χ ∈ X such that A, χ |=

Fol
ϕ.

Proof. (1a ⇒ 1b) Let X ∈ X be such that A, χ |=
Fol

∃x. ϕ holds for every χ ∈ X. By the standard Fol

semantics, for every χ ∈ X, there is an element aχ ∈ A such that A, χ[x �→ aχ] |=
Fol

ϕ. We safely
assume that aχ1 = aχ2 whenever χ1�V = χ2�V, for all χ1, χ2 ∈ X. Let F ∈ FncV be such that
F(χ) = aχ for every χ ∈ X and let XF = {χ[x �→ F(χ)] : χ ∈ X}. Since XF ∈ extV(X, x) and 
A, χ |=

Fol
ϕ holds for every χ ∈ XF, the thesis holds.

(1b ⇒ 1a) Let XF = {χ[x �→ F(χ)] : χ ∈ X} ∈ extV(X, x), for some X ∈ X and F ∈ FncV, be such that
A, χ |=

Fol
ϕ holds for every χ ∈ XF. Clearly, by the standard Fol semantics, this implies that

A, χ |=
Fol

∃x. ϕ holds for every χ ∈ X, hence the thesis.
(2a ⇔ 2b) By statement 1 of this lemma, we have that 1a is false if and only if 1b is false (not 1a ⇔ not 1b,

for short). By instantiating, in this last equivalence, ϕ with ¬ϕ, we have 1a′ ⇔ 1b′, where 1a′
and 1b′ are abbreviations for, respectively:
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– for all teams X ∈ X, there exists an assignment χ ∈ X such that A, χ �|=
Fol

∃x.¬ϕ;
– for all teams X ∈ extV(X, x), there exists an assignment χ ∈ X such that A, χ �|=

Fol
¬ϕ.

By applying standard Fol semantics for negation and the duality of ∃ and ∀ in standard Fol,
it is straightforward to see that 1a′ and 1b′ correspond to 2a and 2b, respectively, hence the 
thesis. �

Lemma 6 (Fol Boolean Connectives). The following equivalences hold, for all Fol formulae ϕ1 and ϕ2 and
hyperteams X ∈HAsg⊆(V) with V � sup(ϕ1) ∪ sup(ϕ2).

1) Statements 1a and 1b are equivalent:

a) there exists a team X ∈ X such that A, χ |=
Fol

ϕ1 ∧ ϕ2, for all χ ∈ X;
b) for each bipartition (X1, X2) ∈ par(X), there exist an index i ∈ {1, 2} and a team X ∈ Xi such that

A, χ |=
Fol

ϕi, for all χ ∈ X.

2) Statements 2a and 2b are equivalent:

a) for all teams X ∈ X, there exists χ ∈ X such that A, χ |=
Fol

ϕ1 ∨ ϕ2;
b) there exists a bipartition (X1, X2) ∈ par(X) such that, for all indexes i ∈ {1, 2} and teams X ∈ Xi, it

holds that A, χ |=
Fol

ϕi, for some χ ∈ X.

Proof. (1a ⇒ 1b) Let X ∈ X be such that A, χ |=
Fol

ϕ1∧ϕ2 holds for every χ ∈ X and consider an arbitrary
pair (X1, X2) ∈ par(X). Since (X1, X2) is a partition of X, either X ∈ X1 or X ∈ X2: in the former
case, let i = 1; in the latter, let i = 2. Since X ∈ Xi and A, χ |=

Fol
ϕi holds for every χ ∈ X, the 

thesis holds.
(1b ⇒ 1a) Consider the hyperteam X′

1 = {X ∈ X : ∀χ ∈ X . A, χ |=
Fol

ϕ1} and the pair (X1 � X \X′
1, X2 �

X′
1) ∈ par(X). Observe that, by definition of X1, there is no X ∈ X1 such that A, χ |=

Fol
ϕ1 holds 

for every χ ∈ X. Thus, by 1b, there must exist X ∈ X2 such that A, χ |=
Fol

ϕ2 holds for every
χ ∈ X. By definition of X2, it also holds that A, χ |=

Fol
ϕ1 for every χ ∈ X, hence the thesis.

(2a ⇔ 2a) By statement 1 of this lemma, we have that 1a is false if and only if 1b is false (not 1a ⇔ not 1b,
for short). By instantiating, in this last equivalence, ϕ1 with ¬ϕ1 and ϕ2 with ¬ϕ2, we have 
1a′ ⇔ 1b′, where 1a′ and 1b′ are abbreviations for, respectively:

– for all teams X ∈ X, there exists an assignment χ ∈ X such that A, χ �|=
Fol

¬ϕ1 ∧ ¬ϕ2;
– there exists a pair of hyperteams (X1, X2) ∈ par(X) such that, for all indexes i ∈ {1, 2} and 

teams X ∈ Xi, there exists an assignment χ ∈ X for which it holds that A, χ �|=
Fol

¬ϕi.

By applying semantics of negation and De Morgan’s laws, it is straightforward to see that 1a′

and 1b′ correspond to 2a and 2a, respectively, hence the thesis. �
Theorem 5 (Fol Adequacy). For all Fol formulae ϕ and hyperteams X ∈ HAsg⊆(sup(ϕ)), it holds that:

1) A, X |=∃∀
ϕ iff there exists a team X ∈ X such that, for all assignments χ ∈ X, it holds that A, χ |=

Fol
ϕ;

2) A, X |=∀∃
ϕ iff, for all teams X ∈ X, there exists an assignment χ ∈ X such that A, χ |=

Fol
ϕ.

Proof. (See Fig. B.6.) Both Items 1 and 2 are proved together, by induction on the structure of the formula.
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Lemma 2 Lemma 4

Lemma 5

Lemma 6

Proposition 1

Fig. B.6. Dependency graph of Theorem 5.

• If ϕ is an atomic formula, i.e., it is ⊥ or �, or it has the form R(�x), then the claims immediately follow
from the semantics (Definition 2, Items 1–3).

• If ϕ = ¬φ, then we have, by semantics, A, X |=α
ϕ if and only if A, X �|=α

φ. If α = ∃∀, then, by inductive 
hypothesis, it is not the case that for every X ∈ X there is χ ∈ X such that A, χ |=

Fol
φ, which amounts 

to say that there is X ∈ X such that for every χ ∈ X it holds A, χ �|=
Fol

φ, from which the thesis follows.
If, instead, α = ∀∃, then, by inductive hypothesis, there is no X ∈ X such that for every χ ∈ X it holds 
A, χ |=

Fol
φ, which amounts to say that for every X ∈ X there is χ ∈ X such that A, χ �|=

Fol
φ, from 

which the thesis follows.
• If ϕ = ϕ1∧ϕ2 and α = ∃∀, then we have, by semantics, A, X |=α

ϕ if and only if for every (X1, X2) ∈ par(X)
it holds that A, X1 |=α

ϕ1 or A, X2 |=α
ϕ2. By inductive hypothesis, this amounts to say that for every

(X1, X2) ∈ par(X) there is i ∈ {1, 2} and X ∈ Xi such that for every χ ∈ X it holds A, χ |=
Fol

ϕi. The 
thesis follows from Lemma 6, Item 1.

If ϕ = ϕ1 ∧ ϕ2 and α = ∀∃, then we have, by semantics, A, X |=α
ϕ if and only if A, X |=α

ϕ. By
proceeding as before, i.e., by applying semantics, inductive hypothesis, and Lemma 6, Item 1, we have 
that there is X′ ∈ X such that for every χ′ ∈ X′ it holds A, χ′ |=

Fol
ϕ. The thesis follows from Lemma 4,

Item 2.
• If ϕ = ϕ1∨ϕ2 and α = ∀∃, then we have, by semantics, A, X |=α

ϕ if and only if there is (X1, X2) ∈ par(X)
such that A, X1 |=α

ϕ1 and A, X2 |=α
ϕ2. By inductive hypothesis, this amounts to say that there is 

(X1, X2) ∈ par(X) such that for every i ∈ {1, 2} and X ∈ Xi there is χ ∈ X for which it holds A, χ |=
Fol

ϕi.
The thesis follows from Lemma 6, Item 2.

If ϕ = ϕ1 ∨ ϕ2 and α = ∃∀, then we have, by semantics, A, X |=α
ϕ if and only if A, X |=α

ϕ. By
proceeding as before, i.e., by applying semantics, inductive hypothesis, and Lemma 6, Item 2, we have 
that for every X′ ∈ X there is χ′ ∈ X′ such that A, χ′ |=

Fol
ϕ. The thesis follows from Lemma 4, Item 1.

• If ϕ = ∃x.φ and α = ∃∀, then we have, by semantics, A, X |=α
ϕ if and only if A, extsup(φ)\{x}(X, x) |=α

φ.
By inductive hypothesis, this amounts to say that there is X ∈ extsup(φ)\{x}(X, x) such that for every
χ ∈ X it holds A, χ |=

Fol
φ. The thesis follows from Lemma 5, Item 1.

If ϕ = ∃x.φ and α = ∀∃, then we have, by semantics, A, X |=α
ϕ if and only if A, X |=α

ϕ. By
proceeding as before, i.e., by applying semantics, inductive hypothesis, and Lemma 5, Item 1, we have 
that there is X′ ∈ X such that for every χ′ ∈ X′ it holds A, χ′ |=

Fol
ϕ. The thesis follows from Lemma 4,

Item 2.
• If ϕ = ∀x.φ and α = ∀∃, then we have, by semantics, A, X |=α

ϕ if and only if A, extsup(φ)\{x}(X, x) |=α
φ.

By inductive hypothesis, this amounts to say that for every X ∈ extsup(φ)\{x}(X, x) there is χ ∈ X such 
that A, χ |=

Fol
φ. The thesis follows from Lemma 5, Item 2.

If ϕ = ∀x.φ and α = ∃∀, then we have, by semantics, A, X |=α
ϕ if and only if A, X |=α

ϕ. By proceeding 
as before, i.e., by applying semantics, inductive hypothesis, and Lemma 5, Item 2, we have that for every
X′ ∈ X there is χ′ ∈ X′ such that A, χ′ |=

Fol
ϕ. The thesis follows from Lemma 4, Item 1. �

Lemma 7 (Cylindrical Extension). Let X ∈ HAsg be a hyperteam. Then, cyl(X, x) ≡ extW
(
X, x

)
, for all

variables x ∈ Vr and sets of variables W, with vr(X) ⊆ W ⊆ Vr.
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Proof. The proof is done by showing the two directions of the equivalence.
First, we prove the following:

cyl(X, x) � extW
(
X, x

)
.

Let Xu ∈ cyl(X, x). There is X ∈ X such that Xu = cyl(X, x). Remark that for every X′ ∈ X there is 
χX′ ∈ X′∩X. Then, for every F ∈ FncW, it holds that χX′ [x �→ F(χX′)] ∈ Xu. Now, observe that for every
X̂ ∈ extW

(
X, x

)
, there is X′ ∈ X and F ∈ FncW such that X̂ = ext(X′,F, x). Consider � ∈ Chc

(
extW

(
X, x

))
defined as follows. For every X̂ ∈ extW

(
X, x

)
, we define �(X̂) = χX′ [x �→ F(χX′)]. We can deduce immediately

that img(�) ⊆ Xu.
We turn now to showing that

extW
(
X, x

)
� cyl(X, x) .

Let X̊ ∈ extW
(
X, x

)
. We have X̊ = img

(̊
�
)

for some choice function ̊� ∈ Chc
(
extW

(
X, x

))
. Then,

∀F ∈ FncW,∀X′ ∈ X,∃χ′ ∈ X′ s.t. χ′[x �→ F(χ′)] ∈ X̊. (B.1)

Toward contradiction, assume that cyl(X, x) � X̊ for all X ∈ X. Then for all X ∈ X, there is χX ∈ X and 
aX ∈ A such that χX[x �→ aX] /∈ X̊. We assume that aX1 = aX2 if χX1 = χX2 so that each χ is associated 
with only one a ∈ A. Consider � ∈ Chc(X) such that �(X) = χX for all X ∈ X, and F ∈ FncW such that
F(χX) = aX for all X ∈ X. By construction, for all χ′ ∈ img(�), it holds that χ′[x �→ F(χ′)] /∈ X̊ and, since 
img(�) ∈ X, we have a contradiction with (B.1). �
Lemma 8 (Team Partitioning). Let X ∈ HAsg be a hyperteam. Then:

1) for all hyperteam bipartitions (X1, X2) ∈ par
(
X
)

and teams Y1 ∈ X1 and Y2 ∈ X2, there exists a team 
X ∈ X such that X ⊆ Y1 ∪ Y2;

2) for all teams X ∈ X and team bipartitions (X1, X2) ∈ par(X), there exist a hyperteam bipartition 
(X1, X2) ∈ par

(
X
)

and two teams Y1 ∈ X1 and Y2 ∈ X2 such that Y1 ⊆ X1 and Y2 ⊆ X2.

Proof. In the following, we assume index i to range over {1, 2}.

1) Let (X1, X2) ∈ par
(
X
)

and Yi ∈ Xi. Then, there are �i ∈ Chc(Xi) such that Yi = img(�i). Let � ∈ Chc
(
X
)

be defined as: �(X) = �i(X) if X ∈ Xi, for all X ∈ X. It clearly holds that img(�) = img(�1) ∪ img(�2)
and img(�) ∈ X. Finally, thanks to Lemma 1, there is X
 ∈ X such that X
 ⊆ img(�) = Y1 ∪ Y2.

2) Let X ∈ X and (X1, X2) ∈ par(X). Consider X1 and X2 defined as follows: X1 = {img(�) | � ∈ Chc(X) and
�(X) ∈ X1} and X2 = X \ X1. Clearly, it holds that (X1, X2) ∈ par

(
X
)
. Moreover, for every X′

i ∈ Xi,
it holds that X′

i∩ Xi �= ∅. Let �i ∈ Chc(Xi) be such that �i(X
′

i) ∈ Yi ∩ Xi, for every X′

i ∈ Xi. Then,
img(�i) ∈ Xi is such that img(�i) ⊆ Xi. �

The proof of the DIF adequacy property for ADIF uses the following monotonicity property known for
IF (and thus DIF).

Remark 2. For all DIF formulae ϕ and teams X, X′ ⊆ Asg⊆(sup(ϕ)), with X ⊆ X′, it holds that:

1) If A, X′ |=∀
DIF

ϕ, then A, X |=∀
DIF

ϕ.
2) If A, X |=∃

ϕ, then A, X′ |=∃
ϕ;
DIF DIF
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Theorem 6

Theorem 2

. . . Lemma 1 Lemma 8

Lemma 7

Fig. B.7. Dependency graph of Theorem 6.

Theorem 6 (DIF Adequacy). For all DIF formulae ϕ and hyperteams X ∈ HAsg⊆(sup(ϕ)), it holds that:

1) if ϕ is ∃-DIF then A, X |=∃∀
ϕ iff there is a team X ∈ X such that A, X |=∀

DIF

ϕ;
2) if ϕ is ∀-DIF then A, X |=∀∃

ϕ iff, for all teams X∈X, it holds that A, X |=∃
DIF

ϕ.

Proof. (See Fig. B.7.) In the following, we assume index i to range over {1, 2}.
To begin with, we prove Item 1. The proof is done by structural induction on the formula ϕ.

(base case) If ϕ = R(�x) or ϕ = ¬R(�x), then the property holds by the semantics rules.
(inductive cases) Suppose that the property holds for the subformulae of ϕ.

(ϕ = ϕ1 ∧ ϕ2) A, X |=∃∀
ϕ1 ∧ ϕ2

sem.⇔ for all (X1, X2) ∈ par(X) it holds that A, X1 |=∃∀
ϕ1 or A, X2 |=∃∀

ϕ2
ind.hp.⇔ for all (X1, X2) ∈ par(X) it holds that there is X1 ∈ X1 for which it holds 

A, X1 |=∀
DIF

ϕ1 or there is X2 ∈ X2 for which it holds A, X2 |=∀
DIF

ϕ2 ⇔ there is X ∈ X such 

that A, X |=∀
DIF

ϕ1 and A, X |=∀
DIF

ϕ2
DIF-sem.⇔ there is X ∈ X such that A, X |=∀

DIF

ϕ1 ∧ ϕ2.
(ϕ = ϕ1 ∨ ϕ2) If A, X |=∃∀

ϕ1 ∨ϕ2, then A, X |=∀∃
ϕ1 ∨ϕ2. By semantics, there is (X1, X2) ∈ par

(
X
)

such 
that A, X1|=∀∃

ϕ1 and A, X2|=∀∃
ϕ2, which amounts to say that there is (X1, X2) ∈ par

(
X
)

such that A, X1|=∃∀
ϕ1 and A, X2|=∃∀

ϕ2. By inductive hypothesis, there are X1 ∈ X1 and 
X2 ∈ X2 such that A, X1 |=∀

DIF

ϕ1 and A, X2 |=∀
DIF

ϕ2. By Item 1 of Lemma 8, there is X ∈ X

such that X ⊆ X1∪X2. By Item 1 of Remark 2, we have that X′
1� X1 ∩X and X′

2� X \X′
1

are such that A, X′
1 |=

∀
DIF

ϕ1 and A, X′
2 |=

∀
DIF

ϕ2. Since, in addition, (X′
1, X

′
2) ∈ par(X) holds,

we conclude A, X |=∀
DIF

ϕ1 ∨ ϕ2.
Conversely, if there is X ∈ X such that A, X |=∀

DIF

ϕ1 ∨ ϕ2, then there is (X1, X2) ∈
par(X) such that A, Xi |=∀

DIF

ϕi. By Item 2 of Lemma 8, there are (X1, X2) ∈ par
(
X
)

and 

Yi ∈ Xi such that Yi ⊆ Xi. Then, by Item 1 of Remark 2, it holds that A, Yi |=∀
DIF

ϕi. By
inductive hypothesis, we have A, Xi|=∃∀

ϕi, or, equivalently, A, Xi |=∀∃
ϕi. Therefore, there 

is (X1, X2) ∈ par
(
X
)

such that A, Xi |=∀∃
ϕi, which implies A, X |=∀∃

ϕ1 ∨ ϕ2, and we can 
conclude A, X|=∃∀

ϕ1 ∨ ϕ2.
(ϕ = ∃±Wx.ϕ) A, X|=∃∀ ∃±Wx.ϕ sem.⇔ A, ext�±W�(X, x) |=∃∀

ϕ 
ind.hp.⇔ there is X ∈ ext�±W�(X, x) such that

A, X |=∀
DIF

ϕ
def.⇔ there are X ∈ X and F ∈ Fnc�±W� such that A, ext(X,F, x) |=∀

DIF

ϕ DIF-sem.⇔
there is X ∈ X such that A, X |=∀

DIF
∃±Wx. ϕ.

(ϕ = ∀−∅x.ϕ) A, X|=∃∀ ∀−∅x.ϕ sem.⇔ A, X|=∀∃ ∀−∅x.ϕ sem.⇔ A, extVr
(
X, x

)
|=∀∃

ϕ
Thm. 2⇔ A, extVr

(
X, x

)
|=∃∀

ϕ
Lemma 7⇔ A, cyl(X, x) |=∃∀

ϕ 
ind.hp.⇔ there is X ∈ cyl(X, x) such that A, X |=∀

DIF

ϕ def.⇔ there is 
X ∈ X such that A, cyl(X, x) |=∀

DIF

ϕ DIF-sem.⇔ there is X ∈ X such that A, X |=∀
DIF

∀−∅x. ϕ.

We turn now to proving Item 2. We proceed by structural induction on the formula ϕ.

(base case) If ϕ = R(�x) or ϕ = ¬R(�x), then the property holds by the semantics rules.
(inductive cases) Suppose that the property holds for the subformulae of ϕ.
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(ϕ = ϕ1 ∧ ϕ2) We assume that A, X |=∀∃
ϕ1 ∧ ϕ2 and we show that for all teams X ∈ X, it holds that

A, X |=∃
DIF

ϕ1 ∧ ϕ2, which amount to showing that for all teams X ∈ X and (X1, X2) ∈
par(X), it holds that A, X1 |=∃

DIF

ϕ1 or A, X2 |=∃
DIF

ϕ2. To this end, we let X ∈ X and 
(X1, X2) ∈ par(X). By Item 2 of Lemma 8, there are (X1, X2) ∈ par

(
X
)
, Y1 ∈ X1, and 

Y2 ∈ X2, such that Y1 ⊆ X1 and Y2 ⊆ X2. From A, X |=∀∃
ϕ1 ∧ ϕ2, it follows that

A, X |=∃∀
ϕ1 ∧ ϕ2. By semantics, for all (X1, X2) ∈ par

(
X
)

it holds that A, X1|=∃∀
ϕ1 or

A, X2|=∃∀
ϕ2, which, by Theorem 2, amounts to saying that for all (X1, X2) ∈ par

(
X
)

it
holds that A, X1|=∀∃

ϕ1 or A, X2|=∀∃
ϕ2. By inductive hypothesis, for all (X1, X2) ∈ par

(
X
)

it holds that A, X1 |=∃
DIF

ϕ1 for all X1 ∈ X1 or it holds that A, X2 |=∃
DIF

ϕ2 for all X2 ∈ X2.
Equivalently, for all (X1, X2) ∈ par

(
X
)
, X1 ∈ X1, and X2 ∈ X2, it holds that A, X1 |=∃

DIF

ϕ1

or A, X2 |=∃
DIF

ϕ2. Therefore, we have that A, Y1 |=∃
DIF

ϕ1 or A, Y2 |=∃
DIF

ϕ2, and, due to 

Y1 ⊆ X1 and Y2 ⊆ X2, and thanks to Item 2 of Remark 2, we conclude A, X1 |=∃
DIF

ϕ1 or
A, X2 |=∃

DIF

ϕ2.
Conversely, assume that for all teams X ∈ X, it holds that A, X |=∃

DIF

ϕ1 ∧ ϕ2, which 

amounts to saying that for all X ∈ X and (X1, X2) ∈ par(X), it holds that A, X1 |=∃
DIF

ϕ1

or A, X2 |=∃
DIF

ϕ2. First, we show that for all (X1, X2) ∈ par
(
X
)
, X1 ∈ X1, and X2 ∈ X2, it

holds that A, X1 |=∃
DIF

ϕ1 or A, X2 |=∃
DIF

ϕ2. To this end, let (X1, X2) ∈ par
(
X
)
, X1 ∈ X1,

and X2 ∈ X2. By Item 1 of Lemma 8, there exists a team X ∈ X such that X ⊆ X1 ∪ X2.
Let X′

1 = X1 ∩ X and X′

2 = X \ X′

1. Clearly, (X′

1, X
′

2) ∈ par(X), X′

1⊆ X1, and X′

2⊆ X2. By
assumption, it holds that A, X′

1 |=∃
DIF

ϕ1 or A, X′
2 |=

∃
DIF

ϕ2. From X′
1 ⊆ X1 and X′

2 ⊆ X2,
and thanks to Item 2 of Remark 2, it follows A, X1 |=∃

DIF

ϕ1 or A, X2 |=∃
DIF

ϕ2. Therefore,
we have showed that for all (X1, X2) ∈ par

(
X
)
, X1 ∈ X1, and X2 ∈ X2, it holds that

A, X1 |=∃
DIF

ϕ1 or A, X2 |=∃
DIF

ϕ2. This amount to saying that for all (X1, X2) ∈ par
(
X
)
, it

holds that A, X1 |=∃
DIF

ϕ1 for all X1 ∈ X1 or it holds that A, X2 |=∃
DIF

ϕ2 for all X2 ∈ X2. By
inductive hypothesis, we have that for all (X1, X2) ∈ par

(
X
)
, it holds that A, X1|=∀∃

ϕ1 or
A, X2|=∀∃

ϕ2, which eventually amounts to saying A, X|=∀∃
ϕ1 ∧ ϕ2.

(ϕ = ϕ1 ∨ ϕ2) A, X |=∀∃
ϕ1 ∨ ϕ2

sem.⇔ there is (X1, X2) ∈ par(X) such that A, X1 |=∀∃
ϕ1 and A, X2 |=∀∃

ϕ2
ind.hp.⇔ there is (X1, X2) ∈ par(X) such that for all X1 ∈ X1 it holds A, X1 |=∃

DIF

ϕ1 and 

for all X2 ∈ X2 it holds A, X2 |=∃
DIF

ϕ2 ⇔ for all X ∈ X it holds that A, X |=∃
DIF

ϕ1 or
A, X |=∃

DIF

ϕ2
DIF-sem.⇔ for all X ∈ X it holds that A, X |=∃

DIF

ϕ1 ∨ ϕ2.
(ϕ = ∃−∅x.ϕ) A, X|=∀∃ ∃−∅x.ϕ sem.⇔ A, X|=∃∀ ∃−∅x.ϕ sem.⇔ A, extVr

(
X, x

)
|=∃∀

ϕ
Thm. 2⇔ A, extVr

(
X, x

)
|=∀∃

ϕ
Lemma 7⇔ A, cyl(X, x) |=∀∃

ϕ 
ind.hp.⇔ for all X ∈ cyl(X, x) it holds that A, X |=∃

DIF

ϕ def.⇔ for all 
X ∈ X it holds that A, cyl(X, x) |=∃

DIF

ϕ DIF-sem.⇔ for all X ∈ X it holds that A, X |=∃
DIF

∃−∅x. ϕ.
(ϕ = ∀±Wx.ϕ) A, X|=∀∃ ∀±Wx.ϕ sem.⇔ A, ext�±W�(X, x) |=∀∃

ϕ 
ind.hp.⇔ for all X ∈ ext�±W�(X, x) it holds that

A, X |=∃
DIF

ϕ
def.⇔ for all X ∈ X and F ∈ Fnc�±W� it holds that A, ext(X,F, x) |=∃

DIF

ϕ DIF-sem.⇔
for all X ∈ X it holds that A, X |=∃

DIF
∀±Wx. ϕ. �

Appendix C. Proofs of Section 4

Lemma 10 (Generalised Empty & Null Hyperteams). The following hold true for every Meta-ADIF formula
ϕ, function assignment F ∈ FAsg, and hyperteam X ∈ HAsg⊆(sup(ϕ) \ dom(F)).

1) a) A, F, ∅ �|=∃∀
ϕ; b)A, F, X |=∃∀

ϕ, where ∅ ∈ X;
2) a) A, F, ∅ |=∀∃

ϕ; b) A, F, X �|=∀∃
ϕ, where ∅ ∈ X.
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Proof. We proceed by structural induction on the size of ϕ. For the four inductive cases concerning the 
two binary Boolean connectives and the two standard quantifiers, it is useful to recall that, thanks to 
Proposition 1, ∅ = {∅} and X = ∅ iff ∅ ∈ X.

• [Base case ϕ = ⊥] Both subitems of Item 1 directly follow from the meta-variant – A, F, X |=∃∀ ⊥ iff
∅ ∈ X – of Item 1a of Definition 2. Similarly, Item 2 follows from the variant – A, F, X |=∀∃⊥ iff X = ∅ –
of Item 1b of the same definition.

• [Base case ϕ = �] Both subitems of Item 2 directly follow from the meta-variant – A, F, X |=∀∃ � iff
∅ /∈ X – of Item 2a of Definition 2. Similarly, Item 1 follows from the variant – A, F, X |=∃∀� iff X �= ∅ –
of Item 2b of the same definition.

• [Base case ϕ = R(�x)] By observing that ext(∅,F) = ∅ and ∅ ∈ X iff ∅ ∈ ext(X,F), it is easy to see that
Items 1 and 2 immediately follow from Items 3a and 3b of Definition 6, respectively.

• [Inductive case ϕ = ¬φ] Item 1a (resp., Item 1b, Item 2a, and Item 2b) follows from the meta-variant
– A, F, X |=α ¬φ iff A, F,X �|=α

φ – of Item 4 of Definition 2 and Item 2a (resp., Item 2b, Item 1a, and 
Item 1b) of the inductive hypothesis applied to φ.

• [Inductive case ϕ = φ1 ∧ φ2] Items 2a and 2b directly follow from Items 1b and 1a, respectively, via the 
meta-variant – A, F, X |=∀∃

φ1 ∧ φ2 iff A, F, X |=∃∀
φ1 ∧ φ2 – of Item 5b of Definition 2. We can therefore 

focus on the latter two.

– [Item 1a] By the meta-variant of Item 5a of Definition 2, it holds that A, F, ∅ �|=∃∀
ϕ iff there 

exists a partitioning (X1, X2) ∈ par(∅) such that A, F, X1 �|=∃∀
φ1 and A, F, X2 �|=∃∀

φ2. Now, from 
the inductive hypothesis applied to φ1 and φ2, it follows that A, F, ∅ �|=∃∀

φ1 and A, F, ∅ �|=∃∀
φ2.

Moreover, (∅, ∅) ∈ par(∅). Thus, the thesis clearly holds.
– [Item 1b] By the meta-variant of Item 5a of Definition 2, it holds that A, F, X |=∃∀

ϕ iff, for all 
partitioning (X1, X2) ∈ par(X), it holds that A, F, X1 |=∃∀

φ1 or A,F,X2 |=∃∀
φ2, where ∅ ∈ X. Now,

from the inductive hypothesis applied to φ1 and φ2, it follows that A, F, X′ |=∃∀
φ1 and A, F, X′ |=∃∀

φ2, for every hyperteam X′ such that ∅ ∈ X′. Moreover, for every partitioning (X1, X2) ∈ par(X),
one can observe that ∅ ∈ X1 or ∅ ∈ X2. Thus, the thesis clearly holds.

• [Inductive case ϕ = φ1 ∨ φ2] Items 1a and 1b directly follow from Items 2b and 2a, respectively, via the 
meta-variant – A, F, X |=∃∀

φ1 ∨ φ2 iff A, F, X |=∀∃
φ1 ∨ φ2 – of Item 6a of Definition 2. We can therefore 

focus on the latter two.

– [Item 2a] By the meta-variant of Item 6b of Definition 2, it holds that A, F, ∅ |=∀∃
ϕ iff there 

exists a partitioning (X1, X2) ∈ par(∅) such that A, F, X1 |=∀∃
φ1 and A, F, X2 |=∀∃

φ2. Now, by
the inductive hypothesis applied to φ1 and φ2, it follows that A, F, ∅ |=∀∃

φ1 and A, F, ∅ |=∀∃
φ2.

Moreover, (∅, ∅) ∈ par(∅). Thus, the thesis clearly holds.
– [Item 2b] By the meta-variant of Item 6b of Definition 2, it holds that A, F, X �|=∀∃

ϕ iff, for all 
partitioning (X1, X2) ∈ par(X), it holds that A, F, X1 �|=∀∃

φ1 or A,F,X2 �|=∀∃
φ2, where ∅ ∈ X. Now,

by the inductive hypothesis applied to φ1 and φ2, it follows that A, F, X′ �|=∀∃
φ1 and A, F, X′ �|=∀∃

φ2,
for every hyperteam X′ such that ∅ ∈ X′. Moreover, for every partitioning (X1, X2) ∈ par(X), one 
can observe that ∅ ∈ X1 or ∅ ∈ X2. Thus, the thesis clearly holds.

• [Inductive case ϕ = ∃±Wx. φ] Items 2a and 2b directly follow from Items 1b and 1a, respectively, via the 
meta-variant – A, F, X |=∀∃∃±Wx. φ iff A, F, X |=∃∀∃±Wx. φ – of Item 7b of Definition 2. We can therefore 
focus on the latter two.
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– [Item 1a] By the meta-variant of Item 7a of Definition 2, it holds that A, F, ∅ �|=∃∀
ϕ iff

A, F, ext�±W�(∅, x) �|=∃∀
φ. Now, by the inductive hypothesis on φ, it follows that A, F, ∅ �|=∃∀

φ.
Moreover, ext�±W�(∅, x) = ∅. Thus, the thesis clearly holds.

– [Item 1b] By the meta-variant of Item 7a of Definition 2, it holds that A, F, X |=∃∀
ϕ iff

A, F, ext�±W�(X, x) |=∃∀
φ, where ∅ ∈ X. Now, by the inductive hypothesis on φ, it follows that

A, F, X′ |=∃∀
φ, for each hyperteam X′ with ∅ ∈ X′. Moreover, ∅ ∈ ext�±W�(X, x). Thus, the thesis 

clearly holds.

• [Inductive case ϕ = ∀±Wx. φ] Items 1a and 1b directly follow from Items 2b and 2a, respectively, via the 
meta-variant – A, F, X |=∃∀∀±Wx. φ iff A, F, X |=∀∃∀±Wx. φ – of Item 8a of Definition 2. We can therefore 
focus on the latter two.

– [Item 2a] By the meta-variant of Item 8b of Definition 2, it holds that A, F, ∅ |=∀∃
ϕ iff

A, F, ext�±W�(∅, x) |=∀∃
φ. Now, by the inductive hypothesis on φ, it follows that A, F, ∅ |=∀∃

φ.
Moreover, ext�±W�(∅, x) = ∅. Thus, the thesis clearly holds.

– [Item 2b] By the meta-variant of Item 8b of Definition 2, it holds that A, F, X �|=∀∃
ϕ iff

A, F, ext�±W�(X, x) �|=∀∃
φ, where ∅ ∈ X. Now, by the inductive hypothesis on φ, it follows that

A, F, X′ �|=∀∃
φ, for each hyperteam X′ with ∅ ∈ X′. Moreover, ∅ ∈ ext�±W�(X, x). Thus, the thesis 

clearly holds.

• [Inductive case ϕ = Σ±Wx. φ] Since the semantics of the existential meta quantifier does not depend on 
the alternation flag α, we consider the two satisfaction (resp., non-satisfaction) cases altogether.

– [Items 1a and 2b] By Item 9 of Definition 6, it holds that A, F, X �|=α Σ±Wx. φ iff, for all functions 
F ∈ Fnc�±W�, it holds that A, F[x �→ F], X �|=α

φ. Now, by the inductive hypothesis on φ, it follows 
that A, F′, X �|=α

φ, for every function assignment F′, where either α = ∃∀ and X = ∅ or α = ∀∃ and 
∅ ∈ X. Thus, the thesis clearly holds.

– [Items 1b and 2a] By Item 9 of Definition 6, it holds that A, F, X |=α Σ±Wx. φ iff there exists a 
function F ∈ Fnc�±W� such that A, F[x �→ F], X |=α

φ. Now, by the inductive hypothesis on φ, it
follows that A, F′, X |=α

φ, for every function assignment F′, where either α = ∀∃ and X = ∅ or
α = ∃∀ and ∅ ∈ X. Thus, the thesis clearly holds.

• [Inductive case ϕ = Π±Wx. φ] Since the semantics of the universal meta quantifier does not depend on 
the alternation flag α, we consider the two satisfaction (resp., non-satisfaction) cases altogether.

– [Items 1a and 2b] By Item 10 of Definition 6, it holds that A, F, X �|=α Π±Wx. φ iff there exists a 
function F ∈ Fnc�±W� such that A, F[x �→ F], X �|=α

φ. Now, by the inductive hypothesis on φ, it
follows that A, F′, X �|=α

φ, for every function assignment F′, where either α = ∃∀ and X = ∅ or
α = ∀∃ and ∅ ∈ X. Thus, the thesis clearly holds.

– [Items 1b and 2a] By Item 10 of Definition 6, it holds that A, F, X |=α Π±Wx. φ iff, for all functions 
F ∈ Fnc�±W�, it holds that A, F[x �→ F], X |=α

φ. Now, by the inductive hypothesis on φ, it follows 
that A, F′, X |=α

φ, for every function assignment F′, where either α = ∀∃ and X = ∅ or α = ∃∀ and 
∅ ∈ X. Thus, the thesis clearly holds. �

The following result states monotonicity of the dualization, extension, and partition operators w.r.t. the 
preorder �.
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Lemma 11 (Monotonicity I). Let X, X′∈HAsg be two hyperteams with X �W X′, for some W ⊆ Vr. Then,
the following hold true:

1) X′ �W X;
2) a) X =W extU(X, x), if x /∈ W, with U ⊆ Vr;

b) extU(X, x) �W∪{x} extU′(X′, x), with x ∈ Vr, U ⊆ U′ ⊆ Vr, and U ⊆ W;
3) for every (X′

1, X
′
2) ∈ par(X′), there is (X1, X2) ∈ par(X) such that X1 �W X′

1 and X2 �W X′
2.

Proof. 1) By X �W X′, there is a function f : X �W → X′�W such that f(X�W) ⊆ X�W for all X ∈ X.
Moreover, for all X ∈ X, since f(X�W) ⊆ X�W, there is a function gX :

⋃
{X′ ∈ X′ | X′�W = f(X�W)} → X

such that χ �W = (gX(χ)) �W for all χ in 
⋃
{X′ ∈ X′ | X′�W = f(X�W)}. In order to prove the claim,

consider a generic team X′ ∈ X′�W. We have to show that there is X ∈ X such that X�W ⊆ X′. By the 
definition of X′�W, we have that X′ = (img(�′)) �W, for some �′ ∈ Chc(X′). We define � ∈ Chc(X) as:
�(X) = gX(�′((f(X�W)) �W)) for all X ∈ X. Clearly, (img(�)) �W ⊆ (img(�′)) �W = X′. Since (img(�)) ∈ X,
the thesis holds.

2a) The claim follows from the fact that for every F ∈ Fnc, χ ∈ Asg, and x /∈ W, it holds that
ext(χ,F, x)�W = χ �W, which implies ext(X,F, x)�W = X�W for every X ∈ X and F ∈ FncU, and the 
claim follows.

2b) By X �W X′, there is a function f : X �W → X′�W such that f(X�W) ⊆ X�W for all X ∈ X. In order
to prove the claim, take a generic team X̂ ∈ extU(X, x). Thus, X̂ = ext(X,F, x) = {ext(χ,F, x) |χ ∈ X},
for some X ∈ X and F ∈ FncU. Let X′ = (f(X�W)) �W ∈ X′. Clearly, X′�W = f(X�W) ⊆ X�W. Moreover,
ext(X′,F, x) ∈ extU′(X′, x), since F ∈ FncU ⊆ FncU′ (as U ⊆ U′). To complete the proof, it is enough 
to show that ext(X′,F, x)�W∪{x} ⊆ X̂�W∪{x}. To this purpose, take ext(χ′,F, x)�W∪{x} for some χ′ ∈ X′.
Observe that χ′�W ∈ X′�W = f(X�W) ⊆ X�W, which means that there is χ ∈ X such that χ �W =
χ′�W. Since U ⊆ W, it holds that χ �U = χ′�U, which implies F(χ) = F(χ′), as F ∈ FncU. Therefore,
ext(χ′,F, x)�W∪{x} = ext(χ,F, x)�W∪{x} ∈ X̂�W∪{x}.

3) By X �W X′, there is a function f : X �W → X′�W such that f(X�W) ⊆ X�W for all X ∈ X. Let
(X′

1, X
′
2) ∈ par(X′) and define Xi = {X ∈ X | (f(X�W)) �W ∈ X′

i} for i ∈ {1, 2}. We have to show
that Xi �W X′

i (i ∈ {1, 2}). To this end, let X ∈ Xi and consider team (f(X�W)) �W ∈ X′
i. Clearly,

((f(X�W)) �W) �W = f(X�W) ⊆ X�W. The thesis follows as ((f(X�W)) �W) �W ∈ X′
i�W. �

Lemma 12 (Extension Monotonicity). For all sets of variables W ⊆ Vr, function assignments F ∈ FAsg,
and hyperteams X1, X2 ∈ HAsg, where X1 �W X2 and F(x) ∈ FncW, for all x ∈ dom(F) ∩ W, it holds that
ext(X1,F) �W ext(X2,F).

Proof. Let X1 ∈ ext(X1,F)�W. We show that there is X2 ∈ ext(X2,F)�W such that X2 ⊆ X1. By X1 ∈
ext(X1,F)�W, it holds that X1 = ext

(
X′

1,F
)
�W for some X′

1 ∈ X1. By X1 �W X2, there is X′
2 ∈ X2 such 

that X′
2�W ⊆ X′

1�W. Thus, ext
(
X′

2,F
)
�W ∈ ext(X2,F)�W. From X′

2�W ⊆ X′
1�W and the fact that F(x) ∈ FncW

holds for all x ∈ dom(F) ∩ W, it follows that ext(X′
2,F)�W ⊆ ext(X′

1,F)�W = X1. Hence the thesis. �
Theorem 13 (Generalised Hyperteam Refinement). The following hold true for every Meta-ADIF formula
ϕ, function assignment F ∈ FAsg, function ι : dom(ι) → 2Vr, with dom(F) ⊆ dom(ι), and hyperteams 
X, X′ ∈ HAsg⊆(sup(ϕ) \ dom(F)), with F(x) ∈ Fncι(x), for all x ∈ dom(F), and X �free(ϕ,ι) X

′:

1) if A, F, X |=∃∀
ϕ then A, F, X′ |=∃∀

ϕ;
2) if A, F, X′ |=∀∃

ϕ then A, F, X |=∀∃
ϕ.
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Proof. (See Fig. C.8.) Due to X �free(ϕ,ι) X
′, there is a function f : X �free(ϕ,ι) → X′�free(ϕ,ι), such that f(X) ⊆ X

for every X ∈ X �free(ϕ,ι). The claim is proved by induction on the structure of the formula and the alternation 
flag α.

• If ϕ = ⊥, then A, F, X |=∃∀
ϕ implies ∅ ∈ X, which means that ∅ ∈ X �free(ϕ,ι). By X �free(ϕ,ι) X

′, we have 

∅ ∈ X′�free(ϕ,ι). Thus, ∅ ∈ X′, which amounts to A, F, X′ |=∃∀
ϕ.

On the other hand, we also have that A, F, X′ |=∀∃
ϕ implies X′ = ∅, which means that X′�free(ϕ,ι) = ∅.

By X �free(ϕ,ι) X
′, we have X �free(ϕ,ι) = ∅. Thus, X = ∅, which amounts to A, F, X |=∀∃

ϕ.
• If ϕ = �, then A, F, X |=∃∀

ϕ implies X �= ∅, which means that X �free(ϕ,ι) �= ∅. By X �free(ϕ,ι) X
′, we have 

X′�free(ϕ,ι) �= ∅. Thus, X′ �= ∅, which amounts to A, F, X′ |=∃∀
ϕ.

On the other hand, we also have that A, F, X′ |=∀∃
ϕ implies ∅ /∈ X′, which means that ∅ /∈ X′�free(ϕ,ι).

By X �free(ϕ,ι) X
′, we have ∅ /∈ X �free(ϕ,ι). Thus, ∅ /∈ X, which amounts to A, F, X |=∀∃

ϕ.
• If ϕ = R(�x), then A, F, X |=∃∀

ϕ implies the existence of a team X ∈ ext(X,F) such that, for all 
assignments χ ∈ X, it holds that �xχ∈ RA. By X �free(ϕ,ι) X

′ and Lemma 12 (notice that ι(x) ⊆ free(ϕ, ι),
for all x ∈ dom(F) ∩ free(ϕ, ι)), we have that ext(X,F) �free(ϕ,ι) ext(X′,F), and thus there is a team 
X′ ∈ ext(X′,F) such that X′�free(ϕ,ι) ⊆ X�free(ϕ,ι), which implies X′��x ⊆ X��x , since �x ⊆ free(ϕ, ι). The thesis 
follows from the fact that �xχ∈ RA if and only if �xχ��x ∈ RA holds, for every χ ∈ Asg.

On the other hand, we also have that A, F, X′ |=∀∃
ϕ implies that for all teams X′ ∈ ext(X′,F), there 

exists an assignment χ′ ∈ X′ such that �xχ′
∈ RA. By X �free(ϕ,ι) X′ and Lemma 12, we have that

ext(X,F) �free(ϕ,ι) ext(X′,F), and thus for every team X ∈ ext(X,F) there is a team X′ ∈ ext(X′,F) such 
that X′�free(ϕ,ι) ⊆ X�free(ϕ,ι). The thesis follows from the same argument used above.

• If ϕ = ¬φ, then A, F, X |=∃∀
ϕ implies A, F, X �|=∀∃

φ. By inductive hypothesis, this implies A, F, X′ �|=∀∃
φ,

which amounts to A, F, X′ |=∃∀
ϕ.

On the other hand, we also have that A, F, X′ |=∀∃
ϕ implies A, F, X′ �|=∃∀

φ. By inductive hypothesis,
this implies A, F, X �|=∃∀

φ, which amounts to A, F, X |=∀∃
ϕ.

• Let ϕ = φ1 ∧ φ2. We assume A, F, X |=∃∀
ϕ and we show that A, F, X′

1 |=∃∀
φ1 or A, F, X′

2 |=∃∀
φ2

holds for all (X′
1, X

′
2) ∈ par(X′). To this end, let (X′

1, X
′
2) ∈ par(X′). By Lemma 11, item 3, there is 

(X1, X2) ∈ par(X) such that X1 �free(ϕ,ι) X
′
1 and X2 �free(ϕ,ι) X

′
2, and, by the semantics of ∧, we have that

(X1, X2) ∈ par(X) implies that A, F, X1 |=∃∀
φ1 or A, F, X2 |=∃∀

φ2. Moreover, since free(φ1, ι) ⊆ free(ϕ, ι)
and free(φ2, ι) ⊆ free(ϕ, ι), we have that X1 �free(φ1,ι) X′

1 and X2 �free(φ2,ι) X′
2. Finally, by inductive 

hypothesis it holds that A, F, X′
1 |=∃∀

φ1 or A, F, X′
2 |=∃∀

φ2.
On the other hand, we also have that A, F, X′ |=∀∃

ϕ if and only if A, F, X′ |=∃∀
ϕ. By inductive 

hypothesis and Lemma 11, Item 1, this implies A, F, X |=∃∀
ϕ, which amounts to A, F, X |=∀∃

ϕ.
• Let ϕ = φ1 ∨ φ2. In this case, we first prove the second item of the claim. We assume A, F, X′ |=∀∃

ϕ

and we show that there is (X1, X2) ∈ par(X) such that A, F, X1 |=∀∃
φ1 and A, F, X2 |=∀∃

φ2. By the 
semantics of ∨, we have that there is (X′

1, X
′
2) ∈ par(X′) such that A, F, X′

1 |=
∀∃
φ1 and A, F, X′

2 |=
∀∃
φ2. By

Lemma 11, item 3, there is (X1, X2) ∈ par(X) such that X1 �free(ϕ,ι) X′
1 and X2 �free(ϕ,ι) X′

2. Moreover,
since free(φ1, ι) ⊆ free(ϕ, ι) and free(φ2, ι) ⊆ free(ϕ, ι), we have that X1 �free(φ1,ι) X

′
1 and X2 �free(φ2,ι) X

′
2.

Finally, by inductive hypothesis it holds that A, F, X1 |=∀∃
φ1 and A, F, X2 |=∀∃

φ2.
On the other hand, we also have that A, F, X |=∃∀

ϕ if and only if A, F, X |=∀∃
ϕ. By inductive 

hypothesis and Lemma 11, Item 1, this implies A, F, X′ |=∀∃
ϕ, which amounts to A, F, X′ |=∃∀

ϕ.
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Fig. C.9. Dependency graph of Theorem 14.

• If ϕ = ∃±Wx. φ, then A, F, X |=∃∀
ϕ implies A, F, ext�±W�(X, x) |=∃∀

φ. If x ∈ free(φ, ι[x �→ ∅]), then 
�±W� ⊆ free(ϕ, ι), and thus, by Lemma 11, item 2b, we have ext�±W�(X, x) �free(ϕ,ι)∪{x} ext�±W�(X′, x).
Since free(φ, ι[x �→ ∅]) ⊆ free(ϕ, ι) ∪ {x}, we have ext�±W�(X, x) �free(φ,ι[x�→∅]) ext�±W�(X′, x). From the 

inductive hypothesis, it follows A, F, ext�±W�(X′, x) |=∃∀
φ, which amounts to A, F, X′ |=∃∀

ϕ. If, in-
stead, x /∈ free(φ, ι[x �→ ∅]), then free(ϕ, ι) = free(φ, ι[x �→ ∅]), which means that x /∈ free(ϕ, ι). By
Lemma 11, Item 2a, we have that X =free(ϕ,ι) ext�±W�(X, x) and X′ =free(ϕ,ι) ext�±W�(X′, x), which means 
that ext�±W�(X, x) �free(φ,ι[x�→∅]) ext�±W�(X′, x), as free(ϕ, ι) = free(φ, ι[x �→ ∅]). By inductive hypothesis,
it holds that A, F, ext�±W�(X′, x) |=∃∀

φ, which amounts to A, F, X′ |=∃∀
ϕ.

On the other hand, we also have, by semantics, A, F, X′ |=∀∃
ϕ if and only if A, F, X′ |=∃∀

ϕ. By inductive 
hypothesis and Lemma 11, Item 1, this implies A, F, X |=∃∀

ϕ, which amounts to A, F, X |=∀∃
ϕ.

• If ϕ = ∀±Wx. φ, then A, F, X′ |=∀∃
ϕ implies A, F, ext�±W�(X′, x) |=∀∃

φ.
If x ∈ free(φ, ι[x �→ ∅]), then �±W� ⊆ free(ϕ, ι), and thus, by Lemma 11, item 2b, we have 

ext�±W�(X, x) �free(ϕ,ι)∪{x} ext�±W�(X′, x). Since free(φ, ι[x �→ ∅]) ⊆ free(ϕ, ι) ∪ {x}, we have
ext�±W�(X, x) �free(φ,ι[x�→∅]) ext�±W�(X′, x). From the inductive hypothesis, it follows A, F,

ext�±W�(X, x) |=∀∃
φ, which amounts to A, F, X |=∀∃

ϕ. If, instead, x /∈ free(φ, ι[x �→ ∅]), then 
free(ϕ, ι) = free(φ, ι[x �→ ∅]), which means that x /∈ free(ϕ, ι). By Lemma 11, Item 2a, we have that
X =free(ϕ,ι) ext�±W�(X, x) and X′ =free(ϕ,ι) ext�±W�(X′, x), which means that ext�±W�(X, x) �free(φ,ι[x�→∅])
ext�±W�(X′, x), as free(ϕ, ι) = free(φ, ι[x �→ ∅]). By inductive hypothesis, it holds that A, F,
ext�±W�(X, x) |=∀∃

φ, which amounts to A, F, X |=∀∃
ϕ.

On the other hand, we also have, by semantics, A, F, X |=∃∀
ϕ if and only if A, F, X |=∀∃

ϕ. By inductive 
hypothesis and Lemma 11, Item 1, this implies A, F, X′ |=∀∃

ϕ, which amounts to A, F, X′ |=∃∀
ϕ.

• If ϕ = Σ±Wx. φ, then A, F, X |=∃∀
ϕ implies A, F[x �→ F], X |=∃∀

φ, for some function F ∈ Fnc�±W�. By
inductive hypothesis, we have A, F[x �→ F], X′ |=∃∀

φ, from which A, F, X′ |=∃∀
ϕ follows.

On the other hand, we also have that A, F, X′ |=∀∃
ϕ implies A, F[x �→ F], X′ |=∀∃

φ, for some function 
F ∈ Fnc�±W�. By inductive hypothesis, we have A, F[x �→ F], X |=∀∃

φ, from which A, F, X |=∀∃
ϕ follows.

• Finally, let ϕ = Π±Wx. φ. Then, A, F, X |=∃∀
ϕ implies A, F[x �→ F], X |=∃∀

φ, for all functions F ∈ Fnc�±W�.
By inductive hypothesis, we have that A, F[x �→ F], X′ |=∃∀

φ holds for all functions F ∈ Fnc�±W�, which 
amounts to A, F, X′ |=∃∀

ϕ.
On the other hand, we also have that A, F, X′ |=∀∃

ϕ implies A, F[x �→ F], X′ |=∀∃
φ, for all functions 

F ∈ Fnc�±W�. By inductive hypothesis, we have that A, F[x �→ F], X |=∀∃
φ holds for all functions 

F ∈ Fnc�±W�, which amounts to A, F, X |=∀∃
ϕ. �

Theorem 14 (Generalized Double Dualisation). For every ADIF formula ϕ, function assignment F ∈ FAsg,
and hyperteam X ∈ HAsg⊆(sup(ϕ) \ dom(F)), it holds that A, F, X |=α

ϕ iff A, F, X |=α
ϕ. Moreover, if F is 

acyclic, then it also holds that A, F, X |=α
ϕ iff A, F, X |=α

ϕ.

Proof. (See Fig. C.9.) The fact that A, F, X |=α
ϕ iff A, F, X |=α

ϕ immediately follows from X ≡free(ϕ,ι) X,
for every function ι ∈ Vr⇀ 2Vr (Lemma 1), and Theorem 13.

We turn now to proving that A, F, X |=α
ϕ iff A, F, X |=α

ϕ. As a preliminary result, notice that if F is 
acyclic, then for every X ⊆ Asg(U), for some U ⊆ Vr, there is a bijection τ between X and ext(X,F), with 
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Fig. C.10. Dependency graph of Theorem 15.

τ(χ)�U = χ. Consequently, it holds that ext
(
X,F

)
= ext(X,F). The proof is done by case analysis of the 

syntax of the formula.

• If ϕ = ⊥, then we have:

– A, F, X |=∃∀
ϕ sem.⇔ ∅ ∈ X 

Prop. 1⇔ X = ∅ sem.⇔ A, F, X |=∀∃
ϕ, and

– A, F, X |=∀∃
ϕ sem.⇔ X = ∅ 

Prop. 1⇔ X ≡ ∅ Lemma 1⇔ X ≡ ∅ 
Prop. 1⇔ X = ∅ 

Prop. 1⇔ ∅ ∈ X
sem.⇔ A, F, X |=∃∀

ϕ.

• If ϕ = �, then we have:

– A, F, X |=∃∀
ϕ sem.⇔ X �= ∅ 

Prop. 1⇔ X �≡ ∅ Lemma 1⇔ X �≡ ∅ 
Prop. 1⇔ X �= ∅ 

Prop. 1⇔ ∅ /∈ X
sem.⇔ A, F, X |=∀∃

ϕ, and
– A, F, X |=∀∃

ϕ sem.⇔ ∅ /∈ X 
Prop. 1⇔ X �= ∅ sem.⇔ A, F, X |=∃∀

ϕ.

• If ϕ = R(�x), then the claim follows from the semantics, Lemma 2, Item 1, and the fact that ext
(
X,F

)
=

ext(X,F).
• If ϕ = ¬ψ, then we have: A, F, X |=α

ϕ sem.⇔ A, F, X �|=α
ψ

ind.hp.⇔ A, F, X �|=α
ψ

sem.⇔ A, F, X |=α
ϕ.

• If ϕ = ϕ1 ∧ ϕ2, then we have:

– A, F, X |=∀∃
ϕ sem.⇔ A, F, X |=∃∀

ϕ 
Thm. 14 (part 1)⇔ A, F, X |=∃∀

ϕ, and
– A, F, X |=∀∃

ϕ sem.⇔ A, F, X |=∃∀
ϕ.

• If ϕ = ϕ1 ∨ ϕ2, then we have:

– A, F, X |=∃∀
ϕ sem.⇔ A, F, X |=∀∃

ϕ, and
– A, F, X |=∃∀

ϕ sem.⇔ A, F, X |=∀∃
ϕ 

Thm. 14 (part 1)⇔ A, F, X |=∀∃
ϕ.

• If ϕ = ∃±Wx. φ, then we have:

– A, F, X |=∀∃
ϕ sem.⇔ A, F, X |=∃∀

ϕ 
Thm. 14 (part 1)⇔ A, F, X |=∃∀

ϕ, and
– A, F, X |=∀∃

ϕ sem.⇔ A, F, X |=∃∀
ϕ.

• If ϕ = ∀±Wx. φ, then we have:

– A, F, X |=∃∀
ϕ sem.⇔ A, F, X |=∀∃

ϕ;
– A, F, X |=∃∀

ϕ sem.⇔ A, F, X |=∀∃
ϕ 

Thm. 14 (part 1)⇔ A, F, X |=∀∃
ϕ. �

Theorem 15 (Generalized Prefix Extension). Let ℘φ be an ADIF formula, where ℘ ∈ Qn is a quantifier
prefix and φ is an arbitrary ADIF formula. Then, A, F, X |=α

℘φ iff A, F, extα(X, ℘) |=α
φ, for all acyclic

function assignments F ∈ FAsg and hyperteams X ∈ HAsg⊆(sup(℘φ) \ dom(F)).

Proof. (See Fig. C.10.) We proceed by induction on the structure of the quantification prefix ℘ ∈ Qn.

• [Base case ℘ = ε] Since extα(X, ℘) = X, there is really nothing to prove as the statement is trivially true.
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• [Inductive case ℘ = Q±Wx. ℘′] We proceed by a case analysis on the coherence of the quantifier Q with 
the alternation flag α.

– [Q is α-coherent] By the meta-variants of Items 7a and 8b of Definition 2, it holds that A, F, X |=α
℘φ

iff A, F, ext�±W�(X,x) |=α
℘′φ iff A, F, extα(X, Q±Wx) |=α

℘′φ. Now, by the inductive hypothesis, it
follows that A, F, extα(X, Q±Wx) |=α

℘′φ iff A, F, extα(extα(X, Q±Wx) , ℘′) |=α
φ iff A, F, extα(X, ℘) |=α

φ, which concludes the proof of this case.
– [Q is α-coherent] By the meta-variants of Items 7b and 8a of Definition 2, it holds that A, F, X |=α

℘φ iff A, F, X |=α
℘φ. Now, by the meta-variants of Items 7a and 8b of the same definition,

A, F, X |=α
℘φ iff A, F, ext�±W�

(
X, x

)
|=α

℘′φ. Thanks to Theorem 14, A, F, ext�±W�

(
X, x

)
|=α

℘′φ iff A, F, ext�±W�

(
X, x

)
|=α

℘′φ iff A, F, extα(X, Q±Wx) |=α
℘′φ. Summing up, A, F, X |=α

℘φ iff A, F, extα(X, Q±Wx) |=α
℘′φ. At this point, by the inductive hypothesis, it follows that

A, F, extα(X, Q±Wx) |=α
℘′φ iff A, F, extα(extα(X, Q±Wx) , ℘′) |=α

φ iff A, F, extα(X, ℘) |=α
φ, which 

concludes the proof of this case as well. �
Lemma 9 (Extension Interpretation). The following four equivalences hold true, for all hyperteams X ∈
HAsg(V) over V ⊆ Vr, properties Ψ ⊆ Asg(V∪{x}) over V∪{x} with x ∈ Vr\V, sets of variables W ⊆ Vr,
and quantifier symbols Q ∈ {∃, ∀}.

1) Statements 1a and 1b are equivalent, whenever Q is α-coherent:

a) there exists X′ ∈ extα(X, Q±Wx) such that X′ ⊆ Ψ;
b) there exist F ∈ Fnc�±W� and X ∈ X such that ext(X,F, x) ⊆ Ψ.

2) Statements 2a and 2b are equivalent, whenever Q is α-coherent:

a) for all X′ ∈ extα(X, Q±Wx), it holds that X′ ∩ Ψ �= ∅;
b) for all F ∈ Fnc�±W� and X ∈ X, it holds that ext(X,F, x) ∩ Ψ �= ∅.

3) Statements 3a and 3b are equivalent, whenever Q is α-coherent:

a) there exists X′ ∈ extα(X, Q±Wx) such that X′ ⊆ Ψ;
b) for all F ∈ Fnc�±W�, it holds that ext(X,F, x) ⊆ Ψ, for some X ∈ X.

4) Statements 4a and 4b are equivalent, whenever Q is α-coherent:

a) for all X′ ∈ extα(X, Q±Wx), it holds that X′ ∩ Ψ �= ∅;
b) there is F ∈ Fnc�±W� such that ext(X,F, x) ∩ Ψ �= ∅, for all X ∈ X.

Proof. We first prove Items 1 and 2 altogether, where Q is α-coherent, and then we proceed with the 
remaining ones separately. In particular, for these last two, we make use, given an arbitrary function F ∈
Fnc±W, of the auxiliary notation prj(Ψ,F, x) � {χ ∈ Asg(V) | ext(χ,F, x) ∈ Ψ} satisfying the following two 
properties, for every team X∈TAsg(V): (i) ext(X,F, x)⊆ Ψ iff X ⊆ prj(Ψ,F, x); (ii) ext(X,F, x) ∩ Ψ �= ∅ iff
X ∩ prj(Ψ,F, x) �= ∅.

• [Items 1 and 2] By definition of the extension function, when Q is α-coherent, we have that

extα(X, Q±Wx) = ext�±W�(X, x) =
{
ext(X,F, x)

∣∣X ∈ X,F ∈ Fnc�±W�

}
.
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Thus, for every possible team X′ ∈ TAsg(V ∪ {x}), it holds that X′ ∈ extα(X, Q±Wx) iff there exists 
a function F ∈ Fnc�±W� and a team X ∈ X such that X′ = ext(X,F, x). Hence, both equivalences 
immediately follow.

• [Item 3] Since Q is α-coherent, extα(X, Q±Wx) = ext�±W�

(
X, x

)
, and thus Condition 3a holds iff there 

is a team X′ ∈ ext�±W�

(
X, x

)
such that X′ ⊆ Ψ. By Item 1 of Lemma 2, this holds iff for all teams 

X′ ∈ ext�±W�

(
X, x

)
= extα

(
X, Q±Wx

)
, it holds that X′ ∩Ψ �= ∅. Thanks to Item 2, the latter is true iff for

all functions F ∈ Fnc�±W� and teams X ∈ X, it holds that ext(X,F, x)∩Ψ �= ∅, and thus X∩prj(Ψ,F, x) �= ∅.
At this point, again by Item 1 of Lemma 2, for all X ∈ X, it holds that X∩prj(Ψ,F, x) �= ∅ iff there exists 
a team X ∈ X such that X ⊆ prj(Ψ,F, x), and thus ext(X,F, x) ⊆ Ψ. Therefore, the following equivalence 
concludes the proof: for all functions F ∈ Fnc�±W� and teams X ∈ X, it holds that X ∩ prj(Ψ,F, x) �= ∅
iff for all functions F ∈ Fnc�±W� there exists a team X ∈ X such that ext(X,F, x) ⊆ Ψ, which coincides 
with Condition 3b.

• [Item 4] Since Q is α-coherent, extα(X, Q±Wx) = ext�±W�

(
X, x

)
, and thus Condition 4a holds iff for all 

teams X′ ∈ ext�±W�

(
X, x

)
, it holds that X′ ∩ Ψ �= ∅. By Item 1 of Lemma 2, this holds iff there exists a 

team X ∈ ext�±W�

(
X, x

)
= extα

(
X, Q±Wx

)
such that X ⊆ Ψ. Thanks to Item 1, the latter is true iff there 

exist a function F ∈ Fnc�±W� and a team X ∈ X such that ext(X,F, x) ⊆ Ψ, and thus X ⊆ prj(Ψ,F, x).
At this point, again by Item 1 of Lemma 2, there exists a team X ∈ X such that X ⊆ prj(Ψ,F, x) iff
for all teams X′ ∈ X, it holds that X′ ∩ prj(Ψ,F, x) �= ∅, and thus ext(X′,F, x) ∩ Ψ �= ∅. Therefore, the 
following equivalence concludes the proof: there exist a function F ∈ Fnc�±W� and a team X ∈ X such 
that X ⊆ prj(Ψ,F, x) iff there exists a function F ∈ Fnc�±W� such that for all teams X′ ∈ X, it holds that
ext(X′,F, x) ∩ Ψ �= ∅, which coincides with Condition 4b. �

Theorem 7 (Quantifier Interpretation). The following equivalences hold true, for all Fol formulae φ, vari-
ables x ∈ Vr, sets of variables W ⊆ Vr with x /∈ �±W�, acyclic function assignments F ∈ FAsg with 
dom(F) ∩ �±W� = ∅, and hyperteams X ∈ HAsg⊆((sup(φ) \ {x}) \ dom(F)) with x /∈ vr(X):

1) A, F, X |=α∃±Wx. φ iff A, F, X |=αΣ±Wx. φ;
2) A, F, X |=α∀±Wx. φ iff A, F, X |=αΠ±Wx. φ.

Proof. (See Fig. C.11.) First, observe that, by a generalisation of Theorem 5 to Meta-ADIF, the following 
two equivalences hold true, where we define �φ� �

{
χ ∈ Asg⊆(sup(φ))

∣∣A, χ |=
Fol

φ
}

for every Fol formula 
φ and acyclic function assignments F ∈ FAsg:

a) A, F, X |=∃∀
φ iff X ⊆ �φ�, for some team X ∈ ext(X,F);

b) A, F, X |=∀∃
φ iff X ∩ �φ� �= ∅, for all teams X ∈ ext(X,F),

which are equivalent to the following, respectively:

• A, F, X |=∃∀
φ iff ext(X,F) ⊆ �φ�, for some team X ∈ X;

• A, F, X |=∀∃
φ iff ext(X,F) ∩ �φ� �= ∅, for all teams X ∈ X.
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For technical convenience, given U ⊆ Vr and Ψ ⊆ Asg(U ∪ dom(F)), let us introduce the notation 
prj(Ψ,U,F) � {χ ∈ Ψ | ∀x ∈ dom(F) \ U. χ(x) = F(x)(χ)}�U. Thanks to the assumption of F being acyclic,
the following two properties hold, for every team X ∈ TAsg(U): (i) ext(X,F) ⊆ Ψ iff X ⊆ prj(Ψ,U,F);
(ii) ext(X,F) ∩ Ψ �= ∅ iff X ∩ prj(Ψ,U,F) �= ∅. In the light of this notation, we can rewrite the last two 
equivalences above as follows:

• A, F, X |=∃∀
φ iff X ⊆ prj(�φ�, vr(X) ,F), for some team X ∈ X;

• A, F, X |=∀∃
φ iff X ∩ prj(�φ�, vr(X) ,F) �= ∅, for all teams X ∈ X.

By applying to a formula Q±Wx. φ, where Q ∈ {∃, ∀}, a combination of Theorem 15 and what we have just
derived, we obtain the two equivalences below:

i) A, F, X |=∃∀ Q±Wx. φ iff there exists a team X ∈ ext∃∀(X, Q±Wx) such that X ⊆ prj(�φ�, vr(X) ,F);
ii) A, F, X |=∀∃ Q±Wx. φ iff, for all teams X ∈ ext∀∃(X, Q±Wx), it holds that X ∩ prj(�φ�, vr(X) ,F) �= ∅.

At this point, we proceed by a case analysis on the type of quantifier Q and the alternation flag α, where we 
exploit the fact that for every function F ∈ Fnc�±W�, there exists a function F
∈ Fnc�±W� and, vice versa,
for every function F
 ∈ Fnc�±W�, there exists a function F ∈ Fnc�±W� such that the following equivalence 
holds for every team X ∈ TAsg and variable x ∈ Vr, with x /∈ vr(X):

ext(ext(X,F, x) ,F) = ext(X,F[x �→ F
]) .

Notice that, since F is acyclic, x /∈ �±W�, and dom(F) ∩ �±W� = ∅, it holds that F[x �→ F
] is acyclic as 
well.

• [Q = ∃ & α = ∃∀] By Equivalence i) and Item 1 of Lemma 9, A, F, X |=∃∀ ∃±Wx. φ iff there exist a 
function F ∈ Fnc�±W� and a team X ∈ X such that ext(X,F, x) ⊆ prj(�φ�, vr(X) ∪ {x},F), and thus 
ext(ext(X,F, x) ,F) ⊆ �φ�. This means that A, F, X |=∃∀ ∃±Wx. φ iff there exist a function F
 ∈ Fnc�±W�

and a team X ∈ X such that ext(X,F[x �→ F
]) ⊆ �φ� iff there exists a function F
 ∈ Fnc�±W� such that
X ⊆ �φ�, for some team X ∈ ext(X,F[x �→ F
]). By Equivalence a), the latter statement can be rewritten 
as: there exists a function F
 ∈ Fnc�±W� such that A, F[x �→ F
], X |=∃∀

φ; this in turn is equivalent to 
A, F, X |=∃∀Σ±Wx. φ, due to Item 9 of Definition 6. This concludes the proof of Item 1 for α = ∃∀.

• [Q = ∃ & α = ∀∃] By Equivalence ii) and Item 4 of Lemma 9, A, F, X |=∀∃∃±Wx. φ iff there exists a function 
F ∈ Fnc�±W� such that, for all teams X ∈ X, it holds true that ext(X,F, x) ∩ prj(�φ�, vr(X) ∪ {x},F) �= ∅,
and thus ext(ext(X,F, x) ,F) ∩ �φ� �= ∅. This means that A, F, X |=∀∃ ∃±Wx. φ iff there exists a function 
F
∈ Fnc�±W� such that, for all teams X ∈ X, it holds that ext(X,F[x �→ F
]) ∩ �φ� �= ∅ iff there exists a 
function F
∈ Fnc�±W� such that X∩ �φ� �= ∅, for all teams X ∈ ext(X,F[x �→ F
]). By Equivalence b), the 
latter statement can be rewritten as: there exists a function F
∈ Fnc�±W� such that A, F[x �→ F
], X |=∀∃

φ;
this in turn is equivalent to A, F, X |=∀∃Σ±Wx. φ, due to Item 9 of Definition 6. This concludes the proof 
of Item 1 for α = ∀∃.

• [Q = ∀ & α = ∃∀] By Equivalence i) and Item 3 of Lemma 9, A, F, X |=∃∀ ∀±Wx. φ iff, for all func-
tions F ∈ Fnc�±W�, there exists a team X∈X such that ext(X,F, x)⊆ prj(�φ�, vr(X) ∪ {x},F), and thus 
ext(ext(X,F, x) ,F) ⊆ �φ�. This means that A, F, X |=∃∀∀±Wx. φ iff, for all functions F
∈ Fnc�±W�, there 
exists a team X ∈ X such that ext(X,F[x �→ F
]) ⊆ �φ� iff, for all functions F
 ∈ Fnc�±W�, it holds that
X ⊆ �φ�, for some team X ∈ ext(X,F[x �→ F
]). By Equivalence a), the latter statement can be rewritten 
as: for all functions F
 ∈ Fnc�±W�, it holds that A, F[x �→ F
], X |=∃∀

φ; this in turn is equivalent to 
A, F, X |=∃∀Π±Wx. φ, due to Item 10 of Definition 6. This concludes the proof of Item 2 for α = ∃∀.
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Theorem 8

Theorem 15

Theorem 7

Fig. C.12. Dependency graph of Theorem 8.

• [Q = ∀ & α = ∀∃] By Equivalence ii) and Item 2 of Lemma 9, A, F, X |=∀∃ ∀±Wx. φ iff, for all func-
tions F ∈ Fnc�±W� and teams X ∈ X, it holds that ext(X,F, x) ∩ prj(�φ�, vr(X) ∪ {x},F) �= ∅, and thus 
ext(ext(X,F, x) ,F) ∩ �φ� �= ∅. This means that A, F, X |=∀∃ ∀±Wx. φ iff, for all functions F
 ∈ Fnc�±W�

and teams X ∈ X, it holds that ext(X,F[x �→ F
]) ∩ �φ� �= ∅ iff, for all functions F
 ∈ Fnc�±W�, it holds 
that X ∩ �φ� �= ∅, for all teams X ∈ ext(X,F[x �→ F
]). By Equivalence b), the latter statement can be 
rewritten as: for all functions F
∈ Fnc�±W�, it holds that A, F[x �→ F
], X |=∀∃

φ; this in turn is equivalent
to A, F, X |=∀∃Π±Wx. φ, due to Item 10 of Definition 6. This concludes the proof of Item 2 for α = ∀∃. �

Theorem 8 (Herbrand-Skolem Theorem). Let ℘1℘2φ be an ADIF formula in pnf with quantifier prefix
℘1℘2 ∈Qn and Fol matrix φ. Then, A, F, X |=α

℘1℘2φ iff A, F, X |=α hsp(℘2)℘1φ, for all acyclic function 
assignments F ∈ FAsg with dom(F) ∩ dep(℘1℘2φ) = ∅ and hyperteams X ∈ HAsg⊆(sup(℘1℘2φ) \ dom(F))
with vr(X) ∩ vr(℘1℘2) = ∅ and dom(F) ∩ vr(℘1℘2) = ∅.

Proof. (See Fig. C.12.) The proof proceeds by structural induction on the quantifier prefix ℘2∈Qn.

• [Base case ℘2 = ε] Since hsp(℘2) = ε, there is really nothing to prove as the statement is trivially true.
• [Inductive case ℘2 = ℘′. Q±Wx] By Theorem 15, it holds that A, F, X |=α

℘1℘2φ iff A, F, extα(X, ℘1℘
′) |=α

Q±Wx. φ. A case analysis on the type of quantifier is now required.

• [Q = ∃] By Item 1 of Theorem 7, A, F, extα(X, ℘1℘
′) |=α ∃±Wx. φ iff A, F, extα(X, ℘1℘

′) |=α Σ±Wx. φ,
since φ is a Fol formula, being ℘1℘2φ in pnf. Thus, by Item 9 of Definition 6, we have that
A, F, X |=α

℘1℘2φ iff there exists a function F ∈ Fnc�±W� such that A, F[x �→ F], extα(X, ℘1℘
′) |=α

φ.
Observe that dom(F[x �→ F])∩dep(℘1℘

′φ) = ∅ and F[x �→ F] is still acyclic, due to assumptions made 
at page 17 on Qn and the facts that dom(F) ∩ dep(℘1℘2φ) = ∅ and dom(F) ∩ vr(℘1℘2) = ∅. Again 
by Theorem 15, A, F[x �→ F], extα(X, ℘1℘

′) |=α
φ is equivalent to A, F[x �→ F], X |=α

℘1℘
′φ, which in 

turn, by the inductive hypothesis applied to ℘1℘
′φ, is equivalent to A, F[x �→ F], X |=α hsp(℘′)℘1φ.

Summing up, we have A, F, X |=α
℘1℘2φ iff there exists a function F ∈ Fnc�±W� such that A, F[x �→

F], X |=α hsp(℘′)℘1φ. At this point, again by Item 9 of Definition 6, we obtain A, F, X |=α
℘1℘2φ iff

A, F, X |=α Σ±Wx. hsp(℘′)℘1φ iff A, F, X |=α hsp(℘2)℘1φ, where the latter equivalence is due to the 
definition of the hsp function satisfying the equality hsp(℘2) = hsp(℘′.∃±Wx) = Σ±Wx. hsp(℘′). This 
concludes the proof of the existential case.

• [Q = ∀] By Item 2 of Theorem 7, A, F, extα(X, ℘1℘
′) |=α ∀±Wx. φ iff A, F, extα(X, ℘1℘

′) |=α Π±Wx. φ,
since φ is a Fol formula, being ℘1℘2φ in pnf. Thus, by Item 10 of Definition 6, we have that
A, F, X |=α

℘1℘2φ iff, for all functions F ∈ Fnc�±W�, it holds that A, F[x �→ F], extα(X, ℘1℘
′) |=α

φ.
Observe again that dom(F[x �→ F]) ∩ dep(℘1℘

′φ) = ∅ and F[x �→ F] is acyclic. By Theorem 15,
A, F[x �→ F], extα(X, ℘1℘

′) |=α
φ is equivalent to A, F[x �→ F], X |=α

℘1℘
′φ, which in turn, by the 

inductive hypothesis applied to ℘1℘
′φ, is equivalent to A, F[x �→ F], X |=α hsp(℘′)℘1φ. Summing 

up, we have A, F, X |=α
℘1℘2φ iff, for all functions F ∈ Fnc�±W�, it holds that A, F[x �→ F], X |=α

hsp(℘′)℘1φ. At this point, again by Item 10 of Definition 6, we obtain A, F, X |=α
℘1℘2φ iff A, F, X |=α

Π±Wx. hsp(℘′)℘1φ iff A, F, X |=α hsp(℘2)℘1φ, where the latter equivalence is due to the definition 
of the hsp function satisfying the equality hsp(℘2) = hsp(℘′.∀±Wx) = Π±Wx. hsp(℘′). This concludes 
the proof of the universal case. �
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Theorem 10

Theorem 5

Theorem 8

Fig. C.13. Dependency graph of Theorem 10.

Theorem 11Theorem 8

Fig. C.14. Dependency graph of Theorem 11.

Theorem 10 (ADF-Sol Interpretation). For every ADF formula ϕ in pnf with quantifier prefix ℘ ∈ Qn
over a signature L, set of variables sup(ϕ) ⊆ V ⊆ Vr with V ∩ vr(℘) = ∅, and relation symbol R /∈ L with 
ar(R) = |V| + 1, there exist two Sol sentences Φ∃∀ and Φ∀∃ over signature L � {R} such that, for all
L-structures A and non-null hyperteams X ∈ HAsg(V) with |X| ≤ |A|, the following equivalence holds true:
A, X |=α

ϕ iff A � {Rel(X)} |=
Sol

Φα.

Proof. (See Fig. C.13.) Let �v be a vector of all the variables in V. As first step, consider a formula ϕ = ℘φ

in pnf, where ℘ is a quantifier prefix and φ a quantifier-free matrix. Then, by Theorem 8, we transform ϕ
into the equivalent Meta-ADF formula hsp(℘)φ. Obviously, hsp(℘) = (Q+Wi

i xi)ki=1, for some k ∈ N, where 
Wi ⊆ Vr and Qi ∈ {Σ, Π}. Now, let ℘̂ � (Q̂ifi)ki=1 be the second-order function-quantifier prefix, where 
(i) the arity of each function symbol fi equals the number of variables xi depend on, i.e., ar(fi) = |Wi|,
and (ii) each second-order quantifier symbol Q̂i ∈ {∃, ∀} is existential iff the meta-quantifier symbol Qi is 
existential. At this point, the Sol sentences Φ∃∀ and Φ∀∃ can be defined as follows, where y /∈ V ∪ vr(℘)
and φ̂ is obtained from the matrix φ by replacing each occurrence of a variable xi with the corresponding 
term fi(�wi), where �wi is a vector of all the variables in Wi:

1) Φ∃∀ � ℘̂. ∃ y. (∃�v. R(�vy)) ∧ (∀�v. ¬R(�vy) ∨ φ̂);
2) Φ∀∃ � ℘̂. ∀ y. ¬(∃�v. R(�vy)) ∨ (∃�v. R(�vy) ∧ φ̂).

To conclude, the correctness of the translation can be proved by a simple induction on the length of the 
quantifier prefix ℘, where, as base case, we exploit the extension of Theorem 5 to Meta-ADIF. �
Theorem 11 (Sol-ADF Interpretation). For every Sol sentence Φ over a signature L, relation symbol
R ∈ L, and sequence of variables �x ∈ Vrar(R), with vr(Φ) ∩ �x = ∅, i.e., no variable in �x occurs in Φ,
there exists an ADF formula ϕ in pnf over signature L \ R with sup(ϕ) = free(ϕ) = �x such that, for all
L-structures A, the following equivalence holds true: A |=

Sol
Φ iff A \R, 

{
Team

(
RA, �x

)}
|=∃∀

ϕ.

Proof. (See Fig. C.14.) To begin with, let us assume w.l.o.g. (see Kontinen and Nurmi [23] for a proof) that
the Sol sentence Φ is of the form

(Qifi)ki=1.∀�z. (R(�y) ↔ t1 = t2) ∧ ψ,

which in addition complies with the following constraints:

a) �y ⊆ �z, i.e., the vector of variables �y used in the atom R(�y) is included in the vector of universally-
quantified variables �z;

b) every function fi only appears in a single term tfi = fi(�wi);
c) every term t (including t1 and t2) is of the form fi(�w), for some index i ∈ [1, k] and vector of variables 

�w ⊆ �z;
d) the relation R does not occur in the Fol formula ψ.
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Now, let ℘ � (Q̂+Wi
i zi)1i=k be the first-order quantifier prefix, where (i) the set of dependence variables Wi

coincides with the vector of variables �wi used in the term tfi corresponding to the function fi, and (ii) each 
first-order quantifier symbol Q̂i ∈ {∃, ∀} is existential iff the second-order quantifier symbol Qi is existential.
Notice that the order of quantification is reversed w.r.t. the one in (Qifi)ki=1. At this point, the ADF formula 
ϕ can be defined as follows, where (1) (�y = �x) denotes a shortcut for a conjunction of equalities between 
corresponding variables in �y and �x, (2) z′1 and z′2 are the variables corresponding to the functions used in 
the terms t1 and t2, and (3) ψ′ is the Fol formula obtained from ψ by replacing each occurrence of a term 
tfi with the corresponding variable zi:

ϕ � ∀�z. ℘. ((�y = �x) ↔ z′1 = z′2) ∧ ψ′.

To conclude, the correctness of the translation can be shown by first applying Theorem 8 to ϕ, obtaining 
the Meta-ADF formula

hsp(℘) .∀�z. ((�y = �x) ↔ z′1 = z′2) ∧ ψ′,

and then proceeding with a standard induction on the length of the quantifier prefix (Qifi)ki=1. �
Appendix D. Proofs of Section 5

In order to prove Theorem 12, we shall first prove two additional lemmata. The first one states a Skolemi-
sation property for Meta-ADIF. A sentence of Meta-ADIF in prenex form that only has meta quantifiers 
Σ or Π can be viewed as an Sol formula. Therefore, we can use classic Skolem results to define a function 
Skx for the first existentially quantified variable x such that if F is a function assignment of variables (univer-
sally) quantified before x, then F[x �→ Skx(F)] satisfies the subformula that follows the quantification of x.
We need some preliminary notation. For a quantifier prefix ℘ = Q±W0

0 x0 . . . Q±Wn
n xn and a quantifier symbol 

Q ∈ {Σ, Π}, the set vrQ(℘) = {xi|Qi = Q} collects all the variables quantified in ℘ using the specific symbol 
Q. A Skolemisation for ℘ is a sequence (Skxi

: (
∏

j<i Fnc�±Wj�) → Fnc�±Wi�)xi∈vrΣ(℘) of functions, one for
each variable xi of ℘ quantified by the existential meta quantifier Σ and each one intuitively mapping the 
interpretations of the variables preceding xi in ℘ to some interpretation for xi. A Skolem extension of F w.r.t.
a Skolemisation (Skxi

)xi∈vrΣ(℘) for ℘ is a function assignment F′ such that: (i) dom(F′) = dom(F)∪vr(℘); (ii)
F′(x) = F(x), for x ∈ dom(F)\vr(℘); (iii) F′(xi) ∈ Fnc�±Wi�, for xi ∈ ℘; and (iv) F′(xi) = Skxi

((F′(xj))j<i),
if xi ∈ vrΣ(℘). Observe that F assigns a function to each variable in ℘, using the Skolemisation for the 
existentially quantified variables and arbitrary functions for the universally quantified ones. We can now
state the following lemma.

Lemma 13 (Meta-ADIF Skolemisation). Let X be a hyperteam, F a function assignment and ϕ = ℘ψ

a Meta-ADIF formula in prenex form, where ℘ = Q±W0
0 x0 . . . Q±Wn

n xn with Qi ∈ {Σ, Π} for i ≤ n. The 
following holds: A, F, X |=α

ϕ iff there exists a Skolemisation (Skxi
)xi∈vrΣ(℘) for ℘ such that A, F′, X |=α

ψ,
for all Skolem extensions F′ of F w.r.t. (Skxi

)xi∈vrΣ(℘).

Proof. We prove the result by induction on the size of vrΣ(℘).

Base case vrΣ(℘) = ∅. The only Skolemisation for ℘ is the empty sequence of functions. A simple application 
of the semantic rules for the universal meta quantifiers, applied to Πxi for each i ≤ n, gives the result.

Inductive case. Suppose the property holds for all formulae with |vrΣ(℘) | < n. We construct Skx for each 
x ∈ vrΣ(℘) with the desired properties. Let i0 be the smallest integer such that xi0 ∈ vrΣ(℘), so that
we can set ϕ = Π±W0x0 . . .Π±Wi0−1xi0−1 Σ±Wi0 xi0ϕ

′ and ϕ′ = Q
±Wi0+1
i0+1 xi0+1 . . . Q±Wn

n xnψ = ℘′ψ. By
application of the semantic rules for the first i0 − 1 universal meta quantifiers and the first existential 
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one, we obtain that A, F, X |=α
ϕ iff for every sequence of functions (Fxj

)j<i0 , with Fxj
∈ Fnc�±Wj�,

there is function Fxi0
∈ Fnc�±Wi0 � such that A, F′, X |=α

ϕ′, with F′ = F[x0 �→ Fx0 , . . . , xi0 �→ Fxi0
].

Now, since vrΣ(℘′) < n, by inductive hypothesis A, F′, X |=α
ϕ′ iff there is Skolemisation (Sk′

xi
)xi∈vrΣ(℘′)

for ℘′ such that A, F′′, X |=α
ψ, for every Skolem extension F′′ of F′ w.r.t. (Sk′

xi
)xi∈vrΣ(℘′). We then 

have that A, F, X |=α
ϕ iff for all sequences of functions (Fxj

)j<i0 with Fxj
∈ Fnc�±Wj�, there exist a 

function Fxi0
∈ Fnc�±Wi0 � and a Skolemisation (Sk′

xi
)xi∈vrΣ(℘′) for ℘′ such that A, F′′, X |=α

ψ, for every
Skolem extension F′′ of F[x0 �→ Fx0 , . . . , xi0 �→ Fxi0

] w.r.t. (Sk′
xi

)xi∈vrΣ(℘′). Since the choices of Fxi0
and 

of the Skolemisation (Sk′
xi

)xi∈vrΣ(℘′) depend on the sequence (Fxj
)j<i0 , where Fxj

∈ Fnc�±Wj�, obviously
there exists a Skolemisation (Skxi

)xi∈vrΣ(℘) for ℘ such that A, F′′, X |=α
ψ, for all Skolem extension F′′

of F w.r.t. (Skxi
)xi∈vrΣ(℘). Indeed, for all sequences (Fxj

)j<i0 , the function Fxi0
and the Skolemisation 

(Sk′
xik

)xi∈vrΣ(℘′) defined as follow satisfy the properties shown above:

• Fxi0
= Skxi0

((Fxj
)j<i0);

• Sk′
xik

((Fxj
)i0<j<ik) =Skxik

((Fxj
)j<ik), for all xik ∈ vrΣ(℘′) and sequence of functions (Fxj

)i0<j<ik .�
The second lemma proves a property of the independence game �A

ϕ defined in Construction 2 for an ADIF

sentence ϕ and a structure A. It states that, after a history ρ, no matter how the functions in each bucket
are chosen, the only assignment that is coherent with the functions in the bucket is the one associated 
with the last position of ρ. In the following, we consider an ADIF sentence ϕ = ℘ψ in prenex form, with 
℘ = Q±W0

0 x0 . . . Q±Wn
n xn for Qi ∈ {∀,∃}, and ψ quantifier free. For every subformula φ = Q±Wi

i xiφ
′, we rename 

the buckets Bφ(π) by Bxi
(π) and the functions Fφ(χ) by Fxi

(χ), and associate priorities with variables by
setting pr(xi) = pr(φ). Let B � 2Fnc denote the set of all buckets. For convenience, we set X = {x0, . . . , xn}
and Xi = {x0, . . . , xi}, X∃ = {xi ∈ X| Qi = ∃} and X∀ = X \X∃. We also introduce choice functions over
buckets. Basically, a choice function over buckets chooses, for each variable x, a function F in the bucket of 
x. It takes both Bx(π) and x in input because there might be multiple variables with the same bucket (for
instance, when they all depend exactly on the same variables and the same value have been played for all 
of them during the play). The set ChcB of choice functions over buckets is defined as follows:

ChcB = {μ : (B ×X) → Fnc | ∀B ∈ B,∀x ∈ X,μ(B, x) ∈ B} .

Given a function Fj ∈ Fnc�+Wj� for each variable xj ∈ Xi with i ≤ n, we define χ((Fj)j≤i) ∈ Asg(Xi) as 
the unique assignment χ such that χ(xj) = Fj(χ �

mvrϕ
(
Q
±Wj
j xj .φ′

)) for every j ≤ i. We say that χ is coherent

with (Fj)j≤i.

Lemma 14 (Buckets soundness). Let ϕ =℘ψ an ADIF formula in prenex form, where ℘ = Q±W0
0 x0 . . . Q±Wn

n xn.
For every choice function μ ∈ ChcB over buckets and every play π = ρv of �A

ϕ, with v = (φ, χ, ♣) where 
♣ ∈ {�, �}, the following holds:

• if ♣ = �, it holds χ = χ((μ(Bxj
(π), xj))xj∈mvrϕ(φ));

• if ♣ = �, it holds χ = χ((μ(Bxj
(π), xj))xj∈mvr(ϕ)).

Proof. We prove this lemma by induction on the history ρ.
For the base case history, the property is trivial.
For the induction case, suppose the lemma holds for a history ρ = ρ′v′ with v′ = (φ′, χ′, ♣). Consider a 

history of the form ρv. There are two cases to consider: either ♣ = �, or ♣ = �.

(♣ = �) There are again two cases to look at:
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Fig. D.15. Dependency graph of Theorem 12.

1. if φ′ = ψ, then the only possible successor position v in the game is (ϕ, χ′, �). So, by the definition 
of bucket, the fact that mvrϕ(ψ) = mvr(ϕ), and a direct application of the inductive hypothesis, the 
property holds for ρv.

2. if φ′ = Q±Wi
i xi. φ, then v is of the form (φ, χ, �). The only bucket that might change is Bxi

. By
definition, if x ∈ free(φ), then any function F ∈ Bxi

(ρv) ⊆ Fxi
(χ) satisfies F(χ) = χ(xi). Moreover,

by Construction 1, it holds that χ(xj) = χ′(xj), for every xj ∈ mvrϕ(φ′). The thesis follows from the 
inductive hypothesis.

(♣ = �) If φ′ = ψ, there is no reachable position. So, the only possibility is φ′ = Q±Wi
i xi. φ. There are again 

two possibilities:

1. v is of the form (φ, χ′, �). In this case, by the definition of bucket and a direct application of the 
inductive hypothesis, the property immediately follows for ρv.

2. v is of the form (φ, ̊χ[xi �→ a], �), for some a ∈ A with a �= χ′(xi), where χ̊ � χ′�
mvrϕ

(
Q±Wi
i xi.φ

)
and xi ∈ free(φ). The only bucket that may change is Bxi

. Clearly, every function F ∈ Bxi
(ρv) ⊆

Fxi
(χ̊[xi �→ a]) satisfies F(χ̊[xi �→ a]) = χ̊[xi �→ a](xi) = a. Moreover, by Construction 1, it holds that

χ̊[xi �→ a](xj) = χ′(xj), for every xj ∈ mvrϕ(φ′). The thesis follows from the inductive hypothesis. �
Theorem 12 (Game-Theoretic Semantics). For a finite structure A and an ADIF sentence ϕ in prenex
form, there exists an independence game �A

ϕ such that A |= ϕ ( resp., A �|= ϕ) iff �A
ϕ is won by Eloise ( resp.,

Abelard).

Proof. (See Fig. D.15.) We prove that if the sentence is true in A, then Eloise wins the game and if the 
sentence is false, then Abelard wins the game.

First, suppose that the sentence ϕ is true in A. By Theorem 8, ϕ is equivalent to the Meta-ADIF

sentence hsp(℘)ψ. So, by Lemma 13 and recalling that in hsp(℘) the order of the quantifiers is reversed,
we can conclude that there is a Skolemisation (Skxi

: (
∏

j>i Fnc�±Wj�) → Fnc�±Wi�)xi∈X∃ for ℘ such that
A, F, { {∅} } |=α

ψ, for every Skolem extension F of the empty assignment w.r.t. (Skxi
)xi∈X∃ . We now define 

a strategy for Eloise and then prove that it is winning. Intuitively, the strategy consists in looking, by
means of the buckets, at one possible function assignment of the variables controlled by Abelard and, then,
applying what is prescribed by the Skolemisation (Skxi

)xi∈X∃ to select the values for the variables controlled 
by Eloise. Formally, let us fix a choice function μ ∈ ChcB on the buckets. Given a history ρ, we define Fρ

i

for i ∈ {0, . . . , n} as follows. If xi ∈ X∀ then Fρ
i = μ(Bxi

(ρ), xi), otherwise, Fρ
i = Skxi

((Fρ
j)j>i). When Eloise 

must make a move for the variable xi at the history ρ = ρ′v′, with v′ = (φ, χ, _), she moves to the position 
v = (φ′, χ′, _) with χ′(xi) = Fρ

i(χ). Observe that this strategy does not depend on the current phase of the 
game.

Consider now a finite play π = ρv, with v = (ψ, χ, �), compatible with the strategy. We define a choice 
function μ̂ as follows: for all xi ∈ mvr(ϕ)

μ̂(Bxi
(π), xi) = Fπ

i
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Fig. D.16. Dependency graph of all Theorems.

The function μ̂ is a choice function since, if xi ∈ X∀, by definition, Fπ
i ∈ Bxi

(π) and if xi ∈ X∃, then because 
Eloise played according to Fπ

i , this function is in the bucket of xi. Lemma 14 ensures that the assignment
χ is coherent with (μ̂(Bx(π), x))x∈mvr(ϕ). By definition of (Skxi

)xi∈X∃ , it holds that χ |= ψ. Therefore, the 
play is won by Eloise.

Let us now consider an infinite play π ∈ Playω compatible with the strategy (Fρ
i)0≤i≤n,ρ∈Hst. Toward a 

contradiction, suppose that the priority pr(π) of the play is odd. Then, there must be a variable xi ∈ X∃
such that (i) pr(xi) appears infinitely often in cht(π) and (ii) for all j > i the priority pr(xj) appears only
a finite number of times. Recall that if a variable x is not “caught cheating” in a finite infix π′ = ρv of 
π, then Bx(π′) ⊆ Bx(ρ). But then, since we assumed the domain to be finite, starting from some index N
along the play π, the buckets for each xj, with j > i, remain constant forever. Let us denote the constant
bucket of xj by B′

xj
. Then, for j > i, it holds that Fρ

j is the same for all histories ρ longer than N (due to 
B′

xj
being constant). Therefore, Fρ

i is also constant for all histories ρ longer than N , and thus it belongs to 
B′

xi
. As a consequence, the bucket of xi is never emptied and xi would never get “caught cheating”. This is 

a contradiction. We proved that if the sentence is true, then Eloise has a winning strategy in �A
ϕ.

The second part of the proof proceeds similarly, in that we can apply the same exact reasoning, with only
the roles of Eloise and Abelard exchanged, to obtain a winning strategy for Abelard when the sentence is 
false. �

Fig. D.16 is a dependency graph of all theorems. Theorem 3 does not appear in the tree as its proof is 
independent from the other theorems and is not used in any proof.
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