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We analyze the question of which motivic homotopy types admit smooth schemes as

representatives. We show that given a pointed smooth affine scheme X and an embedding

into affine space, the affine deformation space of the embedding gives a model for the P
1

suspension of X; we also analyze a host of variations on this observation. Our approach

yields many examples of A1-(n−1)-connected smooth affine 2n-folds and strictly quasi-

affine A
1-contractible smooth schemes.

Introduction

A very basic question in topology is: which homotopy types admit (smooth) manifold

representatives? When a given homotopy type admits a manifold representative, one can

then ask: can the homeomorphism (resp. diffeomorphism) types be enumerated? Broadly

speaking, this note concerns algebro-geometric variants of such questions: we replace

manifolds by smooth algebraic varieties (frequently affine) and the ordinary homotopy

category by the Morel–Voevodsky A1-homotopy category [33]. To guide the discussion,

consider the following:
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Geometric Models for Algebraic Suspensions 17789

Question 1.

1. Which motivic homotopy types admit representatives that are smooth

schemes?

2. If a motivic homotopy type admits at least one smooth representative, can

one distinguish the isomorphism classes of distinct representatives?

An implicit impediment to making the above questions precise is the issue of

specifying motivic homotopy types. The simplest motivic homotopy type, namely that

of a point, admits many non-isomorphic representatives. We refer the reader to [5] for a

survey of results in this direction. For this reason, instead of trying to specify motivic

homotopy types, we will focus on describing how such types can change. Here is a sample

result.

Theorem 2 (See Theorem 3.2.1). Assume B is a scheme, X is a B-scheme, and π : X →
A

n
B is a smooth morphism admitting a section s. If, setting U := A

n
� 0, the morphism

π |U : X|U → U is an A
1-weak equivalence, then there is an induced (pointed) A1-weak

equivalence

P
1∧ n ∧ (X0, s(0)) ∼ (X, s(0)).

Remark 3. Theorem 2 is deduced from the more general result Theorem 3.1.1. Rather

than stating this more general result here, let us explain the general principle at work.

A smooth morphism π : X → Y will be called a generic A
1-weak equivalence if there

exists a dense open subscheme U ⊂ Y such that π |U is an A
1-weak equivalence. In

that setting, the motivic homotopy type of X can be obtained by gluing (as in [33,

Theorem 2.21]) the motivic homotopy type of U with the motivic homotopy type of

X|Y�U . Under suitable additional hypotheses, we can control theA1-homotopy type of the

gluing.

Our next order of business is to create an ample supply of generic A
1-weak

equivalences to which our techniques apply. One source of such morphisms is provided

by the deformation to the normal cone construction a la Fulton–MacPherson: the

deformation space of an embedding of a smooth affine variety k-variety in A
n
k will

yield a family to which the preceding result may be applied. The following result is

a straightforward consequence of the results above, combined with the Jouanolou–

Thomason homotopy lemma.
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17790 A. Asok et al.

Theorem 4 (See Corollary 4.1.6). Suppose B is a quasi-compact and quasi-separated

(qcqs) base scheme. Assume (X, x) is a finitely presented pointed smooth B-scheme.

1. If the structure map X → B is furthermore affine, then for any integer i ≥ 0,

the motivic space Si∧G∧ i
m ∧X has the A

1-homotopy type of a pointed B-scheme

that is smooth and affine over B.

2. If B is affine and regular (e.g., the spectrum of Z or a field), then the same

statement holds for any B-scheme X that is smooth and has affine diagonal

over B (thus, any smooth separated B-scheme satisfies the hypotheses).

Remark 5. Theorem 4 can be viewed as a refinement and extension of the technique

conceived in [3]. In that paper, an inductive argument was used to show that the smooth

affine quadric hypersurface Q2n defined by the equation
∑n

i=1 xiyi = z(1 − z) has the

motivic homotopy type of the motivic sphere Si∧G∧ i
m [3, Theorem 2]. In retrospect, this

smooth affine quadric is itself an iterated deformation space.

Construction 2.1.2 gives a generalization of the deformation to the normal cone

construction. Loosely speaking, this construction lets us specify a degeneration locus Z

in a suitable parameter space W and then construct a morphism whose degeneration

locus is precisely Z with control over the fibers over Z. Proposition 2.2.1 explains the

relevant technical hypotheses that we will use to construct generic A
1-weak equiva-

lences. One reason for making Construction 2.1.2 in such generality is that we obtain

a plethora of smooth scheme models of a given A
1-homotopy type. This flexibility allows

us to encompass a large class of examples in affine algebraic geometry. Indeed, the

problem of distinguishing isomorphism classes of smooth affine schemes within a given

A
1-homotopy type contains many classical problems in affine algebraic geometry and

the examples we construct.

The remainder of this note is then devoted to constructing several classes of

examples. First, we generalize the results of [3] in two ways: (1) we construct new

examples of highly A
1-connected hypersurfaces by producing and analyzing a variation

on Danielewski’s construction; for example, we construct many examples of A1-(n − 1)-

connected smooth affine 2n-folds; (2) we build new examples of strictly quasi-affine A
1-

contractible smooth schemes. The problem of classifying A
1-(n − 1)-connected smooth

affine 2n-folds is reminiscent of (a non-compact version of) that studied for manifolds

by C.T.C. Wall in [40]. Finally, we give examples to show that varieties that are not

A
1-contractible can become so after P

1-suspension; these results provide evidence

supporting [5, Conjecture 14].
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Geometric Models for Algebraic Suspensions 17791

Theorem 6 (See Theorem 4.4.1 and Remark 4.4.2). If X is a topologically Z-acyclic

smooth complex surface that is not isomorphic to A
2
C

, then X is not A1-connected, but

for every integer N ≥ 2, the space P
1∧ N ∧ X has the A

1-homotopy type of a smooth affine

C-scheme and is A
1-contractible.

1 Preliminaries and Notation

Fix a base scheme B; if we do not explicitly mention otherwise in the body of the text,

the reader should not assume any additional finiteness hypotheses are imposed upon B.

Next, write SmB for the category of schemes that are smooth over B. For the convenience

of referencing, we follow [36, Tag 01V5] for our definition of smoothness as opposed to [21,

Definition 17.3.2]; note that, either way, objects of SmB are locally of finite presentation

over B.

1.1 Simplicial presheaves and homotopy categories

Write SpcB for the category of simplicial presheaves on SmB. We will typically use

calligraphic letters to denote spaces. Objects of SpcB will be referred to as B-spaces or

simply spaces if B is clear from context. The category SpcB has B as a final object, and

we write SpcB,∗ for the category of pointed spaces, that is, spaces X provided with a

morphism B → X splitting the structure map. The forgetful functor SpcB,∗ → SpcB has a

left adjoint (−)+ of “adding a disjoint base-point”; this functor sends X to X+ := X � B.

Categorical constructions like ∧ and ∨ will all occur in SpcB,∗, but sometimes we will

explicitly indicate the base scheme B (e.g., ∧B) for emphasis.

We view SmB as a site by equipping it with the Nisnevich topology (in general,

this is the topology generated by the Nisnevich cd-squares). We write H(B) for the Morel–

Voevodsky A
1-homotopy category: this category is constructed when B is Noetherian of

finite Krull dimension in [33], but we follow [23, Appendix C, page 3649] for the general

case. While H(B) is described using the language of ∞-categories in [23], one may also

use model structures as described in [4, §3.1, 4.1, and 5.1], [17, §2]. In brief, we realize

H(B) as the left Bousfield localization of the injective Nis-local model structure on SpcB

with respect to the A
1-weak equivalences. Isomorphisms in H(B) will be called A

1-weak

equivalences, and we write

[X , Y ]A1 := HomH(B)(X , Y ),

by analogy with homotopy classes of maps in topology.
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17792 A. Asok et al.

Remark 7. When B is not Noetherian of finite Krull dimension, we caution the reader

that the A1-homotopy category as defined here differs from the naive extension of Morel–

Voevodsky’s definition; see [4, Remark 3.1.4] for more details.

1.2 Cofiber sequences

We now collect for the reader’s convenience some well-known useful facts about cofiber

sequences in pointed model categories. First, the motivic model structure we use is

left proper, that is, pushouts of A
1-weak equivalences along cofibrations are again A

1-

weak equivalences. Left properness has the following useful consequence that we use

repeatedly.

Lemma 1.2.1. If f : (X , x) → (Y , y) is a morphism of pointed spaces and (X , x) is

A
1-contractible, then the canonical map

(Y , y) → hocofib(f )

is an A
1-weak equivalence.

Next, we recall a general fact about the cofiber of a composite map (sometimes

called the “octahedral axiom” as it gives rise to the octahedral axiom in triangulated

categories).

Proposition 1.2.2. If f1 : X2 → X1 and f0 : X1 → X0 are pointed morphisms of spaces,

then there is a cofiber sequence of the form:

hocofib(f1) −→ hocofib(f0f1) −→ hocofib(f0).

Proof. This is shown in [22, Proposition 6.3.6]. �

The following fact has to do with smash products and base-points. Assume

(X , x) and (Y , y) are pointed spaces. In this case, we may form the smash product X ∧Y

in SpcB,∗. The base-point x determines a canonical pointed map x : S0 → X+ sending the

non-base-point of S0 to the point x. Smashing this morphism with idY then defines a

morphism

Y = Y ∧S0 id∧ x−→ Y ∧X+.
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This morphism is split by the morphism X+ → S0 that collapses X to the non-base-

point. It follows that the displayed morphism is a cofibration in the injective local model

structure since it is a monomorphism.

Proposition 1.2.3. For any pointed spaces (X , x) and (Y , y), there is a canonical

identification

hocofib(Y
id∧ x−→ X+∧Y ) ∼= X ∧Y .

Proof. Since the map in question is a cofibration, the homotopy cofiber coincides with

the cofiber. The identification of the cofiber is an exercise in unwinding the definition of

the smash product (for more details, see [3, Proposition 2.2.4]). �

2 Deformation to the normal cone revisited

In this section, we study a variation on the “deformation to the normal cone” construc-

tion, which appears in many places; see, for example, [19, §IV.5] or [38, §2]. Our eventual

goal will be to use this kind of construction to produce generic A
1-weak equivalences

π : X → W with good control over the closed subscheme Z ⊂ W over which π fails to be

an A
1-weak equivalence.

2.1 Parameterized deformation spaces: construction

Henceforth, we assume B is an arbitrary scheme. The deformation to the normal cone

construction can be realized in terms of affine blow-ups. The theory of affine blow-ups

has been worked out in great generality in [32, §2] (see also [14, 29] for special cases), but

we will recall what we need here.

2.1.1 Affine blow-ups

Assume Z ⊂ D ⊂ X is a triple consisting of a scheme X, a closed subscheme Z defined

by a quasi-coherent sheaf of ideals I and a locally principal subscheme D defined by a

quasi-coherent sheaf of ideals J contained in I . The affine blow-up BlD
Z (X) is defined

as follows: as usual, we write BlI OX for the (graded) blow-up algebra
⊕

n≥0 I n [36, Tag

052Q]. If we view the local generators of J as living in degree one, then BlDZ (X) is the

complement of the variety V+(J ) defined by the homogeneous ideal J in Proj BlI OX

[32, Definition 2.1, Lemma 2.3]. With these preliminaries in mind, we introduce the

following:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17788/7164148 by guest on 13 Septem
ber 2024

http://Tag 052Q


17794 A. Asok et al.

Construction 2.1.2. Fix a base scheme B. We assume given:

1. A smooth B-scheme W (“the parameter space”);

2. A locally finitely presented flat B-scheme Z equipped with a closed immersion

of B-schemes i : Z → W (“the degeneration locus”);

3. A smooth B-scheme Y;

4. A B-scheme X together with a surjective smooth morphism ψ : X → Z, and a

closed immersion f : X → Y ×B W such that the diagram

commutes; and

5. A locally principal divisor D on Y ×B W that contains Y ×B Z.

The parameterized deformation space

π : D(X, i, f ) −→ W

is the affine blow-up BlD
X(Y ×B W).

The next example justifies the terminology parameterized deformation space for

the output π of Construction 2.1.2.

Example 2.1.3. Take W = A
1
B, fix a closed immersion of finitely presented smooth B-

schemes g : X → Y, let Z = B, take i : Z → A
1
B the zero section, and let D be the Cartier

divisor Y ×B Z ⊂ Y ×B A
1
B. In that case, if f : X → Y ×A

1
B is the base-change of g along the

projection map Y ×A
1
B → Y, then the structure morphism X → B fits into a commutative

square as in Construction 2.1.2, and D(X, i, f ) is the usual deformation space of the closed

immersion g; in this case, we write D(X, Y) for D(X, i, f ).

2.2 Parameterized deformation spaces: structural properties

This subsection aims to control the structure of parameterized deformation spaces. In

particular, we want to exhibit hypotheses under which the morphism π : D(X, i, f ) → W is

smooth, and we would also like to control the structure of the exceptional locus. Indeed,
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Geometric Models for Algebraic Suspensions 17795

if we take Y to be an A
1-contractible smooth B-scheme, then as long as π is smooth, it is

automatically a generic A
1-weak equivalence in the sense of the introduction.

In the setup of Construction 2.1.2, if Z ⊂ W is an effective Cartier divisor, then

the fiber product Y ×B Z ↪→ Y ×B W is an effective Cartier divisor as well; we will take

D = Y ×B Z in the sequel and we write J for the ideal sheaf of Y ×B Z in Y ×B W. In that

case, the closed immersion ψ : X → Z necessarily factors through a closed immersion

f ′ : X ↪→ Y ×B Z; we illustrate these observations in the following diagram:

We write I for the ideal sheaf of X in Y ×B W and JX for the restriction of J to X. In

that case, we write Cf ′ := I /(I 2 + J ) for the conormal sheaf of f ′ and Nf ′ for its dual,

that is, the normal sheaf of the embedding.

We want to speak about regular immersions, but absent finiteness hypotheses

on our base schemes, this discussion is more involved. We refer the reader to [36, Tag

067M] and [36, Tag 0638] for discussions about regular immersion in this generality. We

freely use the fact that regular immersions always have locally free (co)normal sheaves

(combine [36, Tag 067P] and [36, Tag 063M]).

Since smooth B-schemes are locally finitely presented by assumption, and since

closed immersions are quasi-compact and (quasi-)separated, it follows that a closed

immersion of smooth B-schemes is automatically finitely presented. Moreover, closed

immersions of smooth B-schemes are automatically regular immersions [36, Tag 067U].

Consequently, any closed immersion of smooth B-schemes has a well-defined normal

sheaf NX/Y , which is a finite rank locally free OX-module.

Proposition 2.2.1. Assume (i : Z → W, ψ : X → Z, f : X → Y×BW) are as in Construction

2.1.2, and furthermore suppose Z is an effective Cartier divisor on W.

1. The morphism π−1(W �Z) → W �Z is isomorphic to the projection Y ×B (W �

Z) → W � Z.
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17796 A. Asok et al.

2. If the closed immersion f ′ : X → Y ×B Z induced by f is regular (e.g., if f is

regular), then the morphism π−1(Z) → Z is the composite

Vf ′
p−→ X

ψ−→ Z,

where p is a torsor under the vector bundle associated to Nf ′ .

3. If both i and f ′ are regular immersions (the latter happens if f is a regular

immersion), then

π : D(X, i, f ) −→ W

is a smooth morphism; if Y is furthermore finitely presented, then so is π .

Proof. We set Y ′ = BlX(Y ×B W) and observe that π factors as

D(X, i, f ) −→ Y ′ −→ Y ×B W −→ W,

where the first morphism is an open immersion, and Y ′ → Y is an isomorphism on the

complement of X [36, Tag 02OS]. The first statement then follows from [32, Lemma 2.4],

which states that the exceptional divisor of the affine blow-up, that is, the pre-image of

the center of the affine blow-up, coincides with the pre-image of Y ×B Z.

It follows from the final observation of the preceding paragraph that the restric-

tion of π to Z also factors as the composite of the projection map from the exceptional

divisor to the center of the blow-up followed by the map ψ in 2.1.2. In that case, the

second statement is [32, Proposition 2.9(1)]; the assertion that the exceptional divisor is

a torsor under a vector bundle follows by inspecting the proof of that result.

For the third statement, observe that the smoothness of π under the stated

hypotheses is [32, Proposition 2.16(4)]. If Y is finitely presented, then Y ×B W → W is

as well. In that case, π is finitely presented by [32, Proposition 2.16(1)]. �

Remark 2.2.2. As observed in [32, §2.3], all of the results in [32, §2] hold under a

weaker hypothesis than stated above. In particular, Proposition 2.2.1 holds replacing

the regularity assumption on i and f ′ by H1-regularity in the sense of [36, Tag 063D].

Corollary 2.2.3 (Deformation to the normal cone). If B is a base scheme and i : X → Y is

a closed immersion of finitely presented smooth B-schemes, the morphism π : D(X, Y) →
A

1
B (see Example 2.1.3) enjoys the following properties:
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1. The morphism π−1(A1
B � 0) → A

1
B � 0 is isomorphic to the projection map

Y ×B A
1
B � 0 → A

1
B � 0.

2. The B-scheme π−1(0) is isomorphic to Vi, the total space of the normal bundle

to i.

3. The morphism π is a smooth morphism; if Y is finitely presented, then

so is π .

Proof. We check the hypotheses of Proposition 2.2.1 are satisfied. Indeed, here we take

i : Z → W as the closed immersion B ↪→ A
1
B, which is a Cartier divisor and a regular

immersion. The map f ′ : X → Y is also a regular immersion by assumption, and the result

follows. The only thing that isn’t immediate is that Vi is the normal bundle rather than

a torsor under it. However, the exact sequence of conormal sheaves associated with the

sequence of closed immersions X ↪→ Y ↪→ Y ×BA
1 is split by the projection Y ×BA

1 → Y,

so the final assertion follows from (the proof of) [32, Proposition 2.9(2)]. �

Unwinding the definitions of blow-up algebras, it is frequently possible to

explicitly write defining equations for the parameterized deformation spaces described

above. In the opposite direction, one realizes that many varieties presented explicitly by

equations can be identified via the parameterized deformation space construction.

Example 2.2.4. Assume B = Spec k is the spectrum of an arbitrary base ring k and

pick coordinates x1, . . . , xn on A
n
B . Assume that i : Z ↪→ A

n
B is a closed immersion of B-

schemes defined by an element g, that Y = Spec R is a smooth affine k-scheme and that

X ′ ↪→ Y is a smooth closed subscheme defined by a regular ideal I = (f1, . . . , fc). Then

f : X = X ′ ×B Z ↪→ Y ×B A
n is a regular closed immersion whose image is the smooth

closed subscheme of Y ×B A
n
B defined by the regular sequence (f1, . . . , fc, g). The scheme

Y ×B Z is a Cartier divisor in Y ×B A
n
B cut out by the single element g. Unwinding the

definitions, we see that the affine scheme of Construction 2.1.2 is given explicitly by:

D(X, i, f ) = Spec R[x1, . . . , xn][I/g] = Spec R[x1, . . . , xn, t1, . . . , tc]/(f1 − t1g, . . . , fc − tcg).

2.3 The purity isomorphism

We will refer to a closed immersion of smooth B-schemes X ⊂ Y as a smooth pair. By

a morphism of smooth pairs f : (X ⊂ Y) → (X ′ ⊂ Y ′), we will mean a morphism of B-

schemes f : Y → Y ′ such that f restricts to a morphism of B-schemes X → X ′. A morphism
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17798 A. Asok et al.

of smooth pairs is transversal if X = f −1(X ′) and the induced map ϕ : NX/Y → f ∗NX ′/Y ′

is an isomorphism. Having introduced the above notions, the homotopy purity theorem

takes the following form (we state it here because we could not find the statement at this

level of generality in the literature; the original statement is [33, §3 Theorem 3.23]).

Theorem 2.3.1 (Homotopy purity). Given a smooth pair X ⊂ Y in SmB, there is a

canonical isomorphism in H(B) of the form

X/(X � Y) ∼= Th(NX/Y).

Given a transversal morphism of pairs f : (X ⊂ Y) → (X ′ ⊂ Y ′), there is a homotopy

commutative square of the form

where the vertical maps are induced by f .

Proof. This follows immediately from the proof of [24, Theorem 3.23]. There are two

remarks to make: the additional hypotheses (implicitly) placed on B in [24] stem from

the presence of the action of a group scheme. Moreover, the fact that deformation to the

normal cone construction has the required properties over an arbitrary base scheme B

follows from Corollary 2.2.3. The transversality hypothesis is precisely what is needed to

obtain a morphism of Thom spaces; the classical functoriality statement may be found

at [39, Lemma 2.1]. �

3 A
1-Homotopy Types of Generic Weak Equivalences

Fix a base scheme B, and suppose W is a pointed smooth B-scheme. Recall from the

introduction that a smooth morphism π : X → W is called a generic A
1-weak equivalence

if there exists an open dense subscheme U of W such that π |U : X|U → U is an A
1-weak

equivalence. For U maximal with this property, we will refer to W�U as the degeneration

locus of π . Our aim is to describe the A
1-homotopy type of X in terms of the degeneration

locus W � U of π .
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3.1 Degenerations over a subscheme

The goal of this section is to establish the following result.

Theorem 3.1.1. Fix a finitely presented, pointed, smooth B-scheme (W, w) that is A
1-

contractible. AssumeX is a B-scheme, and π : X → W is a smooth morphism of B-schemes

admitting a section s (point X by s(w)). Assume Z is a finitely presented smooth B-scheme,

i : Z → W is a closed immersion, and let j : U := W � Z → W be the complementary open

immersion. Write X|U for the restriction of X to U and π |U for the restricted morphism,

and let i′ : XZ → X be the base-change of i along π . The morphisms i and i′ are regular

immersions. If the morphism π |U : XU → U is an A
1-weak equivalence, then there is a

split cofiber sequence

Th(Ni) −→ Th(Ni′) −→ X,

where Ni and Ni′ are the normal bundles of the corresponding regular immersions.

Proof. For notational convenience, we will suppress B from the notation. Consider the

section s : W → X. By assumption, the restriction of s to XU coincides with the inclusion

U → XU . Since π |U is an A
1-weak equivalence by construction and since s is a section of

π , it follows that s|U is an A
1-weak equivalence by the 2 out of 3 property for A

1-weak

equivalences. The section s then induces a Cartesian square of the form

(3.1.1)

A diagram chase using the normal sequences attached to the regular closed immersions

i : Z → W and i′ : XZ → X shows that the above diagram defines a transversal morphism

of pairs.

Note that XZ is smooth over B since it is smooth over Z. Since Z → W is a closed

immersion of smooth schemes, it follows that the base-change of π along i, that is, XZ →
X, is a closed immersion of smooth B-schemes. As a consequence, i′ : XZ → X is a regular

immersion and thus has a well-defined normal sheaf Ni′ .

By homotopy purity in Theorem 2.3.1, there is thus an A
1-weak equivalence

X/XU ∼ Th(Ni′). Since the map U → XU is an A
1-weak equivalence, we also conclude
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that

hocofib(U → X) ∼= Th(Ni′).

This description corresponds to computing the homotopy cofiber of the morphism U → X

going along the left and bottom edge of (3.1.1).

Now, we compute the homotopy cofiber of U → X going around the top and right

edge of (3.1.1). To this end, we appeal to Proposition 1.2.2, which tells us there is a cofiber

sequence of the form

hocofib(U → W) −→ hocofib(U → X) −→ hocofib(W → X).

The homotopy purity isomorphism applied to the closed immersion Z → W shows that

the first term in the above cofiber sequence is A1-weakly equivalent to Th(Ni). Because

W is A
1-contractible, Lemma 1.2.1 implies that the last term is A

1-weakly equivalent to

X pointed by any point in the image of W, for example, s(w).

Combining all the observations above, we conclude that there is a cofiber

sequence of the form

Th(Ni) −→ Th(Ni′) −→ X.

The morphism π induces a splitting of the first map in this cofiber sequence and we

conclude. �

Remark 3.1.2. Suppose B is qcqs base scheme, W is a finitely presented smooth B-

scheme, and π : X → W is a smooth morphism. Assume i : Z → W is a closed immersion

with open complement j : U → W. In that case, there is a homotopy cocartesian gluing

square (see [33, Theorem 2.21] or [24, Theorem 4.18] for a statement in this generality) of

the form

Unwinding the definitions, j�j
∗X is simply X|U considered as a W-scheme. If π |U is an

A
1-weak equivalence, then the map j�j

∗X → U is an A
1-weak equivalence also. The top

horizontal map is a cofibration, and so left properness of the A
1-local model structure
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implies that X → i∗XZ is an A
1-weak equivalence as well. In essence, Theorem 3.1.1

shows that the additional control afforded by the section s and the smoothness of Z

allows us to identify the homotopy type of i∗XZ more explicitly.

Remark 3.1.3. If s : X → B is the structure morphism of a smooth B-scheme, and if E

is a finite rank locally free sheaf of OX-modules, then by a weak trivialization of E we

will mean a pair (E0, ϕ) consisting of a finite rank locally free sheaf E0 of OB-modules

and an isomorphism ϕ : E
∼→ s∗E0; we will say that E is constant if it admits a weak

trivialization. Extending [33, §3 Proposition 2.7(2)], if E is a constant locally free sheaf

of finite rank with a chosen weak trivialization (E0, ϕ), then

Th(E ) ∼= Th(E0)∧ BX+.

Indeed, this observation follows from that one by simply choosing an open cover of X

along which E0 is trivial.

While Theorem 3.1.1 does give some insight into the A
1-homotopy type of X,

it will be more useful with additional hypotheses in place. For example, we may use

Theorem 3.1.1 to construct A1-contractible smooth schemes via the following corollary.

Corollary 3.1.4. Assume π : X → W and Z → W are as in Theorem 3.1.1. If the map

XZ → Z is an A
1-weak equivalence, then X is A

1-contractible.

Proof. In the terminology of [24, Definition 3.17], the smooth pairs (W, Z) and (X,XZ)

are weakly excisive, so the assumption that XZ → Z is an A
1-weak equivalence implies

that the induced map Th(NZ/W) → Th(NXZ/X) is an A
1-weak equivalence by properness

of the A
1-local model structure. �

3.2 A special case: smooth fibrations over affine spaces

We now reconsider Theorem 3.1.1 under more stringent hypotheses on Z and W. In

particular, if W = A
n
B and Z = 0 ⊂ A

n
B , we may obtain a more precise description of the A1-

homotopy type of X. The following result establishes Theorem 2 from the introduction.

Theorem 3.2.1. Assume X is a B-scheme, and π : X → A
n
B is a smooth morphism

admitting a section s such that, if U := π−1(An
� 0), then s|An

B�0 : A
n
B � 0 → U is

an A
1-weak equivalence. If X0 := π−1(0), then there is a canonical (pointed) A1-weak
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equivalence

P
1∧ n ∧ (X0, s(0)) ∼ (X, s(0)).

Proof. Since π is smooth, it follows that X0 is a smooth B-scheme. Moreover, since π is

flat, by choosing coordinates t1, . . . , tn, that is, an identification A
n
B = Spec OB[t1, . . . , tn],

it follows that t1, . . . , tn is a regular sequence on X and X0 is defined by the vanishing of

t1, . . . , tn. In particular, the normal sheaf NX0/X is equipped with a corresponding triv-

ialization (we will call this the canonical trivialization in what follows). For notational

clarity, we henceforth suppress B from the notation (so, e.g., the zero sphere S0 is B+, that

is, a disjoint union of two copies of B).

Appealing to Theorem 3.1.1 and specializing the notation as necessary, we obtain

the cofiber sequence of the form

Th(N0/An) −→ Th(NX0/X) −→ X.

The canonical trivialization determines an A
1-weak equivalence

Th(NX0/X) ∼ P
1∧ n∧ (X0)+

(see [33, §3 Proposition 2.17] or Remark 3.1.3). The restriction of the canonical trivializa-

tion of NX0/X to N0/An yields a corresponding trivialization of that normal sheaf and an

identification

Th(N0/An) ∼= P
1∧ n ∧ S0 = P

1∧ n
.

Using the compatibility of these trivializations and the conclusions of the two

preceding paragraphs, we see that:

1. There is a cofiber sequence of the form

P
1∧ n −→ P

1∧ n∧ (X0)+ −→ X.

2. The left-hand morphism in the above cofiber sequence is the map P1∧ n =
P

1∧ n ∧ S0 → P
1∧ n ∧ (X0)+ corresponding to suspending the map S0 → (X0)+

given by sending the non-basepoint of S0 to s(0), and consequently

3. The left-hand morphism in the above cofiber sequence is split.
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Therefore, appealing to Proposition 1.2.3, there is an A1-weak equivalence

P
1∧ n∧ (X0)

∼−→ X,

with base-points as stated. �

As a variant of the above result, we may also analyze smooth morphisms X → A
1
B

that have multiple degenerate fibers.

Theorem 3.2.2. Assume X is a B-scheme, and π : X → A
1
B is a smooth morphism

admitting a section s. Assume there exists a closed immersion of B-schemes i : Z ↪→ A
1
B

with open complement U ⊂ A
1
B having the following properties:

1. The immersion i is defined by a monic polynomial g ∈ OB[t] that factors as a

product of linear factors with roots in B.

2. There exists a closed subscheme Z̃ = B � · · · � B having the same open

complement as Z such that Z̃ is smooth over B.

3. The morphism π : π−1(U) → U is an A
1-weak equivalence.

Write bi, i = 1, · · · , r for the inclusion of the i-th factor of B in Z̃, Xbi
for the base-

change of π along the morphism B → A
1
B determined by bi, and point Xbi

by xi, obtained

from bi and s. In that case, there is a pointed A
1-weak equivalence

P
1 ∧ ( r∨

i=1

Xbi

) ∼ X,

where X is pointed by any base-point xi.

Remark 3.2.3. Before getting to the proof, let us observe that conditions in the theorem

are easy to check when B is an integral affine scheme. Indeed, in that case, since g is

a product of linear factors, we can find a separable polynomial g̃ that divides g. The

smoothness condition is equivalent to the assertion that the discriminant disc(g̃) is a

unit in each residue field at a closed point.

Proof. Write XZ̃ for the fiber product of Z̃ and X over A
1
Z; note that the base-change of

π along Z̃ → Z is a smooth morphism, so the fibers Xbi
corresponding to the components

of Z̃ are all smooth schemes. Choose base-points as in the statement of the theorem.
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17804 A. Asok et al.

In that case, we may appeal to Theorem 3.1.1. In particular, there is a cofiber

sequence of the form

Th(NZ̃/A1
B
) −→ Th(NXZ̃/XZ

) −→ X.

Note that Z̃ is cut out by a separable polynomial g̃ that divides g. This element also

defines a principal divisor on X that cuts out XZ̃. It follows that the normal sheaf to each

embedding is equipped with a trivialization, and these trivializations are compatible.

Therefore, the above cofiber sequence reads:

P
1∧ Z̃+ −→ P

1∧ (XZ̃)+ −→ X.

Now, if (Yi, yi) is a finite collection of pointed spaces, for any j ∈ I, we may write

(�i∈IYi)+ = (Yj)+ ∨ (�i∈I�{j}Yi)+.

Using this observation, the result follows by repeated appeal to Proposition 1.2.3. �

Example 3.2.4. Assume that B = Spec k for some base ring k and let (X, ∗) ⊂ A
n+1
k is a

pointed smooth hypersurface defined by the vanishing of a polynomial f ∈ k[z1, . . . , zn+1]

and a k-point ∗ of X. Let i : Z ↪→ A
1
k be a hypersurface defined by a polynomial g =∏r

i=1(t − ai)
bi , ai ∈ k, bi ∈ Z>0 such that the hypersurface Z̃ defined by the polynomial

g̃ = ∏r
i=1(t − ai) is smooth over k.

Then the hypersurface Xg ⊂ A
n+3
k defined by the equation f − gx = 0 is smooth

over k and there is an A
1-weak equivalence

Xg ∼ (∨r
i=1P

1)∧ (X, ∗).

Indeed, let π : Xg → A
1
k be the morphism induced by the projection onto the

x-variable. The ring homomorphism k[t, z1, . . . , zn+1, x]) → k[t, x] factors through a ring

homomorphism k[Xg] → k[t, x], which yields a section of π . The fibers of π : Xg → A
1
k

over the points in A
1
k where g vanishes are isomorphic to the total spaces of line bundles

over X (the normal bundles to the embedding of the given component). In particular, each

such fiber is A
1-weakly equivalent to X. The claimed A

1-weak equivalence thus follows

from Theorem 3.2.2, together with the identification P
1∧ (∨r

i=1(X, x)) ∼ (∨r
i=1P

1)∧ (X, x).
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Remark 3.2.5. For this remark, we work over the complex numbers. If f (x) and g(y) are

polynomials in m and n variables, then we write f ⊕ g for the polynomial f (x) + g(y) in

n+m-variables. The classical “global” Thom–Sebastiani theorem [34, Theorem 2.4] states

that the homotopy type of general fibers of f ⊕ g is the join of the homotopy types of the

general fiber of f and the general fiber of g. A straightforward analog of this theorem

in A
1-homotopy theory cannot be true because the A

1-homotopy type of the fibers of

f can vary rather wildly. Example 3.2.4 provides one version of such a theorem in A1-

homotopy theory. The general fiber of gt is Spec k[x, 1
g ] = A

1
k � {x1, . . . , xr} ⊂ A

1
k and the

join of A1
k � {x1, . . . , xr} and (X, x) coincides with the wedge sum of a number of copies of

P
1 with (X, x) by appeal to the purity isomorphism.

4 Examples and Applications

In this section, we put the results of the preceding sections together and study applica-

tions. For example, Section 4.1 shows that iterated P
1-suspensions of smooth schemes

admit smooth models in a rather great generality. The remainder of the section is

concerned with building other schemes with controlled A
1-homotopy types.

4.1 Deformation spaces model suspensions

Suppose (X, x) is a pointed smooth k-scheme. If Y is a smooth k-scheme and i : X ↪→ Y is

a closed immersion, we will point Y by i(x). If D(X, Y) is the deformation space of i (see

Example 2.1.3), then there is a canonical closed immersion X ↪→ NX/Y ↪→ D(X, Y), where

NX/Y is the total space of the normal sheaf NX/Y , and we point D(X, Y) by the image of x

under this composite morphism. Note that the choice of base-point determines a section

of the morphism D(X, Y) → A
1. With this convention, we may now state the following

result.

Theorem 4.1.1. Assume B is a base scheme and (X, x) is a pointed smooth B-scheme.

If there exists an A
1-contractible smooth B-scheme Y and a (pointed) closed immersion

X ↪→ Y, then there is a pointed A1-weak equivalence:

�P1X −→ D(X, Y).

Proof. By appeal to Corollary 2.2.3, we see that the projection D(X, Y) → A
1
B satisfies

the hypotheses of Theorem 3.2.1 (the section arises from the base-point). In that case,

we conclude that �P1D(X, Y)0 ∼ D(X, Y), where D(X, Y)0 is the scheme-theoretic fiber of
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the projection over 0. However, D(X, Y)0 is the total space of the normal bundle to the

embedding X ↪→ Y, and therefore the projection map D(X, Y)0 → X is a (pointed) A1-

weak equivalence. Thus, we conclude that �P1D(X, Y)0 → �P1X is a (pointed) A1-weak

equivalence as well. �

The following result gives a rather general condition when the hypotheses of the

preceding theorem are satisfied.

Proposition 4.1.2. If B is a qcqs base scheme, and X is a finitely presented smooth affine

B-scheme, then there exists a finitely presented smooth A1-contractible B-scheme Y and

a closed immersion of B-schemes X → Y.

Proof. In light of the finite presentation hypotheses, there exists a Noetherian scheme

B0, a morphism B → B0 and a finitely-presented affine B0-scheme X0 such that X = X0×B0

B [36, Tag 01Z6] and the structure morphism X0 → B0 may also be assumed affine. In that

case, the result is classical: covering B0 by affines, we may glue together embeddings

corresponding to local generators to obtain a vector bundle over B0 into which X0 embeds

(this is evidently a finitely presented B-scheme). The base-change of this vector bundle

to B is again a vector bundle, and thus X comes equipped with a closed immersion into

this vector bundle. �

We can also extend Theorem 4.1.1 to the situation where a space admits an

embedding into an affine space up to homotopy. To that end, write Smaff
B for the full

subcategory of SmB consisting of schemes that are affine in the absolute sense.

Definition 4.1.3. A Jouanolou device for X ∈ SmB consists of a pair (X̃, ϕ) where

X̃ ∈ Smaff
B and ϕ : X̃ → X is a morphism making X̃ into a torsor under a vector bundle

over X.

Jouanolou observed [26, Lemme 1.5] that quasi-projective schemes always pos-

sess affine vector bundle torsors; Thomason extended this fact, and we recall these

results here.

Proposition 4.1.4 (Jouanolou–Thomason homotopy lemma). Suppose B is a qcqs base

scheme.
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1. If X ∈ SmB admits an ample family of line bundles, then X admits a Jouanolou

device.

2. If B is furthermore quasi-compact and regular, and X ∈ SmB has affine

diagonal and is quasi-compact over B, then X admits a Jouanolou device.

Proof. The first assertion is a restatement of [41, Proposition 4.4] in our context. For

the second assertion, since X has an affine diagonal, the structure morphism is quasi-

separated. Since the structure morphism is quasi-compact by assumption, it follows that

X is finitely presented over B.

Since X is finitely presented and smooth over B, which is regular, we claim that X

is regular. To see this, observe first that X is quasi-compact. To check its local rings are

regular, we may assume B = Spec R is affine and X = Spec S, so ϕ : R → S is a smooth ring

map with R regular. In particular, this means that S is a Noetherian R-algebra. Moreover,

smoothness implies ϕ is a flat ring map with regular fibers. Let q ⊂ S be a prime ideal,

and let p be its pre-image in R. Choose a regular sequence f1, . . . , fn in Rp that generates

pRp. Since R → S is flat the image of f1, . . . , fn in S is again a regular sequence. Moreover,

Sp/(ϕ(f1), . . . , ϕ(fn)) is a fiber of ϕ hence regular. It follows that Sp is regular, and thus so

is Sq.

Finally, since X is regular, it is automatically locally factorial by the Auslander–

Buchsbaum theorem [36, Tag 0AG0] (in particular normal). In that case, appeal to [9,

Proposition 1.3] implies that X carries an ample family of line bundles. Then, the second

point follows from the first. �

Example 4.1.5. Some separation hypothesis is necessary for Proposition 4.1.4 to guar-

antee the existence of a Jouanolou device. If n ≥ 1, then write A
n
2·0 for the smooth quasi-

separated k-scheme given by the affine n-space with a doubled origin; this scheme is

never separated, and it has affine diagonal if and only if n = 1.

The scheme A
1
2·0 has a Jouanolou device; in fact, a “standard” choice of a

Jouanolou device is the hypersurface given by xy = z(1 + z) in A
3
k. In more detail,

consider the inclusion of Gm ⊂ SL2 as diagonal matrices with determinant 1. An explicit

computation with invariants identifies the quotient SL2 /Gm with the hypersurface in A
3

defined by the equation xy = z(1 + z). On the other hand, consider the map SL2 → A
2
� 0

corresponding to projection onto the first column; this map makes the source into a

Ga-torsor over the target and is Gm-equivariant for the action by left multiplication on

SL2 and the action of Gm on A
2
� 0 given by t · (x, y) = (tx, t−1y). The geometric quotient

of Gm acting on A
2
� 0 exists as a smooth scheme and is identified with A

1
2·0 by explicit
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computation: if we cover A
2
� 0 with the two open sets A

2
� {x = 0} and A

2
� {y = 0},

then the function xy is invariant and yields identifications A
2
� {x = 0}/Gm

∼= A
1 and

A
2
�0�y = 0/Gm

∼= A
1. It follows that the Ga-torsor SL2 → A

2
�0 descends to a Ga-torsor

SL2 /Gm → A
1
2·0 with the formulas given above.

By contrast, when n > 1, the scheme A
n
2·0 has strictly quasi-affine diagonal1 and

does not admit a Jouanolou device; this is, of course, related to Thomason’s observation

that such schemes do not possess the resolution property [37, Exercise 8.6]. Indeed, take

k = Z and suppose π : X → A
n
2·0 is a torsor under a vector bundle. Since a torsor under a

vector bundle on an affine scheme admits a section, hence is a vector bundle, and vector

bundles on A
n
Z

are trivial by the Quillen–Suslin theorem [35, Theorem 4], the restriction

of π over either copy of A
n
Z

is isomorphic to a trivial bundle. On the other hand, since

the inclusion A
n
Z
� 0 → A

n
Z

has complement of codimension ≥ 2, and A
n
Z
� 0 is normal,

any isomorphism between the two restrictions π over A
n
Z
� 0 extends over A

n
Z

. Thus, one

obtains a global isomorphism of X with a product An
Z

×A
n
2·0, in particular, X is not affine.

With the Jouanolou–Thomason homotopy lemma in hand, we can extend

Theorem 4.1.1 to the situation of schemes that may be embedded in an A
1-contractible

scheme up to A
1-homotopy.

Corollary 4.1.6. Assume B is a regular affine base scheme.

1. If (X, x) is a quasi-compact smooth B-scheme with affine diagonal, then for

any integer i ≥ 0, the iterated P
1-suspension �i

P1X has the A
1-homotopy type

of a smooth B-scheme as well.

2. If (X, x) is furthermore affine, then �i
P1X admits a smooth affine model as well.

Proof. Under the assumptions on B, X satisfies the hypotheses of Proposition 4.1.4. In

particular, there exists a smooth B-scheme X̃ and vector bundle torsor X̃ → X with affine

total space X̃. The morphism X̃ → X is an A
1-weak equivalence.

Since (X, x) is pointed, we have a morphism x : Spec B → X. If we base-change X̃

along x, we obtain an affine vector bundle torsor B̃ → B. Since B is affine by assumption,

B̃ → B is isomorphic to a vector bundle over B; fix such an isomorphism, and define

a morphism x̃ : B → B̃ to be the image of the zero section under the isomorphism.

Composing this section with the canonical morphism B̃ → X̃ from the fiber product,

1 The condition of having quasi-affine diagonal is equivalent to quasi-separatedness because the diagonal
morphism of a scheme is always an immersion [36, Tag 01KJ] and quasi-compact immersions are quasi-affine
[36, Tag 02JR].
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we see that (X̃, x̃) → (X, x) is a pointed A
1-weak equivalence. Therefore, without loss of

generality, we may replace (X, x) by (X̃, x̃) and assume that X is affine.

In that case, fix a closed embedding ι : X ↪→ Y for Y some A
1-contractible

smooth B-scheme; such an embedding exists by appeal to Proposition 4.1.2. Granted this

observation, the first point follows immediately by inductive appeal to Theorem 4.1.1.

Note also that if Y is a smooth affine B-scheme, then the deformation space D(X, Y) is

automatically a smooth affine B-scheme as well, so the second point follows also. �

This following observation generalizes [3, Theorem 2].

Corollary 4.1.7. For every integer n ≥ 0, P1∧ n
and Gm∧P1∧ n

have the A1-homotopy type

of smooth separated Z-schemes.

Proof. The ring homomorphism Z[t] → Z[t]/(t(1 − t)) defines a closed immersion of

smooth schemes S0
Z

→ A
1
Z

. Likewise, the ring homomorphism Z[t1, t2] �→ Z[t1, t2]/(t1t2−1)

defines a closed immersion of smooth schemes Gm → A
2
Z

. The assertion then follows

from Corollary 4.1.6. �

Remark 4.1.8. Note that no separation hypothesis is imposed on objects of SmB in the

construction of H(B). If we do not restrict our attention to smooth separated B-schemes,

affine n-space with doubled origin provides a model for P
1∧ n

as a smooth B-scheme.

Indeed, the homotopy colimit of the diagram

A
n ←− A

n
� 0 −→ A

n

coincides with the homotopy pushout of An � 0 → An (contract the An on the left to

a point), that is, Th(N0/An), which becomes A
1-weakly equivalent to P

1∧ n
after fixing a

basis of the tangent space at 0. More generally, the affine space n-space with m-fold

origin provides a model for
∨m−1

P
1∧ n

.

Question 4.1.9. Fix an infinite field k, and a smooth affine k-scheme X of dimension d.

If i > 0 is an integer, what is the minimum dimension of a smooth affine model

of �i
P1X?

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17788/7164148 by guest on 13 Septem
ber 2024



17810 A. Asok et al.

Remark 4.1.10. If k is an infinite field, and X is a smooth affine k-scheme of dimension

d, then it is well-known that X can be embedded as a closed subscheme of A2d+1 and that

this bound is optimal [8, Theorem 5.8]. Given the choice of one such closed embedding

X ↪→ A
2d+1, Theorem 4.1.1 provides a model D(X,A2d+1) of �P1X of dimension 2d + 2.

4.2 Highly A
1-connected hypersurfaces

In this section, we analyze a variation of a construction due to Danielewski [12, 18] to

produce hypersurfaces that are “highly A
1-connected”. Indeed, up to change of variables,

Danielewski studied the varieties xny = z(1 − z) as n varies. In the context of A
1-

homotopy theory, these varieties are all Jouanolou devices for the affine line with dou-

bled origin A
1
2·0 discussed previously in Example 4.1.5, and Danielewski was interested

in analyzing their isomorphism types (these varieties are all stably isomorphic). The

second author considered a significant generalization of the Danielewski construction

in [13, 15] and the version we analyze here can be viewed as axiomatizing some of the

key properties considered in those papers.

A family of generic A
1-weak equivalences

Construction 4.2.1. Suppose k is a base ring. Assume Y ⊂ A
n
k is defined by a finitely

generated ideal I = (f1, . . . , fr) ⊂ k[x1, . . . , xn]. Fix an integer s, and suppose a1, . . . , as ∈
k[x1, . . . , xn] are polynomials. For a = (a1, . . . , as), we define

XI,a =
{ ∑

i

tifi =
s∏

j=1

(z − aj)
}

⊂ A
n+r+1
k =: Spec k[x1, . . . , xn, t1, . . . , tr, z].

Let π : XI,a → A
n
k be the morphism defined by the inclusion of k[x1, . . . , xn] into the

coordinate ring of XI,a.

Proposition 4.2.2. In the setting of Construction 4.2.1, assume that XI,a is flat over

k and that the functions {fi}i=1,...,r, {aj}j=1,...,s are not zero-divisors. Then the following

statements hold about the morphism π : XI,a → A
n
k .

1. The restriction of π to A
n
k � Y is a Zariski locally trivial smooth morphism

with affine space fibers.

2. The morphism π admits a section, and if we set Y ′ = Spec k[x1, . . . , xn, z]/

(
∏s

i=1(z − ai), I), the base-change of π along the inclusion Y ↪→ A
n
k factors as

A
n
Y ′ −→ Y ′ −→ Y.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17788/7164148 by guest on 13 Septem
ber 2024



Geometric Models for Algebraic Suspensions 17811

3. The morphism π is finitely presented and faithfully flat.

4. The morphism π is smooth if and only if Y ′ → Y is étale.

5. If the morphism π is smooth, then it factors through a smooth morphism

π ′ : XI,a → A
n
sY where the target is the non-separated scheme obtained by

gluing s copies of An
k with the identity map along A

n
k � Y.

Proof. Put S = k[x1, . . . , xn, t1, . . . , tr, z], f = ∑
i tifi − ∏

j(z − aj) ∈ S and R = S/(f ).

1. By assumption, fi is not a zero-divisor. Inverting any fi yields an isomorphism

S[f −1
i ] ∼= k[x1, . . . , xn, f −1

i ][t1, . . . , t̂i, . . . , tr, z],

showing that the restriction of π to the principal open set D(fi) of XI,a is thus isomorphic

to the trivial Ar-bundle over the principal open set D(fi) of An. This provides an explicit

local trivialization of π over A
n
k � Y.

2. Fix an integer j ∈ {1, . . . , s} and observe that sending ti, i = 1, . . . , r to 0 and

setting z = aj defines a section of π . The factor ring S′ = k[x1, . . . , xn, t1, . . . , tr, z]/(
∏s

i=1 z−
ai, I) of S defines the closed subscheme scheme Y ′ ⊂ XI,a. By definition, we have a

commutative square of the form

where the horizontal morphisms are closed immersions.The restriction of the section π

to Y yields a section Y → Y ′. The base-change of π along Y factors as

A
n
Y ′ −→ Y ′ −→ Y, (4.2.1)

where A
n
Y ′ is the spectrum of the polynomial ring in the variables t1, . . . , tr over S′.

3. That π is surjective is immediate because it admits a section. That π has

finite presentation is immediate from the definitions. Thus, it remains to check that π

is flat. Since z and the ti are not zero-divisors and the fi and ai are not zero-divisors

by assumption, it follows that f = ∑
i fiti − ∏s

i=1(z − ai) is not a zero-divisor in R.

By assumption XI,a is flat over k, which means that S is a flat k-module. Let A be the

localization of k[x1, . . . , xn] at a prime ideal p and let B be the localization of R at a prime

ideal q lying above p. Note that by construction, B is essentially finitely presented over A,
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and A → B is a flat ring map. Let m be the maximal ideal of A. Since f is not a zero-divisor

in R, its image in B/mB is not a zero-divisor. By appeal to [36, Tag 046Z], we conclude that

B/(f ) is flat over A. Since A and B were arbitrary, it follows that π is flat.

4. Since π is flat and of finite presentation by assumption, to check it is smooth,

it suffices to check that its fibers are smooth. This statement is immediate over points

in A
n
k that are contained in the complement of Y, so it suffices to check smoothness over

points of Y. To this end, consider the factorization of π from (4.2.1). If Y ′ is étale over Y,

then this composite is evidently smooth, which shows that π is smooth. Conversely, if π

is smooth, then the composite morphism in (4.2.1) is smooth as well. The first morphism

in that factorization is always smooth and surjective. The morphism Y ′ → Y is evidently

of finite presentation. Therefore, [36, Tag 02K5] shows that Y ′ → Y must also be smooth.

In that case, considerations of relative dimension imply that Y ′ → Y must also have

relative dimension 0, in which case it is automatically étale.

5. Under the assumption that π is smooth, Y ′ → Y is étale by the preceding point.

We build the required factorization by gluing. The statement is tautological if s = 1,

so assume s ≥ 2. In that case, define Ej to be the closed subscheme of XI,a defined by

f1 = · · · = fr = ∏
i�=j(z − ai) = 0. Set Xj = XI,a � Ej. Note that {Xj}j=1,...,s forms an open

cover of XI,a. The restriction of π to Xj defines a smooth morphism πj : Xj → A
n
k . For any

j �= j′, the intersection Xj ∩ Xj′ is π−1(An
k � Y), so the restrictions of πj and πj′ to Xj ∩ Xj′

coincide with the restriction of π to A
n
k �Y. It follows that the morphisms πj glue to yield

the morphism π ′ : XI,a −→ A
n
sY , which is smooth by construction. �

In the case where I is a principal ideal, the A
1-homotopy type of the varieties

from Proposition 4.2.2 is relatively straightforward to identify.

Lemma 4.2.3. Assume k is a normal Noetherian domain such that Pic(k) = 0 (e.g., k is

a UFD). Consider the scheme XI,a from Proposition 4.2.2, where I = (f ) is principal and

assume that s ≥ 2. Let Xj := XI,a � Ej, where Ej is the closed subscheme defined by the

ideal (I,
∏

i�=j(z − ai)). Then the following hold:

1. The scheme Xj is isomorphic to A
n+1
k .

2. If the morphism π : XI,a → A
n
k is smooth, then the projection morphism π ′ :

XI,a → A
n
sY is a Jouanolou device (in particular an A

1-weak equivalence).

3. If A
n
� Y has a k-point, then there is a (pointed) A

1-weak equivalence

XI,a ∼ ∨s−1
i=1 (�A

n
� Y). If Yred is furthermore smooth over Spec k, then XI,a ∼

(∨s−1
i=1P

1)∧ (Yred)+.
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Proof. We first note that under our assumptions, every Zariski locally trivial A1-bundler

over A
n
k is globally trivial. Indeed, recall that the automorphism group Aut(A1

k) is the

affine group scheme Gmk �Gak (equivalently, if k is integral, direct computation shows

that every k-algebra automorphism of k[x] is of the form x �→ ax + b with a ∈ k∗, b ∈ k.).

Since A
n
k is affine, H1

Zar(A
n
k ,Ga) = 0 and since k is Noetherian and normal, homotopy

invariance of Picard groups [7, Corollary 5.10] guarantees that H1
Zar(A

n
k ,Gm) = Pic(An

k ) =
Pic(Spec k), which is trivial by assumption. Therefore, the long exact sequence in non-

abelian cohomology [20, Proposition III.3.3.1] attached to the short exact sequence of

sheaves of groups

1 −→ Ga,k −→ Aut(A1
k) −→ Gmk −→ 1

allows us to conclude that H1
Zar(A

n
k , Aut(A1

k)) is also trivial.

1. By the observation above, it suffices to show that πj is a Zariski locally trivial

A
1
k-bundle. By construction, the morphism πj : Xj → A

n
k is a Zariski locally trivial A1-

bundle over An � Y. Likewise, the morphism π−1
j (Y) → Y is a trivial A1-bundle, by the

factorization from Proposition 4.2.2. All fibers of π are thus isomorphic to A
1
k. Since A

n
k

is a normal Noetherian scheme, [30, Theorem] implies that π is a Zariski locally trivial

A
1
k-bundle.

2. The fact that π ′ is a torsor under a line bundle follows immediately from gluing

and the fact that the morphism πj : Xj → A
n
k is a trivial A1

k-bundle by the preceding point.

3. This follows from the previous point and a computation of the homotopy

colimit of the diagram consisting of s maps from A
n
� Y to ∗. Indeed, the homotopy

colimit of s-maps from any (pointed) scheme W to ∗ is a wedge sum of s − 1 copies of

�W. Then, the cofiber sequence A
n
k � Y → A

n
k → A

n
k/(An

k � Y) and A
1-contractibility of

A
n
k shows that A

n
k/(An

k � Y) ∼ �A
n
k � Y. If Yred is smooth, then Yred → A

n
k is a regular

immersion, and the normal bundle to this embedding has an explicit trivialization given

by f . In that case, homotopy purity implies that �A
n
k � Y ∼= P

1∧ (Yred)+. �

Remark 4.2.4. Assuming Yred is smooth, Lemma 4.2.3 gives complete control of the A
1-

homotopy type of XI,a. Thus, for example, if f and f ′ define smooth plane curves in A
2

whose Picard groups are non-isomorphic and a0 = 0, a1 = 1, then the affine surfaces

X(f ),a = {ft − z(z − 1) = 0} and X(f ′),a = {f ′t − z(z − 1) = 0}
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are not A
1-weakly equivalent. Note, however, that the isomorphism type of XI,a does

depend in general on the scheme structure of Y as well. For example, take a0 = 0, a1 = 1,

and let f ⊂ A
1
k be given by xr. In that case, XI,a is the Danielewski hypersurface

xrt = z(z − 1) whose isomorphism type is known to be determined by r [11–13, 18].

Example 4.2.5. Suppose B = Spec k where k is an integral domain. Assume P(z) =∏s
i=1(z − ai) with the ai pairwise distinct elements of k and furthermore assume

that disc(P) is a unit in every residue field at a maximal ideal of k. Given a vector

m = (m1, . . . , mn), mi ∈ Z>0, consider the scheme

Qm,P :=
{ n∑

i=1

xmi
i ti = P(z)

}
.

In the setting of Construction 4.2.1, we have Qm,P = XI,a for I = (xm1
1 , . . . , xmn

n ) and a =
(a1, . . . , as). The condition on P(z) guarantees that Spec k[z]/P is smooth over Spec k, hence

that Qm,P is a smooth k-scheme. Since the corresponding scheme Yred is simply the origin

in A
n
k , we obtain by Remark 4.3.2 that

Qm,P ∼ (∨s−1
i=1P

1∧ c
)∧ (Yred)+ ∼ (P1∧ n

)∨degP−1.

Observe that these varieties are A
1-(n − 1)-connected smooth affine 2n-folds. The

problem of isomorphism classification is thus reminiscent of (a non-compact version

of) that studied in [40].

By an evident change of variables, we may assume that P(z) is of the form zQ(z).

When Q(z) = (1 − z) and m = (1, . . . , 1), the variety Qm,P is the quadric Q2n whose

A
1-homotopy type was studied in [3] and the above construction gives another view of

the proof of [3, Theorem 2]. When Q(z) is general and m = (1, 1), the variety Qm,P was

studied implicitly in [2, Proof of Corollary 3.1] as a generalization of a construction of

Winkelmann [42, §2].

The following question can be viewed as a concrete generalization of the discus-

sion of Remark 4.2.4 in the context of Example 4.2.5.

Question 4.2.6. In the situation of Example 4.2.5, if P is fixed, then can one distinguish

non-isomorphic varieties of the form Qm,P as m varies?
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Remark 4.2.7. For specific integral domains k, the condition on P(z) in Example 4.2.5

can be rather stringent. For example, if k = Z, no polynomial of degree > 2 satisfies the

hypotheses. Indeed, given P as in the statement of degree ≥ 3, there exist 2 roots in Z

that must differ by ≥ 2. The standard expression of the discriminant as a product of

differences of roots then shows that disc P takes values in Z � {−1, 0, 1}. As such, there

exists a prime p such that Spec k[z]/P has bad reduction modulo p.

4.3 Constructing A
1-contractible smooth schemes

The discussion of the preceding section also gives a way to produce many new exam-

ples of A
1-contractible strictly quasi-affine schemes generalizing the analysis from [3,

Theorem 3.1.1]. These provide new instances of exotic A
1-contractible schemes (i.e., not

isomorphic to affine k-spaces).

Proposition 4.3.1. Consider the morphism π : XI,a → A
n
k from Proposition 4.2.2 where

I ⊂ k[x1, . . . , xn] has height ≥ 2, the morphism π is smooth and Yred is smooth over k.

Define Ej to be the closed subscheme corresponding to the ideal (I,
∏

i�=j(z − ai)) and set

Xj := XI,a � Ej.

1. The scheme Xj is a strictly quasi-affine A
1-contractible smooth k-scheme.

2. The morphism π ′ : XI,a → A
n
sY is an A

1-weak equivalence.

Proof. Proposition 4.2.2 implies that the morphism πj is smooth and surjective. More-

over, by the construction of Ej, the base-change of πj along the closed immersion Y → A
n
k

is simply the projection morphism A
n
Y → Y because Ej consists precisely of all but one

of the components of An
Y ′ . In particular, the morphism π−1

j (Y) → Y is always an A
1-weak

equivalence. Corollary 3.1.4 thus guarantees that Xj is A1-contractible if Yred is smooth.

Note that Xj is quasi-affine but not affine under the hypothesis that I has height ≥ 2.

For the second statement, observe that each of the morphisms πj is an A
1-weak

equivalence. Since π ′ is the pushout (as Nisnevich sheaves) of all the morphisms πj along

their intersections, it follows that π ′ is also an A
1-weak equivalence, which establishes

the second point. �

Remark 4.3.2. Since Yred is smooth, we may apply homotopy purity to describe the

A1-homotopy type of A
n
sY along the lines of the final statement in Lemma 4.2.3. The

corresponding statement is slightly more complicated because the normal bundle to Yred

inA
n
k need not be trivial. Of course, if Yred → A

n
k is a codimension c complete intersection,
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then the normal bundle comes equipped with a trivialization and then

XI,a ∼ A
n
sY ∼ (∨s−1

i=1P
1∧ c

)∧ (Yred)+.

Remark 4.3.3. In contrast with the situation for principal ideals I considered in Lemma

4.2.3 (1), Proposition 4.3.1(1) implies that when I has height ≥ 2, the morphism π ′ :

XI,a → A
n
sY is not an affine morphism. This observation has consequences for a higher-

dimensional variant of the Danielewski fiber product construction. Indeed, suppose

I ′ ⊂ k[x1, . . . , xn] is another ideal corresponding to a closed subscheme Y ′ ⊂ A
n
k , and

assume Y ′
red = Yred. Choose a′ such that XI ′,a′ → A

n
k is smooth. In that case, we may

form the fiber product XI,a ×A
n
sY

XI ′,a′ . One may show that either projection is an A
1-weak

equivalence, again by appealing to Corollary 3.1.4. Nevertheless, neither projection is

affine since π ′ is smooth and surjective, and the affineness of a morphism is local in the

fppf topology on the base. As a consequence, neither projection can be Zariski locally

trivial.

Example 4.3.4. With the same notation as in Proposition 4.3.1, assuming that k is a

normal domain, then the isomorphism type of Xj is closely tied to the stable isomor-

phism type of Y. Indeed, take two A
1-contractibles as above, say X and X ′, defined

by subschemes Y and Y ′ (together with the choices of corresponding ai and a′
i). In

that case, the normality assumption guarantees that an isomorphism between X and

X ′ extends to the hypersurfaces X̄ and X̄ ′ in which X and X ′ are open subschemes,

and then restricts to an isomorphism Y × A
r ∼= Y ′ × A

r. Thus, if Y and Y ′ are not

stably isomorphic, the varieties X and X ′ are not isomorphic. Since non-isomorphic

smooth curves of genus g > 0 are never stably isomorphic, by choosing non-isomorphic

smooth curves of genus g > 0 in A
3, we may produce many non-isomorphic A

1-

contractible smooth schemes. This produces many (e.g., positive dimensional mod-

uli spaces) non-isomorphic strictly quasi-affine A
1-contractible smooth schemes of

dimension d ≥ 4.

Question 4.3.5. Assume k is a base ring. If Yred is not necessarily smooth, then is Xj

still an A
1-weak equivalence? More generally, if π : X → A

n
k is a smooth morphism

of k-schemes whose fibers over closed points are affine spaces, is π an A
1-weak

equivalence?
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4.4 Topological contractibility revisited

In [5, Conjecture 5.3.11], the first and third authors conjectured that if X is a topologically

contractible smooth complex affine variety, then �n
P1X is A

1-contractible for some n

sufficiently large and that n = 2 was probably sufficient. In view of Theorem 4.1.1, this

conjecture can be made significantly more precise. In order to formulate the result, recall

that if k is a field, then a smooth k-scheme X is called HZ-acyclic if, the structure map

X → Spec k induces an isomorphism of the Voevodsky motive M(X) with Z in Voevodsky’s

derived category of motives; we refer the reader to [5] for further explanations of

the notation, but simply remark that this is a natural motivic analog of acylicity for

usual singular cohomology. The following proposition provides a non-conjectural result

inspired by this circle of ideas.

Theorem 4.4.1. Assume k is a field having characteristic 0, and (X, x) is a pointed

HZ-acyclic smooth k-affine variety.

1. For any integer N ≥ 2, any smooth model of P
1∧ N∧X is an A

1-contractible

smooth scheme; if X is furthermore A
1-connected, then N = 1 suffices.

2. If X is a topologically Z-acyclic smooth complex surface, then for any integer

N ≥ 2, P
1∧ N∧X has the A

1-homotopy type of an A
1-contractible smooth

scheme.

3. If X is given as the vanishing locus of a hypersurface defined by f ∈
C[x1, . . . , xn], then for any integer N ≥ 2 (or 1 if X is A

1-connected) and any

N-tuple of integers (a1, . . . , an) the hypersurfaces

N∑
i=1

uai
i vi = f

are A
1-contractible.

Proof. For the first point, begin by observing that by appeal to Theorem 4.1.1 any

suspension P
1∧ s∧X admits a model as a smooth scheme. Next, pointed, smooth k-

schemes are HZ-local by appeal to [25, Lemma 4.1] (this argument appeals to resolution

of singularities, which is where the assumption on the characteristic of k appears). Then,

arguing as in [25, Theorem 4.2], one observes that HZ-acyclicity guarantees that X is P
1-

stably A1-contractible.

Next, if either N ≥ 2, or N = 1 and X is A
1-connected, then P

1∧ N∧X is at least

A
1-1-connected. By definition, P1∧ N∧X is at least 1-effective for N ≥ 1 in the sense that
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it lies in the subcategory of Spck generated under homotopy colimits by spaces of the

form Gm∧U+, U ∈ Smk. In that case [6, Theorem 1.3] guarantees that since P1∧ N∧X is

P
1-stably contractible, it is already A

1-contractible.

For the second point, observe that topologically contractible smooth complex

surfaces are HZ-acyclic by [1, Theorem 1]. That P1∧ N∧X is A
1-contractible then follows

from the first point and admits a smooth affine model by appeal to Corollary 4.1.6(2).

For the third point, we proceed as follows. Observe that if f defines a smooth

hypersurface in A
r, then projecting onto A

1 with coordinate u and arguing as in

Lemma 4.2.3 one concludes that the hypersurface uav = f is a model of the P
1-

suspension of the hypersurface defined by f . The result then follows by a straightforward

induction. �

Remark 4.4.2. If X is a topologically Z-acyclic smooth complex surface, then X is

necessarily affine and if X is not isomorphic to A
2
C

then X necessarily has negative

logarithmic Kodaira dimension [43, Theorem 2.6]. On the other hand, A
1-connected

smooth surfaces are log-uniruled by [10, Theorem 4.7], so they necessarily have negative

Kodaira dimension [31, Theorem 1.1]. It follows that topologically Z-acyclic smooth

complex surfaces not isomorphic to A
2
C

are not A1-connected.

Example 4.4.3. Assume X is a topologically Z-acyclic smooth complex surface. If X has

logarithmic Kodaira dimension 1, it was observed by Kaliman and Makar-Limanov [27, §7

Theorem on page 606] that X can always be realized as a hypersurface. Indeed, suppose

k, l, m are integers with k, l ≥ 2, m ≥ 1, gcd(k, l) = 1, and assume that f , g ∈ C[x] are

polynomials such that deg f , deg g < m, f (0) = g(0) = 1, f is arbitrary subject to the

preceding condition and g is uniquely determined by the condition that

pk,l,m,f (x, y, z) = (zmx + f (z))k − (zmy + g(z))l − z

zm

is a polynomial. In that case, the variety pk,l,m,f = 0 defines a topologically contractible

hypersurface of logarithmic Kodaira dimension 1, and every such variety is isomorphic

to a hypersurface of this form. In particular, Theorem 4.4.1 applies here, and we conclude

that the hypersurface Xp,N defined by

N∑
i=1

uivi = pk,l,m,f
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is A
1-contractible for N ≥ 2; this observation can be viewed as an improvement of

[16, Corollary 3.7].

In the special case where N = 1, Kaliman and Zaidenberg observed that the

resulting hypersurfaces could fail to be isomorphic to affine space [28, Theorem 1]. We

conclude from Remark 4.4.2 that the hypersurfaces pk,l,m,f = 0 are not A1-connected and

Theorem 4.4.1 does not guarantee the hypersurface Xp,1 is A
1-contractible.
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