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Molecular orientation entanglement and temporal Bell-type inequalities

P. Milman,1 A. Keller,1 E. Charron,1 and O. Atabek1

1Laboratoire de Photophysique Moléculaire du CNRS, Univ. Paris-Sud 11,

Bâtiment 210–Campus d’Orsay, 91405 Orsay Cedex, France

We detail and extend the results of [Milman et al. , Phys. Rev. Lett. 99, 130405 (2007)]
on Bell-type inequalities based on correlations between measurements of continuous observables
performed on trapped molecular systems. We show that, in general, when an observable has a
continuous spectrum which is bounded, one is able to construct non-locality tests sharing common
properties with those for two-level systems. The specific observable studied here is molecular spatial
orientation, and it can be experimentally measured for single molecules, as required in our protocol.
We also provide some useful general properties of the derived inequalities and study their robustness
to noise. Finally, we detail possible experimental scenarii and analyse the role played by different
experimental parameters.

PACS numbers: 03.65.Ud;03.67.-a;33.20.Sn

I. INTRODUCTION

Quantum mechanics allows for the existence of states
without any classical correspondence. Examples of such
states are entangled states, that may appear when de-
scribing the total state of a many particle system, or
when describing different degrees of freedom of a sin-
gle particle. Entangled states cause debate because they
can present properties which contradict our classical intu-
ition. In addition, some of these properties can be use to
increase the security of quantum communication and the
efficiency of algorithmic protocols when compared with
classical techniques. This is why so much attention has
been payed to problems belonging to the foundations of
quantum mechanics, and in particular to quantum entan-
glement, which is believed to be one of its main traits [2].
One of the most important discussions on entanglement
and its conflicts with classical physics concerns the real-
ism and (non-)locality of quantum physics. As pointed
out by Einstein, Podolski and Rosen in the so called EPR
[1] paradox, entangled states are closely connected to ap-
parent contradictions between quantum mechanics and
fundamental physical assumptions. Even if experimen-
tal evidence has been obtained to support quantum me-
chanics against the EPR criticism [5], it is still a matter
of debate if such experiments were realised in the ideal
conditions, closing all the loopholes, so as a definitive
conclusion can be reached. At the same time, from the
fundamental point of view, identifying precisely which es-
sential quantum properties are involved in local realism
violation is still an open problem. This is why extend-
ing local realism tests to different physical systems and
different physical scenarii still presents so much interest.

A common property of non-local states is entangle-
ment. In spite of its importance and consequences in
different physical contexts, it remains an open question
to determine whether a general quantum system is en-
tangled or not and to quantify the degree if entangle-
ment of a given state. The problem has been solved for
some particular cases, as for a general bipartite system

of dimension H2 ⊗H2 and H2 ⊗H3 [7], where Hd is the
one particle Hilbert space of dimension d. In such cases,
necessary and sufficient conditions for telling whether a
given state is entangled or not exists. In other particular
cases, or subspaces, one can also find necessary and suffi-
cient conditions. For instance, entanglement in bipartite
pure states can always be recognised and quantified ir-
respectively of each parties’ dimension. However, when
dealing with arbitrary states, including the more realis-
tic mixed ones, only necessary conditions for separability
(non-entanglement) can be provided. A notion that will
be useful in the following of this paper is the one of en-
tanglement witnesses, defined as an operator Ŵ for which
the expectation value 〈Ŵ 〉 ≤ S for all separable states.

This ensures that the state is entangled if 〈Ŵ 〉 > S. On

the contrary, the case 〈Ŵ 〉 ≤ S [6] is not conclusive. Ex-
amples of entanglement witnesses that are also useful for
fundamental tests of quantum mechanics are Bell-type
inequalities [12], which are the main scope of this paper.

Bell-type inequalities are composed of combinations
of observables that, when measured, allow for setting a
board between crucial aspects of quantum theory and the
classical one. They were formulated by J. S. Bell [3] as a
late reply to the EPR criticism to quantum physics [1].
Bell inequalities aim at answering the question: is quan-
tum mechanics a local and realistic theory? In order
to do so, they combine correlations between local mea-
surements realised in a multiparty system. Since their
first formulation, several other inequalities have been pro-
posed, some studying the same type of problem as Bell,
other generalising locality and realism tests to many ob-
servers and many possible observables. There are a num-
ber of Bell type inequalities, and classifying all of them
is a work by itself [8].

The inequalities derived here follow the original for-
mulation of Clauser, Horne, Shimony and Holt (CHSH)
[4], and deal with the following scenario: two observers A
and B perform local measurements on a bipartite system.
Each observer can chose among two experimental set-ups
(a and a′ for A and b and b′ for B). Each measurement

http://arxiv.org/abs/0809.3150v2
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performed by A and B can give only two outcomes. At
its origin, CHSH inequalities have been formulated for
a pair of spin 1/2 particles or equivalent two–level sys-
tems. In the framework of local hidden variable (LHV)
theories the measurement outcomes correlation statistics
which must fulfil:

|〈σaσb〉+ 〈σaσb′〉+ 〈σa′σb〉 − 〈σa′σb′〉| ≤ 2, (1)

where σα is the Pauli matrix in the α direction. Briefly,
in a LHV theory, one assumes that measurements per-
formed by each observer are independent and their out-
comes have a probability distribution which is a product
of independent probabilities for each subsystem. Such
probabilities can also depend on some random local vari-
able. Details are discussed in many works, as [26], for
instance. It can be shown that some entangled states
can violate (1), and this experimental violation was ob-
served using photon pairs entangled in polarization [5].
In this case, directions a, a′, b and b′ refer to different
orientations of polarizers placed before the detectors, de-
termining the direction of the Pauli matrix that is mea-
sured. It was shown by Cirelson [29] that the maximum

value of (1) is 2
√
2, and it is easy to verify that this max-

imal violation can be obtained with maximally entangled
states.
Inequalities as (1) have proved to hold for two-level

systems or equivalent ones. By “equivalent ones”, we
also include Bell type inequalities involving a continuum
of possible measurement outcomes that are dichotomised
and transformed into a two outcomes measurement set-
up. Dichotomization works as follows: one splits in two
classes the range of possible measurement outcomes. All
results obtained lying in one of the classes is identified to
a given value (+ or −) and the results obtained in the
complementary space are associated to the opposite sign.
Some examples of systems where this can be sucesfully
done are optical fields [9, 10]. An interesting problem is
to derive Bell-type inequalities for continuous variables
without appealing to dichotomisation. Cavalcanti et al.
found a way out by using second moment correlations
instead of first moment ones, as done in CHSH-type in-
equalities as (1) [20]. Here, we deal with this problem
in a different way: by using bounded observables, one
can still use CHSH-type inequalities to detect non-local
properties. In this case, a Cirelson bound depending on
the norm of the measured observable can also be derived,
even if, at least for the specific case treated in this pa-
per, we have not shown yet that it can be attained. An
interesting property of the inequality discussed in this
work is that it can be used not only for infinite dimen-
sional systems, but also in N levels systems, where N
is a finite number. In this case, the numerical value of
the bound splitting between a local theory and non-local
one depends on the maximal eigenvalue of the measured
observable.
Up to now, several studies have been made on Bell-type

inequalities in different contexts. The general conclu-
sion is that the subject still presents several open ques-

tions and no general theory is available. In particular,
a number of intriguing features coming out from such
studies somewhat contradict our acquired quantum “in-
tuition”: in [25] it is numerically shown that bipartite
multidimensional states may violate locality tests more
than two qubits. For two qubits, it has been proven
that a maximal violation exists, and it is given by the
Cirelson bound[29], as will be discussed hereafter. Acin,
Gill and Gisin showed, some years later, also using nu-
merical tools, that the maximal violation for pure bipar-
tite multidimensional systems is not obtained for maxi-
mally entangled sates [24]. General rules relating local
realism violation and entanglement have not yet been
found, even if it has been proven that all non-local states
are entangled in some way. This fact can be easily un-
derstood with the help of entanglement witnesses. It has
been shown in [12] that Bell-type inequalities are entan-
glement witnesses, and all non-local states are entangled.

The inequalities studied in this paper are based on
molecular spatial orientation correlations measurements
[22] instead of spin-like observables. However, the same
type of idea can be generalised to other continuous
bounded observable. We have shown that they can be
implemented using time delayed measurements of corre-
lations between the spatial orientations of two molecules.
As in usual Bell inequalities scenarios, the proposed non-
locality tests rely on measurements performed indepen-
dently on each molecule by observers placed far apart
enough, so that no communication between them is possi-
ble during the realization of the protocol. We have shown
that the proposed inequalities can be violated by a set
of entangled states. An interesting point is that the in-
equalities derived in the present paper can also be used
as entanglement witnesses, as shown, for general CHSH-
tye inequalities in [6]. In this situation, one can loosen
measurement conditions, since we are interested only in
detecting a particular quantum correlation, and not a
fundamental aspect of quantum physics.

From the experimental point of view, motivations for
this work are the recent advances in single molecule ma-
nipulation and detection with entanglement creation [13]
and quantum information purposes [14, 16, 17, 18]. In
particular, trapped cold polar molecules are promissing
candidates for quantum information processing based on
the manipulation of their rotational levels [27]. Rota-
tional states, which are also involved in the Bell-type
inequalities studied in the present paper, are relatively
long lived, allowing for short quantum gate implemen-
tation times: one can hope to perform about 104 gate
operations before decoherence takes place. This excel-
lent performance when compared to cold collision based
quantum gates [19] is due to the strength of molecular
interactions, based on dipolar forces.

The present paper is organised as follows: in section II
we discuss some general properties of Bell-type inequal-
ities that are useful in the context of the non-locality
tests we propose. In section III we explicit the inequali-
ties based on molecular orientation and show how it can
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be used for non-locality tests. We exploit its performance
and study some entangled states that violate it. We then
discuss some constraints involved in an eventual physi-
cal implementation of our ideas in section IV, ending up
with a concluding note in section V

II. GENERAL PROPERTIES

We describe now some general properties of the in-
equalities studied in the present paper. Our inequalities
involve four observables that can be combined as follows:

B = O1(φ1)⊗O2(φ2) +O1(φ1)⊗O2(φ
′
2) + (2)

O1(φ
′
1)⊗O2(φ2)−O1(φ

′
1)⊗O2(φ

′
2).

The operators appearing in the equation above are de-
fined as follows: operators Oi(φi), i = 1, 2 are local ob-
servables chosen by observers 1 and 2. The variables
φi also depend on local properties only, and Oi(φi) =
U(φi)O(0)U

†(φi), with U(φi) a one-parameter group of
unitary operators with periodicity 2π. If the operator
Oi(φi) is bounded, we can show that, under the assump-
tion of local realism, (2) satisfies:

|〈B〉| ≤ S, (3)

where S is a number, representing the maximal allowed
value for a local theory to hold whenever measurements of
correlations between observables are compared as in (2).
The basic assumption to derive (3) is that correlations
can be described by probability distributions which are
independent for each party (1 and 2) and depend only on
local parameters and that the spectrum of observables
Oi(φi) is bounded. The same inequality can be derived
by assuming that the average of B is taken with respect
to a separable (non-entangled) states.
For simplifying reasons, we focus on the specific case in

which the norm of Oi(φi) is the same for each subsystem
and is equal to λmax. In this case, the numerical value
of S is S = 2λ2max.
Quantum mechanics can violate inequality (3), but in

order to do so, observables Oi and the state considered
should be judiciously chosen. In order to check whether
an inequality of the type of (3) allows for a non-locality
test, one should maximize the left side of (3) for an arbi-
trary bipartite quantum state. If the maximum obtained
value is greater than S, all states violating (3) are non-
local.
Before proceeding on testing the power of inequali-

ties of the type of (3) for non-locality tests using the
proposed molecular orientation-related observables, we
demonstrate some simple general properties of (2) which
are independent of the observables Oi. Such properties
are useful since they help to simplify the numerical op-
timization while giving some physical insight. We show
that, thanks to these properties, the number of degrees of

freedom to be considered in order to evaluate the max-
imal value of the violation is decreased. We start by
decomposing operators Oi(φi) in terms of unitary trans-
formations. Using the group property U(φi + φj) =
U(φi)U(φj) we can write:

B = (U1(φ1)⊗ U2(φ2))(O1(0)⊗O2(0)) + (4)

O1(0)⊗O2(φ
′
2 − φ2) +

O1(φ
′
1 − φ1)⊗O2(0)−

O1(φ
′
1 − φ1)⊗O2(φ

′
2 − φ2)(U

†
1 (φ1)⊗ U †

2 (φ2)),

or, more succinctly,

B = (U1(φ1)⊗ U2(φ2)) (5)

B(0, 0, φ1 − φ′1, φ2 − φ′2)(U
†
1 (φ1)⊗ U †

2 (φ2)),

with

B(0, 0, φ1 − φ′1, φ2 − φ′2) ≡ O1(0)⊗O2(0) + (6)

O1(0)⊗O2(φ
′
2 − φ2) +

O1(φ
′
1 − φ1)⊗O2(0)−

O1(φ
′
1 − φ1)⊗O2(φ

′
2 − φ2),

The interest of such decomposition is that operator
B(0, 0, φ1 − φ′1, φ2 − φ′2) depends only on two variables
and possesses the same spectrum as B. Thus, B(0, 0, φ1−
φ′1, φ2−φ′2) and B share the same entanglement witness-
ing properties. Of course, B and B(0, 0, φ1 −φ′1, φ2 −φ′2)
do not detect the same entangled states. Nevertheless,
they are connected by a local unitary transformation.
The first question we wish to answer concerns the use-

fulness of orientation correlation measurement for non-
locality tests. In order to answer that, it is enough to
determine the norm of B(0, 0, φ1 − φ′1, φ2 − φ′2).
In the next section, we will study a specific example of

an operator O1,2(φ1,2), and the physical meaning of the
previous results will be made explicit.

III. ORIENTATION BASED NON-LOCALITY

TEST

A. Molecular orientation and correlation

We introduce now an essential ingredient for the in-
equalities studied in the present paper, which is molec-
ular spatial orientation. Molecular orientation is an ob-
servable, and its classical correspondent is the spatial ori-
entation of the molecular inter-atomic axis with respect
to some reference frame. By supposing that the molecules
are addressed and manipulated by a linearly polarized
laser field, we can define the laser’s polarization axis as
z, and take it as a reference for molecular orientation.
In this case, the orientation of a given molecular state

can be defined as the average value of operator cos θ̂,

where θ̂ is the angle relative to the z axis. Note that

here, cos(θ̂) is taken as an operator, in perfect analogy
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to the position operator and related functions. Orienta-
tion as defined above can be experimentally measured,
as discussed below.
Since we are interested on probing properties related

to a two party system, our system is composed by two
molecules. We suppose that they behave like rigid ro-
tors that can freely evolve. Their state depends thus on
the time t. The Hamiltonian describing each individual
molecule’s free evolution is Hi = J2

i /~
2, where i = 1, 2.

It is expressed in units of the rotational energy. Ji is
the angular momentum operator and therefore the as-
sociated evolution operator is given by Ui(t) = e−iπHit,
where time t is written in units of the rotational period.
Ui(t) is therefore time-periodic with period 1.
For each molecule of the bipartite set, the orientation

at time t is defined as the expectation value of the Ôi(t) =

U−1
2 (t)⊗U−1

1 (t) cos(θ̂i)U1(t)⊗U2(t) operator, 〈Ôi(t)〉 =
〈ψo|Ôi(t)|ψo〉, where |ψo〉 is the initial state of the system.
Orientation correlations between two particles are given
by the average value of 〈C(t1, t2)〉 = 〈O1(t1) ⊗ O2(t2)〉,
and this quantity can be measured at different times t1
and t2 for each molecule. Operator cos θ̂ is useful for
entanglement detection since it “mixes” different values
of j, without affecting their projectionm. Previous works
have considered correlations between different values of
the projection m of a given (fixed) value of j [11, 31].
With an arbitrary accuracy, each molecule’s state (sub-

scripts have been omitted) can be considered to reside in
a finite dimensional Hilbert space H generated by the
basis set {|j,m〉; 0 ≤ j ≤ jmax, |m| ≤ j}, where |j,m〉 are
the eigenstates of J2 and Jz . Note that H has dimen-
sion (jmax + 1)2. The corresponding wavefunctions are
〈θ, ϕ|j,m〉 = Yjm(θ, ϕ), the spherical harmonics. In the

finite space H(jmax), the cos θ operator is characterized
by a discrete, non degenerate spectrum of eigenvalues
λn, with corresponding eigenvectors |λn〉, also called ori-

entation eigenstates. The two maximally oriented states
|+〉 and |−〉 are the two eigenstates corresponding to the
extreme eigenvalues ±λmax, where λmax ≡ Maxn(λn).
In the particular case of jmax = 1 and m = 0, max-
imally oriented states can be written in the basis of
the angular momentum eigenstates |0, 0〉 and |1, 0〉 as

|+〉 =
√

1/2(|1, 0〉+|0, 0〉) and |−〉 =
√

1/2(|1, 0〉−|0, 0〉).
In this particular case, cos θ =

√

1/3σ̂x and we recover
the results of a two-level system. In this context, the
free evolution operator Ui(t) changes the orientation of a
state, since orientation eigenstates are not eigenstates of
the free Hamiltonian. Time evolution creates superpo-
sitions of orientation eigenstates, exactly as it happens
when one projects photon’s polarization with polarizers.

B. The inequalities

We can now combine all the ingredients to build the
orientation based Bell-type inequalities. We start with a
system composed by two molecules, and measurements
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FIG. 1: (Color online) Maximal value of 〈B1〉 as a function of
t1 and t2 in units of the rotational period. Left z–axis: highest
eigenvalue β1. Right z–axis: relative violation b1 defined by
Eq. (10). (a): jmax = 1, m = 0, (b): jmax = 5, m = 0.

independently performed in each one of them should be
combined in order to tell whether the total molecular
state violates or not local realism. The two molecule
bipartite state |ψo〉 has been created at a given time
to after which it freely evolves. We suppose that, af-
ter to, there is no interaction between molecules. The
total molecular state is thus given by the wavefunction
ψ(θ1, θ2, ϕ1, ϕ2, t) ≡ 〈θ1, θ2, ϕ1, ϕ2|ψ(t)〉, where θi and ϕi

denote here the polar and azimuthal spherical coordi-
nates in the laboratory frame.
This state is the one whose non-local properties are

to be checked. We can use it to compute the average
values of 〈Ĉ(t1, t2)〉 and combine such correlations taken
at different times in a way analog to Eq.( 1) and (2),
defining the operator

B1(t1, t2, t
′
1, t

′
2) ≡ (7)

C(t1, t2) + C(t1, t
′
2) + C(t′1, t2)− C(t′1, t

′
2).

For a local theory (LT), it obeys an inequality similar to
Eq. (3):

|〈B1〉LT| ≤ 2(λmax)
2; ∀(ti, t′i) ∈ R

2. (8)

Without loss of generality, we have assumed that each
particle state resides in the same finite dimensional
Hilbert space H(jmax). Notice that, in Equation (7), time
plays the role of polarisers in Bell inequalities based in
the photonic polarisation. Other CHSH inequalities us-
ing the time evolution instead of polarizers were studied
in the literature in very different contexts: in [26, 32, 33]
they allow the detection of entanglement between prod-
ucts of decaying mesons. In [34, 35], they reveal quantum
properties of single particles.
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FIG. 2: Relative violation of the inequality (8) as a function
of the dimension of the subspace for m = 0. Blue: relative
violation with respect to the locality threshold when only the
finite dimension subspace is considered. Red: relative viola-
tion when the infinite dimensional threshold of 2 is considered.

We note that (8) is valid for all possible values of
jmax, and that it can, in particular, be extended to the

limit jmax → +∞, in which case the spectrum of cos θ̂
forms a continuum. An interesting characteristic of the
separability threshold (8) is its dependence on λmax.
We will see in the next subsection how the general

properties of CHSH-type inequalities can be used in the
specific case discussed in this paper to show that the
studied inequalities can be violated.

C. Reference Frame and Temporal Origin

A straightforward application of the results derived in
section III consists of showing that, in order to study the
spectrum of B1, we can, without loss of generality, numer-
ically diagonalize it in the specific case of t′1 = t′2 = 0.
This result is due to the fact that both operators are
related by a local unitary transformation. Using the no-
tation of Section II, we have here that t1 = φ′A − φA
and t2 = φ′B − φB . Another interesting application of
the general results of Section II consists of showing that
the inequalities discussed here allow for local realism vi-
olation even in the case where observers A and B have
different time origins. The same happens for the spatial
reference frame: violation is independent of any previous
agreement between observers. However, different tempo-
ral origins and reference frames correspond to different
non-local detected states, that are related to each other
by local unitary transformations.
We start by discussing in more details the time origin

chosen by both observers. Usually, the orientation Bell-
type inequalities depend on four times of measurements,
as defined in Eq. (7). However, as pointed out previously,
different times correspond to the application of different
unitary transformations. We can thus apply the results

of section III, identifying the general operator Ô to the

operator cos θ̂. This leads to the inequalities:

〈B1(t1, t2, t
′
1, t

′
2)〉 = 〈B1(0, 0, t

′
1 − t1, t

′
2 − t2)〉 ≤ 2λ2max,

(9)
The first identity shows that states maximally violat-
ing the Bell-type inequality for t1, t2, t

′
1, t

′
2, defined as

|smax(t1, t2, t
′
1, t

′
2)〉 can be obtained by the one maxi-

mally violating it for 0, 0, t′1− t1, t
′
2− t2, that we will call

|smax(0, 0, t
′
1−t1, t′2−t2)〉 by the application of the trans-

formation U(t1)⊗U(t2)|smax(0, 0, t
′
1− t1, t′2− t2)〉. Tem-

poral uncertainties of τ1, τ2 for each one of the molecules
can always be translated as the application of the uni-
tary operator U(τ1) ⊗ U(τ2), so that their only effect is
to change the eigenstates of operators Bi by the same
transformation. Violation can thus still be observed, and
the subspace of states violating local realism are obtained
by a simple unitary transformation on the original sub-
space.
The same type of argument can be used for uncertain-

ties of the reference frame for each observer. All reference
frames are connected by local unitary transformations
describing rotations about some direction of space, and
results for different references frames are connected by
these same unitary transformations.
We apply these results to simplify the investigation of

possible violations of inequality (8).

D. Results

For a given value of jmax, we have numerically diag-
onalized operator B1(0, 0, t1, t2), and obtained for each
(t1, t2), its highest eigenvalue β1(t1, t2), which gives the
maximal value of 〈B1〉 (maximal violation of (8)). This
quantity depends on the dimensionality of the system,
and we compare the amplitude of the violation when dif-
ferent values of jmax are used by defining the relative
violation

b1(t1, t2) ≡
β1(t1, t2)− 2(λmax)

2

2(λmax)2
. (10)

Results for different values of jmax and m = 0 are shown
in Figure 1. We can see that the proposed inequalities
are violated for a significant region of parameters t1 and
t2. Figure 1 also calls one’s attention because of its sym-
metries. The central symmetry with respect to the point
t1 = t2 = 0.5 corresponds to the time reversal symme-
try. One can also easily understand the mirror symmetry
about the t1 = t2 line with the help of the particle ex-
change symmetry of operator B1.
We have shown in [22] that Eq. (8) can be violated

by a number of pure states, and numerically studied the
relative violation (10) with increasing dimension. The re-
sults, shown in Figure (2) were obtained in a particular
case, where both molecules had a vanishing angular mo-
mentum z axis projection (m = 0 for both molecules).
The effects of considering different values of m will be
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discussed in the following. We focus here in the m = 0
case in order to discuss the behaviour of violation of (8)
with respect to the dimensionality of the system. We see
that the maximal relative violation b1(t1, t2) decreases
with the dimensionality of the system for low dimensions
and then starts smoothly growing starting from jmax = 4
(blue bars, Figure (2)). Up to now, we have not found
an asymtoptical numerical behaviour for jmax → ∞. We
have shown that the maximal violation is bounded by 3.
However, it is still unknown if this value can be reached.
Since the exact behaviour of the violation of inequality
(8) in infinite dimension is still not known, one perti-
nent question is whether the proposed inequality is still
violated in the limit jmax → ∞ for physically accept-
able states. We can see that it is indeed the case by
calculating the violation relative to the classical bound
obtained for an infinite dimensional system. In this case,
the classical threshold separating local theory from non-
local ones is 2, since λmax = 1. Figure (2) shows the
results of such violation (pink bars). We see that states
violating the infinite dimensional classical threshold can
be found when one considers subspaces with dimensions
higher than N = jmax + 1 ≥ 5 for m = 0. In this sub-
space, we can see that the violation relative to the infinite
dimensional threshold is still small. However, by increas-
ing the size of the subspace and going to jmax = 10, we
can see that this relative violation increases, and it is not
negligible when compared to the two dimensional case,
for instance. Notice that the relative violation with re-
spect to the infinite dimensional subspace and the one rel-
ative to the restricted subspace approach with increasing
dimension, as one should expect. Violating the inequal-
ities (8) in the infinite dimensional limit with entangled
states of low dimension is a surprising result that proves
that (8) can be violated for all possible values of λmax.

A natural question is what states maximally vio-
late (8). Since we are dealing here with correlations
in orientation, one could expect that maximally ori-
ented entangled states of the form 1√

2
(|λmax, λmax〉 ±

|−λmax,−λmax〉) are those that maximally violate them.
However, this is not the case, and such state, except for
the case jmax = 1 and m = 0 do not violate (8) at all.
Nevertheless, states maximally violating (8) have most of
their population in highly oriented states. For jmax = 5,
states |λmax, λmax〉 and |−λmax,−λmax〉 carry, each one
of them, 36% of the population. In addition, states max-
imally violating (8) are not maximally entangled (except
in the case jmax = 1, a result which is not surprising and
has been observed for other Bell-type inequalities, as in
??, for example. Using the maximally violating state,
we have computed the reduced density matrix entropy
S = −Tr[ρi log ρi], where ρi is the reduced density ma-
trix with respect to one of the two entangled molecules.
In order to compare S for different values of jmax, we
have normalised it with respect to log (jmax + 1), which
is the maximal value of the entropy in a subspace of di-
mension jmax + 1. The reduced density matrix entropy
is a measure of entanglement for pure states, as the ones

2 4 6 8 10
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E
n
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o
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y

FIG. 3: Normalised entropy of the maximally violating state
as a function of the subspace dimensionalty jmax (dots). Con-
tinuous (green) line represents log 2/ log (jmax + 1).

we are considering here.The results are shown in Fig-
ure(3), together with a plot of log 2/ log (jmax + 1). We
see that the two plots almost completely match, showing
that maximally violating states are very close to entan-
gled states involving only two orthogonal states of each
molecule. We have checked that the two states involved
are the maximally oriented states.
The results presented above were obtained for the spe-

cific case of m = 0 for both molecules. Allowing m to
take a value different from m = 0 does not bring quali-
tative changes to our results: the classical threshold will
still be given by the case m = 0, since it corresponds to
the maximal value of 〈B1〉 for a local state. However,
the dimension of the subspace considered depends on m.
For a given fixed m, it is given by jmax − |m| + 1. The
value of the maximal orientation is thus determined not
only by the dimension of the subspace, but also on the
specific value of m. As a consequence, the maximal value
of 〈B1〉 is determined by the same parameters. For in-
stance, if the considered state is a superposition state
of different m’s, each one of this subspaces will lead to
different contributions when computing 〈B1〉. In partic-
ular, those for which jmax = |m| give a null contribution,
and the maximal possible contribution decreases as |m|
increases for each molecule. Physically, this is related to
the fact that states with high values of the angular mo-
mentum projection |m| are less oriented than those for
which j ≫ |m|. As a conclusion, by considering different
m’s, it is still possible to violate (8), even if fulfilling the
required conditions for it becomes harder.

E. Non-pure states and the effect of noise

We now formalize the conditions a non-pure state
should satisfy in order to violate Eq. (8). This is useful
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to estimate the effect of noise in our system. A non-pure
bipartite state is described by the density matrix ρ1,2,
where the subscripts 1 and 2 refer to each one of the
observers. The average values of (7) can be obtained
from ρ1,2 by using 〈C(t1, t2)〉 = 〈O1(t1) ⊗ O2(t2)〉 =
Tr[ρ1,2O1(t1) ⊗ O2(t2)]. Defining the B1 eigenstates, by
{|si〉}, with i ranging form 0 to (jmax+1)2 if one assumes
that each particle’s subspace have the same dimension
and m = 0, it is clear that the density matrix ρ1,2 can be
expressed in this basis. By doing so, we have that

Tr[B1ρ1,2] =
N2

∑

i

pisi, (11)

where si is the eigenvalue associated to the eigenstate |si〉
of B1, pi = 〈si|ρ1,2|si〉 the statistical weight of each one of
such eigenstates and N = jmax + 1 is the dimensionality
of each molecule’s subspace. This means, that for a local
realistic theory, one should obey

N2

∑

i=1

pisi ≤ 2λ2max. (12)

An example of non-pure state is given by

ρ1,2 = PN
11

N2
+ (1− PN )|smax〉〈smax|, (13)

where 11 is the N2 × N2 identity matrix, |smax〉 is the
eigenstate of B1 with maximal eigenvalue smax and PN

is the probability of the state to be in a complete mixture.
This type of state has been studied in [25] and can illus-
trate the presence of noise in the preparation of a state
|smax〉maximally violating a Bell-type inequality. They
defined that the robustness of a Bell-type test with re-
spect to noise is measured by the maximal allowed value
of PN still leading to locality violation. In the notation
of Eq. (12), 〈smax|ρ|smax〉 = pmax = PN/N

2 + (1− PN )
and 〈si 6= smax|ρ|si 6= smax〉 = pi = PN/N

2. By cal-
culating the expectation value of B1 using (13) one gets
that local realism should obey:

PN

N2

∑

i=1

si
N2

+ (1 − PN )smax ≤ 2λ2max. (14)

Since B1 is traceless,
∑

i si = 0, so the inequality is
violated for PN < 1 − 2λ2max/smax. A plot of PN as a
function of the considered subspace is given in Figure (4).
Notice that, when a two-level system is considered, the
known result of P2 = 1 − 1√

2
is recovered. Contrary to

other Bell-type inequalities for which PN was optimised
[25], the maximal allowed value of noise in our system
decreases with dimensionality up to jmax = 5 and then
starts increasing again, but doesn’t change significantly
in the range of dimensions that we have calculated. This
result shows that the non-local properties of the max-
imally violating state are quite robust with respect to
noise.
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FIG. 4: Maximal value of PN for which our inequalities are
violated as a function of jmax = N − 1

F. Dichotomisation

We have shown that the operator defined by Eq. (7)
allows not only for the realization of Bell-type tests in
finite angular momentum subspaces, but also when the
size of the subspace is not a priori known. This proves
that, even in the case where we consider an infinite di-
mensional space, our inequalities can be violated for some
states. However, as shown previously, the contrast of the
maximal violation depends on the value of jmax. With
dichotomizing procedure, a high dimensional system is
transformed into an effective two level one by splitting in
two the set of measurement outcomes, and the contrast
is kept constant, equal to the one for a two-level system,
irrespectively of jmax. In our case, we can dichotomise
as follows: states |ϕ〉, for which 〈cos θ〉ϕ > 0, are said to
be positively oriented, while those for which 〈cos θ〉ϕ ≤ 0
are considered as negatively oriented. We define the as-
sociated projectors: Π± =

∑

λ±
|λ±〉〈λ±| which project

states in the subspace of positive (negative) orientation.
λ± are the positive (negative) cos θ eigenvalues in the
given finite dimensional subspace and |λ±〉 are the corre-
sponding eigenstates. The measured observable for each
molecule i is then Πi = Π+ − Π−. For a given single-
molecule state |ϕ〉 =

∑

λ+
cλ+

|λ+〉+
∑

λ−
cλ−

|λ−〉, 〈Π〉ϕ
can take any value in the interval [+1,−1]. The total two
molecule observable is Π = Π1 ⊗Π2. We refer, as before,
to two molecule correlation measurements realized at two
different times, using Π(t1, t2) = Π1(t1) ⊗ Π2(t2) where
Πi(ti) = U−1

i (ti)ΠiUi(ti). In analogy with Eq. 7, we now
define the operator

B2 = Π(t1, t2) + Π(t1, t
′
2) + Π(t′1, t2)−Π(t′1, t

′
2). (15)

Since Π(ti, tj)
2 = 1, one can show that the highest value

〈B2〉 can reach is given by the Cirel’son bound 2
√
2 [29].

Also, for a local theory, we have

|〈B2〉LT| ≤ 2; ∀(t1, t2) ∈ R
2. (16)



8

1

0
0.2

0.4
0.6

0.8
0.2

0.4

0.6

0.8

12.1

2.3

2.5

2.7

2.9

β2

0.05

0.15

0.25

0.35

0.45

b2

t1
t2

β2

FIG. 5: (Color online) Same as Fig. 1.b, but for 〈B2〉

As in the case of B1, we can define the relative viola-
tion b2(t1, t2) as a function of the maximal eigenvalue
β2(t1, t2) of B2(t1, t2) (see Equation (10)). The interest
of dichotomisation is that the maximal value of the rel-
ative violation is always given by b2(t1, t2) =

√
2 − 1,

independently of the dimension of the subspace. Fig. 5
shows the maximum value β2(t1, t2) of 〈B2(t1, t2)〉 as a
function of t1 and t2 for jmax = 5, while for jmax = 1 we
obtain trivially the same result as with b1(t1, t2) (Fig. 1.a
right z–axis). We see in Fig. 5 that the dichotomisation
procedure not only keeps the contrast of the maximal vi-
olation constant, but also allows for high violation for a
wider range of values of t1 and t2.

IV. DISCUSSION ON POSSIBLE

EXPERIMENTAL IMPLEMENTATIONS

Orientation entanglement between two molecules can
be created, for instance, with the help of the dipolar in-
teraction [14]. A possible experimental scenario consists
of two trapped molecules that can be submitted to spa-
tial displacements, as it is currently done with atoms
[28]. By putting molecules close enough to each other,
and with the help of laser manipulation, one can tai-
lor rotational entangled states. In order to realise Bell-
type tests, molecules would have to be separated and
measurements performed independently in each one of
them. The proposed scenario is realistic and there has
been rapid progress on cooling, trapping and manipu-
lating polar molecules, especially those formed with two
alcali atoms. We believe that such manipulations are go-
ing to be shown in laboratories in a near future. With
respect to the tests we wish to perform in the present
paper, there are some crucial points to analyse for the
experimental implementation of the proposed Bell-type
inequality test. One of them concerns trapping condi-
tions. Traps should allow molecules to make spatial dis-
placements so that they are sufficiently far apart and so
that signaling of one observer’s results to the other is
not possible during at least one molecular rotational pe-
riod. This condition is attained for an inter-molecular
distance L > cT , where c is the speed of light and T
is the molecular rotational period. To put some num-

bers on it, the molecular period is usually of the order of
10−12s, giving a lower bound to L ≈ 10−6m. Even if at
this distance dipolar interaction between molecules is not
completely negligible, measurements on both molecules
are performed during the same rotational period, which
is much faster than the characteristic interaction time
related to dipolar coupling at this distance (see [14], for
example, for a detailed discussion on the relevant time
scales). Optical traps seem promising candidates to trap
and to displace molecules. Optical tweezers [36], opti-
cal lattices and optical conveyor belts [23] are some ex-
amples of dipole force based optical traps allowing for
atomic trapping and coherence preserving displacements
[23, 28, 37]. In the case of optical tweezers, highly fo-
cused beams are used to trap individual atoms [36], and
we can, in principle, load two atoms, each one of them in
an individual trap [38]. In optical conveyor belts, a sta-
tionary field made of two counter propagating beams is
used to trap atoms, that can be displaced over distances
of ≈ 10nm by changing the relative detuning between
the laser beams [23]. Going from atoms to molecules in
this type of experimental system could in principle be
done by the usual photo association techniques, already
demonstrated in the context of optical lattices [15], where
diatomic molecules of two alcali atoms of the same specie
have been produced. Once molecules are created and
trapped, they interact with each other by dipole interac-
tion and a non-local state may be created, as discussed
in the previous section. Molecules are thus separated un-
til dipole interaction is negligible, and measurements can
be performed. One natural question concerns the effect
of the trapping potential itself to the orientation of the
molecular state. Optical traps are based on an applied
non resonant electric field that interacts with rotational
levels. We suppose that molecules in our setup are cre-
ated in their ground electronic level. The optical trap is
created by coupling non-resonantly this electronic level
to the first excited one. The detuning between laser and
the electronic transition is δ. In usual experiments on op-
tical tweezers, for instance,, δ can vary vary in the range
≈ 10−104GHz, providing photon emission rates from the
excited electronic state in the range of 0.1 − 100 MHz.
These figures are of the same order of magnitude of co-
herence lifetime for rotational levels, while the range of
variation of δ is also of the same order of magnitude of
the frequency difference between neighboring rotational
levels. In order to estimate various effects of trapping
lasers, we will put ourselves in a close to realistic con-
figuration in which the rotational frequency is ≈ 10GHz
and δ ≈ 104GHz. Each rotational level has a different
energy, making the effective detuning j dependent. This
corresponds to adding a factor δj = Bj(j + 1)/~ to the
electronic detuning δ, taken with respect to the rota-
tional ground state. Because each rotational level has a
detuning which depends on the value of j, there will be a
phase difference between each rotational level due to the
non resonant coupling to light. In the case of a harmonic

trapping potential, this phase is given by e−i2Ω2/(δ+δj)t
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if only one electronic transition is considered. This cor-
responds to a local action on each molecule that does
not play a significant role on non-locality tests, since it
maps one state to another one with the same degree of
entanglement. As shown before, by properly choosing
the time where measurements are performed, such effect
can be compensated. This means that the parameters for
which maximal violation occurs may be modified. As it
can be shown, if a given state violates the inequalities of
the type of (8) and (16), a collection of states connected
to it by local unitary transformations will also violate the
same inequalities, even if for different parameters. Also,
it is important to notice that such dephasing effects can
be completely neglected depending on the precise circum-
stances under which the experiment is performed. This
happens because dephasing occurs on a time scale much
longer than the rotational period, so that if measure-
ments are performed in this interval, it will not affect the
expected results.
Finally, we address the question of orientation mea-

surement. A possibility is to use Coulomb explo-
sion, a destructive techniques already employed for
molecular orientation measurements [30]. After a
quasi-instantaneous (when compared to the molecu-
lar rotational period), laser induced dissociative multi-
ionisation, the molecular fragments are recorded at dif-
ferent directions of space, in the case of the orientation
Bell-type inequalities, or at different hemispheres, in the
case of the dichotomized inequalities. This technique is
still experimentally challenging since it demands highly
efficient single atom detectors. Usually this technique is
employed for molecular ensembles, and the detection ef-
ficiency is less determinant than in our case. Another
possibility is to detect the orientation of single molecules
optically, as realized in [21]. Fluorescence intensity when
a single molecule is excited by a linearly polarized laser
beam that can change polarization in time, can reveal
molecular orientation since the scalar product between
the field polarization and the molecular dipole depends
on its orientation. The phase of the fluorescence inten-
sity with respect to the exciting laser beam when its po-
larization is turned in time, depends on the molecular
orientation, as observed in [21].

V. CONCLUSION

We have extensively discussed some important prop-
erties of a recently proposed Bell-type inequality based
on the measurement of a continuous, bounded, observ-
able, which is molecular orientation. We have discussed
some important properties of it, as its symmetries and
its non-dependency on a specific choice of common tem-
poral origin or reference frame. The role of noise in our
system, that would transform pure states into statistical
mixtures was also analysed, as well as how violation de-
pends on the amount of noise. We have also discussed
some important conditions that an eventual experimen-
tal set-up should satisfy and the influence of physical pa-
rameters as light forces and residual interaction between
molecules on the proposed measurements. It seems, from
our analysis, that once the necessary degree of advance-
ment is attained by experimental set-ups, our proposal
is realistic and should not present major difficulties. Our
results open the perspective of entanglement detection
and non-locality tests for high angular momentum sys-
tems in atomic and molecular physics.

One interesting aspect of the derived inequalities is the
fact that they assume the simple form of CHSH inequali-
ties and deal with continuous variables at the same time.
This happens because the observable that is measured for
each particle has a bounded spectrum, naturally limiting
the locality threshold and the norm of the Bell operator.
Notice that, in spite of having discussed here the spe-
cific case of molecular orientation, the same type of in-
equalities could be derived for other continuous bounded
observables, easily measurable in other physical contexts.
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