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Abstract
We study toric G-solid Fano threefolds that have at most terminal singularities, where
G is an algebraic subgroup of the normalizer of a maximal torus in their automorphism
groups. All varieties are assumed to be projective and defined over the field of complex
numbers.

Mathematics Subject Classification 14J50 - 14M25 - 14N05

1 Introduction

Fano varieties with many symmetries appear naturally in several geometric problems.
A special role among them is played by the so-called G-Fano varieties [27], which
naturally occur as the end product of the equivariant Minimal Model Program for
rationally connected varieties. Recall from [27] that a G-Fano variety is a pair (X, G)
consisting of a Fano variety X and an algebraic subgroup G in Aut(X) such that

(1) The singularities of X are terminal (mild);
(2) The G-invariant part C1(X )G of the class group of X has rank 1 (G-minimal).

In dimension two, we know the complete list of G-Fano varieties [18], which are
traditionally called G-del Pezzo surfaces. In [26, 27], Prokhorov obtained many deep
results about G-Fano threefolds for G finite. A complete classification is still lacking.

B Ivan Cheltsov
I.Cheltsov@ed.ac.uk

Adrien Dubouloz
adrien.dubouloz @u-bourgogne.fr

Takashi Kishimoto

kisimoto.takasi @ gmail.com

University of Edinburgh, Edinburgh, Scotland
Université de Bourgogne, Dijon, France

Saitama University, Saitama, Japan

) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-022-00816-9&domain=pdf

22 Page2of45 |.Cheltsov et al.

In higher dimensions, our knowledge of G-Fano varieties is limited to some sporadic
examples.

Since by definition a G-Fano variety X is a G-Mori fibre space (see [10, Defini-
tion 1.1.5]), to describe its G-equivariant birational geometry, it is enough to classify
all G-birational maps from X to other G-Mori fibre spaces. By [12, 20], each such
birational map can be decomposed into a sequence of elementary links, which are
known as G-Sarkisov links. Then, following [3, 10, 11, 13], we say that a G-Fano
variety X is:

e G-birationally super-rigid if no G-Sarkisov link starts at X;

e G-birationally rigid if every G-Sarkisov link that starts at X also ends at X;

e G-solid if X is not G-birational to a G-Mori fibre space with positive dimensional
base.

If X is G-solid, then all G-Mori fibre spaces that are G-birational to X are terminal
Fano threefolds — they form a set P (X), which we call the G-pliability of X [14].
For instance, if X is G-solid, then Pg(X) = {X} if and only if X is G-birationally
rigid.

In this paper, we consider toric G-Fano varieties in the case where G is an algebraic
subgroup in Aut(X) that normalizes a maximal torus T = G, where n = dim(X).
In this case, letting G x be the normalizer of the torus T in Aut(X), we have a split
exact sequence of groups

1 T Gx Wy 1,

where Wy is a finite subgroup of GL, (Z), known as the Weyl group. It is a natural
problem to determine for such groups G which G-Fano varieties are G-solid, and to
characterize which of these are G-birationally rigid or super-rigid. For surfaces, it is
easy to give a satisfactory answer to these questions.

Exercise 1.1 (cf. [18, 21, 30, 33]) Let X be a smooth toric del Pezzo surface and let G
be a subgroup of Gx. If X is G-minimal and G-solid, then one of the following cases
holds:

(i) X =P2, Wy = &3 and vx(G) contains the subgroup isomorphic to s,
(i) X = P! x P!, Wy = Dg and vx(G) contains the subgroup isomorphic to [Ly;
(iii) X is the del Pezzo surface of degree 6, Wx = &3 X W, and either vx (G) contains
the subgroup isomorphic to g or it contains the subgroup isomorphic to &3 that
acts transitively on the (—1)-curves in X.

In each of these three cases, X is G-minimal and G-birationally rigid provided that
|G| > T2.

In this paper, we obtain a similar answer for three-dimensional toric Fano varieties.
To state it, let Vg = P! x P! x P!, let V4 be the toric complete intersection in P> given
by

xu—yw=xu—zt =0,
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let Y4 be the toric divisor of degree (1, 1, 1, 1) in Pl x P! x P! x P! given by

X1x2X3%4 — y1Y2y3y4 = 0,

and let X4 be the toric Fano threefold No 47 in [7] (see Sect. 4.3 for its construction).
The Weyl groups Wy of these toric Fano threefolds are all isomorphic to the group
G4 X Wy, and we have the following result:

Theorem 1.2 Let X be a toric Fano threefold that have at most terminal singularities,
let T be a maximal torus in Aut(X) and let G x be its normalizer in Aut(X). Then the
following two conditions are equivalent:

(i) X is G x-minimal and G x-solid;

(ii) X is one of the threefolds Ve, Va, X24, Y24 and P3.

Let G be an algebraic subgroup in Gx and let vx: Gx — Wyx = Gx/T be the
quotient homomorphism. If X is one of the toric Fano threefolds Vg, V4, Xo4, Y24 and
IP3, then the following assertions hold:

(1) if X is G-minimal and G-solid, then vx(G) contains a subgroup isomorphic to
Ag;
(2) if vx(G) contains a subgroup isomorphic to U4, then X is G-minimal unless

(a) X = V4, vx(G) = &4 and G acts intransitively on T-invariant surfaces;
(b) X = Viand vx(G) = 4.

(3) if X is G-minimal, vx(G) contains a subgroup isomorphic to 4 and |G| >
32244 then X is G-solid.

O

If X = V4 and vx(G) contains a subgroup isomorphic to 2y, then X is not G-
minimal if and only if there exists the following G-commutative:

where  is the blow-up of the four T-invariant points, « is the contraction of the proper
transforms of the six T-invariant lines, and the dashed arrow is the birational map that
is given by the linear system of quadric surfaces that pass through the four T-invariant
points.

Remark 1.3 If X is one of the toric Fano threefolds V4, X»4 or Y24, then Gx = Aut(X).

If X is one of the toric Fano threefolds Vg, Vi, X4, Y24, P3, and G is an alge-
braic subgroup in Aut(X) such that the threefold X is G-minimal, vy (G) contains a
subgroup isomorphic to 24, and |G| > 32 - 24%, then the threefold X is G-solid by
Theorem 1.2. In this case, we describe all (possible) G-birational maps between these
Fano threefolds. We summarize this description in the table presented in Appendix A.
It gives
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Corollary 1.4 (cf. [4, 11]) Let X be one of the toric Fano threefolds Vs, V4, X4,
You, P3, let T be a maximal torus in Aut(X) and let Gx be its normalizer in Aut(X).
Then the following three conditions are equivalent:

(i) X is Gx-minimal and G x -birationally rigid;
(ii) X is Gx-minimal and G x-birationally super-rigid;
(iii) X is isomorphic to either Vg or Yaa4.

Let G be an algebraic subgroup in Gx and let vx: Gx — Wyx = Gx/T be the
quotient homomorphism. Assume that v (G) contains a subgroup isomorphic to 4.
Then the following assertions hold:

(1) if X is G-minimal and G-birationally rigid, then X = Vg or X = Y4,
(2) if X = Vs or X = You, and |G| > 32 - 24*, then X is G-birationally super-rigid.

]

In Sect. 3, we provide a criterion for a G-minimal toric Fano variety X to be G-solid
in the case where G is an algebraic subgroup of G x that contains the maximal torus
T. Unfortunately, we do no know how to generalize this criterion for finite subgroups
in Gx. Nevertheless, Exercise 1.1 and Theorem 1.2 suggest the following conjecture.

Conjecture 1.5 Let X be a toric Fano variety with at most terminal singularities and
let G be a subgroup in Gx that contains T such that X is G-minimal and G-solid.
Then there exists a constant cx > 0 such that for every finite subgroup H C G such
that vy (H) = vx(G), the Fano variety X is H-solid provided that |H| > cx.

The structure of the article is the following. In Sect. 2, we present results that will be
used in the proof of Theorem 1.2. In Sects. 3 and 4, we prove Theorem 1.2 for infinite
algebraic groups using toric geometry. In Sect. 5, we explicitly describe two (known)
equivariant toric Sarkisov links that start at X»4. In Sect. 6, we give an alternative
proof of Theorem 1.2(3) for infinite algebraic groups, which can be generalized for
large finite groups. In Sect. 7, we complete the proof of Theorem 1.2 by proving its
part (3) for finite groups (the remaining assertions of Theorem 1.2 for finite groups
follows from the results proven in Sects. 3 and 4).

2 Preliminary results

In this section, we review results and notions that will be used in the proof of Theo-
rem 1.2.

2.1 Varieties with regular group actions
Let G and G’ be two algebraic groups, and let X and X’ be two algebraic varieties
endowed with regular actions my: G x X — X and my: G’ x X' — X’ of the

groups G and G’ respectively.

W Birkhauser
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Definition 2.1 An equivariant rational map between the varieties X and X’ is a pair
consisting of morphism of algebraic groups ¢ : G — G’ and arational map ®: X --»
X’ such that the following diagram of rational maps commutes

Gxx—" . x

| \
ex® | | @
4 v
G’xX’LX’

We say that the rational map @ is g-equivariant.

If the morphism ¢ in Definition 2.1 is an isomorphism and the map ® is birational,
then letting p: G — Aut(X) and p’: G' — Aut(X’) be the group homomorphisms
determined by m x and m ' respectively, the commutativity of the diagram in Defini-
tion 2.1 is equivalent to the property that

p og(g) = Dp(g)d !

for every g € G. In this paper, we are mostly interested in the case when G = G'.
Because of this, we will assume in the following that G = G’, so that both varieties
X and X' are endowed with regular actions of the same group G.

Definition 2.2 A G-equivariant rational map X --» X’ is an idg-equivariant rational
map ®: X --» X'. Arational G-map X --» X’ is arational map ®: X --» X’ which
is p-equivariant for some automorphism ¢ of G.

We denote by Bir® (X, X’) the set of birational G-maps between X and X', and we
denote by Birg (X, X’) its subset consisting of G-equivariant birational maps X --»
X'. If X = X’ then these sets are groups (with respect to composition of birational
maps), which we denote by Bir%(X) and Birg(X), respectively.

As an illustration, we describe an equivariant version of a birational map of three-
folds which appeared in [11, Proposition 2.1]. Its nature is local, but we will use global
language for simplicity of exposition.

Example 2.3 Let X be a smooth threefold, let P be a point in X, let G be an algebraic
group that acts faithfully on X, and let C be a G-irreducible curve in X consisting of
three irreducible components C1, C; and C3 meeting at a unique point P and such that
the curves C1, C; and C3 are smooth at P, and their tangent directions at P generate
the tangent space Tp(X). Let «: X — X be the blow-up of the point P, and let E
be its exceptional surface. Denote by C; the proper transform of the curve C; on the
threefold X. Let L;; be the line in E = IP? that pass through the points C; N E and

) Birkhauser
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c 7 N E. Then there exists the following commutative diagram of birational G-maps:

Xx---r__.x
Ve N
X 1%
\ /
X

where f is the blow-up of the curves C1, C, and C3, the map y is a composition of
Atiyah flops of the proper transforms on X of the curves L, L3 and L3, and & is
the birational contraction of the proper transform of the surface E to a singular point
of type %(1, 1, 1). The morphism 7 is a G-equivariant extremal divisorial contraction.

We will use the following result, which is a consequence of Luna’s étale slice
theorem (see e. g. [1, Section 2.1] and [8, p. 98]).

Lemma 2.4 Let G be a reductive group acting faithfully on a variety X and let P € X
be a smooth point which is fixed by the action of G. Then the induced linear action of
G on the Zariski tangent space Tp(X) is faithful. O

In the case of curves, we have the following more precise consequence:

Corollary 2.5 A finite group of automorphisms of a curve fixing a smooth point is a
cyclic group. O

Corollary 2.6 Let X be an algebraic variety with a faithful action of the group G = [L}%
fixing a smooth point P € X. Let C be a G-invariant curve in X containing P and
assume that the stabilizer in G of every irreducible component of C passing through
P acts on this component faithfully. Then multp (C) > n. O

Proof Let f: C — Cbe the normalization of the curve C. The action of the group
G on C lifts to an action on C preserving the preimage F = f~!(P) of the point P.
Let Q be a point in F, and let G be its stabilizer in G. Note that Q is contained
in a unique irreducible component of the smooth curve C, which then must be Go-
invariant. Since the group G ¢ acts faithfully on this component, we conclude that G ¢
is a cyclic subgroup of the group G = [L% by Corollary 2.5. Then |G g| < n, so that

G|

multp(C) > |F| > —— =n

Gol
as required. O

W Birkhauser
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2.2 Singularities of log-pairs
Let X be a threefold with at most terminal singularities, let M x be a non-empty mobile
linear system on X that consists of (Q-Cartier divisors and let A be a positive rational

number.

Lemma 2.7 ([15, Exercise 6.18]) Let C be an irreducible curve in X. Assume that

multc (M x) <

> =

Then C is not a center of non-canonical singularities of the log pair (X, AMx). 0O
The following result is due to Alessio Corti.

Lemma 2.8 ([13, Theorem 3.1]) Let C be an irreducible curve in X. Assume that C
is a center of non-log canonical singularities of the log pair (X, AMx). Then

4
multc (Ml -Mz) > z

Sfor any two general surfaces M| and M» in the linear system M. O
The following result is due to Alexander Pukhlikov.

Lemma 2.9 ([29], see also [13, Corollary 3.4]) Let P be a smooth point of X. Assume
that P is a center of non-canonical singularities of the log pair (X, AMx). Then

4
multp<M1 . Mz) > 2
for any two general surfaces M| and M, in the linear system M. O

We will also need the following two results due to Kawamata [23] and Corti,
respectively.

Lemma 2.10 Let P be a singular point of X of type %(1, I,1),letmw:V — X be

the Kawamata blow-up of P, let E be the exceptional surface, let My be the proper
transform of the linear system M via w, and let m € Q be such that

My ~q JT*(Mx) —mE.

If (X, AMx) is not canonical at P then m > % O

Proof Suppose that m < % Let us seek for a contradiction. Since

i
Ky + My + (Am — z)E ~g 7% (Kx + AMx),

) Birkhauser
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the pair (V, LMy ) is not canonical at some point O € E. Then multyg (My) > %,
so that

1

multo(./\/lv|E> > e

which is impossible, since My |g ~q 2mL, where L is aline in E = P2, |

Lemma 2.11 Let P be an ordinary double point of X, let w: V — X be the blow-up
of P, let E be the exceptional surface of w, let My be the proper transform of the
linear system M via 7w, and let m € Q be such that

My ~q JT*(./\/IX) —mE.

If P is a center of non-canonical singularities of the log pair (X, AMx) thenm > %.I:I
Proof This is [9, Theorem 1.7.20], which is equivalent to [13, Theorem 3.10]. O

Finally, we will need one local result proved in [2]. To state it, we suppose that the
threefold X is endowed with an action of an algebraic group G, and My is G-invariant.

Lemma 2.12 ([2, Lemma 2.4]) Suppose that the group G fixes a smooth point P € X
and that its induced linear action on the Zariski tangent space TpX is an irre-
ducible representation. If P is a non-canonical center of the log pair (X, AMyx)
then multp (My) > % O

2.3 Finite groups acting on toric varieties

Let T be a torus of dimension d > 2, and let I';, be a subgroup of T isomorphic to uﬁf,
where n is a positive integer (note that T contains such a subgroup for every n). Let
X be a projective toric T-variety of dimension d.

Lemma 2.13 Let C be a T';-invariant Ty, -irreducible curve in X, and let H be a very
ample divisor on X. If n > H - C, then C is T-invariant. O

Proof Suppose that C is not T-invariant. By replacing X by a T-invariant toric closed
subvariety if necessary, we can assume that the curve C is not contained in any proper
T-invariant subvariety of X so that I';, acts faithfully on C. The curve C is T-invariant
if and only if each of its irreducible components is T-invariant.

Let k be the number of irreducible components of the curve C, let Z be an irreducible
component of C and let 'z be the stabilizer of the curve Z in the group I',,. Then
I'z is an index k subgroup of uﬁ, equal to the product of d cyclic subgroups i,
for some positive integers m; which divide n, say n = m;k;, i = 1,...,d. Let
m = gcd{m;};=1,.. 4 and write m; = mr; where r; > 1. Then Iz contains a subgroup
isomorphic to ;Lﬁl. By construction, we have mn?~! > ]_[fl: | m; so that

W Birkhauser
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Thus m > n/k and since by hypothesis n > H - C, it follows thatm > H - Z.

Replacing C by Z and n by m, we assume from now on that C is irreducible. Let
us show thatn < H - C. Let f: C — C be the normalization of C. Then the action
of the group I',, lifts to a faithful action on C.Let D be a T-invariant effective divisor
such that D ~ H.Then C ¢ Supp(D) by assumption on C not being T-invariant. Let
¥ = C N Supp(D), and let T beits preimage in C. Then

=] < deg(f*(D|C)> = deg(f*(H|C)) —H.C.

Let P be a point in fl, and let Gp be its stabilizer in I',,. Then Gp is cyclic by
Lemma 2.5. On the other hand, we have

Gp s Dol s I0ul  n?  n2
= S =mw.c~H.C H.C

Therefore, if n > H - C, then the order of the cyclic group G p is strictly larger than
n, which is impossible, since G p is a subgroup of the group '), = ;Lﬁ . O

3 Lattices and toric geometry

Let T = G, be an algebraic torus of dimension n. We identify T with the spectrum of
the group algebra C[M] of its character lattice M = Hom(T, G,,) = Z". The action
of the torus T on itself by translations determines an injective group homomorphism
T — Aut(T) and we have split exact sequence

] ——T—— Aut(T) —— GL(M) —— 1.

The splitting is given by mapping every A € GL(M) = GL, (Z) to the algebraic group
automorphism of T associated to the group algebra automorphism C[M] — C[M]
given by

Xu — XA(M)~

We henceforth identify Aut (']I‘) = T x GL(M) and we denote its subgroup T x {idss}
simply by T. Every algebraic subgroup G C Aut(T) containing T is then of the form
G =T x W for some finite subgroup W of GL(M).

Let W; and W5 be finite subgroups of GL(M), let G| = T x W; and G, =
T »x W5 be the corresponding algebraic subgroups of Aut(T) that contain the torus T,
letmy: Gy xT — Tand my: G, x T — T be the algebraic actions they determine.

Lemma 3.1 The following conditions are equivalent:

(a) There exist an isomorphism ¢: G| — Gy and a @-equivariant biregular map
O: T — T;
(b) The groups G1 and Gy are conjugate in Aut(T);

) Birkhauser
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(c) The groups W1 and W, are conjugate in GL(M).

Proof Assume (a). Then we have a group automorphism cg¢: Aut(T) — Aut(T)
given by @ > ® o o ®~! and the hypothesis that ® is p-equivariant implies that
the diagram

G1C———= Aut(T)

| -

Gy Aut(T)

must be commutative, so that the algebraic groups G| and G are conjugate in Aut(T).
This shows that (a) implies (b).

Now we assume (b). Then G, = ®G P! for some ® = (i, A) in Aut(T). Then
W, = AW, A~! in GL(M).This shows that (b) implies (c).

Assume (c). Then Wo = AW;A~! for some A € GL(M). Let ® = (1, A) €
Aut(T), and let ¢: G; — G, be the homomorphism defined by g; +—> dDglcb_l.
Then ¢ is an isomorphism for which we have the same commutative diagram as
above. It follows in turn that the pair (¢p: G; — Go, ®: T — T) is an equivariant
isomorphism, which proves that (c) implies (a). O

Now we fix a finite subgroup W in GL(M) and we let G = T x W be the corre-
sponding algebraic subgroup in Aut(T) that contains T. The group W acts naturally
on the vector space

Ng = Hom(M,Z) ® Q.

By [16, Chapter 2], the choice of a W-invariant convex lattice polytope in Ng deter-
mines a projective toric variety X with an open T-orbit Ty = T such that the G-action
on the torus Ty extends to a faithful regular G-actionmy : G x X — X. Thus, we can
identify G with its image in the group Aut(X) by the injective group homomorphism
px: G — Aut(X) given by g — mx(g, -). Then Aut(X) is an affine algebraic group
having T as a maximal torus [17].

Let Gx be the normalizer of the torus T in the group Aut(X). Then Gy is an
algebraic group that contains G. Moreover, the torus Ty is G x-invariant, and the
induced effective action of the group G x on the torus Ty corresponds to an injective
group homomorphism

Gx — Aut(Tx) = Aut(T),

W Birkhauser
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whose image is equal to T x Wy for a finite subgroup Wy C GL(M) that contains
W. Thus, we have the following commutative diagram of exact sequences:

| —T—-GC=TxXxW-—">W-—-—1

1 T Gx Wy 1.

The group Wy is usually called the Weyl group of the toric variety X.
Corollary 3.2 If W is a maximal finite subgroup of GL(M) then Gx =T x W. O
As a consequence of Lemma 3.1, we obtain the following two assertions:

Corollary 3.3 There exists a functorial one-to-one correspondence between finite sub-
groups W C GL(M) up to conjugacy and projective toric T-varieties X whose Weyl
groups contain a subgroup isomorphic to W up to T x W-equivariant birational
equivalence. O

Corollary 3.4 Let W be a finite subgroup in GL(M) and let X be a projective toric
variety whose Weyl group Wy contains W. Then

Bir WXy =T x W

where W is the normalizer of the group W in GL(M). O

Given a subgroup W C GL(M), we say that the lattice M = Z" is W-irreducible
(or an irreducible W-module) if M does not contain any proper W-invariant sublattice
M’ such that M /M’ is torsion free.

Corollary 3.5 Let W be a maximal finite subgroup in GL(M) and let X be a projective
toric variety whose Weyl group is W. Suppose that M is W-irreducible. Then

Bir *W(X) =T x W.
m}

Proof Since M is W-irreducible, M ® Q is an irreducible Q-representation of the
group W. Applying Maschke’s theorem, we conclude that the centralizer of W in
GL(M) is finite. Since W is finite, the normalizer W of the group W in GL(M) is
also finite, and hence, W = W because W is a maximal finite subgroup. The assertion
then follows from Corollary 3.4. O

The choice of the n-dimensional toric variety X whose Weyl group contains W is
not unique. In particular, taking a G-equivariant toric resolution of singularities and
then applying the G-equivariant toric Minimal Model Program, we can assume that:

e The toric variety X has terminal singularities,

) Birkhauser
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e Every G-invariant Weil divisor in X is a Q-Cartier divisor,
e There exists a G-Mori fibre space structure 7 : X — Z (see [10, Definition 1.1.5]).

In particular, if Z is a point, then X is a toric Fano variety with terminal singularities,
and X is G-minimal, i.e. the group of G-invariant Weil divisors is of rank 1.

Since w: X — Z is a surjective morphism of toric varieties, it induces a surjective
G-equivariant morphism Ty — Tz between the corresponding open orbits in X
and Z, which is a group homomorphisms when we identify these orbits with the
corresponding maximal tori T of Aut(X) and T” of Aut(Z) respectively. The kernel
of this homomorphism is a W-invariant subtorus in T, whose character lattice is a
W-invariant sublattice of the lattice M. This gives

Corollary 3.6 Ifdim(Z) > 1 then the lattice M is not W-irreducible. m|
In fact, we can say more:

Proposition 3.7 Assume that Z is a point. Then the following are equivalent:

(a) The toric Fano variety X is G-solid;
(b) The character lattice M is W-irreducible.

Proof The implication (b)=>(a) follows from Corollary 3.6. Let us prove that (a)=>(b).
Assume that X is G-solid and suppose that M is not W-irreducible. Then M contains
a proper W-invariant sublattice M’ such that M /M’ is a torsion free W-module. This
implies that the torus T contains a proper G-invariant subtorus T’, which gives an
exact G-equivariant sequence of tori

]l —-T —>T—T — 1,
where T” = T/T’. This gives us a G-equivariant dominant rational map ¢ : X --» X",

where X" is a G-equivariant projective completion of the torus T”.
Then there exists a G-equivariant commutative diagram

such that « is a G-equivariant birational morphism, X is a smooth projective toric
variety, and B is a surjective G-equivariant morphism. Note that

dim(X) > dim(T") > 1.
Now, we can apply a G-equivariant Minimal Model Program to X over the variety X"
This gives a G-equivariant birational transformation of the variety X into a G-Mori

fibre space over a positive dimensional base, which is impossible, since X is G-solid.
O
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Thus, if X is a G-minimal toric Fano variety, we have a purely group theoretical
criterion for its G-solidity. Similarly, we can obtain a criterion for G-birational rigidity.

Proposition 3.8 Let X be a G-minimal toric Fano variety with Weyl group W x. Assume
that the character lattice M is W x -irreducible. Then the following two conditions are
equivalent:

(a) X is G-birationally rigid;
(b) X is the only toric Fano variety with terminal singularities that is G-minimal.
Proof This follows from Proposition 3.7 and definition of G-birational rigidity. O

Finally, using Corollary 3.4, we can obtain a criterion for G-birational super-rigidity.

Proposition 3.9 Let X be a G-minimal toric Fano variety with Weyl group W. Assume
that the character lattice M is W-irreducible. Then X is G-birationally super-rigid if
and only if the following two conditions are satisfied:

(a) X is the only toric Fano variety with terminal singularities that is G-minimal;
(b) W is not a proper normal subgroup of any finite subgroup in GL(M).

Proof The assertion follows from Proposition 3.8 and the proof of Corollary 3.5. O

The condition (b) in Proposition 3.8 is combinatorial. A priori, it can be checked
using computer, since there are finitely many toric Fano varieties with terminal singu-
larities [6]. For example, there are 634 toric Fano threefolds with terminal singularities
[22].

3.1 Toric terminal Fano threefolds

Now let us assume that T is three-dimensional and that X is a G-minimal toric Fano
threefold with terminal singularities. All such threefolds are described in [31]. They
are listed in the following table:

Toric Fano threefold Weyl group Number in [7]
Divisor Yo4 of type (1,1, 1, 1) in P! x P! x P! x P! G4 x 1y No 625
Ve = P! x P! x P! 63 x 3 = Gy x uy No 62
Toric Fano—Enriques threefold X»4 G4 X 1y No 47
Toric complete intersection V4 C P5 of two quadrics Gyq X 1y No 297
Three-dimensional projective space P3 (G No 4
Quadric cone in P* with one singular point Dg No 32
Terminal toric Fano threefold X with —K ; = % G3 No 92
Weighted projective space P(1, 1, 1,2) S3 No 7
Quotient of the space P3 by ps-action fixing 5 points IL% Nol
Weighted projective space P(1, 1, 2, 3) % No 8
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Proposition 3.10 Let X be one of the toric Fano threefolds in the above table, let G be
a subgroup of G x containing T and let W be the image of G by the quotient morphism
Gx — Wy = Gyx/T. Then the following hold:

(1) None of the last five threefolds in the table above is G-solid.
(2) If X is G-minimal then X is G-solid if and only if it is one of the threefolds Y»a,
Ve, X4, Vi and P3 and W contains a subgroup isomorphic to Ay.

Proof This follows from Proposition 3.7 and the classification of finite subgroups in
GL3(Z) [32]. O

Of course, it is also possible to verify these properties explicitly for each case in
the above proposition. For instance:

Example 3.11 Let X be the terminal toric Fano threefold No 92. Then Wy = &3 and
there exists a G y-Sarkisov link

where « is the blow-up of three coplanar T-invariant lines, X4¢ is a Fano threefold
with three ordinary double points such that — K )3(40 = 40, and B is the contraction of
the proper transform of the unique T-invariant plane containing the lines blown-up
to the unique singular point of type %(1, 1, 1) of the threefold X. Since IP? is not
T x &3-solid, we conclude that X is not G x-solid.

Example 3.12 Let X = Vi and let W be the unique subgroup of Wy isomorphic u;.
Then X is G-minimal. Moreover, it contains two G-fixed points such that there exists
the following G-Sarkisov link:

Ve— — — — — >V
al B
Ve S6

where « is the blow-up of these two points, ¢ is a composition of Atiyah flops of
the proper transforms of all T-invariant curves that pass through one of the points
blown-up by «, and 8 is a P!-bundle over a del Pezzo surface of degree 6.

Example 3.13 Let X = X4 and let W be the unique subgroup of Wy isomorphic to
3. Then X is G-minimal. Moreover, it contains two G-fixed singular points such that
there exists a G-Sarkisov link

Xy————- > Xo4
: |
X024 S6
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where o is Kawamata blow-up of these two singular points, ¢ is a composition of
Francia antiflips of the proper transforms of all T-invariant curves that contain one
of these points, and g is a P!-bundle over a del Pezzo surface of degree 6. The
threefolds X4, Xou4, X24 are quotients by involutions of the threefolds Vg, V6, V6
from Example 3.12.

Moreover, if X is one of the threefolds Y4, Vg, X24, Va, P3 and W contains a
subgroup isomorphic to 204, then X is G-minimal except in the following two cases:

(1) X = V4, W = G4 and G acts intransitively on the set of T-invariant surfaces,
2) X =Viand W = 4.

We show this in Corollaries 4.5 and 4.9 and Lemma 5.1 below. Summing up, we get
Corollary 3.14 The assertion of Theorem 1.2 holds in the case when G is infinite. O

If W contains a subgroup isomorphic to 24, then W is conjugate to one of 15
finite subgroups in GL(M) that are described in [32]. Using [24] and notation from
[32], we can present these 15 subgroups and the corresponding G-minimal toric Fano
threefolds with terminal singularities in the following table.

Sy x py Sy Ay x po Ay
P! x P! x P! Wy We or Wy Wy Wo
Vy W3 Wio W3
X24 W3 Wio or Wi1 W3 Wi
Y24 W2 Wg or Wo W2 Wio
P3 Wi Wi

Now using Propositions 3.8 and 3.9, we obtain
Corollary 3.15 The assertion of Corollary 1.4 holds in the case when G is infinite. O

In the rest of this paper, we will give another proof of Theorem 1.2(3) in the case
when the group G is infinite that is independent on the classification of toric Fano
threefolds with terminal singularities, and which also applies to the case of finite
groups as well. We also believe that this approach can be used in higher-dimensions.

4 Toric Fano threefolds and lattices of rank three

Among the 73 conjugacy classes of finite subgroups W of GL3(Z) classified in [32],
there are 4 maximal ones, and only three of them give rise to an irreducible action
on Z3. In each of these three cases, one has W = G4 x pu,. Let us describe these three
conjugacy classes in terms of the actions of the group G4 x f, on certain lattices.
Let L = Z* endowed with the faithful transitive G4-action given by permutations
of the basis vectors &y, hy, h3 and hy. Let o be the involution of the lattice L such
that h; — —h; foreachi € {1, 2, 3, 4}. Then o commutes with the G4-action. This
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defines a faithful action of the group G4 x p, on the lattice L, which leaves invariant
the sublattice spanned by the element iy + hy + h3 + hg. Let

My = L/{h1 + ha+ h3 + hy).

Then the G4 X p,-action on L induces an action of G4 X u, on the quotient lattice M.
Let ey, e and e3 be the basis of M| given by the classes of 1, i and h3, respectively.
In this basis, we have o (¢;) = —e; for every i € {1, 2, 3}, and for every g € G4, we
have

' —e] — ey — ez otherwise.

We denote by Wi = G4 x p, the corresponding subgroup of GL3(Z).

Let M3 be the dual lattice to M7, and let e}, ey and ey be the basis of M3 that is
dual to the previously fixed basis of M. Then a(ely) = —eiv for each i € {I, 2, 3}.
For every g € G4, we have

3

gle))=> e’ (s7 ep)e).

J=1

We denote by W3 = G4 x p, the corresponding subgroup of GL3(Z).
Finally, let M, be the lattice Z3, let G5 be the subgroup in GL3(Z) consisting of
six permutation matrices, let

—-100 100 10 0
T = 010 ,Tp = 0-10 , T3 = 01 0 ,
001 001 00 -1

and let W, = G3 x u% be the subgroup in GL3(Z) that is generated by &3 and
involutions 71, 7 and t3. Note that the subgroup generated by &3, 7117 and that 7173
is isomorphic to G4, and 717273 generates the center of the subgroup W».Thus, W> is
isomorphic to the group G4 x 5.

Proposition 4.1 ([32]) Let W be a maximal finite subgroup of the group GL3(Z) such
that 72 is W-irreducible. Then W is conjugate to one of the subgroups W1, W, or
W3. Moreover, the subgroups W1, W», W3 are pairwise non-conjugate in GL3(Z).

Notation 4.2 The center of each of the three finite subgroups W; in GL3(Z),i = 1,2, 3
is isomorphic to u,, generated by the involution

-1 0 0
c=|10-10
0 0 -1
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For every i = 1, 2, 3, the image of the subgroup 24 x {1} of &4 x u, by the isomor-
phism GL(M;) = GL3(Z) given by our choice of bases is the unique subgroup of W;
isomorphic to (4. We denote this subgroup by W?‘ In the notation of [32, Proposition
7], these groups correspond respectively to the subgroups

010 0-11

W¥=wyo=1(001], [0-10
100 1-10
010 ~-10 0

W¥=We=1{(001], 010
100 00-1
010 —1-1-1

W¥=w,=1{(001], [0 0 1
100 010

of SL3(Z) C GL3(Z).

On the other hand, each of the subgroups W; contains two different subgroups
isomorphic to G4 (see [32, Proposition 9]):

(1) One is the image of the subgroup G4 x {1} of G4 x p, by the isomorphism
GL(M;) = GL3(Z) given by our choice of bases. We denote it by W,G . It is easily
seen that this subgroup is not contained in SL3(Z).

(2) The second one is the intersection W; N SL3(Z). It is generated by the images
under the isomorphism GL(M;) = GLj3(Z) of the transpositions in the subgroup
G4 x {1} multiplied by the element o € GL3(Z). We denote it by WZG

The lattice M3 can be seen as the root lattice of the root system A3 endowed with
the natural action of the group Aut(A3) = &4 X p,. Similarly, one can show that M
is the weight lattice of this root lattice, so that there is an inclusion M3 < M as
a sublattice of index 4. With our choice of bases, it is given by the matrix

211
121
112

Likewise, the lattice M> is the root lattice of the root system Bz endowed with the
natural action of the group Aut(B3) = G3 x [Lg = G4 X . The inclusion M3 — M
factors as the composition of two inclusions M3 < M; and M, < M as sublattices
of index two. With our choice of bases, they are given by the matrices

110 110
101 and 101},
011 011

respectively. All the inclusions M3 < My < M are G4 X p,-equivariant.
Let T = Spec(C[M1]), T = Spec(C[M;]) and T3 = Spec(C[M3]) be the three-
dimensional tori that correspond to the lattices M|, M> and M3, respectively. We
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write
~+1 21 21
CiM =C[i .5 5]

and identify (using the inclusions M3 < M, — M) the algebras C[M;] and C[M3]
with the subalgebras of the algebra C[M|] as follows:

ClM] = Cli' 5 57 = C[(1i)®, (i)™, (i)™
and

CIMsl =Cli, 57 57 = ClMi)*, ()™, (i) *!].
= C[(#hiz)®!, (1535)*!, (151D,

This gives us morphisms gi2: Ty — T, and gp3: To — T3, which are quotients
by the involutions (f1, f2, 3) + (—f1, —t2, —13) and (f1, 1, 13) > (=11, —12, —13),
respectively.

In the next three subsections, we present three toric Fano varieties with terminal sin-
gularities that are natural equivariant compactifications of the tori T1, T, T3 following
the scheme described in Sect. 3. Before doing this, let us first fix some notation.

Notation 4.3 Let ([u1 : v1],..., [un : vsy]) be homogeneous coordinates on (P!)".
We equip (P!)" with its standard structure of a toric variety with open orbit Tpiyn
given by

n
Huivi 75 0.
i=1

We view the collection of ratios (':}—; A 'f}—") as natural “toric coordinates” on (P1)".
n

We use these to identify each torus-invariant irreducible closed subvariety of (P')"
with the toric coordinates of its general point. For example, for n = 4, this yields:

e (0,1, 1, 1) is the torus-invariant divisor u; = 0;
e (0,1, 00, 1) is the torus-invariant surface given by u; = v3 = 0;
e (0,0,0,0) is the torus-invariant point u| = uy = u3 = ug = 0.
Finally, we denote by v be the involution of P! given by [u : v] — [v : ul.

4.1 Toric Fano threefold with Weyl group W,
The convex hull of the points
0, 1, £1), (£1, 0, £1), (£1, £1,0)

in Hom(M1, Z) ® Q is a W-invariant convex polytope. One can show that the asso-
ciated toric Fano threefold is the hypersurface Y4 in (P')* that is given by

uiuuzugs — vivavivg = 0.
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The open T -orbit is the subset Ty,, that is given by
U1UQU3U4V]V2V3V4 7& 0.

We have Wy,, = Wi, so that we identity Wy,, = Wy, Ty,, = Ty and Gy,, =
T 1 X Wl.

The Wi-action on Ya4 is given by the permutations of the factors in (P')* and
the involution v X v X v X v, which corresponds to the element o of W;. We also
denote this involution by oy,,.

The threefold Y»4 has fourteen T-fixed points: the six points

(0,0, 00, 00), (0, 00, 0, 00), (0, 00, 00, 0), (00, 0, 00, 0), (00, 0, 0, 00), (00, 00, 0, 0),

which are isolated ordinary double points forming the singular locus of Y>4, and the
eight smooth points

(0, 00, 00, 00), (00, 0, 00, 00), (00, 00, 0, 00), (00, 00, o0, 0),
(00,0,0,0), (0,00,0,0), (0,0,00,0), (0,0,0,00).

Similarly, it has twenty four irreducible T'-invariant curves

0,0,1,00), (0,1,0,00), (1,0,0,00), (0,0,00,1), (0,1,00,0), (1,0,00,0),
(0,00,0,1), (0,00,1,0), (1,00,0,0), (00,0,0,1), (c0,0,1,0), (o0,1,0,0),
(00, 00, 1,0), (00,1, 00,0), (1, 00, 00, 0), (00, 00,0, 1), (00, 1,0, 00), (1, 00,0, c0),
(00,0, 00, 1), (00,0, 1, 00), (1,0, 00, ), (0, 00, 00, 1), (0, 00, 1, 0), (0, 1, 00, 00),

and twelve irreducible T1-invariant surfaces

0,1, 1,00), (1,0, 1,00), (1, 1,0, 00), (0, 1,00, 1), (1,0, 00, 1), (1, 1, 00, 0),
(0,00,1,1), (1,00,0, 1), (1,00, 1, 0), (00,0, 1, 1), (00,1,0,1), (00,1, 1,0).

With this description, the following lemma is straightforward to check.

Lemma 4.4 Let W be a subgroup in W1 that contains W?‘ Then the following hold:

(1) The group W?l acts transitively on the set of T1-invariant surfaces and on the set
of singular points of Y»a4.

6 .

(2) The groups Wlm and W act on the set of smooth T1-fixed points and on the set of
T -invariant curves with the same orbits. The action on the set of smooth T -fixed
points has two orbits: one consisting of the points

(0, 00, 00, 00), (00, 0, 00, 00), (00, 00, 0, 00), (00, 00, 00, 0),
and another one consisting of the points

(00,0,0,0), (0, 00,0,0), (0,0, 00,0), (0,0,0, 0),
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Similarly, the action on the set of irreducible T|-invariant curves has two orbits:
one consisting of the curves

0,0, 1,00), (0,1,0,00), (1,0,0,00), (0,0, 00, 1), (0, 1, 00,0), (1,0, 00, 0),
(0, 00,0, 1), (0,00, 1,0), (1, 00,0,0), (0,0,0,1), (00,0, 1,0), (0, 1,0,0),

and the other one consisting of the curves

(00, 00,1,0), (00,1, 00,0), (1, 00, 00, 0),

(00, 00,0, 1), (00,1,0,00), (1, 00,0, c0),

(00,0, 00, 1), (00,0, 1, 00), (1, 0, 00, 0), (0, 00, 00, 1),
(0, 00,1, 0), (0,1, 00, 00).

(3) The group W? acts transitively on the set of smooth T-fixed points and on the
set of irreducible T'|-invariant curves.

(4) If oy,, € W, then W acts transitively on the set of smooth T'|-fixed points and on
the set of T1-invariant curves of Y4.

Corollary 4.5 Let G be a subgroup of Gy,, that contains W%l Then tk(C1(Y24)%)
1. O

4.2 Toric Fano threefold with Weyl group W,

The convex hull of the lattice points (0, 0, 1),(0, £1, 0),(£1, 0, 0) in Hom(M», Z)®
Q is a Wy-invariant convex polytope. One can check that the associated toric Fano
threefold is Vs = P! x P! x P!. Moreover, one has Wy, = W,. Therefore, we identify
Wv6 = Wz, ']Tv6 = Tz and Gv6 = Tz X Wz.

The action of W, = &3 x [L% on the threefold Vg is given by the permutations
of three factors, the involutions v x v x idp1 and v X idp1 X v, and the involution
v X v X v, which corresponds to the element o of W;. We also denote this involution
by OVg-

Lemma 4.6 Let W be a subgroup of W, that contains W%‘ Then the following hold:

(1) The group Wg‘ acts transitively on the set of irreducible T»-invariant surfaces
and on the set of irreducible T,-invariant curves.

(2) The groups ng and Wf act on the set of T»-fixed points with the same two orbits:
one consisting of the points

(0,0, 0), (00, 00, 0), (00, 0, 00), (0, 00, 00),
and another one consisting of the points
(00, 00, 00), (0,0, 00), (0, 00, 0), (00, 0, 0).
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(3) The group WZG acts transitively on the set of Ta-fixed points.
(4) If oy, € W, then W acts transitively on the set of T>-fixed points.

O
Corollary 4.7 Let G be a subgroup of Gy that contains W%l Thentk(C1(Ve)®) = 1.0
Remark 4.8 Recall that we have the quotient morphism g : Ty — T, which is given
by
(11, b2, 13) > (1102, 1113, D212).

By construction, this morphism is equivariant for the actions of the group G4 x u, given
by the subgroups W; and W5, respectively. Moreover, it induces a gj2-equivariant
rational map ¢ : Y24 --» Vg that has generic degree 2. This rational map is equivariant
for the actions of the group G4 x p, on the threefolds Y4 and V. With our choice of
coordinates, this rational map can be explicitly written as follows. Fori € {1, 2, 3, 4},
let

U; Vi
U; = —ujuruzugvivavivy and V; = —ujuruszugvivavivg.

1 1

Then the image of the rational ®: Y4 --» P’ defined by

([r s 01, [z = w2, [us = ws]. [ua s va]) 1>

[Ur:Vi:Us:Va:Usz: V3 :Us: V4] (1)

is equal to the image of Vg by the Segre embedding j : Vi < P7 given b
q g y g gJ g y

([u1 oty [un :vo], [us : v3]) — [u1u2v3 T UIVUS L UVRUS L VUQV3 -

VIUQV3 D VIUPUZ 1 UVRV3 L V VU3 u1u2u3]

and j o ¢ = ®. Moreover, there exists G4 X p,-equivariant commutative diagram

Yyu-———-—-—-=—-—--—-= > Yo4 (2
| ly
Yog = — = — - - Vg~V

where « is the blow-up of all the singular points of Y24, 8 is the composition of Atiyah
flops of the proper transforms of all T-invariant curves in Y24, y is the contraction
of the proper transforms of all T-invariant surfaces in Y4, and § is the double cover
branched over the union of all T»-invariant surfaces. The threefold Y75 is the canonical
toric Fano threefold No 525553 in [7].
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4.3 Toric Fano threefold with Weyl group W3
The convex hull of the eight points
(£1, £1,£1)
in Hom(M3, Z) ® Q is a W3-invariant convex polytope. One can check that the asso-
ciated toric Fano threefold is the toric Fano threefold X»4, No 47 in [7]. Following [5,

§ 6.3.2], we can also view X»4 as the quotient of the threefold Vg by the involution
Ty, . Vo — Vg defined by

([ul : vl], [uz, Uz], [u3, v3]> > ([m : —vl], [uz : —Uz], [u3 : —03]). 3)

In this presentation, the threefold X4 comes with a closed embedding X4 — p3
which is induced by the rational map Vi --» P'3 defined by

(Lur = vil, [uz : w2, [u3 2 v3]) > [u%u%u% cududvy s utusvouzvy t uiviug

2,22, 2 . 2.
UTV5V3 D UIVIUZUZVS D UV U VU

4
u1v1u2v2v§ : ulvlv%u3v3 : vfu%u% : )
2..2.2 2 2.2..2 2.2.2

VIUFVS D VTURV2U3V3 L VT VFUS L VTVSUS |

The action of the torus T3 on the threefold X54 coincides with that induced from
the action of the torus T» on the threefold Vg via the quotient morphism  : Vg — Xo4.
Namely, the torus T3 is the quotient of the torus T» by the involution

(t_l, b, 53) = (— f, —1, —53),

and the quotient morphism 7 : Vg — X4 = Vg/ 7y, becomes equivariant with respect
to the quotient morphism ¢»3: To» — T3 when we equip the threefold X»4 with the
induced structure of toric variety.

The involution 7y, commutes with the action of the Weyl group Wy, = W,
so that we have Wy,, = Wj. Hence, we identify Wx,, = W3, Ty,, = T3 and
Gx,, =Tz x W3.

The action of the group W, on the threefold X»4 coincides with the action induced
from the action of the group Wy, on the threefold Vi via the quotient morphism
7 Vo — X4. We denote by oy,, the involution in Wy,, induced by oy, € Wy,.

The morphism 7 : Vg — X4 maps Wy -orbits of irreducible T,-invariants closed
subvarieties in Vg to the W, ,-orbits of irreducible T3-invariant closed subvarieties
in X74. Because of this, we will denote irreducible T3-invariant closed subvarieties in
X14 by the same symbols as the corresponding irreducible T;-invariant subvarieties
in V.

Observe that the Fano threefold X4 has exactly eight T3-fixed points, which are
singular points of type %(1, 1, 1). They are the images of the fixed points of the
involution ty,. One can check that the divisor class group of the threefold X4 is
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isomorphic to Z* @ Z,. It is generated by the images of the toric divisors in the
threefold Vg. We have

—2Kx,, ~ Op13(2)|x,,

and — K x,, is not a Cartier divisor. This together with the adjunction formula imply that
every smooth hyperplane section of the threefold X,4 C P'3 is an Enriques surface.
As a consequence of Corollary 4.7, we obtain.

Corollary 4.9 Let G be a subgroup in G x,, that contains W%‘ Thentk(C1(X24)%) = 1.
O

5 Two equivariant Sarkisov links

In this section, we present two known toric birational maps between X4 and two
other terminal toric Fano threefolds (see Lemmas 5.2 and 5.3 below), which will play
a central role in the proof of Theorem 1.2.

Let Xg be the complete intersection of three quadrics in P® with homogeneous
coordinates [y : y2 : ¥3:ya 1 ¥5: Y6 : y7] given by the equations

y5—y1y6 =0
¥2 — y2y5 =0 (5)
y2 — y3ys = 0.

We view Xg as a toric variety for the torus T, with open orbit Tx, that is given by

Y1Y2Y3Y4Y5Y6y7 # 0.

Then Xg has six T»-fixed points, which are its singular points, it has twelve T»-
invariants irreducible curves, which are lines in P°, and it has eight T»-invariants
irreducible surfaces, which are planes in P®. The rational map P® --» Vj given by

[yi:y2:y3:ya:ysiye:yr]—> ([yl SN ERZIN R y7]> (6)
induces a T»-equivariant birational map ®: Xg --» Vg whose inverse is given by

([u1 sl [u @ vol, [us : U3]) = [M%W2,3 : M%W],g : u%W],z : U%WLQ : o

U%W1’3 : v12W213 : u1u2u3v1v2v3],
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where W; ; = u;v;u;v; for every i and j in {1, 2, 3}. Moreover, there exists a com-
mutative diagram

Ve————— > X3 (®)
—1
Vo— -2 - - =Xg

where B is the blow-up of all eight T»-fixed points, the top dashed arrow consists of
flips in the proper transforms of the twelve T,-invariant lines in Xg, and « is the crepant
contraction of the proper transforms of the six T»-invariant surfaces in V.

The action of Wy, on Vg given in Subsection 4.2, and the formulas (6) and (7)
imply that

DT Wy & = Wy, = W,,

so that @ is a birational Ty x Wj-map. The diagram (8) is a so-called bad Ty x W5-
Sarkisov link.

The composition o lo Ty, o ® (see (3) for the definition of ty;) is the biregular
involution Ty, of the threefold Xg defined by

viiy2:y3iyaiys:iyo:yrl=>Iyiiy2:y3:y4:95: ¥ —y7l.

The projection P® --» P3 from the point [0 : 0 : 0 : 0 : 0 : 0 : 1] induces an
isomorphism between the quotient Xg/7x, and the complete intersection V4 C P>
given by

_ -0
:YI}’G y2ys 9)

Y16 — y3y4 = 0.

We view V4 as a toric variety for the torus T3 (see Sect. 4), with open orbit Ty, given
by

Y1y2y3y4y5Y6 # 0,

so that the quotient morphism 7 : Xg — Vi is equivariant with respect to the quotient
morphism ¢23: Ty — T3.

The threefold V4 has six T3-fixed points, twelve irreducible T3-invariant curves,
which are lines in P> and eight irreducible T3-invariant surfaces which are planes
in P°. These T3-invariant irreducible subvarieties are the images of the T-invariant
irreducible subvarieties of Xg by the quotient morphism 7 : Xg — Vi.

Since Ty, commutes with the action of T, x W, on the threefold Xg, we obtain an
induced regular action of G4 x u, on the threefold V4. Moreover, one has Wy, = W3,
and the threefold V4 endowed with the action of Gy, = T3 x WYy, is another projective

W Birkhauser



Toric G-solid Fano threefolds Page 250f45 22

terminal toric Fano model for the subgroup W3 of GL3(Z). As usual, we identify
Wy, = W3, we let oy, to be the involution in Wy, defined by

yi:y2:y3:94:95: ¥l > Y61 ys :ya:y3ty2iyl,
and we let v: Gy, — W3 be the natural homomorphism.

Lemma 5.1 ([4, Theorem 10]) Let G be a subgroup of Gy, such that v(G) contains
W Then tk(C1(V4)C) = lifand only if oy, € v(G) or v(G) = W¥. O

Proof By construction, the eight irreducible T3-invariant surfaces in V4 are the images
by 7 : X3 — Vj of the eight irreducible T;-invariant surfaces in Xg. By the Ty x W»-
equivariant commutative diagram (8), the latter are the images by « : Xg — Xg of
the proper transforms of exceptional divisors of the blow-up 8 : Vg — Vg of the eight
T,-fixed points of V. Since the action of W3 on the character lattice of T3 is induced
from that of W5 on the character lattice of T, it follows that v(G) acts transitively on
the eight irreducible T3-invariant surfaces in V4 if and only this group acts transitively
on the eight T»-fixed points of V. The assertion then follows from Lemma 4.6. O

The birational T x W>-map & in (8) induces a birational T3 x W3-map ¢ : V4 --»
X»4 defined by

[yi:y2:y3:ya:y5:Y6] = [V1V2V3 0 Y1Y2y4 0 Y1V3V4 S Y1Y3Y5 © Y1Y4Ys
Y1Y2Y6 : YIY3Y6 : Y1Y4Y6 - Y1Y5Y6 - (10)
Y2Y3Y6 1 Y2V4Y6 © Y2¥5Y6 1 Y3V5V6 © Y4Y5Y6).

and we eventually obtain the following:

Lemma 5.2 There exists a Ty x Ws-Sarkisov link

P
Xp————~— > X0 (11)

where y is the blow-up of the six singular points of the threefold Va, the map p is
a composition of Atiyah flops in the proper transforms of the twelve T3-invariant lines
in Va, and § is the composition of Kawamata blow-ups of the eight singular points of
X74. |

Let V5 be the hypersurface of degree 4 in P(1, 1, 1, 1, 2) defined by the equation
w? — x1x2x3x4 = 0, (12)

where x1, x2, x3 and x4 are coordinates of weight 1, and w is a coordinate of weight
2. We view V; as a toric variety for the torus T3 with open orbit Ty, given by
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x1x2x3x4w # 0. The threefold V, has four Ts-fixed points, it has six T,-invariants
irreducible curves, which are singular curves of the threefold V;, and it has four T»-
invariants irreducible surfaces.

The rational map P(1, 1, 1, 1, 2) --» Vg given by

[x1 TX) IX3 X4l w] — ([xlxz : w], [x1x3 : w], [X2x3 : w])

induces a T-equivariant birational map W, : V2 --» Vg, whose inverse is given by

([u1 : vl], [u2 : Uz], [u3 : v3]) =

[u1u2v3 TUTU3VY L UQU3V] L VIV2V3 - u1u2u3v1v2v3]. (13)

With the Notation 4.3, this birational map W, fits in the following commutative
diagram:

Vs (14)
7K
Yoo
Vo)—- - — —— — > Ve

where B is the blow-up of the four points (oo, 0o, 00), (0, 0, 00), (0, co, 0) and
(00,0, 0), of X24, and « is the contraction of the proper transforms of the six T;-
invariant irreducible surfaces in Vi onto the six singular curves of V>.

Arguing as in the construction of ® in Sect. 5, we see that

1556
YW, W = Wy,

where we identified Wy, = W,. Therefore, @ is a birational T, x WZG -map. The

diagram (14) is a bad Ty x WZG -Sarkisov link.
The composition W ! o 7y, o W is the biregular involution ty, of V; defined by

[X1:x2:x3:x4 - w]—> [x1:x2:x3: x4 —w].

Viewing IP? as a toric variety for the torus T3 with open orbit Tps given by x1x2x3x4 #
0, the quotient morphism V, — P3 is equivariant for the quotient morphism ¢o3 :

T, — T3. We can identify Wps = Wy, = Wf, so that Gps = T3 X V_V?
It follows that the map W in (14) induces a birational T3 x W? -map Yoo : P -
X4 given by

. . . 2.2.2..3 . 42,2 . 3 2,22
[xl TX2 X3 .x4] > [x1x2x3 DXTX2X3X4 D XTXFX3XG D X[ XFX3X4 D X[X5X]
2.2 . 2.2 ..2 2. 2.2,
X{X2X5X4 : X1X5X3X4 1 X{X2X3X] © X1 X5X3X] (15)

x1x2x§x4 . x%x%x‘% :x1x2x32x2 . x%x%xi . xlxzxyci s
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and we eventually obtain the following:

Lemma 5.3 There exists a T3 x Wf -Sarkisov link

X2
%

P - - > Xo4

(16)

where 8o is the composition of Kawamata blow-ups of four points in Sing(X24) that

6 . . . . .
Sformthe W5 -orbit of the singular point (00, 00, 00) of X24, and yeo is the contraction
of the proper transforms of the six T3-invariant surfaces in X»4 to the six T3-invariant
lines in P3. O

Note that the birational map (15) is defined by the linear system consisting of all
sextic surfaces that are singular along the six T3-invariant lines in P3. This recovers

the original construction of the T3 x Wf -Sarkisov link (16) that is given in [11].

Remark 5.4 Considering P3 as a toric variety for the torus T3 and considering the action
. =6
of the group Wps = G4 on the character lattice M3 of T3, we see that Wps = W5 .
. . 6 N . .
Then there exists the following T3 x W3 -equivariant commutative diagram:

~ o OV o 4

V4 1 Va

N i

where B is the blow-up of the four Tz-invariant points, « is the contraction of the
proper transforms of the six T3-invariant lines, and the dashed arrow is the standard
Cremona involution.

6 Proof of Theorem 1.2 (infinite groups)
In this section, we give an alternative proof of Theorem 1.2(3) in the case when the

group G is infinite. We will treat each of the threefolds Y24, Vi, X24, V4 and P3ina
separate subsection.

6.1 Singular Fano threefold Y54

We use the notation introduced in Sect. 4.1. Let Gy,, = T1 x Wy, let W be a subgroup
in W that contains W?‘ (see Notation 4.2), and let G =T x W C Gy,,.

Lemma 6.1 The threefold Y4 is G-birationally super-rigid. O
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Proof Suppose that Y»4 is not G-birationally super-rigid. Then, see for instance [10,
Theorem 3.3.1], there exists a G-invariant mobile linear system M on the threefold
Y»4 such that the pair (Y24, A M) is not canonical, where X is a positive rational number
defined by

AM ~g —Ky,,.

Let Z be a G-irreducible center of non-canonical singularities of the log pair
(Y24, AM). Then, by Lemma 4.4, we have one of the following possibilities:

(1) Z is the G-orbit of the singular point (0, 0, co, 00),

(2) Z is the G-orbit of the smooth point (0, co, 00, c0) or of the smooth point
0,0,0, c0),

(3) Z is the G-orbit of the curve (0, 0, 1, 00) or of the curve (0, 1, 0o, 00).

Let us show that none of these three cases is actually possible.

Let S be the surface (0, 1, 1, 00). Then § = P! x P!, and the restriction AM |g is
an effective Q-linear system of bi-degree (1, 1). Then S contains the singular points
(0, 0, 00, 00) and (0, 0o, 0, 00), it also contains the smooth points (0, 0, 0, o0) and
(0, 00, 00, 0), and it also contains the curves (0, 0, 1, 0c0), (0, 1, 0, c0), (0, 1, 00, 00)
and (0, oo, 1, 00).

If Z is a curve, then the multiplicity of the restriction AM |s at the curve Z is strictly
larger than 1 by Lemma 2.7. Clearly, this is impossible, since A M |s has bi-degree
(1, 1). Thus Z must be zero dimensional.

Suppose that Z is the G-orbit of the smooth point (0, 0, 0, co0) or of the smooth
point (0, oo, 0o, 00). Denote this point by P. Then the tangent space Tp(Y24) is
an irreducible representation of the stabilizer of the point P in the group G. Thus,
by Lemma 2.12, we have

multp(./\/l) > )%

Let C be a general curve in S of bi-degree (1, 1) that passes through P. Such curves
span the whole surface S, so that C is not contained in the base locus of the linear
system M. Then, for a general surface M € M, we have

2 2
X:M-CZmultp(/\/l) > T

which is absurd.

It thus remains to consider the case where Z consists of singular points of the
threefold Y»4. Let «: ?24 — Y24 be the blow-up of the points (0, 0, oo, co) and
(0, 00, 0, 00), let M be the proper transform of a general surface in the linear system
M on the threefold Y24, let E| and E; be the a-exceptional surfaces. Then

AM ~Q ot*(—Ky24) —miE; —moE>
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for some rat10nal numbers m and m,. liy Lemma2.11, we have m; > 1 and mp > 1.
Now let C be the proper transform on Y24 of a general curve in S of bi-degree (1, 1)
that passes through both points (0, 0, oo, oo) and (0, oo, 0, 00). Then c s M, so that

0<AM-C = (a*(—KY24)—m1E1 —m2E2>-5=2—m1 —my <0,

which is absurd. This completes the proof of the lemma. O

Remark 6.2 Since the Fano threefold Y»4 is Gy,,-birationally super-rigid, there is no
Gy,,-Sarkisov link starting at Y24. But there are bad Gy,,-Sarkisov links that start at
Y»4, which implicitly appear in the proof of Lemma 6.1. For example, blowing-up all
singular points of the threefold Y24, we obtain the bad Gy,,-Sarkisov link (2).

6.2 Fano threefold Vg = P! x P! x P!

We use the notation introduced in Sect. 4.2. Let Gy, = T2 x W5, let W be one of the
subgroups in W, that contains the group Wg‘, andlet G =T, x W C Gy,.

Lemma 6.3 The threefold Vg is G-birationally super-rigid. O

Proof We may assume that W = W%‘ Suppose that Vg is not G-birationally super-
rigid. Then there exists a G-invariant mobile linear system M on Vg such that
(Ve, AM) is not canonical, where A is the positive rational number defined by
AM ~g —Ky.

Let Z be a G-irreducible center of non-canonical singularities of the log pair
(Ve, AM). If Z is a curve, we can assume that Z is the Wg‘-orbit of the T;-invariant
curve (0, 0, 1). Otherwise, we can assume that Z is the W%‘—orbit of the point (0, 0, 0).

Let S be the surface (0, 1, 1) C V. Then S = P! x P!, and AM |y is an effective
Q-linear system of bi-degree (2, 2). If Z is a curve, then

SNZ=1(0,0,1)U(0,00,1)U(0,1,0)U (0, 1, 00).

We let C; = (0,0, 1) and C; = (0, 00, 1). Note that C1 N C, = &. If Z is a point,
then

SNZ=1(0,0,0)U(0, oo, 00).

We let P; = (0,0, 0) and P, = (0, 00, 00).
If Z is a curve, then it follows from Lemma 2.7 that

mlte, (M) = multc, (M) > 5

This implies that the coefficient of these curves in the restriction AM|g is larger
than 1, contradicting the fact that AM|s is of bi-degree (2, 2). Thus Z must be zero
dimensional.
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Since the stabilizer of the point P; in the group G contains a subgroup p; that
permutes transitively the T,-invariant curves that pass through Pj, the tangent space
Tp, (X) isanirreducible three-dimensional representation of the stabilizer of P;. There-
fore, it follows from Lemma 2.12 that

2
multp, (M) = multp,(M) > T

Let C be a general curve in the surface S of bi-degree (1, 1) that passes through P,
and P>. Such curves span the whole surface S, so that the curve C is not contained in
the base locus of the linear system M. Thus, for a general surface M € M, we have

4=iM-C> )»(multpl (M) + multp, (M)) > 4,

which is absurd. This completes the proof. O

Remark 6.4 Since threefold Vg is Gy;-birationally super-rigid, there is no Gy;-
Sarkisov link that starts at V. However, there exist bad Gy, -Sarkisov links that start
at Vi. For instance, blowing-up all T»-invariant points leads to the bad G y,-Sarkisov
link (14). Likewise, the G y;-equivariant symbolic blow-up « of the union of all T>-
invariant curves (see Example 2.3) also leads to a bad G y,-Sarkisov link:

where B is the contraction of the proper transforms of the G y,-invariant surfaces in
Ve. One can show that X is the canonical toric Fano threefold No 9099 in [7], which
can also be obtained as the quotient of the singular Fano threefold Y>4, viewed as a
toric variety for the action of the torus T, by an involution that fixes only T1-invariant
points.

6.3 Singular Fano threefolds V; and X34

We now treat the threefolds V4 and X»4. We use the notation of Sects. 4.3 and 5, and
we identify Gy, = Gx,, = T3 x W3. By Sect. 5, we have a T3 x W3-Sarkisov link
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where y is the blow-up of the eight singular points of V4, the map p is a composition
of Atiyah flops in the proper transforms of the twelve T3-invariant lines in V4, and §
is the composition of Kawamata blow-ups of the eight singular points of Xo4.

Let W be a subgroup of W3 that contains W?l such that either W = W?‘, or W
contains the involution o (see Notation 4.2), and let G = T3 x W. The proof of the
following lemma is straightforward.

Lemma 6.5 Let My,, be a G-invariant mobile linear system on X4, and let My, be

its proper transform on V4 via ¢. Then the following assertions hold:

(1) There are k € Z>o and m € %Zzo such that My,, ~q —kKx,, and

8
5. (Muxy) ~q 8 (— kKxy) —m Y _ Fy,

i=1
where each F; is a -exceptional surface.

(2) There are n € Zxo and m’ € Zxq such that My, ~ nHy, and

6
v (M) ~o v (nHy) —m' Y E;,

i=1

where Hy, is a hyperplane section of V4, and each E; is a y-exceptional surface.
(3) Onehasn =3k —2mandk =n —m’.

Now we are ready to prove
Proposition 6.6 One has Pg(V4) = {Va, X24}.

Proof Let x: Xo4 --+ Y be a G-equivariant birational map such that Y is a threefold
with terminal singularities, and there exists a G-equivariant morphism f: Y — Z
that is a G-Mori fiber space. Fix a sufficiently large positive integer n > 0. Let Dz
be a sufficiently general very ample divisor on Z, let My = | —nKy + f*(Dz)|, let

Mx,, = (X)*_I(MY)
and let
My, = (x o 9); ' (My).

Then My,, and My, are G-invariant mobile linear systems on X»4 and Vj, respec-
tively. Let k and n be the non-negative integers such that My,, ~q —kKx,,
and My, ~ nHy,. If the log pair (X24, %M X,,) has canonical singularities, then
it follows from the Noether—Fano inequality that yx is an isomorphism, see [10, The-
orems 3.2.1 and 3.2.6] or [12]. Similarly, if the log pair (V4, %MW) has canonical
singularities, then the birational map x o ¢ is an isomorphism. Therefore, to prove the
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required assertion, it is enough to show that either (X4, %M Xo4) OF (V4 %Mw) has
canonical singularities.

Suppose that the singularities of the log pair (X4, %M X,,) are worse than canon-
ical. Then, using Lemma 2.10 and Lemma 6.5, we obtain the inequality n < 2k. Let
us show then that the log pair (Va, %/\/l v,) has canonical singularities.

By construction of ¢, if the singularities of the log pair (V4, %MV4) are not canon-
ical, then the union of its centers of non-canonical singularities is either the union of
all singular points of the threefold V4, or a W-orbit of T3z-invariant curves, which are
lines in IP°.

In the first case, using Lemma 2.11 and Lemma 6.5, we get n > 2k, which is
impossible, since we already proved that n < 2k.

The twelve T3-invariant lines in V4 form a unique W-irreducible curve. Suppose
that all of them are centers of non-canonical singularities of the log pair (V4, %M Va)-
Then

multL(./\/lv4) > (17)

oS

for each such line L by Lemma 2.7. On the other hand, each of the eight T3-invariant
planes in Vj4 contains three Tz-invariant lines. Thus, restricting My, on one such
plane, we obtain a contradiction to (17). O

6.4 Fano threefolds 3 and X4

Finally, we deal with the Fano threefolds P3 and X,4. For X4, we use the same
notation as in Sect. 6.3. As in Sect. 5, we view IP? as a toric variety for the torus T3,

and we identify Wps = Wf and Gps = T3 x W? . In Sect. 5, we constructed the
following T3 x W -Sarkisov link:

X2
2
Pl Ty,

where 8 1s a composition of Kawamata blow-ups of the four singular points of X4
-6 . . . . .

that form the W5 -orbit of the point (00, 00, 00) in X24, and y is the contraction of

the proper transforms of the six Tz-invariant surfaces in X4 to the six T3z-invariant

lines in P3.

Recall subsection 4.3 that the regular involution oy,, of X24 = Vg/1y, induced by
. . . . . 6

the involution oy, = v X v X v (see Notation 4.3) commutes with the action of W5 .
. .. 6

We thus obtain a second birational T3 x W3 -map /g = 0x,, 0o P3 -—» Xo4.Note

that ox,, (00, 00, 00) = (0, 0, 0). Consequently, we have a second T x WS -Sarkisov
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link
X
A
P3———f0——>X24

where §¢ is a composition of Kawamata blow-ups of the four singular points of X4

. 6 . . . .
which form the W -orbit of the point (0, 0, 0), and yy is the contraction of the proper
transforms of the six T3-invariant surfaces in X»4 to the six Ts-invariant lines in P3.

Remark 6.7 Using (4) and (15), one can show that 1//0_0l 00x,, © VYoo is equal to the stan-
dard Cremona involution o3 : P3 -—+ P defined by

[x1 :x2 1 x3 1 x4] = [X2X3X4 : X1X3X4 : X1X2X4 : X1X2X3]. (18)

. . o 6
In other words, we have a commutative diagram of birational T x W5 -maps

]P‘Bi: ********* > Xo4
op3 | \\w\o\ l"xm
v =~
w ~
P3— — — — -~ S Xy

Let E be the sum of all y-exceptional surfaces, let Fp be the sum of all &-
exceptional surfaces, let F, be the sum of all §-exceptional surfaces, and let W

be either Wg‘ or Wf . We also let G = T3 x W. The next lemma is straightforward.

Lemma 6.8 Let My,, be a G-invariant mobile linear system on the Fano three-
Sold X4, let Mx,, 0o and Mx,, o be its proper transforms on X, via §o, and &y,
respectively, and let Mps o, and Mps  be its proper transforms on P3 via VYoo and
Yo, respectively. Furthermore, let k € %Z and let noo and nqo be integers such that

Mixy, ~q@ —kKxy,,
MP3,OO ~Q VlOOH,
MP3,0 ~Q noH.

where H is a hyperplane in P3. Then the following assertions hold:

(1) There are mg and mqg in %Zzo such that

MXzz,O ~Q 83( - kKXz4) - Wl()F(),
MXZLOO ~Q 6;0( - kKX24) — Moo Foo.
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(2) There are my and my, in Z=q such that

Mxp.0 ~0Q J/(;k (no'H) — m()E,
Mxp.00 ~Q Voo (nOOH) —m. E.

(3) Furthermore, one has

nog = 6k — 4my,

Noo = 0k — 4m oo,

no ,

k=22 —mp,
2 0
Noo

Now we are ready to prove:
Proposition 6.9 One has Pg(P3) = {P3, Xo4).

Proof Let My,, be a G-invariant mobile linear system on the threefold X»4. With
the notation of Lemma 6.8, if the log pair (X4, %M X,,) does not have canonical
singularities, then, combining Lemmas 2.10 and 6.8, we obtain that

e cither (Xp4, %MXM) is not canonical at the point (0, 0, 0) and no < 4k,
e or (Xo4, %MXM) is not canonical at the point (0o, 00, 00) and n, < 4k.

If (P3, %Mpgo ) does not have canonical singularities, we let Z be its G-irreducible

center of non-canonical singularities. In this case, one of the following cases holds:

e Z is the Gps-irreducible curve and k < =2;
e Z is the Gps-orbit of length 4 and ng < neo.

Indeed, if Z is the Gps-irreducible curve, then m[, > =% by Lemma 2.7, so that

by Lemma 6.8. Similarly, if Z is the Gp3-orbit of length 4, then

4 Noo
Moo > 7

by Lemma 2.12, because the tangent space Tp (P3) ata point P € Z is an irreducible
representation of the stabilizer of the point P in the group G. Thus, in this case, we
have

np = 3nee — 4m, < neo
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by Lemma 6.8.
Now, we let g be the smallest number among ”T“’, HTO and k. Without loss of gener-
ality, we may assume that

. [Poo
= —,k}.
q mln{ 1

In view of the above alternatives, we obtain the following:

o if g = "2, then (P3, %MPS’OO) has canonical singularities;
e if g = k, then (X4, %M X,,) has canonical singularities.

Now, arguing as in the proof of Proposition 6.6, we deduce that P> and X»4 are the
only G-Mori fibre spaces G-birational to P3. O

7 Proof of Theorem 1.2 (finite groups)

All assertions of Theorem 1.2 follow from the results of Sects. 3 and 4 except for
the part (3), which has been already proved in Sects. 3 and 6 for infinite groups. The
aim of this section is to prove Theorem 1.2(3) for finite groups. To do this, we need
some results on finite subgroups of the groups T1 x Wy, Ty x W, and Tz x Wj.

7.1 Finite subgroups

We use the notation of Sect. 4.

Lemma 7.1 Let W be a subgroup of the finite group W that contains the group W2,
and let G be a W-invariant finite subgroup of Ta. Then there exists n € N such that
one of the following three possibilities holds:

(1) G = p;

(2) nisevenand G = ;L,% X pu;

(3) nisevenand G = p, X na.
2

m}

Proof Let n be the maximal order of elements in G, and let & be an element in G
that has maximal order. Then the order of every element of G divides n. This implies
that G C [L,31. Thus, there are positive integers a, b, ¢ such that ged(a, b, c,n) = 1
and

h = (e“, e’ ec)
for some primitive nth root of unity €.

) Birkhauser



22 Page 36 of 45 I.Cheltsov et al.

With respect to the basis f1, f2, f3 of the lattice M5, the subgroup W%‘ C GL3(Z)
is generated by permutation matrices and the matrices

-1 00 -10
A= 0 -10 and B=| 010
0 01 —1

Applying cyclic permutations of order 3 to 4, we see that
(€. e’ e") e G (eh e e,

so that the group G contains an element of the form (e, €#, €7) for some integers f3
and y. Thus, we may assume that a = 1. Applying A B to the element %, we see that

W =(,e? eea.

It follows that hh' = (€2, 1, 1) and its transforms (1, €2, 1) and (1, 1, €2) by permu-
tations matrices in W are also contained in the group G.
Let hp = (1, €2, 1)and hy = (1, 1, 62). If n is odd then we can replace % by

hRS R, = (e, 1, 1),

where 8 and y are integers such that 86 = 1 mod n and yc = 1 mod n. If n is even,
we can replace i by hhzﬂhg e GforB =— L]%J and y = —[5 . Therefore, we may
assume that one of the following three cases holds: (b, c¢) = (0,0), (b,c) = (1,0)
and (b, c) = (1, 1).

If (b, ¢) = (0,0), then i = (¢, 1, 1) from which it follows that G = ;Lf’l.

If (b, ¢c) = (1,0), then n is even and 1 = (¢, €, 1). In this case, applying permuta-
tions, we get that (1, €, €) € G and hence that G contains the subgroup

G =((e.e, 1), (1,6,€), (1, 1,M)) =y x py.

Since G C p2, it follows that either G = G’ or G = p>.
Finally, if (b, ¢) = (1, 1), then G contains the subgroup

G =((e,e,€),(1,€2,1),(1,1,€H)) = p, x ;ﬂ%,

and hence either G = G’ or G = ufl, which completes the proof. O

Corollary 7.2 Let W be a subgroup of the finite group W that contains the group ngl,
and let G be a W-invariant finite subgroup of T1. Then there exists n € N such that
one of the following five possibilities holds:
(1) G = p;
(2) nisevenand G = ;L,% X pu;
(3) nisevenand G = p, X na;

2
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(4) n is divisible by 4 and G = p,, X Mo X pn;
(5) nis divisible by 4 and G = p,, X ;Lzﬂ.
7
O

Proof Let qi»: T; — T», be the quotient map that corresponds to the inclusion
M, — M described in Sect. 4. Then g7 is given by

(i1, 2, 13) > (012, 1113, B213),

and its kernel consists of two elements (1, 1, 1). Let G be the image of G by the
map q12. Then either G = G or there exists an exact sequence of groups

l— g, —G— G —> 1.

Since the_ Wh-action on M5 is induced by the restriction of the W;-action on M|, we
see that G is normalized by the action of the subgroup ng By Lemma 7.1, we obtain
that
(1) either G = 2, B
(2) ornisevenand G = p2 x po,
(3) ornisevenand G = u, x p3.

2

This immediately implies the result. O

Corollary 7.3 (cf. [19]) Let W be a subgroup of the finite group W3 that contains
W%‘, and let G be a W-invariant finite subgroup of T3. Then there exists n € N such
that one of the following three possibilities holds:
(1) G = p;
(2) nisevenand G = [L,zl X pu;
(3) n is divisible by 4 and G = p? x pon.

O

Proof Let go3: T, — T3 be the quotient by the involution (f1,%,13) >
(=t1, —t, —13), which corresponds to the inclusion of lattices M3 < M described
in Sect. 4, and let G be the preimage of the group G via g»3. Then G is afinite subgroup
in Ty, which is normalized by the group WQl Since G contains +(1, 1, 1), we see that
|G| is even.

It follows from the proof of Lemma 7.1 that there exist an integer m € 2N and
a primitive m-th root of unity € such that G is one of the following subgroups:

M) (e 1D, (Le D, (1, 1€) = py,
@) ((e.e. D, (Le€), (1, 1 e?)) = py x p,

3) ((e.€,€),(1,€2, 1), (1, 1,€2) = p,, x u%j,,

Thus, in the first case, we have

G=(e1l6, (el D) ele)=1(e16),(,¢ec¢€), (e 1) = p2 x un.

2
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Similarly, in the second case, we have

((62, e_l, €), (e, 6_2, €), (1, 6_2, 62))

= (. e, (e, o), (1, 1,eM) = pp x o,

Q
Il

where n is divisible by 4, because (—1, —1, —1) € G. Finally, in the third case, we
have

G=((2, e 2,2, (€2 3 1), (1,e 2, e2) = (€2, 1,1), (1,2, 1), (1,1, €2)) = u3,.
2

This completes the proof of the corollary. O

7.2 The proof of Theorem 1.2(3) for finite groups
Let X be one of the threefolds Vg = P! x P! xPL, Xo4, Y24, V4 or P2, let T be a maximal

torus in Aut(X), and let G x be its normalizer in Aut(X). Using the split exact sequence
of groups

1 T Gx

Wy 1,

we consider the Weyl group Wy as a subgroup of the group Gx.

Let G be a finite subgroup of the group G, let W = vy (G),and letI' = TN G.
Suppose that the group W contains the unique subgroup in Wy that is isomorphic to
4. Then Lemma 7.1 and Corollaries 7.2 and 7.3 imply the following:

~

Corollary 7.4 The group T contains a subgroup T" = w> such that |T" : T| < 16. O
Wehave Gy = (T, Wx) =T x Wy and G = (I', W) = T" x W. Note that

ik (C1009) = re(C100™),

so that X is G-minimal if and only if it is W-minimal. Now we suppose that X is W-
minimal. To prove Theorem 1.2(3), we have to show that X is G-solidif |G| > 32-24*.

Suppose that |I'| > 16 - 243. Note that this inequality follows from |G| > 32 - 24*.
By Corollary 7.4, the group I" contains a subgroup that is isomorphic to uf, forn > 24.
Let us prove that X is G-solid.

LetG = (Tyx, W) = Ty x W. In Sect. 6, we proved that the threefold X is G-solid.
Moreover, this proof implies that X is G-solid provided that the following condition
is satisfied:

(%) For every non-empty G-invariant mobile linear system M on the threefold X,
all non-canonical centers (if any) of the mobile log pair (X, AM) are T x-invariant,
where A is a positive rational number such that

M ~q —Kx.
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Moreover, if a Ty -invariant smooth point P of the threefold X is a non-canonical
center of the log pair (X, A M), then multp (M) > %

In the remaining part of this section, we will prove that v holds.
Let M be a non-empty G-invariant mobile linear system on X, and let A be a
positive rational number such that AM ~g —Kx.

Lemma 7.5 Let P be a smooth T-invariant point of the toric Fano threefold X such
that P is a non-canonical center of the log pair (X, AM). Then multp(M) > % O

Proof Since P is a T-invariant smooth point of X, we have X = Vg, X = Yoy or X =
IP3. Let G p be the stabilizer of the point P in G. Then the tangent space Tp(X) is a
faithful representation of the group G p by Lemma 2.4. Moreover, this representation
is irreducible, because G p contains I". Thus, the assertion follows from Lemma 2.12.

O

Now we suppose that (X, A M) is not canonical and we let Z be a non-canonical G-
center. To complete the proof, we have to show that Z is T-invariant. In what follows,
we denote by Iy the Fano index of the threefold X.

Lemma 7.6 If Z is a curve, then Z is T-invariant. O

Proof Let H be an ample Cartier divisor on X such that — Ky ~ Ix H. Then

H-Z
22

H3I3

S =H MMy > (H- Z)multy, (M) >

for two general surfaces M| and M3 in M, because multz (M) > % by Lemma 2.7.
Then

H-Z < H3I} <24,
But H is very ample, and the group I' contains a subgroup isomorphic to [L;z for
n > 24. Thus, the curve Z must be T-invariant by Lemma 2.13. O
Thus, we may assume that Z is the G-orbit of a point in X.
Lemma 7.7 The G-orbit Z is contained in the union of T-invariant curves. O

Proof Suppose that Z is not contained in the union of T-invariant curves. Let us seek
for a contradiction. Observe that the G-orbit Z is a G-center of non-log canonical
singularities of the log pair (X, 2AM). We claim that Z is an isolated center of non-
log canonical singularities of this log pair. Indeed, suppose that there is a G-irreducible
curve C that is a center of non-log canonical singularities of the log pair (X, 2AM).
Let M and M, be general surfaces in M. Then

M- M, =mC + 2,

where m is a non-negative integer, and €2 is an effective one-cycle whose support does
not contain C. Then m > % by Lemma 2.8.
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Let H be an ample Cartier divisor on X such that —Ky ~ Ix H. Then

3
HI}Z(—H M- M = L
o =H M »b=mH-C+H-Q>mH-C > VI

sothat H-C < H3I)2( < 24. Thus, the curve C must be Ty -invariant by Lemma 2.13.
Since Z is not contained in the union of T-invariant curves, we see that Z is an isolated
center of non-log canonical singularities of the log pair (X, 2A.M).

Let u be a positive rational number such that 4 < A, and Z is an isolated G-
irreducible center of log canonical singularities of the log pair (X, 2uM). Let Z
be the multiplier ideal sheaf of the log pair (X, 2uM). Then the ideal Z defines a
subscheme Z’ in X whose support contains Z. Using Nadel vanishing theorem (see
[25, Theorem 9.4.8]), we get

1 (T®Ox (- Kx)) =0.
Now using the exact sequence of sheaves
0—>I®Ox(—Kx) — Ox(—Kx) — Oz/@@x(—Kx) — 0,

we see that |Z| < h%(Ox(=Kx)). But on the other hand, since Z is not contained in
the union of T-invariant curves, we have |Z| > n? > 242, a contradiction. O

Finally, we prove the following lemma:
Lemma 7.8 The G-orbit Z is T-invariant. O

Proof We know from Lemma 7.7 that Z is contained in union of T-invariant curves.
Suppose that Z is not T-invariant. Let us seek for a contradiction.

Let H be an ample Cartier divisor on X such that — Ky ~ Iy H. Recall that H is
very ample,

2if X = Vg,
1if X = Xo4,
Iy = { 1if X = Yoq4,
2if X = Vy,
4if X = P>
and
6if X = Vg,
24 if X = Xo4,
H3=124if X = You,
4if X = Vy,
1if X = PP
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Let C the union of all T-invariant curves. Then C is G-invariant. Moreover, it follows
from Lemmas 4.4 and 4.6 that W acts transitively on the set of irreducible components
of C except the following two cases:

(1) X = Yos and W = W¥,
2) X = Yoy and W = W, .

In these two cases, the curve C splits as a union of two G-irreducible curves that are
swapped by the group Wy = G4 X 5. Thus, we let Cy be the G-irreducible component
of the curve C that contains the G-orbit Z. Then, because Z is G-irreducible, the other
G-irreducible component of the curve C (if any) does not contain Z,

Letd = H -Cy, and let k be the number of irreducible components of the curve C;.
Then k = d in each possible case. Moreover, we have

12if X = Ve,
12if X = X4,
L irx = W £ W% and W £ W,
12if X = Yoy, and either W = W or W = W,
12if X = Vi,
6if X =P3.

Recall that G N T contains a subgroup isomorphic to MZ for n > 24. Thus, since by
assumption Z is not T—invariant, we have |Z| > kn > 24k = 24d.

Let M| and M, be general surfaces in M. If the curve C is G-irreducible, then
C =Cjand

My - My =mCi + A,
where m is a non-negative integer, and A is an effective one-cycle whose support
. .. . . —=6
does not contain the curve C. Similarly, if X = Y54 and either W = WIQ[ orW=W,,
then C = C; + C», where both C; and C; are G-irreducible curves, so that we have

M My =mC; +myCr + A,

where m and my are non-negative integers, and A is an effective one-cycle whose
support does not contain the curves C; and C,. In both cases, we have

I2H3
X)Lz =H'M1'M22H-(m1C1+A>=m1d+H-AZm1d,
S IZHY 4
which implies that m| < o <2
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Let 3 be the linear subsystem in |/ H | consisting of surfaces that contain C, where

2if X = Vg,
2if X = Xoq4,
I=12if X = Yo,
3if X = Vg,
3if X =P,

Then C is the base locus of the linear system B. Indeed, the generators of the linear
system B are contained in the formulas (4), (1), (10), (13) and (18). Looking at them,
we see that the curve C is the base locus of the linear system 5.

Now we use Lemma 2.9 to deduce that

4
multO(M] -M2) > ﬁ
for every point O € Z N C. Thus, for every point O € Z N C, we have

4
multO(A) > F —my,

because the curve C; is smooth at O, and C; is the only G-irreducible component of
the curve C that contains points in Z. Now let S be a general surface in 5. Then

11 H?
\7 —mlld:S-<M1-M2—m1C1)ZS-A
>§ mult (A)>|Z|i— >d 4
> ultp 2 ml_n)L2 mp ).
Oez
This gives
112 H? 4dn
X
)\‘2 +m1d(7’l—l) > 7

. 12 H? . L .
Since /[ < nmand m; < #, we obtain I}Z(H 3 4d, which is absurd. The obtained
contradiction completes the proof of the lemma. O
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Appendix A. Table of G-solid toric Fano threefolds

With the notation of Sect. 1, we let X be one of the toric threefolds among Vg, Va,
Xo4, Y24 and P3 and we let G be a subgroup in the group G x whose image vx (G) in
the Weyl group Wy of X contains the subgroup 2(4. Then X is G-minimal except the
following two cases:

(1) X = V4, vx(G) = G4 and G acts intransitively on T-invariant surfaces,
2) X = Vgand vy (G) = 4.

Moreover, if X is G-minimal and |G| > 32- 244, then X is G-solid by Theorem 1.2. In
this case, the following table summarizes additional information on the G-equivariant
birational geometry of the threefold X obtained in the proof of Theorem 1.2.

If X # P3, then Wy = G4 x p, contains two subgroups isomorphic to &4, which
we call the subgroups G4 of type I and II, see Notation 4.2 for the precise definition.
If vy, (G) is the subgroup G4 of type II, then G acts transitively on the set of irreducible
T-invariant surfaces, so that V4 is G-minimal in this case. In contrast, if vy, (G) is the
subgroup G4 of type I, then V4 is not G-minimal.

Similarly, if vy,,(G) is the subgroup &4 of type II, then G acts transitively on
the set of singular points of the threefold X54. On the other hand, if vy,,(G) is the
subgroup G4 of type I, then G does not acts transitively on this set.
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