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Abstract 

The understanding of environmental observations is a continuous challenge for environmental and life science investigations. 

The environmental data is complex as it involves its own features, methods, properties, systems, and spatio-temporal dimensions. 

The time granularity remains approximately the same for different environmental contexts but geographic and rest of the above-

mentioned entities are defined using domain vocabularies that are specific for each discipline. It is time-consuming for the 

researchers of life sciences` discipline to discover, access, and analyze relevant environmental observations as each discipline has 

its data formats, vocabularies, and metadata standards. These differences introduce structural and semantic heterogeneities, 

resulting in creating a barrier for reusing datasets generated by other disciplines. Existing dataset discovery platforms contain 

domain-specific metadata descriptions for explaining datasets which limits their usage. To overcome this knowledge barrier, this 

work reports the proof-of-concept implementation of a knowledge graph that is centered towards the oceanography use case 

scenario using NLP techniques (named entity recognition (NER) followed by text preprocessing). The constructed knowledge 

graph is a collection of subgraphs each representing the metadata of a dataset. It uses the geo-spatial and open semantic data 

standards that aim to provide enhanced metadata descriptions of datasets for enabling multidisciplinary research.   

 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Peer-review under responsibility of the Conference Program Chairs. 

Keywords: Metadata; user needs; observations; life sciences; datasets; knowledge graph; named-entity recognition; NLP 

 

 
* Corresponding author. Tel.: +33 46 74 16 100 

E-mail address: muhammad.arslan@ird.fr 

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1877050922004835
Manuscript_a027e3e1f7c1b712ade54f8a383790b3

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1877050922004835
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1877050922004835


2 Arslan et al. / Procedia Computer Science 00 (2022) 000–000 

1. Introduction  

A major scientific challenge faced by the global change researchers is first to understand the environment and its 

linked processes, and then to establish the correlations with the evolution of living organisms (i.e. a study of life 

sciences) using the acquired knowledge [1, 2]. The study of environmental science is complex having many 

subdomains such as Ecology, Biology, Plant Science, Zoology, and Oceanography, and each subdomain has its own 

vocabularies, and methodologies for data discovery and access [3]. These differences result in structural and 

semantic heterogeneities within a dataset as well as in metadata (i.e. data describing a dataset) representation making 

it difficult for researchers of other disciplines to find, combine or integrate data of different environmental 

observations [3].  

To help overcome this problem of data representation of scientific observations, open standards, and Semantic 

Web technologies can transform dataset descriptions (i.e. metadata) into coherent and interoperable infrastructures 

[3, 4]. This process needs the construction of knowledge graphs (i.e. graphs of data) for accumulating and conveying 

knowledge of the real world, whose nodes represent entities and whose edges represent relationships between these 

entities [5]. “Structuring data through an ontology into a knowledge graph opens up a unifying horizon of meaning 

for the interlinked entities and also new multidisciplinary studies” [5]. From the existing studies, for developing the 

knowledge graph, the Sensor, Observation, Sample, and Actuator ontology (SOSA) was chosen as it provides a 

flexible and lightweight vocabulary for representing the characteristics of environmental observations [4]. Using the 

SOSA ontology as the core, along with semantic open data standards, including Resource Description Framework 

(RDF), RDF Schema (RDFS), and Web Ontology Language (OWL), this work discusses the implementation of a 

knowledge graph using the oceanography case study. We propose to demonstrate the suitability of the knowledge 

graph to improve the characterization of datasets by extending their technical descriptions so that dataset discovery 

processes are improved.  

The rest of the paper is organized as follows: Section 2 describes the background of the study. Section 3 discusses 

the knowledge graph using the oceanography case study for improving dataset discovery processes. Section 4 

presents the implementation of the knowledge graph. Section 5 contains a brief discussion, and section 6 presents a 

conclusion. 

2. Background 

The literature review is done to discover existing systems of data and associated metadata discovery for 

environmental and life sciences contexts. A couple of most recent data discovery models [6, 7] are proposed based 

on Relational Database Management Systems (RDMS). Also, the implementation of Semantic Web technologies for 

representation and storage of environmental and life sciences datasets [8 – 12] are investigated using graph-based 

data. The core of data representations for constructing these systems based on Semantic Web technologies has been 

the Resource Description Framework (RDF). SPARQL (Simple Protocol and RDF Query Language) Protocol – a 

World Wide Web Consortium (W3C) standard – is used for querying the RDF-based datastores [9, 10]. 

Furthermore, the domain ontologies and data vocabularies are constructed to foster data interoperability through the 

use of RDF language, RDFS and SPARQL-based querying among disconnected datasets [13]. Beyond the 

specialized ontologies, mid-level ontologies that can be used for environmental and life sciences applications are 

also built. For example, SOSA and Extended-SOSA ontology are constructed for storing environmental 

observations [4]. 

To overcome the issue of data representation and discovery of environmental observations, several systems as 

mentioned above are developed. However, these systems contain specialized metadata descriptions that can be 

difficult to use by non-experts interested in conducting multidisciplinary analyses. To address this research gap, a 

knowledge graph is implemented that is aligned with linked data, and the W3C technology stack aimed at forming a 

global interconnected data graph [5]. The fundamental requirements for constructing a knowledge graph were 

chosen using the existing literature [7, 14, 15]. These requirements were primarily based on 5 different types of 

information about; 1) the studied feature and its acquisition, 2) spatial dimension (i.e. data about location), 3) 

temporal dimension (e.g. time granularity), 4) dataset ownership, and 5) dataset access details. These requirements 

were translated into 9 questions for developing a knowledge graph (Table 1). The knowledge graph should be based 
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on Semantic Web-based approaches that offer an open data infrastructure [13] through the reuse of existing 

ontologies, and enable us to make domain-neutral dataset searches.  

     Table 1. Use of existing ontologies and vocabularies for defining the concepts involved in requirement questions. 

Requirement questions  Type Concepts  Ontologies and   

vocabularies used 

 

Q1.  Which real-world feature was monitored? 

Feature  

and its acquisition  

FOI SOSA   

Q2.  What property of a feature was observed? Observable property  Complex Property Model (CPM)  

Q3.  How was the property data monitored? Procedure  SOSA  

Q4.  In what units are the collected data expressed? Unit of measurement CPM   

Q5.  How was the dataset captured?  Sensor and platform  SOSA  

Q6.  Where exactly the property was measured? Spatial  Spatial representation  SWEET and GeoNames   

Q7.  When was the data collected? Temporal  Temporal representation SWEET and Time   

Q8.  Who collected the data? Ownership  Contributor  Data Catalog Vocabulary (DCAT)  

Q9.  Where can the data be accessed? Data access  DownloadURL DCAT  

3. Knowledge graph modeling using a case study 

After an extensive literature review, a list of competency questions was drawn up, and the concepts from the 

existing ontologies and data vocabularies are selected (see Table 1) that can be used for the knowledge graph. The 

reason of such selection is straightforward since they are compliant with the Open Geospatial Consortium (OGC) 

providing an open semantic data infrastructure [13]. Our knowledge graph [16] is based on a SOSA with its 

extension [4, 17] (see Fig. 1), to define the metadata for a dataset. Each observation links to: 1) a sensor, 2) an 

ObservableProperty, and 3) an FOI for detailing the property with which it was linked. Observations are combined 

into collections (ObservationCollection) to share the same properties [4, 17]. To this end, an ObservableProperty 

concept is defined from the SOSA ontology using Complex Properties Model (CPM) ontology [18] to add more 

details about the examined observed property using subproperties (i.e. defined as object of interest using CPM 

ontology) each having statistical measure (i.e. Unit)). To specify the dataset occurrence properties, we use the 

DCAT ontology [19] and DCTERMS [20]. To add the spatial dataset granularity, the class named “representation 

(REPR)” from the SWEET ontology [21] is used for providing spatio-temporal dimensions. In addition, the graph 

uses GEONAMES to specify the spatial features, and OWL-Time [22] for describing temporal concepts. In addition, 

the foundations of the W3C Web semantic ontology were also utilized, i.e. RDFS [23] and SKOS [24] ontologies. 
 

To demonstrate the application of our knowledge graph, metadata is added to it (see Fig. 1) by using the SWEET 

ontology, Geonames gazeeter and AGROVOC thesaurus to define the concepts pertaining to the selected 

multidisciplinary research area (in this case, centered around oceanography). The dataset (REPHY Monitoring 

Network data) was retrieved from the online data repository of Ifremer [25]. Data of two acquired parameters were 

considered from this dataset which are; 1) the detection and counting of phytoplankton species and, 2) the physico-

chemical property of water bodies. As shown in Fig. 1, the REPHY monitoring network data collection (at level 0) 

consists of two separate ObservationCollections (PhytoplanktonPresenceObs and Physico-chemicalParaObs). Each 

member of the REPHY data collection shares the same FOI, i.e. CoastalWater, defined using the Office 

International de l’Eau (OIEAU) ontology. Each ObservationCollection corresponds to a different dataset defined 

using a sosa:hasResult property. Every Observation that is a member of PhytoplanktonPresenceObs will share the 

same properties that are assigned to the PhytoplanktonPresenceObs collection (at level 1), such as sosa:hasResult. 

For the LicmophoraPresenceObs observation, the Count concept is set as the ObservableProperty using the SWEET 

ontology. The ObservableProperty is further defined using CPM to add more details about the examined property 

(Count) by ObjectOfInterest and Property. Furthermore, the ObjectOfInterest is further enriched with 

Phytoplankton, and Plankton concepts defined by the AGROVOC vocabulary using SKOS relations. The Physico-

chemicalParaObs collection (at level 1 in Fig. 1) contains observations of Temperature readings. In this case, the 
observations were tagged to a Sensor concept and later labelled with its tag (Temperature sensor in-situ). In 

addition, its ObservableProperty is defined using a Temperature concept by the SWEET ontology. Moreover, the 

dataset is enriched with identification metadata information such as title, contributor, data distribution information, 

date of issue, publisher details, and keywords using DCAT vocabulary [19, 20]. These supplementary annotations 

provide general and technical descriptions useful for evaluating whether a dataset is suitable for a particular purpose 
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and for accessing it. 

 
Fig. 1. Knowledge graph for the oceanography example 

Prefix namespaces: UNIT: http://qudt.org/2.1/vocab/unit/; SKOS: http://www.w3.org/2004/02/skos/core#; 

OIEAU: https://www.oieau.fr/; SWEET: http://sweetontology.net/; GEONAMES: http://www.geonames.org/ontology#;  

SOSA: http://www.w3.org/ns/sosa/; NCBITAXON: https://www.ncbi.nlm.nih.gov/taxonomy/; AGROVOC: http://aims.fao.org/aos/agrovoc/ 

4. Proof of concept system 

The knowledge graph as discussed in Section 3 is implemented using the Python programming language. For 

the prototype development, open semantic data standards of the W3C and named entity recognition (NER) i.e. a 

form of Natural Language Processing (NLP) are used. Concepts used for defining metadata are recognized using 

their unique Uniform Resource Identifiers (URIs). The concepts and their mappings are stored as RDF triples in the 

system. These RDF triples reside in the in-memory store to support SPARQL queries later. For showing the 

usefulness of the system, its execution, which encompasses 3 modules is shown in Fig. 2.  

 

The 1st module involves extracting the metadata fields of a dataset. This process is executed using two Python 

libraries, which are; BeautifulSoap [26] and Requests [27]. BeautifulSoap is used for pulling data out of HTML 

pages whereas, Requests allows us to send HTTP requests to HTML pages to download data. Using these two 

libraries and by providing the dataset URI, dataset title, description, published date, publisher, temporal duration, 

distribution name, distribution URL, spatial coverage, beginning date and end date of a dataset are extracted. Out 

of all these extracted fields, only dataset title and description are processed using the Spacy Python library [28] to 

extract named entities such as dates, locations, FOIs, the object of interests and properties. Within the Spacy, the 

PhraseMatcher [28] is used to match the concepts that exist in dataset title and description with large terminology 

lists. These lists are created based on AGROVOC controlled vocabulary containing the categorization (e.g. features, 

methods, properties and systems) of concepts related to environmental and life sciences. Using the PhraseMatcher, 

the below-mentioned possible labelling is achieved which can help the user to select the most appropriate category 

to fill metadata fields of a graph (see Fig. 3).  
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Fig. 2. Sequence diagram of implementing different modules to construct a knowledge graph. 

 

 

Fig. 3. Labelling different concepts from a dataset title and description using the NER 

The 2nd module involves the generation of subgraphs with blank nodes and later these nodes are filled using the 

metadata fields extracted in module 1. This is achieved using the RDFLib [29] Python library providing a simple 

and powerful language for working with RDF and representing information. Using this library, subgraphs are 

created using metadata information based on the user input, as shown in Fig. 4. After creating the subgraphs, the 

user can query the subgraphs to extract the stored information using module 3. As the user enters the text which 
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needs to be searched in subgraphs, the text is broken down into discrete words using text preprocessing tasks [28]. 

The case sensitivity, punctuation and stop words (e.g. “a”, “the”, “is”, “are”, etc.) are removed. Later, the 

lemmatization technique is executed for transforming words to their normalized forms (i.e. a root format e.g. 

changing to change) using a dictionary. Last, the unique words are extracted from the preprocessed words. These 

unique words (also called concepts) are searched over the AgroPortal (http://agroportal.lirmm.fr/). The AgroPortal 

contains the concepts with their ancestors and descendants’ concepts are defined using reference ontologies and 

vocabularies related to agronomy. The AgroPortal data is extracted using the REST API offered by the Requests 

Python library. The parameter of similarity score is used to match the user concepts with the ontology concepts. The 

score is computed using the Levenshtein edit-distance between two words [28]. The edit distance is the number of 

characters that need to be changed for transforming word1 into word2 [28]. After calculating the similarity scores, 

the concepts with high scores are displayed to the user. Based on the user selection of concepts, the existing 

subgraphs are queried for finding the selected concepts or their ancestors and descendants. Upon matching the 

concepts, the relevant subgraph name and its related information to access the actual dataset will be displayed to the 

user, as shown in Fig. 4.    

 

Fig. 4. Graphical User Interface (GUI) of constructing a knowledge graph and querying it using the user text. 

4. Discussion 

The implementation of a knowledge graph is based on the Semantic Web and text processing methods. Its 

development involves 3 modules, which are; 1) extracting metadata fields [30] using the dataset URI, 2) subgraphs 

generation using extracted metadata fields got from module 1, and 3) a user search module which includes; a) 

transforming the user text into unique concepts using text preprocessing techniques, b) searching the unique 

concepts over the AgroPortal for extracting their hierarchies (i.e. transitive concepts including ancestors and 

descendants), and c) searching the user-selected concepts in the existing subgraphs. Once the relevant subgraph is 
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displayed to the user, its organized metadata using observations can be studied. Each observation links to 1) a 

sensor, 2) an ObservableProperty, and 3) an FOI for detailing the property with which it was linked.  

The knowledge graph provides the benefits of categorizing datasets using multiple observations by defining their 

metadata fields using state-of-the-art ontologies and vocabularies, and enriching observation concepts using 

supplementary descriptions using the DCAT vocabulary. The metadata added to observations will extend the 

technical descriptions of datasets, ultimately improving the search for different datasets and their reuse, 

interpretation, and integration. Another advantage of using mash-up ontologies for describing datasets can be 

envisioned: the mapped concepts can help avoid redundancy of collected sensor data. A sensor network comprising 

different sensors deployed at an FOI may generate thousands of observations. Mapping each acquired observation 

with its relevant context will increase the number of links and make the requested knowledge graph very large. To 

avoid this redundancy, the ObservationCollection class from SOSA extension ontology is used in our knowledge 

graph. Constructing collections based on similar environmental observations will reduce the size of the knowledge 

base and contribute towards the optimization of data storage (i.e. triplestore). However, at present, the functionality 

of organizing observations using different ObservationCollections is not yet implemented while executing the 

knowledge graph. Future works need to be done to implement the functionality of ObservationCollections. Also, the 

presentation of the subgraphs (generated by Module 3 in the previous section) to the user for studying their metadata 

needs to be improved. This process will add more user-friendliness to the system’s graphical user interface (see Fig. 

4), which is not present at the moment. Another limitation of this work is, at present only AGROVOC controlled 

vocabulary is used by the PhraseMatcher of Spacy library to categorize the concepts (see Fig. 3) into required 

metadata fields (e.g. features, methods (procedures), properties and systems (sensors)) that exist in dataset title and 

description. Advanced text processing functionalities coupled with existing deep learning techniques can be 

explored for training the PhraseMatcher to categorize a broad range of concepts by incorporating multiple 

controlled vocabularies that are relevant to environmental and life sciences contexts.  

4. Conclusion  

Numerous datasets are generated daily for research across different scientific disciplines. However, these datasets 

are still scattered, and are problematic to reuse and integrate. It is a significant challenge to retrieve these datasets, 

and make it possible to reuse them. Achieving this would promote scientific discovery. To this end, this work has 

identified the fundamental requirements from a literature review for constructing a dataset discovery knowledge 

graph for multidisciplinary studies. These requirements were later translated into a set of 9 competency questions. 

Relevant ontologies and controlled data vocabularies were chosen from the existing literature for creating these 

questions and for defining the concepts which were used in them. Later, a knowledge graph was instantiated and 

implemented for environmental and life sciences contexts, aimed at addressing the identified competency questions. 

An application of this knowledge graph is described using an oceanography example. The major advantage of the 

developed knowledge graph is that it enables us to retrieve the same dataset using different viewpoints (transitive 

concepts linked to an actual FOI). Also, the knowledge graph has tried to improve the process of dataset discovery 

using FOIs, ObservableProperty and Spatio-temporal representation irrespective of the scientific domain.  
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