

Inter-compartment concentration monitoring of key species in a vanadium redox flow battery operating with and without polarization: experiments and construction of a predictive model

Fabien Chauvet, Toussaint Ntambwe Kambuyi, Brigitte Dustou, Théo Tzedakis

fabien.chauvet@univ-tlse3.fr

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UT3, Toulouse, France

www.lgc.cnrs.fr

Introduction / objectives

Vanadium Redox Flow Battery (VRFB)

- Aqueous RFB, $\Delta V = 1.26$ V, recyclable (no chemical degradation) 4
- The same element on both sides → no poisoning 4
- Small size of Vanadium ions

 → crossover difficult to avoid and self-discharge reactions
- Water transfer
- Variation of the acidity
- Complex temporal evolution of the composition (Vanadium species, acid, water)
- Decrease of the storage capacity
- Precipitation issues (solubility of V ions = f(pH, T))
- Battery lifespan limited
 - → management of the storage tanks (pH & water adjustments, regeneration by mixing)

- → Experimental measurements with a lab-scale VRFB
- → Modelling of vanadium, water and acid inter-compartment transfers

Experiments

_aboratoire de Génie Chimique – LGC, Toulouse

Experiment Result: case A, I = 0

Experiment Result: case A, I = 0

Experiment Result: case B, $I = 0.2 \text{ A} (10 \text{ mA/cm}^2)$

aboratoire de Génie Chimique – LGC, Toulouse

Time (h)

Modeling

Modeling

Determination of the electrochemical net mass fluxes: partitioning of the applied current

 I_{lim}^{IV}

E(V/REF)

Modeling

Determination of net mass flux due to the self-discharge reactions: α^i

$$V^{3+} + VO_{2}^{+} \xrightarrow{k^{III,V}} 2VO^{2+}$$

$$VO_{2}^{+} + V^{2+} + 2H^{+} \xrightarrow{k^{II,V}} V^{3+} + VO^{2+} + H_{2}O$$

$$V^{2+} + VO^{2+} + 2H^{+} \xrightarrow{k^{II,IV}} 2V^{3+} + H_{2}O$$

$$E(V)$$

$$VO_{2}^{+} VO^{2+}$$

$$VO^{2+} V^{3+}$$

$$V^{3+} V^{2+}$$

Reaction rates $r_{i,j} = k^{i,j} \cdot c_i c_j \cdot V_{p/n}$

Taking into account all the contributions to compute α^i

$$\alpha^{II} = -r_{II,IV} - r_{II,V}$$

$$\alpha^{III} = -r_{III,V} + 2r_{II,IV} + r_{II,V}$$

$$\alpha^{IV} = 2r_{III,V} - r_{II,IV} + r_{II,V}$$

$$\alpha^{V} = -r_{III,V} - r_{II,V}$$

 $\alpha^{i} = f_{i}\left(c_{II}, c_{III}, c_{IV}, c_{V}\right)$

and the self-discharge reactions are assumed instantaneous (sufficiently high value of $k^{i,j}$)

$$\frac{dc_p^i}{dt} = \frac{1}{V_p} \left[-J_{diff+mig}^i + J_{p,elec}^i + \alpha^i - c_p^i \frac{dV_p}{dt} \right]$$

Experiments Vs Model prediction : Vanadium species

Good agreement except for V(IV)

Experiments Vs Model prediction : protons


```
At the positive electrode:

VO^{2+} + H_2O \rightarrow VO_2^+ + e^- + 2H^+

0.5H_2O \rightarrow 0.25O_2 + e^- + H^+

(V^{3+} + H_2O \rightarrow VO^{2+} + 2H^+ + e^-)
```

At the negative electrode: $2H^{+} + 2e^{-} \rightarrow H_{2}$ $(VO^{2+} + 2H^{+} + e^{-} \rightarrow V^{3+} + H_{2}O)$ $(VO_{2}^{+} + e^{-} + 2H^{+} \rightarrow VO^{2+} + H_{2}O)$

Need to consider lower proton transfer number to match model to experiments

(explained by the non-negligible concentrations of cationic vanadium species compared to protons)

$$\frac{dc_p^{H^+}}{dt} = \frac{1}{V_p} \left[-J_{mig}^{H^+} + J_{p,elec}^{H^+} - c_p^{H^+} \frac{dV_p}{dt} \right] \qquad \qquad \frac{dc_n^{H^+}}{dt} = \frac{1}{V_n} \left[J_{mig}^{H^+} + J_{n,elec}^{H^+} - c_n^{H^+} \frac{dV_n}{dt} \right]$$
$$J_{mig}^{H^+} = \frac{t^{H^+}I}{F}$$

Conclusions

- Construction of a model to predict the temporal evolution of electrolyte composition taking into account:
 - the transport of V species and H⁺ in the membrane
 - the transfer of water
 - the partitioning of the applied current
 - the self-discharge reactions.
- Satisfactory agreement with experiments \rightarrow coupling of main mass transport ph. with chemical & electrochemical reactions $\sqrt{}$
 - → Improvement of the transport model inside the membrane (convection, electro-osmosis, osmosis, cations & anions, Donnan equilibrium, etc.) & Eq. for concentrated solutions, especially for higher current densities
- Future application to a real VRFB (V(IV)/V(V) I V(II)/V(III)) during charge/discharge cycles
 - \rightarrow To predict the energy loss coming from vanadium cross-over
 - \rightarrow To predict the temporal evolution of acid concentration

More information:

Toussaint Ntambwe Kambuyi, <u>toussaint.ntambwe-kambuyi@univ-tlse3.fr</u> (experiments & modeling) Théo Tzedakis, <u>theodore.tzedakis@univ-tlse3.fr</u>, Fabien Chauvet, <u>fabien.chauvet@univ-tlse3.fr</u> (modeling & experiments)

Acknowledgments: funding from Région Occitanie

