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Abstract—Circuit prototyping on multi-FPGA (Field Pro-
grammable Gate Arrays) platforms is a widely used technique
in the VLSI (Very-Large-Scale Integration) context. Due to the
ever-increasing size of circuits, it is necessary to use partitioning
algorithms to place them on multi-FPGA platforms. Existing
partitioning algorithms focus on minimizing the cut size but do
not consider the critical path length, which can be degraded
when mapping long paths to multiple FPGAs. However, recent
studies try to consider the degradation of the critical path and
the target topology but these works still use cutting minimization
algorithms. In this work, we propose a mathematical model as an
integer program (IP) based on the Red-Black Hypergraph model
that considers the minimization of the critical path degradation
and the target topology. We compare our partitioning results
with KHMETIS, a min-cut algorithm, and show a better critical
path for many circuit instances.

I. INTRODUCTION

OUR work concerns practical improvements of the elec-
tronic circuit design chain. The typical hardware design

flow includes different steps, such as floor planning, place-
ment, and routing, that may concern very large logic circuits.
To deal with such large circuits, the methods involved may
benefit from divide-and-conquer approaches that allow for
working locally on separate parts of the circuit, greatly reduc-
ing the work on the global circuit. Such a divide-and-conquer
approach also enables circuit prototyping on a multi-FPGA
platform, where the circuit is too large (in terms of resource
consumption) to be implemented on a single FPGA. In such
cases, a strong constraint is to mitigate a possible increase in
the signal propagation delay of the longest combinatorial path,
known as the critical path. Indeed, in synchronous circuits,
the critical path length determines the maximum frequency
at which the circuit may operate; mapping long paths across
several FPGAs is likely to degrade the critical path.

Circuit partitioning is both an essential step in the design
flow of electronic circuits, and a challenging multi-constraint
optimization problem. It must address both the multi-resource
issue (i.e., capacity limits on each FPGA and their inter-
connection links) and the minimization of the critical path
degradation.

Traditional partitioning tools use the now classic multi-level
scheme (see Fig. 1) consisting of three phases: coarsening,
initial partitioning, and refinement [1]. The coarsening phase
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Fig. 1. Multi-level scheme

uses a recursive clustering method to transform the circuit
model, a hypergraph, into a smaller one. During the second
phase, an initial partitioning is computed on the smallest
coarsened hypergraph. Finally, for each coarsening level, the
solution for the coarser level is extended to the finer level and
then refined using a local refinement algorithm. The initial
partitioning algorithm presented in this paper concerns the first
step of the multilevel framework described above.

Our work focuses on balanced hypergraph partitioning, in
which our objective functions are both path-cost minimization
and the classical min-cut objective that is still relevant to us.
The hypergraph model we consider in our research context
consists of a union of directed acyclic hypergraphs (DAH) [2].
The global hypergraph is assumed to be connected; otherwise,
its disconnected components are processed independently.
The source and sink vertices of each DAH (which represent
registers and I/O ports) are labeled red, while other vertices are
black. Red vertices can be shared by multiple DAHs, which
makes the global hypergraph connected. A path-cost function
models the impact of a cut on the red-to-red paths during
partitioning. Each partition of a hypergraph will result in cuts
along some paths, inducing additional traversal costs. Our aim
is to find a partition of minimum path cost, such that the size of
the cut is also minimized. Our research context only considers
the paths between two red vertices and a non-uniform cut cost
between parts.



The classical approach is to model this problem with a hyper-
graph, using cost functions that minimize cut size. However,
it has been shown in [3] that the cut size does not address
the path cost efficiently during the hypergraph partitioning
procedure. This is why several authors proposed pre- and/or
post-processing steps in order to reduce the degradation of
cut paths [3], [4], [5]. In this paper, we devise a dedicated
integer programming model that minimizes path cost degra-
dation during partitioning, based on the red-black hypergraph
structure, which can be used as an initial partitioning method
in a multilevel framework.

The remainder of the paper is organized as follows: Section 2
presents a reminder of our red-black hypergraph structure as
well as previous works. Section 3 describes our coarsening
scheme before the initial partitioning and the integer program-
ming model. Our experiments are outlined in Section 4. We
conclude and give perspectives in Section 5.

II. PRELIMINARIES

In this part, we define the notations and definitions used in
this work.

A. Definitions and Notations

Let H def
= (V,A,Wv,Wa) be a directed hypergraph, defined

by a set of vertices V and a set of hyperarcs A, with a vertex
weight function Wv : V → R+ and a hyperarc weight
function Wa : A −→ R+. Every hyperarc a ∈ A is a subset
of vertex set V: a ⊆ V . Let s+(a) be the source vertex set
of hyperarc a, and s−(a) its sink (destination) vertex set. We
consider here, without loss of generality, that each hyperarc
has a single source, so ∀a, |s+(a)| = 1. As hyperarcs connect
vertices, let Γ(v) be the set of neighbor vertices of vertex v,
and Γ−(v) ⊆ Γ(v) and Γ+(v) ⊆ Γ(v) the sets of its inbound
and outbound neighbors, respectively.

In the model we propose, hypergraphs that model circuits are
be represented as sets of interconnected DAHs, according to a
red-black vertex coloring scheme. Red vertices correspond to
I/O (Inputs/Outputs) ports and registers, and black vertices to
combinatorial circuit components. Let VR ⊂ V and VB ⊂ V
be the red and black vertex subsets of V , such that VR∩VB =
∅ and VR ∪ VB = V . A hypergraph or sub-hypergraph H is
a DAH iff its red vertices vR ∈ VR are either only sources or
sinks (i.e., Γ−(vR) = ∅ or Γ+(vR) = ∅), and no cycle path
connects a vertex to itself.

Using this definition, we can represent circuit hypergraphs as
red-black hypergraphs, i.e., sets of DAHs that share some
of their red vertices. Let H(V,A)

def
= {Hi, i ∈ {1 . . . n}}

be a red-black hypergraph, such that every Hi is a DAH
and an edge-induced sub-hypergraph of H. Consequently,
V =

⋃
i Vi, A =

⋃
i Ai, VR =

⋃
i VR

i , and VB =
⋃

i VB
i .

Moreover, ∀i, j with i ̸= j, if Vi,j = Vi ∩ Vj ̸= ∅, then Hi

and Hj share source and/or sink vertices, i.e., Vi,j ⊂ VR.

In this model, the paths in H to consider when address-
ing the objective of minimizing path-cost degradation during

partitioning are only the paths interconnecting red vertices,
as these red-red paths represent register-to-register paths in
combinatorial circuits. Since only red vertices are shared
between DAHs in H, red-red paths only exist within a single
DAH and can never span across several DAHs.

Let us define P as the set of red-red paths in H, such
that P

def
= {p|p is a path in H ∈ H}. From these paths

and a function dmax(u, v), which computes the maximum
distance between vertices u and v of some DAH H, we
can define the longest path distance for H as: dmax(H)

def
=

max(dmax(u, v)|u, v ∈ H) and, by extension, for H, as:
dmax(H)

def
= max(dmax(H)|H ∈ H).

A partition Π of H is a splitting of V into vertex subsets πi,
called parts, such that:

(i) all parts πi, given a capacity bound M , respect the
capacity constraint: ∑

v∈πi

Wv(v) ≤ M

(ii) all parts are pairwise disjoint:

∀i ̸= j, πi ∩ πj = ∅

(iii) the union of all parts is equal to V:⋃
i

πi = V

Consequently, in our model, the distance between two vertices
u and v may increase during partitioning due to the additional
cost of routing paths between two (or more) parts. Let Dkk′

be the penalty associated with parts k and k′ such that if u is
in part k and v is in part k′, then:

dΠmax(u, v) ≥ dmax(u, v) +Dkk′ (1)

For a given partition Π of H, the path-cost is defined by the
function: fp(HΠ) = max(dmax(HΠ)|H ∈ H).

Let a red-black hypergraph H and a partition Π, the con-
nectivity λΠ(a) of some hyperarc a ∈ A is the number of
parts connected by a. If λΠ(a) > 1, then a is said to be cut;
otherwise, it is entirely contained within a single part and is
not cut. The cut of partition Π is the set ω(Π) of cut hyperarcs,
i.e., ω(Π)

def
= {a ∈ A, λΠ(a) > 1}. The cut size is defined as

fc
def
=
∑

a∈ω(Π) Wa(a). If all hyperarcs have the same weight
(equal to 1), the cut size is equal to |ω(Π)|. Another cut metric
used by some partitioning tools to measure the quality of parti-
tioning is called connectivity-minus-one [6]. The connectivity-
minus-one cost function fλ of some partitioned hypergraph
HΠ is defined as: fλ =

∑
a∈A(λΠ(a)− 1)×Wa(a).

B. Previous work

Several approaches in the literature have been attempted to
improve the performance of circuit partitioning. We present
some recent work on circuit partitioning for rapid prototyping
that considers performance constraints. Many of these works



attempt to tweak existing min-cut partitioning tools, which
are used as black boxes, to consider additional constraints.
For example, [3] presents a multi-objective approach based
on HMETIS. The authors compute the K most critical paths at
each partitioning step, using a metric cost that considers the
critical path length, the cut number along critical paths, and
the weight of the hyperarcs associated with the critical paths.
Reference [4] compares a classical method using HMETIS
for partitioning followed by a placement algorithm with a
derived approach consisting of placement and routing during
the partitioning step. The results show better critical path
values compared to the two-step approach. More recently, [5]
performs some pre- and post-processing on the hypergraph
to capture the critical path minimization objective within
the cut-size metric, using HMETIS as the partitioning tool.
Reference [7], presents an IP model to address the hypergraph
partitioning problem. The model is not dedicated to mapping
and critical path minimization but to minimize the cut cost.

III. CONTRIBUTIONS

We now present our core contribution. The first part consists of
a coarsening algorithm to reduce the size of the hypergraph.
In the second part, we present our IP model used as initial
partitioning.

A. Coarsening method

The heavy-edge matching (HEM) approach for graph coars-
ening presented in [8] is widely used in hypergraph and
graph partitioning tools [9], [10] and yields efficient results
in many cases. Our coarsening algorithm is based on a heavy-
edge matching approach. It consists of reducing the instance’s
size while minimizing the merged vertices’ weight differences
as much as possible. The risk in merging vertices is to
end up with disproportionate weights of vertices, which may
prevent the initial partitioning from exploring different solu-
tions. However, in the context of critical path minimization,
it may be interesting to merge all vertices along the critical
path into one large vertex. This method is not necessarily
interesting when the circuit contains many critical or semi-
critical paths. It is, therefore, necessary to find a compromise
between creating a large vertex by securing the cut along the
critical path and balancing the fusion to allow a more practical
exploration search during the initial partitioning phase. The
vertex criticality model the value of the longest path traversing
the vertex. Our algorithm groups vertices by criticality to favor
the grouping of critical paths. Vertices with a smaller weight
are selected to favor balanced coarsening.

B. Integer Program

The objective of the IP model is to minimize the degradation
of the critical path, so we need to calculate the maximum
degradation among all possible degradations. We also need
to model the target topology to consider the different delays
between each part. Cut minimization tools do not address these
two aspects: path length and topology. Cut minimization tools
only limit the connections between parts. As this objective

Set Definition
V set of vertices
E set of hyperedges
J set of jobs
Ol ordered set of operations of job l, (i ∈ Ol), where Ol1 and Oln′

are the first and the last elements of Ol

i,i′ vertices/operation index (i, i′ ∈ V)
j, j′ hyperedges index (j, j′ ∈ E)
l, l′ job index (l, l′ ∈ J)
k part index

TABLE I
INDICES AND SET DEFINITIONS

Parameter Definition
n number of vertices
m number of hyperedges
hij 1 if vertex i is connected to hyperedge j, 0 otherwise
ckr capacity of part k for resource r
qir quantity of resource r, required by i
di propagation time of vertices (operation) i
Dk,k′ delay between part k and k′

Wv vertex weight
Wa hyperedge weight

TABLE II
PARAMETERS DEFINITIONS

is still essential in practice, we add a second objective to
our model: minimizing the connectivity minus one. As the
paths between two red vertices do not contain cycle, it is
possible to see the chain of black vertices in a path as a
sequence of operations/tasks i associated with a job l. In
our model, we consider scheduling constraints to minimize
the impact of partitioning on the critical path. Given a path
(job) p = v0, v1, v2, the critical time associated with the path
equals

∑
v∈p dv . If vertices (tasks) belonging to p are placed

in different parts, then a time penalty must be added to the
total time of p. A summary of the integer model can be found
in Table I, the parameters in Table II, and the variables in
Table III. Below is the integer program with two objectives
2a for critical path minimization and 2b for connectivity cost
minimization:

min zmax (2a)

min
∑
j

Wj
a

(∑
k

yjk − 1

)
(2b)

subject to :
∑
k

xik = 1, ∀i (2c)

hijxik ≤ yjk, ∀i, j, k (2d)∑
i

qirxik ≤ ckr, ∀k, r (2e)∑
i,i′∈Ol

di + xikxi′k′Dkk′ ≤ zl, ∀k, k′, l (2f)

zl ≤ zmax, ∀l (2g)
xik, yjk ∈ {0, 1}, zl ∈ N ∀i, j, k, l (2h)

Constraint 2c states that each vertex is mapped onto one part.
Constraint 2d guarantees that yjk equals the connectivity cost
associated with hyperedge j. The constraint 2e ensures the



Variable Definition
xik 1 iff the vertex i is mapped onto part k, 0 otherwise
yjk 1 iff the hyperedge j has a vertex placed on part k
zl completion time of job l
zmax maximum completion time of jobs

TABLE III
VARIABLES DEFINITIONS

capacity constraint is respected. The constraints 2f and 2g
determine the value of the delay of the job (path) and the
maximum delay (critical path). The constraint 2h are the non-
negativity and integrity conditions on the variable.

There are symmetries in the solution space in hypergraph
partitioning for cut size minimization. Indeed, if there are ω
hyperedges between parts, ω remains unchanged regardless of
the labels of the parts. On the other hand, in our problem,
we are trying to minimize the path cost, which is degraded
by routing paths between parts that are not always fully
connected. There are models for partitioning graphs and hy-
pergraphs with symmetry-breaking constraints [11]. However,
these constraints are too restrictive for the solution space
associated with path cost. In our problem, the target topology
defines a time penalty associated with path routing. As a result,
we cannot consider all partitions with the same subset of
vertices but different labels, identical, from a routing point
of view. An example can be found in Figure 2. Note that
some symmetries exist, for example: if we take the partition
a, shown in Figure 2. It is possible to create a partition a′

by swapping the vertices of π0 and π3 and of π1 and π2.
Future work will involve improving the model to remove these
symmetries.

IV. EXPERIMENTAL RESULTS

To validate our models and algorithms, we have performed
experiments on benchmarks [12] of logic circuits. These
circuits consist of acyclic combinatorial blocks, bounded by
their input and output registers. Every combinatorial block can
therefore be modeled as a DAH. Their computation time is
conditioned by their critical path, defined as the longest path
between two registers (i.e., two red vertices). Our work aims
at minimizing the degradation of the critical path during parti-
tioning according to the target topology. For each instance, we
use topology data to define a traversal cost d(v) for each vertex
v, corresponding to the traversal time of a logic element. As
the degradation between the parts can be non-homogeneous,
we have defined several architecture topologies composed of
four elements. The test architecture is a chain π0, π1, π2, π3.
We did not consider the fully connected topology to highlight
the advantage of our topology-aware algorithms over regular
partitioners like KHMETIS. To solve the initial partitioning
problem, we use Gurobi Optimiser version 9.1.2 with a time
limit set to 600s. During the refinement phase, we use the
DKFM [2], a local search algorithm dedicated to minimizing
path length. This algorithm is inspired by FM [13], a local
search algorithm for minimising the number of hyperedges
between two parts. We use KHMETIS rather than HMETIS

a)

b)

Fig. 2. In this example, the path p = v0, v1, v2, v3, v4, v5 is partitioned into
4 parts. In partition a, the path admits a routing penalty of 3D, where D
is the traversal time between parts. In partition b, the routing penalty is 5D.
Since there is no route between π0 and π2, we must necessarily pass through
π1 to get there, which gives a cost of 2D to get from π0 to π2. The same
goes for π1 to π3. From the point of view of the size of the cut, partition
a allows a cost of 3 cut edges, as does partition b. Partitions a and b are
identical and symmetrical for cut minimization.

because HMETIS is based on recursive bipartitioning methods,
which often do not respect the balance constraint. We use the
maximum criticality as a weight for the hyper-edges as [2]
to guide KHMETIS to minimise the number of cuts along the
critical path as much as possible.

A. Results

Table IV shows that our approach gives better results. Indeed,
the first coarsening step allows the grouping of the most
critical vertices while maintaining a balance in the reduced
hypergraph. Finally, since the initial partitioning considers the
topology, it allows for finding an appropriate placement before
the refinement phase. For instances B14 and B17, the time
limit is not sufficient for Gurobi to find a good solution. A
method needs to be found to better reduce the size of the
instance while retaining sufficient criticality information for
the integer program. Table V shows us a better performance
of KHMETIS for the function fλ. Note that our approach
sometimes allows a better solution for both fp and fλ.



TABLE IV
RESULTS FOR PATH-COST fp IN NANO-SECONDE (NS)

Instance KHMETIS (ns) Multilevel+IP+DKFM (ns)
b01 60 50
b02 30 30
b03 50 40
b04 60 60
b05 50 50
b06 40 30
b07 90 60
b08 90 70
b09 40 40
b10 80 80
b11 80 70
b12 40 40
b13 30 20
b14 40 100
b17 200 215.52

TABLE V
RESULTS FOR CONNECTIVITY fλ

Instance KHMETIS Multilevel+IP+DKFM
b01 15604 24288
b03 13903 10922
b03 21297 29962
b04 38320 103659
b05 30753 70329
b06 20526 19043
b07 30372 114329
b08 28170 44511
b09 24830 24445
b10 32989 41600
b11 49883 57329
b12 30743 99448
b13 4567 6000
b14 214772 1578740
b17 846531 3149961

V. CONCLUSION

In this paper, we present a multilevel approach to the problem
of red-black hypergraph (circuit) partitioning on not fully
connected topologies. Our approach consists of exploiting
the vertices’ criticality to group the critical paths in the
same part during the coarsening phase. Finally, we propose
a mathematical model considering the two objectives: fp and
fλ for the initial partitioning. For the refinement, we use
the DKFM algorithm. Our results show that our approach is
better at minimizing fp than a min-cut partitioning tool, even
if it is oriented towards the criticality of hyperarcs. It may
be interesting to test our approach on other more extensive
benchmarks, as well as to test other coarsening algorithms to
improve the results of initial partitioning based on our IP.
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