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Abstract
We study toric G-solid Fano threefolds that have at most terminal singularities, where
G is an algebraic subgroup of the normalizer of amaximal torus in their automorphism
groups. All varieties are assumed to be projective and defined over the field of complex
numbers.

Mathematics Subject Classification 14J50 · 14M25 · 14N05

1 Introduction

Fano varieties with many symmetries appear naturally in several geometric problems.
A special role among them is played by the so-called G-Fano varieties [27], which
naturally occur as the end product of the equivariant Minimal Model Program for
rationally connected varieties. Recall from [27] that a G-Fano variety is a pair (X ,G)

consisting of a Fano variety X and an algebraic subgroup G in Aut(X) such that

(1) The singularities of X are terminal (mild);
(2) The G-invariant part Cl(X)G of the class group of X has rank 1 (G-minimal).

In dimension two, we know the complete list of G-Fano varieties [18], which are
traditionally called G-del Pezzo surfaces. In [26, 27], Prokhorov obtained many deep
results about G-Fano threefolds for G finite. A complete classification is still lacking.
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In higher dimensions, our knowledge of G-Fano varieties is limited to some sporadic
examples.

Since by definition a G-Fano variety X is a G-Mori fibre space (see [10, Defini-
tion 1.1.5]), to describe its G-equivariant birational geometry, it is enough to classify
all G-birational maps from X to other G-Mori fibre spaces. By [12, 20], each such
birational map can be decomposed into a sequence of elementary links, which are
known as G-Sarkisov links. Then, following [3, 10, 11, 13], we say that a G-Fano
variety X is:

• G-birationally super-rigid if no G-Sarkisov link starts at X ;
• G-birationally rigid if every G-Sarkisov link that starts at X also ends at X ;
• G-solid if X is not G-birational to a G-Mori fibre space with positive dimensional
base.

If X is G-solid, then all G-Mori fibre spaces that are G-birational to X are terminal
Fano threefolds — they form a set PG(X), which we call the G-pliability of X [14].
For instance, if X is G-solid, then PG(X) = {X} if and only if X is G-birationally
rigid.

In this paper, we consider toricG-Fano varieties in the case whereG is an algebraic
subgroup in Aut(X) that normalizes a maximal torus T ∼= G

n
m , where n = dim(X).

In this case, letting GX be the normalizer of the torus T in Aut(X), we have a split
exact sequence of groups

1 T GX
νX

WX 1,

where WX is a finite subgroup of GLn(Z), known as the Weyl group. It is a natural
problem to determine for such groups G which G-Fano varieties are G-solid, and to
characterize which of these are G-birationally rigid or super-rigid. For surfaces, it is
easy to give a satisfactory answer to these questions.

Exercise 1.1 (cf. [18, 21, 30, 33]) Let X be a smooth toric del Pezzo surface and let G
be a subgroup of GX . If X is G-minimal and G-solid, then one of the following cases
holds:

(i) X = P
2, WX ∼= S3 and νX (G) contains the subgroup isomorphic to µ3;

(ii) X = P
1 × P

1, WX ∼= D8 and νX (G) contains the subgroup isomorphic to µ4;
(iii) X is the del Pezzo surface of degree 6,WX ∼= S3×µ2, and either νX (G) contains

the subgroup isomorphic to µ6 or it contains the subgroup isomorphic toS3 that
acts transitively on the (−1)-curves in X.

In each of these three cases, X is G-minimal and G-birationally rigid provided that
|G| ≥ 72.

In this paper, we obtain a similar answer for three-dimensional toric Fano varieties.
To state it, let V6 = P

1 ×P
1 ×P

1, let V4 be the toric complete intersection in P
5 given

by

xu − yw = xu − zt = 0,
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let Y24 be the toric divisor of degree (1, 1, 1, 1) in P
1 × P

1 × P
1 × P

1 given by

x1x2x3x4 − y1y2y3y4 = 0,

and let X24 be the toric Fano threefold No 47 in [7] (see Sect. 4.3 for its construction).
The Weyl groups WX of these toric Fano threefolds are all isomorphic to the group
S4 × µ2, and we have the following result:

Theorem 1.2 Let X be a toric Fano threefold that have at most terminal singularities,
let T be a maximal torus in Aut(X) and let GX be its normalizer in Aut(X). Then the
following two conditions are equivalent:

(i) X is GX -minimal and GX-solid;
(ii) X is one of the threefolds V6, V4, X24, Y24 and P

3.

Let G be an algebraic subgroup in GX and let νX : GX → WX = GX/T be the
quotient homomorphism. If X is one of the toric Fano threefolds V6, V4, X24, Y24 and
P
3, then the following assertions hold:

(1) if X is G-minimal and G-solid, then νX (G) contains a subgroup isomorphic to
A4;

(2) if νX (G) contains a subgroup isomorphic to A4, then X is G-minimal unless

(a) X = V4, νX (G) ∼= S4 and G acts intransitively on T-invariant surfaces;
(b) X = V4 and νX (G) ∼= A4.

(3) if X is G-minimal, νX (G) contains a subgroup isomorphic to A4 and |G| ≥
32 · 244, then X is G-solid.

��
If X = V4 and νX (G) contains a subgroup isomorphic to A4, then X is not G-

minimal if and only if there exists the following G-commutative:

˜V4
β α

P
3 V4

where β is the blow-up of the fourT-invariant points, α is the contraction of the proper
transforms of the six T-invariant lines, and the dashed arrow is the birational map that
is given by the linear system of quadric surfaces that pass through the four T-invariant
points.

Remark 1.3 If X is one of the toric Fano threefolds V4, X24 or Y24, thenGX = Aut(X).

If X is one of the toric Fano threefolds V6, V4, X24, Y24, P
3, and G is an alge-

braic subgroup in Aut(X) such that the threefold X is G-minimal, νX (G) contains a
subgroup isomorphic to A4, and |G| ≥ 32 · 244, then the threefold X is G-solid by
Theorem 1.2. In this case, we describe all (possible) G-birational maps between these
Fano threefolds. We summarize this description in the table presented in Appendix A.
It gives
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Corollary 1.4 (cf. [4, 11]) Let X be one of the toric Fano threefolds V6, V4, X24,
Y24, P3, let T be a maximal torus in Aut(X) and let GX be its normalizer in Aut(X).
Then the following three conditions are equivalent:

(i) X is GX -minimal and GX-birationally rigid;
(ii) X is GX -minimal and GX-birationally super-rigid;
(iii) X is isomorphic to either V6 or Y24.

Let G be an algebraic subgroup in GX and let νX : GX → WX = GX/T be the
quotient homomorphism. Assume that νX (G) contains a subgroup isomorphic to A4.
Then the following assertions hold:

(1) if X is G-minimal and G-birationally rigid, then X = V6 or X = Y24;
(2) if X = V6 or X = Y24, and |G| ≥ 32 · 244, then X is G-birationally super-rigid.

��
In Sect. 3, we provide a criterion for aG-minimal toric Fano variety X to beG-solid

in the case where G is an algebraic subgroup of GX that contains the maximal torus
T. Unfortunately, we do no know how to generalize this criterion for finite subgroups
in GX . Nevertheless, Exercise 1.1 and Theorem 1.2 suggest the following conjecture.

Conjecture 1.5 Let X be a toric Fano variety with at most terminal singularities and
let G be a subgroup in GX that contains T such that X is G-minimal and G-solid.
Then there exists a constant cX > 0 such that for every finite subgroup H ⊂ G such
that νX (H) = νX (G), the Fano variety X is H-solid provided that |H | ≥ cX .

The structure of the article is the following. In Sect. 2, we present results that will be
used in the proof of Theorem 1.2. In Sects. 3 and 4, we prove Theorem 1.2 for infinite
algebraic groups using toric geometry. In Sect. 5, we explicitly describe two (known)
equivariant toric Sarkisov links that start at X24. In Sect. 6, we give an alternative
proof of Theorem 1.2(3) for infinite algebraic groups, which can be generalized for
large finite groups. In Sect. 7, we complete the proof of Theorem 1.2 by proving its
part (3) for finite groups (the remaining assertions of Theorem 1.2 for finite groups
follows from the results proven in Sects. 3 and 4).

2 Preliminary results

In this section, we review results and notions that will be used in the proof of Theo-
rem 1.2.

2.1 Varieties with regular group actions

Let G and G ′ be two algebraic groups, and let X and X ′ be two algebraic varieties
endowed with regular actions mX : G × X → X and mX ′ : G ′ × X ′ → X ′ of the
groups G and G ′ respectively.
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Definition 2.1 An equivariant rational map between the varieties X and X ′ is a pair
consisting of morphism of algebraic groups ϕ : G → G ′ and a rational map� : X ���
X ′ such that the following diagram of rational maps commutes

G × X

ϕ×�

mX
X

�

G ′ × X ′ mX ′
X ′.

We say that the rational map � is ϕ-equivariant.

If the morphism ϕ in Definition 2.1 is an isomorphism and the map � is birational,
then letting ρ : G → Aut(X) and ρ′ : G ′ → Aut(X ′) be the group homomorphisms
determined by mX and mX ′ respectively, the commutativity of the diagram in Defini-
tion 2.1 is equivalent to the property that

ρ′ ◦ ϕ(g) = �ρ(g)�−1

for every g ∈ G. In this paper, we are mostly interested in the case when G ∼= G ′.
Because of this, we will assume in the following that G = G ′, so that both varieties
X and X ′ are endowed with regular actions of the same group G.

Definition 2.2 A G-equivariant rational map X ��� X ′ is an idG -equivariant rational
map� : X ��� X ′. A rational G-map X ��� X ′ is a rational map� : X ��� X ′ which
is ϕ-equivariant for some automorphism ϕ of G.

We denote by BirG(X , X ′) the set of birational G-maps between X and X ′, and we
denote by BirG(X , X ′) its subset consisting of G-equivariant birational maps X ���
X ′. If X = X ′ then these sets are groups (with respect to composition of birational
maps), which we denote by BirG(X) and BirG(X), respectively.

As an illustration, we describe an equivariant version of a birational map of three-
folds which appeared in [11, Proposition 2.1]. Its nature is local, but we will use global
language for simplicity of exposition.

Example 2.3 Let X be a smooth threefold, let P be a point in X , let G be an algebraic
group that acts faithfully on X , and let C be a G-irreducible curve in X consisting of
three irreducible componentsC1,C2 andC3 meeting at a unique point P and such that
the curves C1, C2 and C3 are smooth at P , and their tangent directions at P generate
the tangent space TP (X). Let α : ˜X → X be the blow-up of the point P , and let E
be its exceptional surface. Denote by ˜Ci the proper transform of the curve Ci on the
threefold ˜X . Let Li j be the line in E ∼= P

2 that pass through the points ˜Ci ∩ E and
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˜C j ∩ E . Then there exists the following commutative diagram of birational G-maps:

X
β

γ
̂X

δ

˜X

α

V

π

X

where β is the blow-up of the curves ˜C1, ˜C2 and ˜C3, the map γ is a composition of
Atiyah flops of the proper transforms on X of the curves L12, L13 and L23, and δ is
the birational contraction of the proper transform of the surface E to a singular point
of type 1

2 (1, 1, 1). The morphism π is a G-equivariant extremal divisorial contraction.

We will use the following result, which is a consequence of Luna’s étale slice
theorem (see e. g. [1, Section 2.1] and [8, p. 98]).

Lemma 2.4 Let G be a reductive group acting faithfully on a variety X and let P ∈ X
be a smooth point which is fixed by the action of G. Then the induced linear action of
G on the Zariski tangent space TP (X) is faithful. ��

In the case of curves, we have the following more precise consequence:

Corollary 2.5 A finite group of automorphisms of a curve fixing a smooth point is a
cyclic group. ��

Corollary 2.6 Let X be an algebraic variety with a faithful action of the group G = µ2
n

fixing a smooth point P ∈ X. Let C be a G-invariant curve in X containing P and
assume that the stabilizer in G of every irreducible component of C passing through
P acts on this component faithfully. Then multP (C) ≥ n. ��

Proof Let f : ˜C → C be the normalization of the curve C . The action of the group
G on C lifts to an action on ˜C preserving the preimage F = f −1(P) of the point P .
Let Q be a point in F , and let GQ be its stabilizer in G. Note that Q is contained
in a unique irreducible component of the smooth curve ˜C , which then must be GQ-
invariant. Since the group GQ acts faithfully on this component, we conclude that GQ

is a cyclic subgroup of the group G ∼= µ2
n by Corollary 2.5. Then |GQ | ≤ n, so that

multP (C) ≥ |F | ≥ |G|
|GQ | ≥ n

as required. ��
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2.2 Singularities of log-pairs

Let X be a threefoldwith atmost terminal singularities, letMX be a non-emptymobile
linear system on X that consists of Q-Cartier divisors and let λ be a positive rational
number.

Lemma 2.7 ([15, Exercise 6.18]) Let C be an irreducible curve in X. Assume that

multC
(MX

) ≤ 1

λ
.

Then C is not a center of non-canonical singularities of the log pair (X , λMX ). ��
The following result is due to Alessio Corti.

Lemma 2.8 ([13, Theorem 3.1]) Let C be an irreducible curve in X. Assume that C
is a center of non-log canonical singularities of the log pair (X , λMX ). Then

multC
(

M1 · M2

)

>
4

λ2

for any two general surfaces M1 and M2 in the linear system MX . ��
The following result is due to Alexander Pukhlikov.

Lemma 2.9 ([29], see also [13, Corollary 3.4]) Let P be a smooth point of X. Assume
that P is a center of non-canonical singularities of the log pair (X , λMX ). Then

multP
(

M1 · M2

)

>
4

λ2

for any two general surfaces M1 and M2 in the linear system MX . ��
We will also need the following two results due to Kawamata [23] and Corti,

respectively.

Lemma 2.10 Let P be a singular point of X of type 1
2 (1, 1, 1), let π : V → X be

the Kawamata blow-up of P, let E be the exceptional surface, let MV be the proper
transform of the linear systemMX via π , and let m ∈ Q be such that

MV ∼Q π∗(MX
) − mE .

If (X , λMX ) is not canonical at P then m > 1
2λ . ��

Proof Suppose that m ≤ 1
2λ . Let us seek for a contradiction. Since

KV + λMV +
(

λm − 1

2

)

E ∼Q π∗(KX + λMX
)

,
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the pair (V , λMV ) is not canonical at some point O ∈ E . Then multO(MV ) > 1
λ
,

so that

multO
(

MV |E
)

>
1

λ
,

which is impossible, since MV |E ∼Q 2mL , where L is a line in E ∼= P
2. ��

Lemma 2.11 Let P be an ordinary double point of X, let π : V → X be the blow-up
of P, let E be the exceptional surface of π , let MV be the proper transform of the
linear system MX via π , and let m ∈ Q be such that

MV ∼Q π∗(MX
) − mE .

If P is a center of non-canonical singularities of the log pair (X , λMX ) then m > 1
λ
.��

Proof This is [9, Theorem 1.7.20], which is equivalent to [13, Theorem 3.10]. ��
Finally, we will need one local result proved in [2]. To state it, we suppose that the

threefold X is endowedwith an action of an algebraic groupG, andMX isG-invariant.

Lemma 2.12 ([2, Lemma 2.4]) Suppose that the group G fixes a smooth point P ∈ X
and that its induced linear action on the Zariski tangent space TP X is an irre-
ducible representation. If P is a non-canonical center of the log pair (X , λMX )

then multP (MX ) > 2
λ
. ��

2.3 Finite groups acting on toric varieties

Let T be a torus of dimension d ≥ 2, and let �n be a subgroup of T isomorphic to µd
n ,

where n is a positive integer (note that T contains such a subgroup for every n). Let
X be a projective toric T-variety of dimension d.

Lemma 2.13 Let C be a �n-invariant �n-irreducible curve in X, and let H be a very
ample divisor on X. If n > H · C, then C is T-invariant. ��
Proof Suppose that C is not T-invariant. By replacing X by a T-invariant toric closed
subvariety if necessary, we can assume that the curve C is not contained in any proper
T-invariant subvariety of X so that �n acts faithfully on C . The curve C is T-invariant
if and only if each of its irreducible components is T-invariant.

Let k be the number of irreducible components of the curveC , let Z be an irreducible
component of C and let �Z be the stabilizer of the curve Z in the group �n . Then
�Z is an index k subgroup of µd

n , equal to the product of d cyclic subgroups µmi

for some positive integers mi which divide n, say n = miki , i = 1, . . . , d. Let
m = gcd{mi }i=1,...,d and writemi = mri where ri ≥ 1. Then �Z contains a subgroup
isomorphic to µd

m . By construction, we have mnd−1 ≥ ∏d
i=1 mi so that

k =
d

∏

i=1

ki =
d

∏

i=1

n

mi
= nd

∏d
i=1 mi

≥ nd

mnd−1 = n

m
.
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Thus m ≥ n/k and since by hypothesis n > H · C , it follows that m > H · Z .
Replacing C by Z and n by m, we assume from now on that C is irreducible. Let

us show that n ≤ H · C . Let f : ˜C → C be the normalization of C . Then the action
of the group �n lifts to a faithful action on ˜C . Let D be a T-invariant effective divisor
such that D ∼ H . Then C �⊂ Supp(D) by assumption on C not being T-invariant. Let
 = C ∩ Supp(D), and let ˜ be its preimage in ˜C . Then

∣

∣˜
∣

∣ ≤ deg
(

f ∗(D
∣

∣

C )
)

= deg
(

f ∗(H
∣

∣

C )
)

= H · C .

Let P be a point in ˜, and let GP be its stabilizer in �n . Then GP is cyclic by
Lemma 2.5. On the other hand, we have

|GP | ≥ |�n|
|˜| ≥ |�n|

H · C ≥ nd

H · C ≥ n2

H · C .

Therefore, if n > H · C , then the order of the cyclic group GP is strictly larger than
n, which is impossible, since GP is a subgroup of the group �n ∼= µd

n . ��

3 Lattices and toric geometry

Let T ∼= G
n
m be an algebraic torus of dimension n. We identify T with the spectrum of

the group algebra C[M] of its character lattice M = Hom(T, Gm) ∼= Z
n . The action

of the torus T on itself by translations determines an injective group homomorphism
T → Aut(T) and we have split exact sequence

1 T Aut(T) GL(M) 1.

The splitting is given bymapping every A ∈ GL(M) ∼= GLn(Z) to the algebraic group
automorphism of T associated to the group algebra automorphism C[M] → C[M]
given by

χu �→ χ A(u).

We henceforth identify Aut
(

T
) = T �GL(M) and we denote its subgroup T×{idM }

simply by T. Every algebraic subgroup G ⊂ Aut(T) containing T is then of the form
G = T � W for some finite subgroup W of GL(M).

Let W1 and W2 be finite subgroups of GL(M), let G1 = T � W1 and G2 =
T � W2 be the corresponding algebraic subgroups of Aut(T) that contain the torus T,
let m1 : G1 × T → T and m2 : G2 × T → T be the algebraic actions they determine.

Lemma 3.1 The following conditions are equivalent:

(a) There exist an isomorphism ϕ : G1 → G2 and a ϕ-equivariant biregular map
� : T → T;

(b) The groups G1 and G2 are conjugate in Aut(T);
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(c) The groups W1 and W2 are conjugate in GL(M).

��

Proof Assume (a). Then we have a group automorphism c� : Aut(T) → Aut(T)

given by α �→ � ◦ α ◦ �−1 and the hypothesis that � is ϕ-equivariant implies that
the diagram

G1

ϕ

Aut
(

T
)

c�

G2 Aut
(

T
)

must be commutative, so that the algebraic groupsG1 andG2 are conjugate in Aut(T).
This shows that (a) implies (b).

Now we assume (b). Then G2 = �G1�
−1 for some � = (λ, A) in Aut(T). Then

W2 = AW1A−1 in GL(M).This shows that (b) implies (c).
Assume (c). Then W2 = AW1A−1 for some A ∈ GL(M). Let � = (1, A) ∈

Aut(T), and let ϕ : G1 → G2 be the homomorphism defined by g1 �→ �g1�−1.
Then ϕ is an isomorphism for which we have the same commutative diagram as
above. It follows in turn that the pair (ϕ : G1 → G2,� : T → T) is an equivariant
isomorphism, which proves that (c) implies (a). ��

Now we fix a finite subgroup W in GL(M) and we let G = T � W be the corre-
sponding algebraic subgroup in Aut(T) that contains T. The group W acts naturally
on the vector space

NQ = Hom
(

M, Z
) ⊗ Q.

By [16, Chapter 2], the choice of a W-invariant convex lattice polytope in NQ deter-
mines a projective toric variety X with an openT-orbitTX ∼= T such that theG-action
on the torusTX extends to a faithful regularG-actionmX : G×X → X . Thus, we can
identify G with its image in the group Aut(X) by the injective group homomorphism
ρX : G → Aut(X) given by g �→ mX (g, ·). Then Aut(X) is an affine algebraic group
having T as a maximal torus [17].

Let GX be the normalizer of the torus T in the group Aut(X). Then GX is an
algebraic group that contains G. Moreover, the torus TX is GX -invariant, and the
induced effective action of the group GX on the torus TX corresponds to an injective
group homomorphism

GX → Aut
(

TX
) ∼= Aut

(

T
)

,
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whose image is equal to T � WX for a finite subgroup WX ⊂ GL(M) that contains
W. Thus, we have the following commutative diagram of exact sequences:

1 T G = T � W W 1

1 T GX
νX

WX 1.

The group WX is usually called theWeyl group of the toric variety X .

Corollary 3.2 If W is a maximal finite subgroup of GL(M) then GX ∼= T � W. ��
As a consequence of Lemma 3.1, we obtain the following two assertions:

Corollary 3.3 There exists a functorial one-to-one correspondence between finite sub-
groups W ⊂ GL(M) up to conjugacy and projective toric T-varieties X whose Weyl
groups contain a subgroup isomorphic to W up to T � W-equivariant birational
equivalence. ��
Corollary 3.4 Let W be a finite subgroup in GL(M) and let X be a projective toric
variety whose Weyl group WX contains W. Then

BirT�W(X) ∼= T � ̂W

where ̂W is the normalizer of the group W in GL(M). ��
Given a subgroup W ⊂ GL(M), we say that the lattice M ∼= Z

n is W-irreducible
(or an irreducible W-module) if M does not contain any proper W-invariant sublattice
M ′ such that M/M ′ is torsion free.

Corollary 3.5 Let W be a maximal finite subgroup inGL(M) and let X be a projective
toric variety whose Weyl group is W. Suppose that M is W-irreducible. Then

BirT�W(X) ∼= T � W.

��
Proof Since M is W-irreducible, M ⊗ Q is an irreducible Q-representation of the
group W. Applying Maschke’s theorem, we conclude that the centralizer of W in
GL(M) is finite. Since W is finite, the normalizer ̂W of the group W in GL(M) is
also finite, and hence, ̂W = W because W is a maximal finite subgroup. The assertion
then follows from Corollary 3.4. ��

The choice of the n-dimensional toric variety X whose Weyl group contains W is
not unique. In particular, taking a G-equivariant toric resolution of singularities and
then applying the G-equivariant toric Minimal Model Program, we can assume that:

• The toric variety X has terminal singularities,
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• Every G-invariant Weil divisor in X is a Q-Cartier divisor,
• There exists aG-Mori fibre space structureπ : X → Z (see [10, Definition 1.1.5]).

In particular, if Z is a point, then X is a toric Fano variety with terminal singularities,
and X is G-minimal, i.e. the group of G-invariant Weil divisors is of rank 1.

Since π : X → Z is a surjective morphism of toric varieties, it induces a surjective
G-equivariant morphism TX → TZ between the corresponding open orbits in X
and Z , which is a group homomorphisms when we identify these orbits with the
corresponding maximal tori T of Aut(X) and T

′ of Aut(Z) respectively. The kernel
of this homomorphism is a W-invariant subtorus in T, whose character lattice is a
W-invariant sublattice of the lattice M . This gives

Corollary 3.6 If dim(Z) ≥ 1 then the lattice M is not W-irreducible. ��
In fact, we can say more:

Proposition 3.7 Assume that Z is a point. Then the following are equivalent:

(a) The toric Fano variety X is G-solid;
(b) The character lattice M is W-irreducible.

Proof The implication (b)⇒(a) follows fromCorollary 3.6. Let us prove that (a)⇒(b).
Assume that X is G-solid and suppose that M is not W-irreducible. Then M contains
a proper W-invariant sublattice M ′ such that M/M ′ is a torsion free W-module. This
implies that the torus T contains a proper G-invariant subtorus T

′, which gives an
exact G-equivariant sequence of tori

1 −→ T
′ −→ T −→ T

′′ −→ 1,

whereT
′′ ∼= T/T

′. This gives us aG-equivariant dominant rationalmapψ : X ��� X ′′,
where X ′′ is a G-equivariant projective completion of the torus T

′′.
Then there exists a G-equivariant commutative diagram

˜X
α β

X
ψ

X ′′

such that α is a G-equivariant birational morphism, ˜X is a smooth projective toric
variety, and β is a surjective G-equivariant morphism. Note that

dim
(

X
)

> dim
(

T
′′) ≥ 1.

Now, we can apply aG-equivariant MinimalModel Program to ˜X over the variety X ′′.
This gives a G-equivariant birational transformation of the variety X into a G-Mori
fibre space over a positive dimensional base, which is impossible, since X is G-solid.
��
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Thus, if X is a G-minimal toric Fano variety, we have a purely group theoretical
criterion for itsG-solidity. Similarly, we can obtain a criterion forG-birational rigidity.

Proposition 3.8 Let X beaG-minimal toricFano varietywithWeyl groupWX . Assume
that the character lattice M is WX -irreducible. Then the following two conditions are
equivalent:

(a) X is G-birationally rigid;
(b) X is the only toric Fano variety with terminal singularities that is G-minimal.

Proof This follows from Proposition 3.7 and definition of G-birational rigidity. ��
Finally, usingCorollary 3.4,we canobtain a criterion forG-birational super-rigidity.

Proposition 3.9 Let X be a G-minimal toric Fano variety with Weyl group W. Assume
that the character lattice M is W-irreducible. Then X is G-birationally super-rigid if
and only if the following two conditions are satisfied:

(a) X is the only toric Fano variety with terminal singularities that is G-minimal;
(b) W is not a proper normal subgroup of any finite subgroup in GL(M).

Proof The assertion follows from Proposition 3.8 and the proof of Corollary 3.5. ��
The condition (b) in Proposition 3.8 is combinatorial. A priori, it can be checked

using computer, since there are finitely many toric Fano varieties with terminal singu-
larities [6]. For example, there are 634 toric Fano threefolds with terminal singularities
[22].

3.1 Toric terminal Fano threefolds

Now let us assume that T is three-dimensional and that X is a G-minimal toric Fano
threefold with terminal singularities. All such threefolds are described in [31]. They
are listed in the following table:

Toric Fano threefold Weyl group Number in [7]

Divisor Y24 of type (1, 1, 1, 1) in P
1 × P

1 × P
1 × P

1 S4 × µ2 No 625
V6 = P

1 × P
1 × P

1 S3 � µ3
2

∼= S4 × µ2 No 62
Toric Fano–Enriques threefold X24 S4 × µ2 No 47
Toric complete intersection V4 ⊂ P

5 of two quadrics S4 × µ2 No 297
Three-dimensional projective space P

3 S4 No 4
Quadric cone in P

4 with one singular point D8 No 32
Terminal toric Fano threefold X with −K 3

X = 81
2 S3 No 92

Weighted projective space P(1, 1, 1, 2) S3 No 7
Quotient of the space P

3 by µ5-action fixing 5 points µ2
2 No 1

Weighted projective space P(1, 1, 2, 3) µ2 No 8
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Proposition 3.10 Let X be one of the toric Fano threefolds in the above table, let G be
a subgroup of GX containingT and letW be the image of G by the quotient morphism
GX → WX = GX/T. Then the following hold:

(1) None of the last five threefolds in the table above is G-solid.
(2) If X is G-minimal then X is G-solid if and only if it is one of the threefolds Y24,

V6, X24, V4 and P
3 and W contains a subgroup isomorphic to A4.

Proof This follows from Proposition 3.7 and the classification of finite subgroups in
GL3(Z) [32]. ��

Of course, it is also possible to verify these properties explicitly for each case in
the above proposition. For instance:

Example 3.11 Let X be the terminal toric Fano threefold No 92. Then WX ∼= S3 and
there exists a GX -Sarkisov link

X40

α β

P
3 X

where α is the blow-up of three coplanar T-invariant lines, X40 is a Fano threefold
with three ordinary double points such that −K 3

X40
= 40, and β is the contraction of

the proper transform of the unique T-invariant plane containing the lines blown-up
to the unique singular point of type 1

2 (1, 1, 1) of the threefold X . Since P
3 is not

T � S3-solid, we conclude that X is not GX -solid.

Example 3.12 Let X = V6 and let W be the unique subgroup of WX isomorphic µ3.
Then X is G-minimal. Moreover, it contains two G-fixed points such that there exists
the following G-Sarkisov link:

V 6

α

ι
̂V6

β

V6 S6

where α is the blow-up of these two points, ι is a composition of Atiyah flops of
the proper transforms of all T-invariant curves that pass through one of the points
blown-up by α, and β is a P

1-bundle over a del Pezzo surface of degree 6.

Example 3.13 Let X = X24 and let W be the unique subgroup of WX isomorphic to
µ3. Then X is G-minimal. Moreover, it contains two G-fixed singular points such that
there exists a G-Sarkisov link

X24

α

ι
̂X24

β

X24 S6
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where α is Kawamata blow-up of these two singular points, ι is a composition of
Francia antiflips of the proper transforms of all T-invariant curves that contain one
of these points, and β is a P

1-bundle over a del Pezzo surface of degree 6. The
threefolds X24, X24, ̂X24 are quotients by involutions of the threefolds V6, V 6, ̂V6
from Example 3.12.

Moreover, if X is one of the threefolds Y24, V6, X24, V4, P
3 and W contains a

subgroup isomorphic to A4, then X is G-minimal except in the following two cases:

(1) X = V4, W ∼= S4 and G acts intransitively on the set of T-invariant surfaces,
(2) X = V4 and W ∼= A4.

We show this in Corollaries 4.5 and 4.9 and Lemma 5.1 below. Summing up, we get

Corollary 3.14 The assertion of Theorem 1.2 holds in the case when G is infinite. ��
If W contains a subgroup isomorphic to A4, then W is conjugate to one of 15

finite subgroups in GL(M) that are described in [32]. Using [24] and notation from
[32], we can present these 15 subgroups and the corresponding G-minimal toric Fano
threefolds with terminal singularities in the following table.

S4 × µ2 S4 A4 × µ2 A4

P
1 × P

1 × P
1 W1 W6 or W7 W1 W9

V4 W3 W10 W3
X24 W3 W10 or W11 W3 W11
Y24 W2 W8 or W9 W2 W10
P
3 W11 W11

Now using Propositions 3.8 and 3.9, we obtain

Corollary 3.15 The assertion of Corollary 1.4 holds in the case when G is infinite. ��
In the rest of this paper, we will give another proof of Theorem 1.2(3) in the case

when the group G is infinite that is independent on the classification of toric Fano
threefolds with terminal singularities, and which also applies to the case of finite
groups as well. We also believe that this approach can be used in higher-dimensions.

4 Toric Fano threefolds and lattices of rank three

Among the 73 conjugacy classes of finite subgroups W of GL3(Z) classified in [32],
there are 4 maximal ones, and only three of them give rise to an irreducible action
on Z

3. In each of these three cases, one has W ∼= S4 ×µ2. Let us describe these three
conjugacy classes in terms of the actions of the group S4 × µ2 on certain lattices.

Let L = Z
4 endowed with the faithful transitive S4-action given by permutations

of the basis vectors h1, h2, h3 and h4. Let σ be the involution of the lattice L such
that hi �→ −hi for each i ∈ {1, 2, 3, 4}. Then σ commutes with the S4-action. This
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defines a faithful action of the groupS4 ×µ2 on the lattice L , which leaves invariant
the sublattice spanned by the element h1 + h2 + h3 + h4. Let

M1 = L/〈h1 + h2 + h3 + h4〉.

Then theS4×µ2-action on L induces an action ofS4×µ2 on the quotient lattice M1.
Let e1, e2 and e3 be the basis of M1 given by the classes of h1, h2 and h3, respectively.
In this basis, we have σ(ei ) = −ei for every i ∈ {1, 2, 3}, and for every g ∈ S4, we
have

g
(

ei
) =

{

eg(i) if g(i) �= 4

−e1 − e2 − e3 otherwise.

We denote by W1 ∼= S4 × µ2 the corresponding subgroup of GL3(Z).
Let M3 be the dual lattice to M1, and let e∨

1 , e
∨
2 and e∨

3 be the basis of M3 that is
dual to the previously fixed basis of M1. Then σ(e∨

i ) = −e∨
i for each i ∈ {1, 2, 3}.

For every g ∈ S4, we have

g
(

e∨
i

) =
3

∑

j=1

e∨
i

(

g−1(e j )
)

e∨
j .

We denote by W3 ∼= S4 × µ2 the corresponding subgroup of GL3(Z).
Finally, let M2 be the lattice Z

3, let S3 be the subgroup in GL3(Z) consisting of
six permutation matrices, let

τ1 =
⎛

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎠ , τ2 =
⎛

⎝

1 0 0
0 −1 0
0 0 1

⎞

⎠ , τ3 =
⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠ ,

and let W2 ∼= S3 � µ3
2 be the subgroup in GL3(Z) that is generated by S3 and

involutions τ1, τ2 and τ3. Note that the subgroup generated byS3, τ1τ2 and that τ1τ3
is isomorphic toS4, and τ1τ2τ3 generates the center of the subgroup W2.Thus, W2 is
isomorphic to the group S4 × µ2.

Proposition 4.1 ([32]) LetW be a maximal finite subgroup of the groupGL3(Z) such
that Z

3 is W-irreducible. Then W is conjugate to one of the subgroups W1, W2 or
W3. Moreover, the subgroups W1, W2, W3 are pairwise non-conjugate in GL3(Z).

Notation 4.2 The center of eachof the threefinite subgroupsWi inGL3(Z), i = 1, 2, 3
is isomorphic to µ2, generated by the involution

σ =
⎛

⎝

−1 0 0
0 −1 0
0 0 −1

⎞

⎠ .
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For every i = 1, 2, 3, the image of the subgroup A4 × {1} ofS4 ×µ2 by the isomor-
phism GL(Mi ) ∼= GL3(Z) given by our choice of bases is the unique subgroup of Wi

isomorphic toA4. We denote this subgroup byW
A
i . In the notation of [32, Proposition

7], these groups correspond respectively to the subgroups

W
A
1 = W10 =

⎧

⎨

⎩

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ ,

⎛

⎝

0 −1 1
0 −1 0
1 −1 0

⎞

⎠

⎫

⎬

⎭

W
A
2 = W9 =

⎧

⎨

⎩

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ ,

⎛

⎝

−1 0 0
0 1 0
0 0 −1

⎞

⎠

⎫

⎬

⎭

W
A
3 = W11 =

⎧

⎨

⎩

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ ,

⎛

⎝

−1 −1 −1
0 0 1
0 1 0

⎞

⎠

⎫

⎬

⎭

of SL3(Z) ⊂ GL3(Z).
On the other hand, each of the subgroups Wi contains two different subgroups

isomorphic to S4 (see [32, Proposition 9]):
(1) One is the image of the subgroup S4 × {1} of S4 × µ2 by the isomorphism

GL(Mi ) ∼= GL3(Z) given by our choice of bases. We denote it by W
S
i . It is easily

seen that this subgroup is not contained in SL3(Z).
(2) The second one is the intersection Wi ∩ SL3(Z). It is generated by the images

under the isomorphism GL(Mi ) ∼= GL3(Z) of the transpositions in the subgroup
S4 × {1} multiplied by the element σ ∈ GL3(Z). We denote it by W

S
i .

The lattice M3 can be seen as the root lattice of the root system A3 endowed with
the natural action of the group Aut(A3) ∼= S4 ×µ2. Similarly, one can show that M1
is the weight lattice of this root lattice, so that there is an inclusion M3 ↪→ M1 as
a sublattice of index 4. With our choice of bases, it is given by the matrix

⎛

⎝

2 1 1
1 2 1
1 1 2

⎞

⎠ .

Likewise, the lattice M2 is the root lattice of the root system B3 endowed with the
natural action of the group Aut(B3) ∼= S3�µ3

2
∼= S4×µ2. The inclusion M3 ↪→ M1

factors as the composition of two inclusions M3 ↪→ M2 and M2 ↪→ M1 as sublattices
of index two. With our choice of bases, they are given by the matrices

⎛

⎝

1 1 0
1 0 1
0 1 1

⎞

⎠ and

⎛

⎝

1 1 0
1 0 1
0 1 1

⎞

⎠ ,

respectively. All the inclusions M3 ↪→ M2 ↪→ M1 are S4 × µ2-equivariant.
Let T1 = Spec(C[M1]), T2 = Spec(C[M2]) and T3 = Spec(C[M3]) be the three-

dimensional tori that correspond to the lattices M1, M2 and M3, respectively. We
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write

C[M1] = C
[

t̂±1
1 , t̂±1

2 , t̂±1
3

]

and identify (using the inclusions M3 ↪→ M2 ↪→ M1) the algebras C[M2] and C[M3]
with the subalgebras of the algebra C[M1] as follows:

C[M2] = C[t̄±1
1 , t̄±1

2 , t̄±1
3 ] = C

[

(t̂1 t̂2)
±1, (t̂1 t̂3)

±1, (t̂2 t̂3)
±1]

and

C[M3] = C[t±1
1 , t±1

2 , t±1
3 ] = C

[

(t̄1 t̄2)±1, (t̄1 t̄3)±1, (t̄2 t̄3)±1
]

= C
[

(t̂21 t̂2 t̂3)
±1, (t̂1 t̂22 t̂3)

±1, (t̂1 t̂2 t̂23 )±1
]

.

This gives us morphisms q12 : T1 → T2 and q23 : T2 → T3, which are quotients
by the involutions (t̂1, t̂2, t̂3) �→ (−t̂1,−t̂2,−t̂3) and (t̄1, t̄2, t̄3) �→ (−t̄1,−t̄2,−t̄3),
respectively.

In the next three subsections, we present three toric Fano varieties with terminal sin-
gularities that are natural equivariant compactifications of the toriT1,T2,T3 following
the scheme described in Sect. 3. Before doing this, let us first fix some notation.

Notation 4.3 Let ([u1 : v1], . . . , [un : vn]) be homogeneous coordinates on (P1)n .
We equip (P1)n with its standard structure of a toric variety with open orbit T(P1)n

given by

n
∏

i=1

uivi �= 0.

We view the collection of ratios
( u1

v1
, . . . , un

vn

)

as natural “toric coordinates” on (P1)n .

We use these to identify each torus-invariant irreducible closed subvariety of (P1)n

with the toric coordinates of its general point. For example, for n = 4, this yields:

• (0, 1, 1, 1) is the torus-invariant divisor u1 = 0;
• (0, 1,∞, 1) is the torus-invariant surface given by u1 = v3 = 0;
• (0, 0, 0, 0) is the torus-invariant point u1 = u2 = u3 = u4 = 0.

Finally, we denote by υ be the involution of P
1 given by [u : v] �→ [v : u].

4.1 Toric Fano threefold withWeyl groupW1

The convex hull of the points

(0,±1,±1), (±1, 0,±1), (±1,±1, 0)

in Hom(M1, Z) ⊗ Q is a W1-invariant convex polytope. One can show that the asso-
ciated toric Fano threefold is the hypersurface Y24 in (P1)4 that is given by

u1u2u3u4 − v1v2v3v4 = 0.
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The open T1-orbit is the subset TY24 that is given by

u1u2u3u4v1v2v3v4 �= 0.

We have WY24
∼= W1, so that we identify WY24 = W1, TY24 = T1 and GY24 =

T1 � W1.
The W1-action on Y24 is given by the permutations of the factors in (P1)4 and

the involution υ × υ × υ × υ, which corresponds to the element σ of W1. We also
denote this involution by σY24 .

The threefold Y24 has fourteen T1-fixed points: the six points

(0, 0,∞,∞), (0,∞, 0,∞), (0,∞,∞, 0), (∞, 0,∞, 0), (∞, 0, 0,∞), (∞,∞, 0, 0),

which are isolated ordinary double points forming the singular locus of Y24, and the
eight smooth points

(0,∞,∞,∞), (∞, 0,∞,∞), (∞,∞, 0,∞), (∞,∞,∞, 0),
(∞, 0, 0, 0), (0,∞, 0, 0), (0, 0,∞, 0), (0, 0, 0,∞).

Similarly, it has twenty four irreducible T1-invariant curves

(0, 0, 1,∞), (0, 1, 0,∞), (1, 0, 0,∞), (0, 0,∞, 1), (0, 1,∞, 0), (1, 0,∞, 0),
(0,∞, 0, 1), (0,∞, 1, 0), (1,∞, 0, 0), (∞, 0, 0, 1), (∞, 0, 1, 0), (∞, 1, 0, 0),
(∞,∞, 1, 0), (∞, 1,∞, 0), (1,∞,∞, 0), (∞,∞, 0, 1), (∞, 1, 0,∞), (1,∞, 0,∞),

(∞, 0,∞, 1), (∞, 0, 1,∞), (1, 0,∞,∞), (0,∞,∞, 1), (0,∞, 1,∞), (0, 1,∞,∞),

and twelve irreducible T1-invariant surfaces

(0, 1, 1,∞), (1, 0, 1,∞), (1, 1, 0,∞), (0, 1,∞, 1), (1, 0,∞, 1), (1, 1,∞, 0),
(0,∞, 1, 1), (1,∞, 0, 1), (1,∞, 1, 0), (∞, 0, 1, 1), (∞, 1, 0, 1), (∞, 1, 1, 0).

With this description, the following lemma is straightforward to check.

Lemma 4.4 Let W be a subgroup in W1 that contains W
A
1 . Then the following hold:

(1) The group W
A
1 acts transitively on the set of T1-invariant surfaces and on the set

of singular points of Y24.

(2) The groups W
A
1 and W

S
1 act on the set of smooth T1-fixed points and on the set of

T1-invariant curves with the same orbits. The action on the set of smooth T1-fixed
points has two orbits: one consisting of the points

(0,∞,∞,∞), (∞, 0,∞,∞), (∞,∞, 0,∞), (∞,∞,∞, 0),

and another one consisting of the points

(∞, 0, 0, 0), (0,∞, 0, 0), (0, 0,∞, 0), (0, 0, 0,∞),
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Similarly, the action on the set of irreducible T1-invariant curves has two orbits:
one consisting of the curves

(0, 0, 1,∞), (0, 1, 0,∞), (1, 0, 0,∞), (0, 0,∞, 1), (0, 1,∞, 0), (1, 0,∞, 0),
(0,∞, 0, 1), (0,∞, 1, 0), (1,∞, 0, 0), (∞, 0, 0, 1), (∞, 0, 1, 0), (∞, 1, 0, 0),

and the other one consisting of the curves

(∞,∞, 1, 0), (∞, 1,∞, 0), (1,∞,∞, 0),
(∞,∞, 0, 1), (∞, 1, 0,∞), (1,∞, 0,∞),

(∞, 0,∞, 1), (∞, 0, 1,∞), (1, 0,∞,∞), (0,∞,∞, 1),
(0,∞, 1,∞), (0, 1,∞,∞).

(3) The group W
S
1 acts transitively on the set of smooth T1-fixed points and on the

set of irreducible T1-invariant curves.
(4) If σY24 ∈ W, then W acts transitively on the set of smooth T1-fixed points and on

the set of T1-invariant curves of Y24.

��
Corollary 4.5 Let G be a subgroup of GY24 that contains W

A
1 . Then rk(Cl(Y24)G) =

1. ��

4.2 Toric Fano threefold withWeyl groupW2

The convex hull of the lattice points (0, 0,±1),(0,±1, 0),(±1, 0, 0) inHom(M2, Z)⊗
Q is a W2-invariant convex polytope. One can check that the associated toric Fano
threefold is V6 = P

1×P
1×P

1. Moreover, one hasWV6
∼= W2. Therefore, we identify

WV6 = W2, TV6 = T2 and GV6 = T2 � W2.
The action of W2 ∼= S3 � µ2

3 on the threefold V6 is given by the permutations
of three factors, the involutions υ × υ × idP1 and υ × idP1 × υ, and the involution
υ ×υ ×υ, which corresponds to the element σ of W2. We also denote this involution
by σV6 .

Lemma 4.6 Let W be a subgroup of W2 that contains W
A
2 . Then the following hold:

(1) The group W
A
2 acts transitively on the set of irreducible T2-invariant surfaces

and on the set of irreducible T2-invariant curves.

(2) The groupsW
A
2 andW

S
2 act on the set ofT2-fixed points with the same two orbits:

one consisting of the points

(0, 0, 0), (∞,∞, 0), (∞, 0,∞), (0,∞,∞),

and another one consisting of the points

(∞,∞,∞), (0, 0,∞), (0,∞, 0), (∞, 0, 0).
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(3) The group W
S
2 acts transitively on the set of T2-fixed points.

(4) If σV6 ∈ W, then W acts transitively on the set of T2-fixed points.

��
Corollary 4.7 Let G be a subgroup of GV6 that containsW

A
2 . Then rk(Cl(V6)

G) = 1.��
Remark 4.8 Recall that we have the quotient morphism q12 : T1 → T2, which is given
by

(t̂1, t̂2, t̂3) �→ (t̂1 t̂2, t̂1 t̂3, t̂2 t̂2).

Byconstruction, thismorphism is equivariant for the actions of the groupS4×µ2 given
by the subgroups W1 and W2, respectively. Moreover, it induces a q12-equivariant
rational map ϕ : Y24 ��� V6 that has generic degree 2. This rational map is equivariant
for the actions of the groupS4 ×µ2 on the threefolds Y24 and V6. With our choice of
coordinates, this rational map can be explicitly written as follows. For i ∈ {1, 2, 3, 4},
let

Ui = ui
vi
u1u2u3u4v1v2v3v4 and Vi = vi

ui
u1u2u3u4v1v2v3v4.

Then the image of the rational � : Y24 ��� P
7 defined by

(

[

u1 : v1
]

,
[

u2 : v2
]

,
[

u3 : v3
]

,
[

u4 : v4
]

)

�→
[

U1 : V1 : U2 : V2 : U3 : V3 : U4 : V4
]

(1)

is equal to the image of V6 by the Segre embedding j : V6 ↪→ P
7 given by

(

[u1 : v1], [u2 : v2], [u3 : v3]
)

�→
[

u1u2v3 : v1v2u3 : u1v2u3 : v1u2v3 :
v1u2v3 : v1u2u3 : u1v2v3 : v1v2v3 : u1u2u3

]

and j ◦ ϕ = �. Moreover, there exists S4 × µ2-equivariant commutative diagram

˜Y24

α

β
̂Y24

γ

Y24
ϕ

V6 Y12
δ

(2)

where α is the blow-up of all the singular points of Y24, β is the composition of Atiyah
flops of the proper transforms of all T1-invariant curves in Y24, γ is the contraction
of the proper transforms of all T1-invariant surfaces in Y24, and δ is the double cover
branched over the union of allT2-invariant surfaces. The threefold Y12 is the canonical
toric Fano threefold No 525553 in [7].



22 Page 22 of 45 I.Cheltsov et al.

4.3 Toric Fano threefold withWeyl groupW3

The convex hull of the eight points

(±1,±1,±1)

in Hom(M3, Z) ⊗ Q is a W3-invariant convex polytope. One can check that the asso-
ciated toric Fano threefold is the toric Fano threefold X24, No 47 in [7]. Following [5,
§ 6.3.2], we can also view X24 as the quotient of the threefold V6 by the involution
τV6 : V6 → V6 defined by

(

[

u1 : v1
]

,
[

u2, v2
]

,
[

u3, v3
]

)

�→
(

[

u1 : −v1
]

,
[

u2 : −v2
]

,
[

u3 : −v3
]

)

. (3)

In this presentation, the threefold X24 comes with a closed embedding X24 ↪→ P
13

which is induced by the rational map V6 ��� P
13 defined by

([u1 : v1], [u2 : v2], [u3 : v3]
) �→

[

u21u
2
2u

2
3 : u21u22v23 : u21u2v2u3v3 : u21v22u23 :

u21v
2
2v

2
3 : u1v1u22u3v3 : u1v1u2v2u23 :

u1v1u2v2v23 : u1v1v22u3v3 : v21u
2
2u

2
3 :

v21u
2
2v

2
3 : v21u2v2u3v3 : v21v

2
2u

2
3 : v21v

2
2v

2
3

]

.

(4)

The action of the torus T3 on the threefold X24 coincides with that induced from
the action of the torusT2 on the threefold V6 via the quotient morphismπ : V6 → X24.
Namely, the torus T3 is the quotient of the torus T2 by the involution

(

t̄1, t̄2, t̄3
) �→ ( − t̄1,−t̄2,−t̄3

)

,

and the quotient morphism π : V6 → X24 = V6/τV6 becomes equivariant with respect
to the quotient morphism q23 : T2 → T3 when we equip the threefold X24 with the
induced structure of toric variety.

The involution τV6 commutes with the action of the Weyl group WV6
∼= W2,

so that we have WX24
∼= W3. Hence, we identify WX24 = W3, TX24 = T3 and

GX24 = T3 � W3.
The action of the groupWX24 on the threefold X24 coincideswith the action induced

from the action of the group WV6 on the threefold V6 via the quotient morphism
π : V6 → X24. We denote by σX24 the involution in WX24 induced by σV6 ∈ WV6 .

The morphism π : V6 → X24 maps WV6 -orbits of irreducible T2-invariants closed
subvarieties in V6 to the WX24 -orbits of irreducible T3-invariant closed subvarieties
in X24. Because of this, we will denote irreducible T3-invariant closed subvarieties in
X24 by the same symbols as the corresponding irreducible T2-invariant subvarieties
in V6.

Observe that the Fano threefold X24 has exactly eight T3-fixed points, which are
singular points of type 1

2 (1, 1, 1). They are the images of the fixed points of the
involution τV6 . One can check that the divisor class group of the threefold X24 is
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isomorphic to Z
3 ⊕ Z2. It is generated by the images of the toric divisors in the

threefold V6. We have

−2KX24 ∼ OP13(2)|X24

and−KX24 is not aCartier divisor. This togetherwith the adjunction formula imply that
every smooth hyperplane section of the threefold X24 ⊂ P

13 is an Enriques surface.
As a consequence of Corollary 4.7, we obtain.

Corollary 4.9 Let G be a subgroup inGX24 that containsW
A
3 . Then rk(Cl(X24)

G) = 1.
��

5 Two equivariant Sarkisov links

In this section, we present two known toric birational maps between X24 and two
other terminal toric Fano threefolds (see Lemmas 5.2 and 5.3 below), which will play
a central role in the proof of Theorem 1.2.

Let X8 be the complete intersection of three quadrics in P
6 with homogeneous

coordinates [y1 : y2 : y3 : y4 : y5 : y6 : y7] given by the equations

⎧

⎪

⎨

⎪

⎩

y27 − y1y6 = 0

y27 − y2y5 = 0

y27 − y3y4 = 0.

(5)

We view X8 as a toric variety for the torus T2, with open orbit TX8 that is given by

y1y2y3y4y5y6y7 �= 0.

Then X8 has six T2-fixed points, which are its singular points, it has twelve T2-
invariants irreducible curves, which are lines in P

6, and it has eight T2-invariants
irreducible surfaces, which are planes in P

6. The rational map P
6 ��� V6 given by

[

y1 : y2 : y3 : y4 : y5 : y6 : y7
] �→

(

[

y1 : y7
]

,
[

y2 : y7
]

,
[

y3 : y7
]

)

(6)

induces a T2-equivariant birational map � : X8 ��� V6 whose inverse is given by

([u1 : v1], [u2 : v2], [u3 : v3]
) �→

[

u21W2,3 : u22W1,3 : u23W1,2 : v23W1,2 :
v22W1,3 : v21W2,3 : u1u2u3v1v2v3

]

,
(7)
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where Wi, j = uivi u jv j for every i and j in {1, 2, 3}. Moreover, there exists a com-
mutative diagram

˜V6

β

˜X8

α

V6
�−1

X8

(8)

where β is the blow-up of all eight T2-fixed points, the top dashed arrow consists of
flips in the proper transforms of the twelveT2-invariant lines in X8, andα is the crepant
contraction of the proper transforms of the six T2-invariant surfaces in V6.

The action of WV6 on V6 given in Subsection 4.2, and the formulas (6) and (7)
imply that

�−1
WV6� = WX8

∼= W2,

so that � is a birational T2 � W2-map. The diagram (8) is a so-called bad T2 � W2-
Sarkisov link.

The composition �−1 ◦ τV6 ◦ � (see (3) for the definition of τV6) is the biregular
involution τX8 of the threefold X8 defined by

[y1 : y2 : y3 : y4 : y5 : y6 : y7] �→ [y1 : y2 : y3 : y4 : y5 : y6 : −y7].

The projection P
6 ��� P

5 from the point [0 : 0 : 0 : 0 : 0 : 0 : 1] induces an
isomorphism between the quotient X8/τX8 and the complete intersection V4 ⊂ P

5

given by

{

y1y6 − y2y5 = 0

y1y6 − y3y4 = 0.
(9)

We view V4 as a toric variety for the torus T3 (see Sect. 4), with open orbit TV4 given
by

y1y2y3y4y5y6 �= 0,

so that the quotient morphism π : X8 → V4 is equivariant with respect to the quotient
morphism q23 : T2 → T3.

The threefold V4 has six T3-fixed points, twelve irreducible T3-invariant curves,
which are lines in P

5 and eight irreducible T3-invariant surfaces which are planes
in P

5. These T3-invariant irreducible subvarieties are the images of the T2-invariant
irreducible subvarieties of X8 by the quotient morphism π : X8 → V4.

Since τV8 commutes with the action of T2 � W2 on the threefold X8, we obtain an
induced regular action ofS4×µ2 on the threefold V4. Moreover, one hasWV4

∼= W3,
and the threefold V4 endowedwith the action ofGV4 = T3�WV4 is another projective
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terminal toric Fano model for the subgroup W3 of GL3(Z). As usual, we identify
WV4 = W3, we let σV4 to be the involution in WV4 defined by

[y1 : y2 : y3 : y4 : y5 : y6] �→ [y6 : y5 : y4 : y3 : y2 : y1],

and we let ν : GV4 → W3 be the natural homomorphism.

Lemma 5.1 ([4, Theorem 10]) Let G be a subgroup of GV4 such that ν(G) contains
W

A
3 . Then rk(Cl(V4)G) = 1 if and only if σV4 ∈ ν(G) or ν(G) = W

S
3 . ��

Proof By construction, the eight irreducibleT3-invariant surfaces in V4 are the images
by π : X8 → V4 of the eight irreducible T2-invariant surfaces in X8. By the T2 �W2-
equivariant commutative diagram (8), the latter are the images by α : X̃8 → X8 of
the proper transforms of exceptional divisors of the blow-up β : Ṽ8 → V6 of the eight
T2-fixed points of V6. Since the action of W3 on the character lattice of T3 is induced
from that of W2 on the character lattice of T2, it follows that ν(G) acts transitively on
the eight irreducible T3-invariant surfaces in V4 if and only this group acts transitively
on the eight T2-fixed points of V6. The assertion then follows from Lemma 4.6. ��

The birationalT2�W2-map� in (8) induces a birationalT3�W3-map ϕ : V4 ���
X24 defined by

[

y1 : y2 : y3 : y4 : y5 : y6
] �→ [

y1y2y3 : y1y2y4 : y1y3y4 : y1y3y5 : y1y4y5 :
y1y2y6 : y1y3y6 : y1y4y6 : y1y5y6 :

y2y3y6 : y2y4y6 : y2y5y6 : y3y5y6 : y4y5y6
]

,

(10)

and we eventually obtain the following:

Lemma 5.2 There exists a T3 � W3-Sarkisov link

˜X20

γ

ρ
X20

δ

V4
ϕ

X24

(11)

where γ is the blow-up of the six singular points of the threefold V4, the map ρ is
a composition of Atiyah flops in the proper transforms of the twelve T3-invariant lines
in V4, and δ is the composition of Kawamata blow-ups of the eight singular points of
X24. ��

Let V2 be the hypersurface of degree 4 in P(1, 1, 1, 1, 2) defined by the equation

w2 − x1x2x3x4 = 0, (12)

where x1, x2, x3 and x4 are coordinates of weight 1, and w is a coordinate of weight
2. We view V2 as a toric variety for the torus T3 with open orbit TV2 given by
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x1x2x3x4w �= 0. The threefold V2 has four T2-fixed points, it has six T2-invariants
irreducible curves, which are singular curves of the threefold V2, and it has four T2-
invariants irreducible surfaces.

The rational map P(1, 1, 1, 1, 2) ��� V6 given by

[

x1 : x2 : x3 : x4 : w
] �→

(

[

x1x2 : w
]

,
[

x1x3 : w
]

,
[

x2x3 : w
]

)

induces a T2-equivariant birational map �∞ : V2 ��� V6, whose inverse is given by

([

u1 : v1
]

,
[

u2 : v2
]

,
[

u3 : v3
]) �→

[

u1u2v3 : u1u3v2 : u2u3v1 : v1v2v3 : u1u2u3v1v2v3
]

. (13)

With the Notation 4.3, this birational map �∞ fits in the following commutative
diagram:

˜V2
α∞ β∞

V2
�∞

V6

(14)

where β∞ is the blow-up of the four points (∞,∞,∞), (0, 0,∞), (0,∞, 0) and
(∞, 0, 0), of X24, and α is the contraction of the proper transforms of the six T2-
invariant irreducible surfaces in V6 onto the six singular curves of V2.

Arguing as in the construction of � in Sect. 5, we see that

�−1∞ W
S
2 �∞ = WV2 ,

where we identified WV6 = W2. Therefore, �∞ is a birational T2 � W
S
2 -map. The

diagram (14) is a bad T2 � W
S
2 -Sarkisov link.

The composition �−1∞ ◦ τV6 ◦ �∞ is the biregular involution τV2 of V2 defined by

[x1 : x2 : x3 : x4 : w] �→ [x1 : x2 : x3 : x4 : −w].

Viewing P
3 as a toric variety for the torusT3 with open orbitTP3 given by x1x2x3x4 �=

0, the quotient morphism V2 → P
3 is equivariant for the quotient morphism q23 :

T2 → T3. We can identify WP3 = WV2 = W
S
3 , so that GP3 = T3 � W

S
3 .

It follows that the map�∞ in (14) induces a birationalT3�W
S
3 -mapψ∞ : P

3 ���
X24 given by

[

x1 : x2 : x3 : x4
] �→

[

x21 x
2
2 x

2
3 : x31 x2x3x4 : x21 x22 x3x4 : x1x32 x3x4 : x21 x22 x24 :

x21 x2x
2
3 x4 : x1x22 x23 x4 : x21 x2x3x24 : x1x22 x3x24 :

x1x2x33 x4 : x21 x23 x24 : x1x2x23 x24 : x22 x22 x24 : x1x2x3x34
]

,

(15)
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and we eventually obtain the following:

Lemma 5.3 There exists a T3 � W
S
3 -Sarkisov link

X22

γ∞ δ∞

P
3 ψ∞

X24

(16)

where δ∞ is the composition of Kawamata blow-ups of four points in Sing(X24) that

form theW
S
3 -orbit of the singular point (∞,∞,∞) of X24, and γ∞ is the contraction

of the proper transforms of the six T3-invariant surfaces in X24 to the six T3-invariant
lines in P

3. ��
Note that the birational map (15) is defined by the linear system consisting of all

sextic surfaces that are singular along the six T3-invariant lines in P
3. This recovers

the original construction of the T3 � W
S
3 -Sarkisov link (16) that is given in [11].

Remark 5.4 ConsideringP
3 as a toric variety for the torusT3 and considering the action

of the group WP3 ∼= S4 on the character lattice M3 of T3, we see that WP3 = W
S
3 .

Then there exists the following T3 � W
S
3 -equivariant commutative diagram:

˜V4

β

α
V4

σV4
V4 ˜V4

β

α

P
3

P
3

where β is the blow-up of the four T3-invariant points, α is the contraction of the
proper transforms of the six T3-invariant lines, and the dashed arrow is the standard
Cremona involution.

6 Proof of Theorem 1.2 (infinite groups)

In this section, we give an alternative proof of Theorem 1.2(3) in the case when the
group G is infinite. We will treat each of the threefolds Y24, V6, X24, V4 and P

3 in a
separate subsection.

6.1 Singular Fano threefold Y24

We use the notation introduced in Sect. 4.1. LetGY24 = T1�W1, letW be a subgroup
in W1 that contains W

A
1 (see Notation 4.2), and let G = T1 � W ⊂ GY24 .

Lemma 6.1 The threefold Y24 is G-birationally super-rigid. ��
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Proof Suppose that Y24 is not G-birationally super-rigid. Then, see for instance [10,
Theorem 3.3.1], there exists a G-invariant mobile linear system M on the threefold
Y24 such that the pair (Y24, λM) is not canonical, where λ is a positive rational number
defined by

λM ∼Q −KY24 .

Let Z be a G-irreducible center of non-canonical singularities of the log pair
(Y24, λM). Then, by Lemma 4.4, we have one of the following possibilities:

(1) Z is the G-orbit of the singular point (0, 0,∞,∞),
(2) Z is the G-orbit of the smooth point (0,∞,∞,∞) or of the smooth point

(0, 0, 0,∞),
(3) Z is the G-orbit of the curve (0, 0, 1,∞) or of the curve (0, 1,∞,∞).

Let us show that none of these three cases is actually possible.
Let S be the surface (0, 1, 1,∞). Then S ∼= P

1 × P
1, and the restriction λM|S is

an effective Q-linear system of bi-degree (1, 1). Then S contains the singular points
(0, 0,∞,∞) and (0,∞, 0,∞), it also contains the smooth points (0, 0, 0,∞) and
(0,∞,∞,∞), and it also contains the curves (0, 0, 1,∞), (0, 1, 0,∞), (0, 1,∞,∞)

and (0,∞, 1,∞).
If Z is a curve, then the multiplicity of the restriction λM|S at the curve Z is strictly

larger than 1 by Lemma 2.7. Clearly, this is impossible, since λM|S has bi-degree
(1, 1). Thus Z must be zero dimensional.

Suppose that Z is the G-orbit of the smooth point (0, 0, 0,∞) or of the smooth
point (0,∞,∞,∞). Denote this point by P . Then the tangent space TP (Y24) is
an irreducible representation of the stabilizer of the point P in the group G. Thus,
by Lemma 2.12, we have

multP
(M)

>
2

λ
.

Let C be a general curve in S of bi-degree (1, 1) that passes through P . Such curves
span the whole surface S, so that C is not contained in the base locus of the linear
system M. Then, for a general surface M ∈ M, we have

2

λ
= M · C ≥ multP

(M)

>
2

λ
,

which is absurd.
It thus remains to consider the case where Z consists of singular points of the

threefold Y24. Let α : ˜Y24 → Y24 be the blow-up of the points (0, 0,∞,∞) and
(0,∞, 0,∞), let ˜M be the proper transform of a general surface in the linear system
M on the threefold ˜Y24, let E1 and E2 be the α-exceptional surfaces. Then

λ ˜M ∼Q α∗(−KY24) − m1E1 − m2E2
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for some rational numbersm1 andm2. By Lemma 2.11, we havem1 > 1 andm2 > 1.
Now let ˜C be the proper transform on ˜Y24 of a general curve in S of bi-degree (1, 1)
that passes through both points (0, 0,∞,∞) and (0,∞, 0,∞). Then ˜C �⊂ ˜M , so that

0 ≤ λ ˜M · ˜C =
(

α∗(−KY24) − m1E1 − m2E2

)

· ˜C = 2 − m1 − m2 < 0,

which is absurd. This completes the proof of the lemma. ��
Remark 6.2 Since the Fano threefold Y24 is GY24 -birationally super-rigid, there is no
GY24 -Sarkisov link starting at Y24. But there are bad GY24 -Sarkisov links that start at
Y24, which implicitly appear in the proof of Lemma 6.1. For example, blowing-up all
singular points of the threefold Y24, we obtain the bad GY24 -Sarkisov link (2).

6.2 Fano threefold V6 = P
1 × P

1 × P
1

We use the notation introduced in Sect. 4.2. Let GV6 = T2 � W2, let W be one of the
subgroups in W2 that contains the group W

A
2 , and let G = T2 � W ⊂ GV6 .

Lemma 6.3 The threefold V6 is G-birationally super-rigid. ��
Proof We may assume that W = W

A
2 . Suppose that V6 is not G-birationally super-

rigid. Then there exists a G-invariant mobile linear system M on V6 such that
(V6, λM) is not canonical, where λ is the positive rational number defined by
λM ∼Q −KV6 .

Let Z be a G-irreducible center of non-canonical singularities of the log pair
(V6, λM). If Z is a curve, we can assume that Z is the W

A
2 -orbit of the T2-invariant

curve (0, 0, 1). Otherwise, we can assume that Z is theW
A
2 -orbit of the point (0, 0, 0).

Let S be the surface (0, 1, 1) ⊂ V6. Then S ∼= P
1 × P

1, and λM|S is an effective
Q-linear system of bi-degree (2, 2). If Z is a curve, then

S ∩ Z = (0, 0, 1) ∪ (0,∞, 1) ∪ (0, 1, 0) ∪ (0, 1,∞).

We let C1 = (0, 0, 1) and C2 = (0,∞, 1). Note that C1 ∩ C2 = ∅. If Z is a point,
then

S ∩ Z = (0, 0, 0) ∪ (0,∞,∞).

We let P1 = (0, 0, 0) and P2 = (0,∞,∞).
If Z is a curve, then it follows from Lemma 2.7 that

multC1

(M) = multC2

(M)

>
1

λ

This implies that the coefficient of these curves in the restriction λM|S is larger
than 1, contradicting the fact that λM|S is of bi-degree (2, 2). Thus Z must be zero
dimensional.
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Since the stabilizer of the point P1 in the group G contains a subgroup µ3 that
permutes transitively the T2-invariant curves that pass through P1, the tangent space
TP1(X) is an irreducible three-dimensional representationof the stabilizer of P1. There-
fore, it follows from Lemma 2.12 that

multP1
(M) = multP2

(M)

>
2

λ
.

Let C be a general curve in the surface S of bi-degree (1, 1) that passes through P1
and P2. Such curves span the whole surface S, so that the curve C is not contained in
the base locus of the linear systemM. Thus, for a general surface M ∈ M, we have

4 = λM · C ≥ λ
(

multP1(M) + multP2(M)
)

> 4,

which is absurd. This completes the proof. ��

Remark 6.4 Since threefold V6 is GV6 -birationally super-rigid, there is no GV6 -
Sarkisov link that starts at V6. However, there exist bad GV6 -Sarkisov links that start
at V6. For instance, blowing-up all T2-invariant points leads to the bad GV6 -Sarkisov
link (14). Likewise, the GV6 -equivariant symbolic blow-up α of the union of all T2-
invariant curves (see Example 2.3) also leads to a bad GV6 -Sarkisov link:

˜X12

α β

V6 X12

where β is the contraction of the proper transforms of the GV6 -invariant surfaces in
V6. One can show that X12 is the canonical toric Fano threefold No 9099 in [7], which
can also be obtained as the quotient of the singular Fano threefold Y24, viewed as a
toric variety for the action of the torusT1, by an involution that fixes onlyT1-invariant
points.

6.3 Singular Fano threefolds V4 and X24

We now treat the threefolds V4 and X24. We use the notation of Sects. 4.3 and 5, and
we identify GV4 = GX24 = T3 � W3. By Sect. 5, we have a T3 � W3-Sarkisov link

˜X20

γ

ρ
X20

δ

V4
ϕ

X24



Toric G-solid Fano threefolds Page 31 of 45 22

where γ is the blow-up of the eight singular points of V4, the map ρ is a composition
of Atiyah flops in the proper transforms of the twelve T3-invariant lines in V4, and δ

is the composition of Kawamata blow-ups of the eight singular points of X24.
Let W be a subgroup of W3 that contains W

A
3 such that either W = W

A
3 , or W

contains the involution σ (see Notation 4.2), and let G = T3 � W. The proof of the
following lemma is straightforward.

Lemma 6.5 LetMX24 be a G-invariant mobile linear system on X24, and letMV4 be
its proper transform on V4 via ϕ. Then the following assertions hold:

(1) There are k ∈ Z≥0 and m ∈ 1
2Z≥0 such that MX24 ∼Q −kKX24 and

δ−1∗
(MX24

) ∼Q δ∗( − kKX24

) − m
8

∑

i=1

Fi ,

where each Fi is a δ-exceptional surface.
(2) There are n ∈ Z≥0 and m′ ∈ Z≥0 such that MV4 ∼ nHV4 and

γ −1∗
(MV4

) ∼Q γ ∗(nHV4

) − m′
6

∑

i=1

Ei ,

whereHV4 is a hyperplane section of V4, and each Ei is a γ -exceptional surface.
(3) One has n = 3k − 2m and k = n − m′.

��
Now we are ready to prove

Proposition 6.6 One has PG(V4) = {V4, X24}.
Proof Let χ : X24 ��� Y be a G-equivariant birational map such that Y is a threefold
with terminal singularities, and there exists a G-equivariant morphism f : Y → Z
that is a G-Mori fiber space. Fix a sufficiently large positive integer n � 0. Let DZ

be a sufficiently general very ample divisor on Z , letMY = | − nKY + f ∗(DZ )|, let

MX24 = (χ)−1∗
(MY

)

and let

MV4 = (χ ◦ ϕ)−1∗
(MY

)

.

Then MX24 and MV4 are G-invariant mobile linear systems on X24 and V4, respec-
tively. Let k and n be the non-negative integers such that MX24 ∼Q −kKX24

and MV4 ∼ nHV4 . If the log pair (X24,
1
kMX24) has canonical singularities, then

it follows from the Noether–Fano inequality that χ is an isomorphism, see [10, The-
orems 3.2.1 and 3.2.6] or [12]. Similarly, if the log pair (V4,

2
nMV4) has canonical

singularities, then the birational map χ ◦ϕ is an isomorphism. Therefore, to prove the
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required assertion, it is enough to show that either (X24,
1
kMX24) or (V4,

2
nMV4) has

canonical singularities.
Suppose that the singularities of the log pair (X24,

1
kMX24) are worse than canon-

ical. Then, using Lemma 2.10 and Lemma 6.5, we obtain the inequality n < 2k. Let
us show then that the log pair (V4,

2
nMV4) has canonical singularities.

By construction of ϕ, if the singularities of the log pair (V4,
2
nMV4) are not canon-

ical, then the union of its centers of non-canonical singularities is either the union of
all singular points of the threefold V4, or a W-orbit of T3-invariant curves, which are
lines in P

5.
In the first case, using Lemma 2.11 and Lemma 6.5, we get n > 2k, which is

impossible, since we already proved that n < 2k.
The twelve T3-invariant lines in V4 form a unique W-irreducible curve. Suppose

that all of them are centers of non-canonical singularities of the log pair (V4,
2
nMV4).

Then

multL
(MV4

)

>
n

2
(17)

for each such line L by Lemma 2.7. On the other hand, each of the eight T3-invariant
planes in V4 contains three T3-invariant lines. Thus, restricting MV4 on one such
plane, we obtain a contradiction to (17). ��

6.4 Fano threefolds P
3 and X24

Finally, we deal with the Fano threefolds P
3 and X24. For X24, we use the same

notation as in Sect. 6.3. As in Sect. 5, we view P
3 as a toric variety for the torus T3,

and we identify WP3 = W
S
3 and GP3 = T3 � W

S
3 . In Sect. 5, we constructed the

following T3 � W
S
3 -Sarkisov link:

X22

γ∞ δ∞

P
3 ψ∞

X24

where δ∞ is a composition of Kawamata blow-ups of the four singular points of X24

that form the W
S
3 -orbit of the point (∞,∞,∞) in X24, and γ∞ is the contraction of

the proper transforms of the six T3-invariant surfaces in X24 to the six T3-invariant
lines in P

3.
Recall subsection 4.3 that the regular involution σX24 of X24 = V6/τV6 induced by

the involution σV6 = υ × υ × υ (see Notation 4.3) commutes with the action of W
S
3 .

We thus obtain a second birationalT3�W
S
3 -mapψ0 = σX24 ◦ψ∞ : P

3 ��� X24. Note

that σX24(∞,∞,∞) = (0, 0, 0). Consequently, we have a second T � W
S
3 -Sarkisov
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link

X22

γ0 δ0

P
3 ψ0

X24

where δ0 is a composition of Kawamata blow-ups of the four singular points of X24

which form the W
S
3 -orbit of the point (0, 0, 0), and γ0 is the contraction of the proper

transforms of the six T3-invariant surfaces in X24 to the six T3-invariant lines in P
3.

Remark 6.7 Using (4) and (15), one can show thatψ−1∞ ◦σX24 ◦ψ∞ is equal to the stan-
dard Cremona involution σP3 : P

3 ��� P
3 defined by

[x1 : x2 : x3 : x4] �→ [x2x3x4 : x1x3x4 : x1x2x4 : x1x2x3]. (18)

In other words, we have a commutative diagram of birational T � W
S
3 -maps

P
3 ψ∞

ψ0
σ

P3

X24

σX24

P
3 ψ∞

X24.

Let E be the sum of all γ -exceptional surfaces, let F0 be the sum of all δ0-
exceptional surfaces, let F∞ be the sum of all δ∞-exceptional surfaces, and let W

be either W
A
3 or W

S
3 . We also let G = T3 � W. The next lemma is straightforward.

Lemma 6.8 Let MX24 be a G-invariant mobile linear system on the Fano three-
fold X24, let MX22,∞ and MX22,0 be its proper transforms on X22 via δ∞ and δ0,
respectively, and let MP3,∞ and MP3,0 be its proper transforms on P

3 via ψ∞ and
ψ0, respectively. Furthermore, let k ∈ 1

2Z and let n∞ and n0 be integers such that

⎧

⎪

⎨

⎪

⎩

MX24 ∼Q −kKX24 ,

MP3,∞ ∼Q n∞H ,

MP3,0 ∼Q n0H .

where H is a hyperplane in P
3. Then the following assertions hold:

(1) There are m0 and m∞ in 1
2Z≥0 such that

{

MX22,0 ∼Q δ∗
0

( − kKX24

) − m0F0,

MX22,∞ ∼Q δ∗∞
( − kKX24

) − m∞F∞.
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(2) There are m′
0 and m′∞ in Z≥0 such that

{

MX22,0 ∼Q γ ∗
0

(

n0H) − m′
0E,

MX22,∞ ∼Q γ ∗∞
(

n∞H) − m′∞E .

(3) Furthermore, one has

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n0 = 6k − 4m0,

n∞ = 6k − 4m∞,

n0 = 3n∞ − 4m′∞,

k = n0
2

− m′
0,

k = n∞
2

− m′∞.

��
Now we are ready to prove:

Proposition 6.9 One has PG(P3) = {P3, X24}.
Proof Let MX24 be a G-invariant mobile linear system on the threefold X24. With
the notation of Lemma 6.8, if the log pair (X24,

1
kMX24) does not have canonical

singularities, then, combining Lemmas 2.10 and 6.8, we obtain that

• either (X24,
1
kMX24) is not canonical at the point (0, 0, 0) and n0 < 4k,

• or (X24,
1
kMX24) is not canonical at the point (∞,∞,∞) and n∞ < 4k.

If (P3, 4
n∞MP3∞) does not have canonical singularities, we let Z be itsG-irreducible

center of non-canonical singularities. In this case, one of the following cases holds:

• Z is the GP3 -irreducible curve and k < n∞
4 ;

• Z is the GP3 -orbit of length 4 and n0 < n∞.

Indeed, if Z is the GP3 -irreducible curve, then m′∞ > n∞
4 by Lemma 2.7, so that

k = n∞
2

− m′∞ <
n∞
4

,

by Lemma 6.8. Similarly, if Z is the GP3 -orbit of length 4, then

m′∞ > n∞
2

by Lemma 2.12, because the tangent space TP (P3) at a point P ∈ Z is an irreducible
representation of the stabilizer of the point P in the group G. Thus, in this case, we
have

n0 = 3n∞ − 4m′∞ < n∞
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by Lemma 6.8.
Now, we let q be the smallest number among n∞

4 , n0
4 and k. Without loss of gener-

ality, we may assume that

q = min
{n∞

4
, k

}

.

In view of the above alternatives, we obtain the following:

• if q = n∞
4 , then (P3, 4

n∞MP3,∞) has canonical singularities;

• if q = k, then (X24,
1
kMX24) has canonical singularities.

Now, arguing as in the proof of Proposition 6.6, we deduce that P
3 and X24 are the

only G-Mori fibre spaces G-birational to P
3. ��

7 Proof of Theorem 1.2 (finite groups)

All assertions of Theorem 1.2 follow from the results of Sects. 3 and 4 except for
the part (3), which has been already proved in Sects. 3 and 6 for infinite groups. The
aim of this section is to prove Theorem 1.2(3) for finite groups. To do this, we need
some results on finite subgroups of the groups T1 � W1, T2 � W2 and T3 � W3.

7.1 Finite subgroups

We use the notation of Sect. 4.

Lemma 7.1 Let W be a subgroup of the finite group W2 that contains the group W
A
2 ,

and let G be a W-invariant finite subgroup of T2. Then there exists n ∈ N such that
one of the following three possibilities holds:

(1) G ∼= µ3
n;

(2) n is even and G ∼= µ2
n × µ n

2
;

(3) n is even and G ∼= µn × µ2
n
2
.

��

Proof Let n be the maximal order of elements in G, and let h be an element in G
that has maximal order. Then the order of every element of G divides n. This implies
that G ⊆ µ3

n . Thus, there are positive integers a, b, c such that gcd(a, b, c, n) = 1
and

h = (

εa, εb, εc
)

for some primitive nth root of unity ε.
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With respect to the basis f1, f2, f3 of the lattice M2, the subgroup W
A
2 ⊂ GL3(Z)

is generated by permutation matrices and the matrices

A =
⎛

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎠ and B =
⎛

⎝

−1 0 0
0 1 0
0 0 −1

⎞

⎠ .

Applying cyclic permutations of order 3 to h, we see that

(εc, εa, εb) ∈ G � (εb, εc, εa),

so that the group G contains an element of the form (ε, εβ, εγ ) for some integers β

and γ . Thus, we may assume that a = 1. Applying AB to the element h, we see that

h′ = (ε, ε−b, ε−c) ∈ G.

It follows that hh′ = (ε2, 1, 1) and its transforms (1, ε2, 1) and (1, 1, ε2) by permu-
tations matrices in W are also contained in the group G.

Let h2 = (1, ε2, 1) and h3 = (1, 1, ε2). If n is odd then we can replace h by

hhβ
2 h

γ
3 = (ε, 1, 1),

where β and γ are integers such that βb ≡ 1 mod n and γ c ≡ 1 mod n. If n is even,
we can replace h by hhβ

2 h
γ
3 ∈ G for β = −� b

2� and γ = −� c
2�. Therefore, we may

assume that one of the following three cases holds: (b, c) = (0, 0), (b, c) = (1, 0)
and (b, c) = (1, 1).

If (b, c) = (0, 0), then h = (ε, 1, 1) from which it follows that G = µ3
n .

If (b, c) = (1, 0), then n is even and h = (ε, ε, 1). In this case, applying permuta-
tions, we get that (1, ε, ε) ∈ G and hence that G contains the subgroup

G ′ = 〈(ε, ε, 1), (1, ε, ε), (1, 1, ε2)〉 ∼= µ2
n × µ n

2
.

Since G ⊂ µ3
n , it follows that either G = G ′ or G ∼= µ3

n .
Finally, if (b, c) = (1, 1), then G contains the subgroup

G ′ = 〈(ε, ε, ε), (1, ε2, 1), (1, 1, ε2)〉 ∼= µn × µ2
n
2
,

and hence either G = G ′ or G ∼= µ3
n , which completes the proof. ��

Corollary 7.2 LetW be a subgroup of the finite groupW1 that contains the groupW
A
1 ,

and let G be a W-invariant finite subgroup of T1. Then there exists n ∈ N such that
one of the following five possibilities holds:

(1) G ∼= µ3
n;

(2) n is even and G ∼= µ2
n × µ n

2
;

(3) n is even and G ∼= µn × µ2
n
2
;



Toric G-solid Fano threefolds Page 37 of 45 22

(4) n is divisible by 4 and G ∼= µn × µ n
2

× µ n
4
;

(5) n is divisible by 4 and G ∼= µn × µ2
n
4
.

��
Proof Let q12 : T1 → T2, be the quotient map that corresponds to the inclusion
M2 ↪→ M1 described in Sect. 4. Then q12 is given by

(

t̂1, t̂2, t̂3
) �→ (

t̂1 t̂2, t̂1 t̂3, t̂2 t̂3
)

,

and its kernel consists of two elements ±(1, 1, 1). Let G be the image of G by the
map q12. Then either G ∼= G or there exists an exact sequence of groups

1 −→ µ2 −→ G −→ G −→ 1.

Since the W2-action on M2 is induced by the restriction of the W1-action on M1, we
see that G is normalized by the action of the subgroup W

A
2 . By Lemma 7.1, we obtain

that

(1) either G ∼= µ3
n ,

(2) or n is even and G ∼= µ2
n × µ n

2
,

(3) or n is even and G ∼= µn × µ2
n
2
.

This immediately implies the result. ��
Corollary 7.3 (cf. [19]) Let W be a subgroup of the finite group W3 that contains
W

A
3 , and let G be a W-invariant finite subgroup of T3. Then there exists n ∈ N such

that one of the following three possibilities holds:

(1) G ∼= µ3
n;

(2) n is even and G ∼= µ2
n × µ n

2
;

(3) n is divisible by 4 and G ∼= µ2
n × µ n

4
.

��
Proof Let q23 : T2 → T3 be the quotient by the involution (t̄1, t̄2, t̄3) �→
(−t̄1,−t̄2,−t̄3), which corresponds to the inclusion of lattices M3 ↪→ M2 described
in Sect. 4, and let ̂G be the preimage of the groupG via q23. Then ̂G is a finite subgroup
in T2, which is normalized by the group W

A
2 . Since ̂G contains±(1, 1, 1), we see that

|̂G| is even.
It follows from the proof of Lemma 7.1 that there exist an integer m ∈ 2N and

a primitive m-th root of unity ε such that ̂G is one of the following subgroups:

(1) 〈(ε, 1, 1), (1, ε, 1), (1, 1, ε)〉 ∼= µ3
m ,

(2) 〈(ε, ε, 1), (1, ε, ε), (1, 1, ε2)〉 ∼= µ2
m × µm

2
,

(3) 〈(ε, ε, ε), (1, ε2, 1), (1, 1, ε2)〉 ∼= µm × µ2
m
2
,

Thus, in the first case, we have

G = 〈(ε, 1, ε), (ε, ε−1, 1), (1, ε−1, ε)〉 = 〈(ε, 1, ε), (1, ε, ε), (1, ε2, 1)〉 ∼= µ2
m × µm

2
.
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Similarly, in the second case, we have

G = 〈(ε2, ε−1, ε), (ε, ε−2, ε), (1, ε−2, ε2)〉
= 〈(ε, 1, ε−1), (1, ε, ε), (1, 1, ε4)〉 = µ2

m × µm
4
,

where n is divisible by 4, because (−1,−1,−1) ∈ ̂G. Finally, in the third case, we
have

G = 〈(ε2, ε−2, ε2), (ε2, ε2, 1), (1, ε−2, ε2)〉 = 〈(ε2, 1, 1), (1, ε2, 1), (1, 1, ε2)〉 = µ3
m
2
.

This completes the proof of the corollary. ��

7.2 The proof of Theorem 1.2(3) for finite groups

Let X be one of the threefolds V6 = P
1×P

1×P
1, X24,Y24, V4 orP3, letT be amaximal

torus inAut(X), and letGX be its normalizer inAut(X). Using the split exact sequence
of groups

1 T GX
νX

WX 1,

we consider the Weyl group WX as a subgroup of the group GX .
Let G be a finite subgroup of the group GX , let W = νX (G), and let � = T ∩ G.

Suppose that the group W contains the unique subgroup in WX that is isomorphic to
A4. Then Lemma 7.1 and Corollaries 7.2 and 7.3 imply the following:

Corollary 7.4 The group � contains a subgroup �′ ∼= µ3
n such that |�′ : �| ≤ 16. ��

We have GX = 〈T, WX 〉 ∼= T � WX and G = 〈�, W〉 ∼= � � W. Note that

rk
(

Cl(X)G
)

= rk
(

Cl(X)W
)

,

so that X is G-minimal if and only if it is W-minimal. Now we suppose that X is W-
minimal. To prove Theorem 1.2(3), we have to show that X isG-solid if |G| ≥ 32·244.

Suppose that |�| ≥ 16 · 243. Note that this inequality follows from |G| ≥ 32 · 244.
By Corollary 7.4, the group� contains a subgroup that is isomorphic toµ3

n for n ≥ 24.
Let us prove that X is G-solid.

LetG = 〈TX , W〉 ∼= TX �W. In Sect. 6, we proved that the threefold X isG-solid.
Moreover, this proof implies that X is G-solid provided that the following condition
is satisfied:

(�) For every non-empty G-invariant mobile linear system M on the threefold X ,
all non-canonical centers (if any) of themobile log pair (X , λM) areTX -invariant,
where λ is a positive rational number such that

λM ∼Q −KX .
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Moreover, if a TX -invariant smooth point P of the threefold X is a non-canonical
center of the log pair (X , λM), then multP (M) > 2

λ
.

In the remaining part of this section, we will prove that � holds.
Let M be a non-empty G-invariant mobile linear system on X , and let λ be a

positive rational number such that λM ∼Q −KX .

Lemma 7.5 Let P be a smooth T-invariant point of the toric Fano threefold X such
that P is a non-canonical center of the log pair (X , λM). Then multP (M) > 2

λ
. ��

Proof Since P is a T-invariant smooth point of X , we have X = V6, X = Y24 or X =
P
3. Let GP be the stabilizer of the point P in G. Then the tangent space TP (X) is a

faithful representation of the group GP by Lemma 2.4. Moreover, this representation
is irreducible, because GP contains �. Thus, the assertion follows from Lemma 2.12.

��
Nowwe suppose that (X , λM) is not canonical and we let Z be a non-canonicalG-

center. To complete the proof, we have to show that Z is T-invariant. In what follows,
we denote by IX the Fano index of the threefold X .

Lemma 7.6 If Z is a curve, then Z is T-invariant. ��
Proof Let H be an ample Cartier divisor on X such that −KX ∼ IX H . Then

H3 I 2X
λ2

= H · M1 · M2 ≥ (

H · Z)

mult2Z
(M)

>
H · Z
λ2

for two general surfaces M1 and M2 in M, because multZ (M) > 1
λ
by Lemma 2.7.

Then

H · Z < H3 I 2X ≤ 24.

But H is very ample, and the group � contains a subgroup isomorphic to µ3
n for

n ≥ 24. Thus, the curve Z must be T-invariant by Lemma 2.13. ��
Thus, we may assume that Z is the G-orbit of a point in X .

Lemma 7.7 The G-orbit Z is contained in the union of T-invariant curves. ��
Proof Suppose that Z is not contained in the union of T-invariant curves. Let us seek
for a contradiction. Observe that the G-orbit Z is a G-center of non-log canonical
singularities of the log pair (X , 2λM). We claim that Z is an isolated center of non-
log canonical singularities of this log pair. Indeed, suppose that there is aG-irreducible
curve C that is a center of non-log canonical singularities of the log pair (X , 2λM).
Let M1 and M2 be general surfaces inM. Then

M1 · M2 = mC + �,

wherem is a non-negative integer, and� is an effective one-cycle whose support does
not contain C . Then m > 1

λ2
by Lemma 2.8.
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Let H be an ample Cartier divisor on X such that −KX ∼ IX H . Then

H3 I 2X
λ2

= H · M1 · M2 = mH · C + H · � ≥ mH · C >
H · C
λ2

,

so that H ·C < H3 I 2X ≤ 24. Thus, the curve C must be TX -invariant by Lemma 2.13.
Since Z is not contained in the union ofT-invariant curves, we see that Z is an isolated
center of non-log canonical singularities of the log pair (X , 2λM).

Let μ be a positive rational number such that μ < λ, and Z is an isolated G-
irreducible center of log canonical singularities of the log pair (X , 2μM). Let I
be the multiplier ideal sheaf of the log pair (X , 2μM). Then the ideal I defines a
subscheme Z ′ in X whose support contains Z . Using Nadel vanishing theorem (see
[25, Theorem 9.4.8]), we get

h1
(

I ⊗ OX
( − KX

)

)

= 0.

Now using the exact sequence of sheaves

0 −→ I ⊗ OX
( − KX

) −→ OX
( − KX

) −→ OZ ′ ⊗ OX
( − KX

) −→ 0,

we see that |Z | ≤ h0(OX (−KX )). But on the other hand, since Z is not contained in
the union of T-invariant curves, we have |Z | ≥ n2 ≥ 242, a contradiction. ��

Finally, we prove the following lemma:

Lemma 7.8 The G-orbit Z is T-invariant. ��
Proof We know from Lemma 7.7 that Z is contained in union of T-invariant curves.
Suppose that Z is not T-invariant. Let us seek for a contradiction.

Let H be an ample Cartier divisor on X such that −KX ∼ IX H . Recall that H is
very ample,

IX =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2 if X = V6,

1 if X = X24,

1 if X = Y24,

2 if X = V4,

4 if X = P
3.

and

H3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

6 if X = V6,

24 if X = X24,

24 if X = Y24,

4 if X = V4,

1 if X = P
3.
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Let C the union of allT-invariant curves. Then C isG-invariant.Moreover, it follows
from Lemmas 4.4 and 4.6 thatW acts transitively on the set of irreducible components
of C except the following two cases:

(1) X = Y24 and W = W
A
1 ,

(2) X = Y24 and W = W
S
1 .

In these two cases, the curve C splits as a union of two G-irreducible curves that are
swapped by the groupWX ∼= S4×µ2. Thus,we letC1 be theG-irreducible component
of the curve C that contains the G-orbit Z . Then, because Z is G-irreducible, the other
G-irreducible component of the curve C (if any) does not contain Z ,

Let d = H · C1, and let k be the number of irreducible components of the curve C1.
Then k = d in each possible case. Moreover, we have

d =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

12 if X = V6,

12 if X = X24,

24 if X = Y24, W �= W
A
1 and W �= W

S
1 ,

12 if X = Y24, and either W = W
A
1 or W = W

S
1 ,

12 if X = V4,

6 if X = P
3.

Recall that G ∩ T contains a subgroup isomorphic to µ3
n for n ≥ 24. Thus, since by

assumption Z is not T–invariant, we have |Z | ≥ kn ≥ 24k = 24d.
Let M1 and M2 be general surfaces in M. If the curve C is G-irreducible, then

C = C1 and

M1 · M2 = m1C1 + �,

where m1 is a non-negative integer, and � is an effective one-cycle whose support

does not contain the curve C. Similarly, if X = Y24 and either W = W
A
1 or W = W

S
1 ,

then C = C1 + C2, where both C1 and C2 are G-irreducible curves, so that we have

M1 · M2 = m1C1 + m2C2 + �,

where m1 and m2 are non-negative integers, and � is an effective one-cycle whose
support does not contain the curves C1 and C2. In both cases, we have

I 2X H
3

λ2
= H · M1 · M2 ≥ H ·

(

m1C1 + �
)

= m1d + H · � ≥ m1d,

which implies that m1 ≤ I 2X H
3

dλ2
< 4

λ2
.
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Let B be the linear subsystem in |lH | consisting of surfaces that contain C, where

l =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2 if X = V6,

2 if X = X24,

2 if X = Y24,

3 if X = V4,

3 if X = P
3.

Then C is the base locus of the linear system B. Indeed, the generators of the linear
system B are contained in the formulas (4), (1), (10), (13) and (18). Looking at them,
we see that the curve C is the base locus of the linear system B.

Now we use Lemma 2.9 to deduce that

multO
(

M1 · M2

)

>
4

λ2

for every point O ∈ Z ∩ C. Thus, for every point O ∈ Z ∩ C, we have

multO
(

�
)

>
4

λ2
− m1,

because the curve C1 is smooth at O , and C1 is the only G-irreducible component of
the curve C that contains points in Z . Now let S be a general surface in B. Then

l I 2X H
3

λ2
− m1ld = S ·

(

M1 · M2 − m1C1
)

≥ S · �

≥
∑

O∈Z
multO

(

�
)

> |Z |
( 4

λ2
− m1

)

≥ dn
( 4

λ2
− m1

)

.

This gives

l I 2X H
3

λ2
+ m1d

(

n − l
)

>
4dn

λ2
.

Since l ≤ n and m1 ≤ I 2X H
3

dλ2
, we obtain I 2X H

3 > 4d, which is absurd. The obtained
contradiction completes the proof of the lemma. ��
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Appendix A. Table ofG-solid toric Fano threefolds

With the notation of Sect. 1, we let X be one of the toric threefolds among V6, V4,
X24, Y24 and P

3 and we let G be a subgroup in the group GX whose image νX (G) in
the Weyl group WX of X contains the subgroup A4. Then X is G-minimal except the
following two cases:

(1) X = V4, νX (G) ∼= S4 and G acts intransitively on T-invariant surfaces,
(2) X = V4 and νX (G) ∼= A4.

Moreover, if X isG-minimal and |G| ≥ 32 ·244, then X isG-solid by Theorem 1.2. In
this case, the following table summarizes additional information on the G-equivariant
birational geometry of the threefold X obtained in the proof of Theorem 1.2.

If X �= P
3, then WX ∼= S4 ×µ2 contains two subgroups isomorphic toS4, which

we call the subgroups S4 of type I and II, see Notation 4.2 for the precise definition.
If νV4(G) is the subgroupS4 of type II, thenG acts transitively on the set of irreducible
T-invariant surfaces, so that V4 is G-minimal in this case. In contrast, if νV4(G) is the
subgroup S4 of type I, then V4 is not G-minimal.

Similarly, if νX24(G) is the subgroup S4 of type II, then G acts transitively on
the set of singular points of the threefold X24. On the other hand, if νX24(G) is the
subgroup S4 of type I, then G does not acts transitively on this set.

http://creativecommons.org/licenses/by/4.0/
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