
HAL Id: hal-04379793
https://hal.science/hal-04379793v1

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GPU Framework for the Visualization and On-the-Fly
Amplification of Real Terrains

Yacine Amara, Sylvain Meunier, Xavier Marsault

To cite this version:
Yacine Amara, Sylvain Meunier, Xavier Marsault. A GPU Framework for the Visualization and
On-the-Fly Amplification of Real Terrains. ISVC, 2007, Lake TAOHE, United States. �hal-04379793�

https://hal.science/hal-04379793v1
https://hal.archives-ouvertes.fr

A GPU Framework for the Visualization and On-the-
fly Amplification of Real Terrains

1Yacine Amara, 2Sylvain Meunier and 3Xavier Marsault

1USTHB, Algeria
2SIC – Signal Image Communications, France

3MAP-ARIA, UMR CNRS 694, France

Abstract. This paper describes a GPU framework for the real-time visualiza-
tion of natural textured terrains, as well as the steps that are needed to populate
them on-the-fly with tens of thousands of plant and/or mineral objects. Our
main contribution is a robust modular architecture developed for the G80 and
later GPUs, that performs texture/seed selection and rendering. It does not deal
with algorithms that procedurally model or render either terrain or specific nat-
ural objects, but uses them for demonstration purposes. It can be used to calcu-
late and display realistic landscapes and ecosystems with minimal pre-stored
data, CPU load and popping artefacts. It works in tandem with a pre-classifica-
tion of available aerial images, and makes it possible to fine-tune the properties
of objects added to the scene.

1 Introduction

In real-time terrain visualization, altimetric and photographic database resolution
quickly becomes insufficient when the viewpoint approaches ground level. While lim-
iting memory load and computing costs, one may add, as soon as necessary, geometri-
cal and textural details for the ground, resulting in the emergence of sets of plant and
mineral objects adapted to the viewpoint requirements. Obtaining such an enriched re-
ality from restricted data sets is known as “amplification”. The term was first men-
tioned in [23]. This feature is important in many applications dealing with terrain ren-
dering (e.g. flight simulation, video games).

Earth navigators such as Google Earth are designed to stream and display digital
models of real textured terrains without amplification. On the other hand, Microsoft
“Flight Simulator”, without providing access to real aerial textures, implements a kind
of amplification by mapping pre-equipped generic patterns onto the ground. A first at-
tempt to reconcile the two approaches was made with Eingana [10] by the French
company EMG in 2001. Based on limited-resolution databases, and using various an-
alytical tools, Eingana generated a fairly realistic 3D planet by fractal amplification.
But all such applications suffer from inaesthetic visual popping artefacts. Level-of-de-
tail management on the GPU is therefore an important challenge in this context.

2 1Yacine Amara, 2Sylvain Meunier and 3Xavier Marsault

Seed models for terrain amplification such as [26] have already been presented,
but not as full GPU real-time systems. We attain this goal on the G80 GPU by the use
of robust techniques (render-to-texture, asynchronous transfer, multi-render-target,
stream reduction, instancing). This is our main contribution in the present paper.

After a short overview of previous work (section 2), we give an outline of our
technique (section 3), then exhaustive details of our implementation (section 4). For
our experimentation, we use databases from the Haute-Savoie region in the French
Alps (a large area of 4,388 km2) provided by [22]: a 16 m/vertex “digital elevation
model” (DEM) and a set of 50 cm/pixel aerial textures. The results are presented and
discussed in section 5, followed by the conclusion.

2 Previous Work

2.1 Data Structures for Large-area Texture Management and Visualization

Terrain navigators currently handle tens of GB of geo-referenced textures, whereas
the GPU memory barely reaches one GB. Long before graphics cards became pro-
grammable, efficient main-memory resident data structures for visibility and hierar-
chical optimization [28], and corresponding CPU algorithms, were designed to pro-
vide the textures strictly necessary to display the current viewpoint. This always im-
posed constraints on the ground mesh, except for clipmaps [25]. Little work has been
done on the handling of such structures on the GPU. But in 2006, A.E. Lefohn’s [16]
describes a complex C++ library that would handle them in this way. In 2005, S.
Lefebvre shows in [15] how to work in a “virtual texture space” on the GPU, for arbi-
trary meshes. He also builds a streaming architecture for progressive and dynamic
texture loading. This framework is used to traverse virtual-texture tile structures by
carrying out all the complex and expensive computations on the GPU.

2.2 Seed Models

Seed models are extremely useful in the procedural specification and instantiation of
landscapes. They avoid the need to precompute and store millions of plant and min-
eral objects just to enrich a few square kilometers. Exploiting the high redundancy
that is present in nature, they make it possible to populate terrain on the fly without
storing all the objects and their properties, while preserving the variety of the results.

We consider three levels of description for seeds. A single seed manages the place-
ment of each object. It is described by a property vector: species, position on the
ground, size, orientation, color, level of detail (lod). A seed cluster contains some
closely-spaced objects which are processed as a single seed. Metaseeds are seeds of
seeds, and store properties such as object density and activation radius. Visible ob-
jects in aerial textures (trees, shrubs, rocks) are described on the first two levels, while
smaller objects (plants, flowers, piles of stones, etc.) that are invisible and numerous
justify a “metaseed” description. At the seed level, it is easy to take into account geo-
graphical (altitude), climatic (moisture), seasonal (snow in winter), temporal (growth,

A GPU Framework for the Visualization and On-the-fly Amplification of Real Terrains 3

ageing) rules, using a parameterized seed model. At the overall level, botanical and
biological rules may be added to synthesize spatial distributions and specify
metaseeds. Seed patterns are used to store such distributions and compose virtual
patchy landscapes. Well described in [8], [9], [17], [15], they usually consist of
squared generic sets of seeds or seed clusters. They can store one or more species,
which makes them useful as a way of simulating varied and adaptable ecosystems.
Random or controlled variations can be introduced on this level to avoid strict repeti-
tion of generic fittings. At the pattern-instancing level on the ground, distributions
usually take account of local species density. The use of patterns has several advan-
tages: genericity, storage saving, reduced number of primitives sent to the graphics
card. A first GPU implementation of this technique to generate random forests can be
found in [15].

2.3 Real-time Plant Rendering

Some of the tools – e.g. [1], [18] – which are used to generate realistic 3D plant mod-
els, are unsuited to real-time rendering of dense scenes. Alternative representations
(volumetric textures, image-based or point-based approximations) which are more ef-
ficient, but also maintain good visual quality, have been designed. Volumetric tex-
tures were introduced by A. Meyer and F. Neyret [19] and improved by P. Decaudin
[6], making it possible to render several thousand trees in real time. The method pre-
sented in [27] for real-time grass rendering with patches uses a combination of geom-
etry-based and volume-based approaches. In both cases, it is difficult to reach the in-
dividual level of objects, which rules these methods out for seed rendering in the con-
text of amplification. The point-rendering method proposed by G. Gilet [12] borrows
some good ideas from [5] and provides continuous detail management. It reduces the
number of points when the “tree to viewer” distance increases, and retains the original
object geometry for close-up viewpoints. But the algorithm remains ill-adapted to
high frame rates. Simple billboarding has been widely used for plants in real-time ap-
plications, originally to replace a set of polygons by a rectangle facing the user, onto
which a semi-transparent texture is projected, representing the plant for a given view-
point. Unfortunately, the objects lack relief and parallax, even if two crossed poly-
gons or view-dependent textures are used. Billboard clouds, by creating volume, im-
prove realism, but not thickness. X. Decoret has proposed in [7] a simplification
method for generating sets of static billboards that approximate plant geometry, offer
a good parallax and give an impression of depth. And A. Fuhrmann has improved his
algorithm to cope better with trees [11]. He can generate realistic models of a few
dozen billboards, with several levels of detail.

3 Outline of our Technique

Our GPU architecture is dedicated to the realtime visualization and amplification of
natural textured terrains, based on 4 modules. We suppose our ground to be covered
by a virtual regular grid (RG) of tiles (Fig. 2). Each module is associated with a GPU

4 1Yacine Amara, 2Sylvain Meunier and 3Xavier Marsault

rendering pass at a different level of abstraction: “tile selection”, “ground texture ren-
dering”, “seed selection” and “seed rendering”. This framework is generic in that it
can be used with different algorithms for terrain mesh and seed-instance rendering,
and the corresponding passes deal with arbitrary ground meshes, since they work at
the GPU vertex level. For this purpose, we adapted the texture-streaming architecture
[15] to large terrains, and improved it in many aspects (section 4).

Following [15], a module called TLM (Tile Load Map) computes the useful tiles
lists for the viewpoint in one render-to-texture pass. It also deals with their visibility
in the frustum, occlusion and level of detail. This information is sent in a 2D texture
to a second module which stores, analyzes and compares the lists for frame coher-
ence, and decides which tiles to send to the GPU. Another module loads the required
textures asynchronously into protected “caches” on the GPU memory. During the sec-
ond pass, the ground geometry is sent to the GPU to be fully textured.

The on-the-fly terrain amplification concept does not allow for the pre-storage of
seeds. We therefore developed an adaptive seed model - inspired by previous publica-
tions on virtual ecosystem simulation – in which seed placement is constrained by the
aerial images, whose visible detail must be finely restored. We also ensure a color re-
lationship between aerial images and the generated objects. Upon the launch of the
application, a set of P generic square patterns containing random virtual seeds is pro-
duced (only their 2D positions are computed), and stored in the GPU memory. We de-
sign patterns whose number of seeds approximate the plant or mineral density for a
typical zone. Plant and mineral objects are also cached in the GPU memory.

 But there is no existing real-time method for computing “land cover classifica-
tion” (LCC) for each pixel. Inspired by the works of S. Premoze [21], we use a pre-
classification step for aerial images, which is the current trend. It draws on recent co-
operation with INRIA\MISTIS [4] and IGN\MATIS [24] using statistical modelling
applied to image analysis. We demonstrate in section 4.4 how to use LCC types (in a
density-map like approach) to extract seeds on the fly and produce a plausible scene.
Only the “single seed” model is fully implemented in our work.

4 Implementation Details

Ground textures are packed into a quadtree made up of 512 x 512 pixels tiles, stored
on disk. Each one has its own mipmap pyramid, compressed into a 1:8 lossy format
DXT1 (to minimize texture-volume transfer and GPU decompression time). The
ground geometry of each frame (computed by the “terrain algorithm” – see Fig. 2) is
cached in a VBO during an initial “dummy rendering pass”, while the depthmap is
also stored in the GPU memory (for use in sections 4.2 and 4.4 with a texture access).
The terrain heightmap texture is loaded onto the GPU for an instant access in pass 3.

4.1 Encoding and Packing LCC types in a Quadtree

We must store them in a quickly accessible data structure. Using the terrain vertex
structure (16 m spacing) would involve an excessive loss of precision in the seed

A GPU Framework for the Visualization and On-the-fly Amplification of Real Terrains 5

placement. It is preferable to store LCC types in textures, on disk, for access in a
quadtree, since we have to retrieve them at different levels of detail (trees being visi-
ble up to 3,000 m, their LCC types are spread over multiple levels in the quadtree).

The coding scheme (Fig. 1) is not commonplace, because ground textures mapped
to the terrain are not necessarily of the highest resolution at which we have to locate
the LCC types. All these constraints impose a redundant coding that should be consis-
tent between all the relevant levels, if popping objects are to be avoided. Moreover,
we cannot pack ground colors and LCC types together in the same 32-bit RGBA tiles,
because the latter must not be compressed.

In sum, a specific “LCC quadtree” is needed to pack LCC types into luminance
tiles. We use 3 levels for trees. To ensure consistency between these different levels,
we propose the following coding method, which allows a 1 m positioning precision
on the ground (which is sufficient for mountains). Level 1 uses 8 bits to store each
LCC type resulting from the classification. We duplicate these types on 4 neighbors at
level 0. Lastly, level 2 uses 8 bits to encode 4 neighboring texels from level 1, mean-
ing that 3 different species can be stored on 2 bits (0 is kept for bare ground). We can
increase the coding precision and the number of species supported by giving more
bits to the LCC texture format. With 16 (resp. 32) bits, 15 (resp. 255) species can be
addressed, although this means using more GPU memory and bus bandwidth.

Fig. 1. LCC type quadtree-packing diagram (A, R and N are examples of LCC types).

4.2 The “Tile Load Map” (Pass 1)

This section deals with the core component of the tile-streaming architecture: the
“Tile Load Map (TLM)” algorithm (Fig. 2). This module is dedicated to the selection
of all the geo-referenced tiles needed to display the current viewpoint: ground tiles,
associated LCC types and an aperiodic set of seed pattern indices. Since all are de-
signed to share the same size, the computation is performed in a unique render-to-tex-
ture pass, using the subtle vertex (VS1) and fragment (FS1) programs, as described
below. It produces the TLM: a 4-component texture of the same size as the RG is read
back to the CPU (this is obligatory). After an analysis step, the TLM is expressed in 3
maps: the “Ground_texture Load Map (GLM)”, the “Classification Load Map
(CLM)” and the “seed_Pattern Load Map” (PLM), which can transmit the appropriate
tiles and pattern indices to the GPU, with minimal OpenGL calls.

First, as described in [15], the ground geometry is drawn in the virtual texture space
of the TLM corresponding to the entire terrain. Global texture coordinates (ug, vg) are
computed in VS1 on the basis of 2D world vertex coordinates, which are sent to FS1
in the POSITION semantic. The corresponding vertex screen coordinates (SC) are
computed with the ViewProject matrix for the current viewpoint. We also calculate

6 1Yacine Amara, 2Sylvain Meunier and 3Xavier Marsault

the distance D between the viewpoint and the current vertex. SC and D are sent in
TEXCOORDi semantics. The TLM computes 4 features for each tile: a visibility in-
dex (v_index) and 3 lod parameters (tlod_min, tlod_max, radial_lod).

Fig. 2. The “Tile Load Map” process for the current viewpoint.

Visibility_index. In FS1, up to 6 clipping planes are used to cull the ground geometry
polygons in texture space. SC coordinates are used in an occlusion-culling test to ac-
cess the depthmap and discard hidden tiles. All culled tiles return a 0 value for the
v_index. Strictly positive values, corresponding to visible tiles, are then used to store
up to 255 possible seed pattern indices, which are computed on the fly, for each
frame. In fact, this is an intuitive, and indeed better, solution than precomputing them
on the CPU, for two reasons : it avoids storing memory-consuming arrays in the CPU
or GPU for large terrains, and it allows some geographical, seasonal and temporal
rules to be taken into account for optimal placement in VS1. Up to now, we have used
a GPU-translation of the Park and Miller space-time-coherent, aperiodic, pseudo-ran-
dom generator described in [20]. Each time the application is launched, the same
seeds appear at the same place, depending only on a germ choice.

LOD estimation. Two different mechanisms are used in FS1 to estimate the required
tile lods. For the ground tiles, we use the direct mipmapping estimation provided by
the GPU to minimize the amount of textures needed to display the current viewpoint.
For this purpose, a dedicated “LOD-texture” is created and cached on the GPU. Its
mipmap pyramid is filled with integer values representing rising levels, starting from
0. In FS1, a simple access to this texture with SC coordinates gives the current lod
value for each fragment. Here, we have to take account of a corrective parameter re-
lated to screen resolution in order to produce good mipmap estimations in texture
space.

A GPU Framework for the Visualization and On-the-fly Amplification of Real Terrains 7

As regards LCC tiles and nested seed patterns, we use a different technique, given
that the mipmapping mechanism is not suited to them: a user on the ground or at the
height of a peak is likely to obtain horizontal polygons whose high lod values would
result in erroneous LCC readings, and prevent the display of the trees. To eliminate
this problem, the distance D is used to evaluate a radial lod: when a pattern is used at
a distance of less than 3 000 m, a radial selection is computed for the first 3 lods of
the LCC quadtree, with thresholds of 700 m, 1 400 m and 3 000 m. The fourth com-
ponent of the structure is then used to store this radial level (0, 1 or 2), value 3 being
reserved for non-active patterns.

TLM readback to CPU memory. The 4 TLM features are written in the output
structure of FS1 with the “max blending” and polygon antialiasing options turned on
(respectively for cumulative results and conservative rasterization per tile). To opti-
mize transfers, we use the 8-bit/component BGRA texture format.

TLM analysis on the CPU. This stage simultaneously manages lists of tiles likely to
be downloaded to the GPU (in one or several ‘Texture-cache’) with conservation of
temporal coherence. It optimally ensures the nesting between useful tiles extracted
from the GLM/CLM and the corresponding tiles in their respective quadtrees. Here,
the tlod_min and tlod_max that estimate the lod range of a tile are used in conjunction
with the v_index to select grouped tiles in the ground quadtree and build the “cur-
rentList”. We maintain Texture-cache coherence by using a stack containing free po-
sitions in the “cacheList” (Fig. 2). Comparisons between the currentList and the pre-
viousList result in a third list called “pushList”, which stores the indices of textures to
be loaded up from the hard disk. Unused locations in the Texture-cache are pushed
into “cacheList” using a “complement list”. Given that on the G80, 8192 x 8192 pix-
els are available for Texture-cache, no overflow management for “cacheList” is nec-
essary, and this saves computing time on the CPU. At the end of this pass, the re-
quired seed-patterns are grouped by type, so as to optimize the number of VBO calls
in pass 3.

4.3 Ground-tile Rendering (Pass 2)

The required ground tiles are first downloaded into the corresponding Texture-cache,
which manages a tile pool of up to 256 locations on the G80. A rectangular luminance
texture coding the quadtree indices is sent to the FS2. For texturing the current frag-
ment, (ug, vg) are processed in a loop between tlod_min and tlod_max with a series of
scaling and translating transformations, so as to obtain the associated tile location in
Texture-cache, and the corresponding relative coordinates. The fragment color can
then be read. Our solution to solve the discontinuity problem that appears in mipmap-
ping in this cache involves a simple process using precomputed borders for the inter-
nal tiles.

8 1Yacine Amara, 2Sylvain Meunier and 3Xavier Marsault

4.4 Visible Seed Selection (Pass 3)

To retrieve visible seeds with minimal computing time, only visible patterns (in a ra-
dius corresponding to the visibility range of a tree) are extracted and stored in the
PLM (section 4.2). In the same way as for the tiles, the graphic pipeline is then pro -
grammed for a “one-pass rendering” in a 2D texture called SLM (Seed Load Map).
The size of this texture is at most 512 x 512 pixels, which can store enough seeds to
populate large scenes. All the seeds are processed by the graphics card, and sent from
the PLM by OpenGL calls to the patterns, which are 1D arrays initially cached on the
GPU (Fig. 3) in vertex buffer objects (VBO). Each seed stores 8 GPU-computable
properties: 3D position on the ground, LCC type (species), surrounding sphere (cen-
ter, radius), level of detail, size, orientation, ground color, and an “index” within the
VBO. The surrounding “sphere” qualifies the seed instance, whose center is placed at
mid-height from it. The “ground color” is designed for a colorimetric follow-up of the
terrain (sections 4.4 and 4.5). Pseudo-random functions are introduced in order to dis-
turb size, orientation and color, and to obtain non-redundant variations, as in nature.
Except for the “index” (which is used to compute the output position in the SLM),
scalar heights are transmitted to the output structure of the fragment program FS3, for
use in pass 4. But, a texture can store up to 4 floating components. So the
ARB_draw_buffers extension is enabled in order to activate the Multi Render Target
(MRT). FS3 returns (+, 0,…, 0) if the corresponding seed is invalid, hidden, or out-
side the viewing frustum. The five following steps describe in details how seeds can
be selected and stored in the SLM.

Fig. 3. Details of the seed and ground rendering passes.

A GPU Framework for the Visualization and On-the-fly Amplification of Real Terrains 9

Seed positioning on the ground. Generic patterns only store seed locations (x, y),
and so seeds are first positioned in 2D, using translations performed in VS3. This is
followed by an orthogonal projection onto the ground mesh to compute the z value.
Since the ground mesh is processed by a multiresolution algorithm, values for z may
be view-dependent, except when the viewpoint is close to the ground. To avoid visual
artefacts, all values of z must be the same, whatever the level of detail of the ground.
We decided to anchor objects to the ground on their smallest z component. Each seed
in the ground heightmap being surrounded by at most 4 basic vertices, its anchor
point is obtained by a bilinear interpolation on 4 z values. Lastly, we ensure that the
lower part of the trunk goes down a little way into the ground. This technique is par-
ticularly suited to amplified terrain meshes with detailed heightmaps whose amplitude
is known in advance.

Seed visibility. This takes place in two steps, like the TLM process. VS3 performs a
culling test: a seed whose surrounding sphere is totally exterior to the frustum is re-
moved. Let R be the transformed radius of the sphere (taking account of on-the-fly
random “size” computations), and a tolerance value. We project the center of the
sphere into the “Normalized Device Coordinate” (NDC) space, then check if it be-
longs to [-1-R-, 1+R+] x [-1-R-, 1+R+] x [0, +[. The occlusion-culling test is
performed in FS3, and discards a seed hidden by the ground (behind a mountain for
example) if its depth is greater than the value stored in the depthmap. For maximal
precision, this value is computed at the “summit” position of the object projected onto
the screen. For distant seeds, it is necessary to take account of the mesh simplification
performed by the terrain multiresolution algorithm. An empirical tolerance distance of
50m is added so that visible objects will not be lost. Lastly, we enable the
GL_CLAMP for the nearest mode of the depthmap texture, because an object whose
summit does not appear on the screen may not have an associated depth.

Lod computation. This is performed by the VS3, which outputs a radial lod evalua-
tion for each seed combined with its real size, so as to take into account the visual
print during the lod transitions.

LCC value. The virtual seed species is instanced in FS3 for each seed : we access
values in the LCC quadtree using the encoding scheme and the methods set out in
sections 4.1 and 4.3. FS3 discards the current seed and returns (+, 0,…, 0) if no
valid LCC type is found.

Ground color. This is accessed in FS3 using the same method given for ground-tile
rendering in section 4.3. A random sampling of ground colors is carried out in the
neighborhood of each seed. This allows fine modulations of plant or mineral colors to
take place in pass 4.

10 1Yacine Amara, 2Sylvain Meunier and 3Xavier Marsault

4.5 Visible Object Rendering (Pass 4)

Although selection and rendering algorithms are independent, five parameters (stored
in the SLM) ensure their nesting: species, size, orientation, lod and ground color. Our
aim is to render selected entities with multiple hardware instancing calls, while avoid-
ing a complete SLM readback in the CPU. Given M mineral and V plant objects, ex-
pressed in NM and NV lods, the number of instancing calls is (M.NM + V.NV). To spec-
ify the “instancing stream” of each call, we just have to know the number of primi-
tives to send, with instancing properties being accessed in VS4 with SLM readings.
But the SLM contains not only “visible seeds” but also more numerous “holes”, cor-
responding to discarded seeds. Since the SLM size is known, VS4 and FS4 could in
fact directly process all vertices and fragments coming from seeds, and discard those
coming from “holes”, but this would be totally ineffective. A better way to tackle the
problem is to use a GPU “stream reduction” algorithm, like the one described in [13].
This has several advantages: filtering capabilities that sort seeds by type and pack
them without holes, and access to the number of packed seeds, which is transmitted to
the CPU at very negligible cost using a readback of very few pixels.

The colorimetric ground follow-up naturally takes account of shadowed zones, and
reduces unnecessary computations. The colorimetric transition is performed by a
smooth blending with the ground textures at the rendering step of each instance. The
foliage and trunks of the trees are processed independently, and the luminosity of the
texels is modulated according to their relative positions within the object. Clouds
(based on dynamic time-morphing textures) are also projected onto these objects and
the ground textures, for more realism. All shading is performed in FS4.

Fig. 4. Two viewpoints, at different distance, of the full textured and amplified terrain (with the
permission of use from “Régie de Données des Pays de Savoie RGD73-74”).

5 Experiments and Results

All the codes were developed in C++, OpenGL, Cg and GLSL. The following tests
were performed at 1280 x 1024 (res 1) and 1024 x 768 (res 2) display resolutions, on
a computer with a 2.93 GHz CPU, 2 GB RAM and a Geforce 8800GTX. Only trees
were used for the experiments: the maximum forest density is 21,000 trees/km2. Com-

A GPU Framework for the Visualization and On-the-fly Amplification of Real Terrains 11

puting times for the 4 passes are shown in Table 1 and give an overall impression of
the performance of our system. For demonstration purposes, RMK2 [3], based on an
improved version of the SOAR algorithm [17], was the library chosen to carry out the
ground-geometry rendering. An improved implementation of our terrain algorithm us-
ing geometry clipmaps [2] is in progress, and will provide higher frame rates. For
trees, we use billboard clouds (our special thanks go to A.Fuhrmann) with 3 lods
composed respectively of 17, 8 and 2 polygons textured with 16-bit luminance atlas
images of at most 4096 x 2048 pixels.

 We process and read back a 256 x 256 pixel TLM in pass 1: this does not really af-
fect the performance of the application, provided that this size is not exceeded. Frus-
tum and occlusion culling substantially reduce the computing costs, both in CPU and
GPU, especially for pass 3. In pass 2, the transition between levels 0 and 1 of the
ground quadtree occurs at an optimal 700 m distance from the ground (corresponding
to 1 pixel = 1.14 texel). With this adjustment, two mipmap levels per tile only, and the
4x anisotropic filter activated, we obtain good display quality (Fig. 4), and at a low
cost, without overloading the graphics bandwidth.

Table. 1. Performance analysis of the 4 passes, for 3 typical viewpoints and a large number of
checked seeds per frame. Computing time for pass 3 depends only on the number of checked
seeds which is related to the overall plant density. The influence of resolution is obvious for
pass 2 and pass 4 results, the latter being the most time-consuming part of our seed architecture.
The ratio selection/generation time of models to rendering time may be improved later. Global
comparisons with CPU techniques are difficult, since few other works have been carried out in
this field. Nevertheless, a rapid study shows that the TLM and SLM algorithms on the GPU
seem almost 10 times faster than their CPU implementation.

Viewpoint 1 2 3
Resolution 1 2 1 2 1 2

Terrain mesh (ms) 3.84 3.5 4.55 4.37 1.2 1.1
Pass 1 (ms) 1.42 1.4 1.56 1.49 1.19 1.16
Pass 2 (ms) 2.04 1.78 2.23 1.82 1.62 1.4
Pass 3 (ms) 2.87 2.78 2.99 2.83 2.5 2.4
Pass 4 (ms) 4.52 3.98 5.91 5.03 3.08 2.82

Selected seeds 5 102 / frame 23711 / frame 3164 / frame
Checked seeds 115 712 / frame 141 728 / frame 101 227 / frame

FPS (Hz) 68 74 58 64 104 112

6 Conclusions and Prospects

We are putting forward a robust and complete GPU approach in 4 passes for the visu-
alization and on-the-fly population of large-textured (and even ground-mesh-ampli-
fied) terrains in real time, with tens of thousands of natural elements. We use a pre-
classification of ground textures, and powerful streaming and instancing algorithms.
For each frame, the selection of textures and seeds is performed entirely on the GPU,
driven by an optimal combination of two visibility algorithms. The choice of the ren-
dering algorithms is thus independent of the previous step. Our animations contain no

12 1Yacine Amara, 2Sylvain Meunier and 3Xavier Marsault

popping effects that could be due to aggressive LODs or rough simplifications. One
of our future tasks will be to process “clusters” and “metaseeds” in order to obtain de-
tailed ecosystem display. A challenge will be to apply smoothly-controlled on-the-fly
amplification techniques to all textures, in conjunction with seasonal behavior. The
TLM algorithm will also be extended to deal with planetary systems.

References

1. AMAP - botAnique et bioinforMatique de l'Architecture des Plantes, http://amap.cirad.fr/
2. Asirvatham, A., Hoppe H.: Terrain Rendering Using GPU-based Geometry Clipmaps. In:

GPUGems2. Addison Wesley (2005)
3. Balogh, A.: Real-time Visualization of Detailed Terrain. Thesis of Automatic and Compuing

University of Budapest (2003)
4 Blanchet, J., Forbes, F., Schmid, C.: Markov Random Fields for Recognizing Textures Mod-

eled by Feature Vectors. International Conference on Applied Stochastic Models and Data
Analysis, France (2005)

5. Dachsbacher, C., Vogelgsang, C., Stamminger, M.: Sequential Point Trees. ACM Trans. On
Graphics (2003)

6. Decaudin, P., Neyret, F.: Rendering Forest Scenes in Real-Time. Eurographics Symposium
on Rendering. Norrköping, Sweden (2004)

7. Decoret, X., Durand, F., Sillion, F.X., Dorsey, J.: Billboard Clouds for Extreme Model Sim-
plification. Proceedings of the ACM Siggraph (2003)

8. Deussen, O., Colditz, C., Stamminger, M., Drettakis, G.: Interactive Visualization of Com-
plex Plant Ecosystems. Proceedings of the IEEE Visualization Conference (2002)

9. Deussen, O., Hanrahan, P., Lintermann, B., Mech, R., Pharr, M., Prunsinkiewicz, P.: Realis-
tic Modeling and Rendering of Plant Ecosystems. Computer Graphics, Siggraph (1998)

10. Eingana: « Le premier atlas vivant en 3D et images satellite », Cdrom, EMG (2001)
11. Fuhrmann, A., Mantler, S., Umlauf, E.: Extreme Model Simplification for Forest Render-

ing. Eurographics Workshop on Natural Phenomena (2005)
12. Gilet, G., Meyer, A., Neyret, F.: Point-based Rendering of Trees. Eurographics Workshop

on Natural Phenomena (2005)
13. Roger, D., Assarson, U., Holzschuch, N.: Whitted Ray-Tracing for Dynamic Scenes using a

Ray-space Hierarchy on the GPU. Proc. of the Eurographics Symp. on Rendering (2007)
14. Lane, B., Prunsinkiewicz, P.: Generating Spatial Distributions for Multilevel Models of

Plant Communities. Proceedings of Graphics Interface (2002)
15. Lefebvre, S.: Modèles d’Habillage de Surface pour la Synthèse d’Images. Thesis of Joseph

Fourier University, Gravir/Imag/INRIA. Grenoble, France (2005)
16. Lefohn, A.E., Kniss, J., Strzodka, R., Sengupta, S., Owens, J.D.: Glift: Generic, Efficient,

Random-access GPU Data Structures. ACM Transactions on Graphics (2006)
17. Lindstrom, P., Pascucci, V.: Terrain Simplification Simplified: a General Framework for

View-dependant Out-of-core Visualization. IEEE Trans. on Vis. and Comp. Graphics (2002)
18. Lintermann, D., Deussen, O.: Xfrog. http://www.xfrogdownload.com
19. Meyer, A., Neyret, F. Textures Volumiques Interactives. Journées Francophones d'Informa-

tique Graphique, AFIG (1998) 261-270
20. Park, S.K., Miller, K.W.: Random Number Generators: Good Ones Are Hard To Find.

Com. of the ACM vol 31, (1998) 1192-1201
21. Premoze, S., Thompson, W.B., Shirley, P.: Geospecific Rendering of Alpine Terrain. De-

partment of Computer Science, University of Utah (1999)
22. RGD73-74: Régie de Gestion des Données des Deux Savoies. http://www.rgd73-74.fr.
23. Smith, A.R.: Plants, Fractal and Formal Languages. Proceedings of Siggraph (1984)

A GPU Framework for the Visualization and On-the-fly Amplification of Real Terrains 13

24. Trias-Sanz, R., Boldo, D.: A High-Reliability, High-Resolution Method for Land Cover
Classification Into Forest and Non-forest. 14th Conf. on Image Analysis, Finland (2005)

25. Seoane, A., Taibo, J., Fernandez, L.: Hardware-independent Clipmapping, WSCG2007, In-
ternational Conference in Central Europe on Computer Graphics, Czech Republic (2007)

26. Wells, W.D.: Generating Enhanced Natural Environments and Terrain for Interactive Com-
bat Simulation (GENETICS), PhD of the Naval Postgraduate School (2005)

27. Boulanger, K., Pattanaik, S., Bouatouch, K.: Rendering Grass in Real Time with Dynamic
Light Source and Shadows. Irisa, internal publication n°1809 (2006)

28. Bittner, J., Wonka, P.: Visibility in Computer Graphics. Jour. of Env. and Planning (2003)

