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Abstract

Let 𝛶 be the configuration space over a complete and separable metric base space, endowed
with the Poisson measure 𝜋. We study the geometry of 𝛶 from the point of view of optimal
transport and Ricci-lower bounds. To do so, we define a formal Riemannian structure on𝒫1(𝛶),
the space of probability measures over 𝛶 with finite first moment, and we construct an extended
distance𝒲 on𝒫1(𝛶). The distance𝒲 corresponds, in our setting, to the Benamou–Brenier
variational formulation of the Wasserstein distance. Our main technical tool is a non-local
continuity equation defined via the difference operator on the Poisson space. We show that the
closure of the domain of the relative entropy is a complete geodesic space, when endowed with
𝒲. We establish non-local infinite-dimensional analogues of results regarding the geometry
of the Wasserstein space over a metric measure space with synthetic Ricci curvature bounded
below. In particular, we obtain that:
• the Ornstein–Uhlenbeck semi-group is the gradient flow of the relative entropy;
• the Poisson space has a Ricci curvature, in the entropic sense, bounded below by 1;
• the distance𝒲 satisfies an HWI inequality.
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1 Introduction

The theory of optimal transportation, and in particular theWasserstein geometry, plays a prominent
role in the study of the geometry of metric measure spaces and of functional inequalities on them.
For instance, the seminal contributions [Stu06; LV09; AGS14b] establish a synthetic theory of Ricci
curvature lower bounds for metric measure spaces, subsuming and extending the classical theory on
smooth Riemannian manifolds; see, for instance, [Vil09, Part III] for a broad introduction to this
topic.
Later developments extend this approach to various settings, including finite spaces equipped with
a discrete distance. In this case, [Maa11; Mie13] provide a fundamental intuition regarding the
generalization of the Benamou–Brenier dynamical formulation of the 𝑊2 transport distance to
discrete spaces, where there is no geodesic associated with𝑊2.
Following the above line of research, in this paper we develop a Wasserstein geometry on configura-
tion spaces, which are prototypical infinite-dimensional non-local spaces. In particular, our work
establishes that the configuration sapce equipped with the Poisson measure has Ricci curvature
bounded from below by 1, in a synthetic sense.

1.1 Main results

The configuration space 𝛶 over a metric space 𝑋 is the set of non-negative Borel measures on 𝑋 that
are integer-valued on balls. Provided 𝑋 is equipped with a 𝜎-finite measure𝑚, the Poisson measure
𝜋 with intensity 𝑚, e.g. [LP18, Ch. 3], is a canonical reference probability measure on 𝛶 . In this
paper, we construct a distance𝒲 on𝒫1(𝛶), the space of probability measures over 𝛶 with finite
first moment (see Section 2.4 for definitions). The geometric properties of (𝒫1(𝛶),𝒲) account for
synthetic Ricci-curvature lower bounds associated with (𝛶, 𝜋). To state our result, we consider the
Ornstein–Uhlenbeck semi-group 𝖯 = {𝖯𝑡 ∶ 𝑡 ≥ 0} which plays the role of the heat semi-group in
our setting, as well as its dual semi-group 𝖯⋆ = {𝖯⋆𝑡 ∶ 𝑡 ≥ 0} acting on measures (see Section 3 for
definitions and details). Let us also writeℋ( ⋅ | 𝜋) for the relative entropy with respect to 𝜋, and
𝒟omℋ ≔ {𝜇 ∈ 𝒫(𝛶) ∶ ℋ(𝜇 | 𝜋) < ∞}.

Theorem. The distance𝒲 satisfies the following properties:

• (Theorem 5.15) the space (𝒫1(𝛶),𝒲) is a complete geodesic extended-metric space.

• (Theorem 5.17)𝒲 satisfies the Talagrand inequality

𝒲2(𝜇, 𝜋) ≤ ℋ(𝜇 | 𝜋), 𝜇 ∈ 𝒫1(𝛶).

Furthermore, the non-extended metric space (𝒟omℋ,𝒲) captures the Ricci-curvature lower bounds
of (𝛶, 𝜋) in the following sense:

• (Theorem 5.26) The dual semi-group 𝖯⋆ exponentially contracts𝒲 with rate 1:

𝒲(𝖯⋆𝑡 𝜇0, 𝖯⋆𝑡 𝜇1) ≤ e−𝑡𝒲(𝜇0, 𝜇1), 𝑡 ≥ 0, 𝜇0, 𝜇1𝒟omℋ .

• (Theorem 5.27) The Ornstein–Uhlenbeck semi-group satisfies an Evolution Variation Inequality

(EVI) ℋ(𝖯⋆𝑠 𝜇 | 𝜋) +
1
2
d
d𝑠𝒲

2(𝖯⋆𝑠 𝜇, 𝜉) +
1
2𝒲

2(𝖯⋆𝑠 𝜇, 𝜉) ≤ ℋ(𝜉 | 𝜋), 𝑠 ≥ 0, 𝜇, 𝜉 ∈ 𝒟omℋ .

• (Theorem 5.28) The relative entropy is 1-geodesically convex on𝒟omℋ with respect to𝒲 .

• (Theorem 5.30) The relative entropyℋ, the distance𝒲 , and the Fisher information ℐ satisfy the HWI
inequality

ℋ(𝜇 | 𝜋) ≤ 𝒲(𝜇, 𝜋)
√
ℐ(𝜇 | 𝜋) − 1

2𝒲
2(𝜇, 𝜋), 𝜇 ∈ 𝒟omℋ .
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Remark 1.1. On manifolds, the contraction of the heat semi-group with respect to the Wasserstein
distance, the convexity of the relative entropy with respect to Wasserstein geodesic, and the EVI-
gradient flow are all equivalent to have a Ricci curvature bounded from below. They do not coincide
in our infinite-dimensional non-local setting.

1.2 Summary of our construction

We construct the distance𝒲 on𝒫1(𝛶), the space of all probability measures on 𝛶 with locally finite
intensity (see Definition 2.9 below). The discrete difference operator on functions 𝐹∶ 𝛶 → ℝ is

𝖣𝐹∶ 𝛶 × 𝑋 ∋ (𝜂, 𝑥) ↦ 𝖣𝑥𝐹(𝜂) ≔ 𝐹(𝜂 + 𝛿𝑥) − 𝐹(𝜂),

and we denote by 𝖣⋆ its formal adjoint, called Skorokhod divergence.
On𝒫1(𝛶), we consider a formal Riemannian structure induced by 𝖣⋆ and by the Poisson measure 𝜋,
together with the corresponding intrinsic distance à la Benamou–Brenier. Precisely, for a curve
𝜇̄ = {𝜇𝑡 ∶ 𝑡 ∈ [0, 1]} of absolutely continuous measures with 𝜇𝑡 = 𝜌𝑡𝜋 ∈ 𝒫1(𝛶), 𝑡 ∈ [0, 1], and a
curve of tangent vectors 𝑤̄ = {𝑤𝑡 ∶ 𝑡 ∈ [0, 1]} with 𝑤𝑡 ∈ 𝐿1(𝜋 ⊗𝑚), we informally say that the pair
(𝜇̄, 𝑤̄) is a solution to the continuity equation if

(1.1) 𝜕𝑡𝜌𝑡 + 𝖣⋆(𝑤𝑡𝜌̂𝑡) = 0, 𝑡 ∈ [0, 1].

Here 𝜌̂𝑡 is a tangent vector built from 𝜌𝑡, accounting for the non-locality of 𝖣 (see below for precise
definitions). We endow𝒫1(𝛶) with the dynamical transport distance𝒲 defined by

𝒲2(𝜇0, 𝜇1) = inf ∫
1

0
‖𝑤𝑡‖2𝜇𝑡d𝑡, 𝜇0, 𝜇1 ∈ 𝒫1(𝛶),

where the infimum runs over all solutions (𝜇̄, 𝑤̄) to (1.1) with 𝜇̄ joining 𝜇0 to 𝜇1, and where we let

‖𝑤‖2𝜇 ≔ ∫ |𝑤(𝜂, 𝑥)|2𝜌̂(𝜂, 𝑥)𝜋(d𝜂)𝑚(d𝑥).

This distance 𝒲 is extended, meaning that it may take the value +∞. However, in view of the
Talagrand inequality, it is finite on𝒟omℋ. Restricting our attention to the𝒲-closure𝒫∗

1 (𝛶) of the
domain of the relative entropy, we see that (𝒫∗

1 (𝛶),𝒲) is a complete non-extended geodesic space.
We actually esyablish our functional inequalities on𝒫∗

1 (𝛶).

1.3 Motivation

Developing a theory of optimal transport in the setting of the Poisson space (𝛶, 𝜋), and understanding
the curvature of this space from the point of view of the theory of synthetic Ricci curvature bounds
serve as our main guidelines. Classically, the theory of synthetic Ricci curvature bounds comes in
two flavours:

(i) The Bakry–Émery theory [BÉ85; BGL14], also referred to as the Eulerian formalism, is concerned
with a Markov semi-group 𝖯 = (𝖯𝑡)𝑡≥0. This theory characterizes Ricci-curvature lower bounds by a
convexity-type inequality of the relative entropy along the semi-group. For diffusion semigroups,
this convexity property is a consequence of the celebrated sub-commutation inequality between
the semi-group and the associated carré du champ operator. In the case of the Poisson space, the
canonical Markov semi-group is the Ornstein–Uhlenbeck semi-group and it is known that it satisfies
a Bakry–Émery [Las16, Lem. 6]. Namely, we have that 𝖣𝖯𝑡 = e−𝑡 𝖯𝑡𝖣. However, due to the non-
diffusive nature of the Ornstein–Uhlenbeck semi-group on the Poisson space, it is rather difficult
to draw consequences of this property in this case. Nevertheless, [Cha04] uses the Bakry–Émery
commutation in order to derive a modified logarithmic Sobolev inequality for the Poisson measure
(first obtained by [Wu00] with different methods).
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(ii) The Lott–Sturm–Villani theory [Stu06; LV09; AGS14b], also referred to as the Lagrangian for-
malism, is concerned with a metric measure space. It characterizes Ricci-curvature lower bounds by
a convexity-type inequality of the relative entropy along the geodesics of optimal transport. Since
there is no canonical distance on the configuration space, this far-reaching theory simply does not
apply. The absence of a canonical distance is a typical feature of infinite-dimensional spaces.

Despite several works (see below) extending the Lagrangian side of the theory for non-diffusive
semi-groups or discrete spaces, a generalization of those techniques to non-local infinite-dimensional
spaces, such as the configuration space, have so far remained out of reach. Our work tackles this
issue and provides foundational tools for the development of a Wasserstein geometry and theory of
Ricci curvature bounds for point processes on general state spaces with no assigned geometry.

1.4 Related works

1.4.1 Entropic Ricci curvature for Markov chains and jump processes

[Maa11; Mie13] and the subsequent works [EM12; FM16] initiated the study of optimal transport and
Ricci-curvature bounds for non-local operators. More precisely, they construct a transport distance,
based on a non-local continuity equation, and study related functional inequalities for finite Markov
chains. This approach is partially generalized to jump processes on ℝ𝑛 in [Erb14].
In particular, the idea of using an analogue of the Benamou–Brenier formulation involving a discrete
continuity equation goes back to [Maa11], while our definition of the Lagrangian, and the formulation
of the continuity equation through a couple (𝜇̄, 𝜈̄) is an adaptation to the Poisson setting of the ones
in [DNS09] generalizing the Benamou–Brenier formula in a continuous setting, and in [Erb14] for
jump processes on ℝ𝑑. In the case of finite Markov chains on some space 𝐸, [Maa11] shows that the
interior of𝒫(𝐸) endowed with𝒲 is a Riemannian manifold. In this spirit, Corollary 5.20 identifies
a non-trivial component of𝒫1(𝛶) on which𝒲 is a complete geodesic space. No such identification
appears in [Erb14]. In particular, the work [Erb14] does not exclude that the topology generated
by𝒲 for jump processes is trivial. Let us further note that Poisson random measures naturally
appear in the study of Lévy processes through their jump measures. It would therefore be interesting
to know whether the results of [Erb14] can be recast in our setting via this identification.
The recent work [PRST20] generalizes this non-local Benamou–Brenier approach to rather gen-
eral jump processes. However, the jump kernel of the Poisson process does not satisfy [PRST20,
Assumption (3.4)].

1.4.2 Other transportation costs for the configuration space

[GHP21] studies optimal transport, more specifically, transport-entropy inequalities on the Poisson
space. There, N. Gozlan, G. Peccati and the second author circumvent the lack of canonical cost by
considering a non-linear generalization of the classical optimal transport problem. This generalized
optimal transport is fully theorized in [GRST17], and is particularly well suited to study discrete
spaces [GRST14]. One of their main result [GHP21, Thm. 1.2] is very close in spirit to our Talagrand
inequality for𝒲 (Theorem 5.17): they also obtain an upper bound of their transport cost𝕄2 by the
relative entropy. However, at the time of writing, no dynamical Benamou–Brenier formulation for
the generalized optimal transport of [GRST17] exists, and a comparison of those results seems out of
reach. Whether the transport cost of [GHP21] satisfies a displacement convexity inequality is an
interesting question outside of the scope of the current paper.

1.4.3 Other geometries on the configuration space

The configuration space over a Riemannianmanifold𝑋may be endowed with a differential geometry
lifted from that of the base Riemannian manifold. This geometry, defined and studied in [AKR98],
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arises from the continuous difference operator

𝛁𝐹∶ 𝛶 × 𝑋 ∋ (𝜂, 𝑥) ↦,→ ∇𝑧||||𝑧=𝑥𝖣𝑧𝐹(𝜂),

and the associated Dirichlet form

ℰ(𝐹) ≔ ∫
𝛶
∫
𝑋
‖𝛁𝜂𝐹(𝑥)‖2𝑇𝑥𝑋𝜂(d𝑥)𝜋(d𝜂).

The corresponding dynamic is that of the second quantization of the heat semi-group to the Poisson
space [Sur82]; while the Ornstein–Uhlenbeck semi-group studied in this paper corresponds to the
second quantization of the semi-group 𝖯𝑡𝑓 = e−𝑡 𝑓 for all 𝑓 ∈ ℱ(𝑋) and 𝑡 ≥ 0. [RS99] proves that
this geometry corresponds to that of the extended metric measure space (𝛶,𝑊2), where𝑊2 is the
Wasserstein 2 transport distance with respect to the Riemannian distance. Following [EH15], this
geometry on 𝛶 inherits both Ricci-curvature and Alexandrov-curvature lower bounds from the base
space. Two of the authors [DS21; DS22] have recently generalized these results to a large class of
metric measure spaces; while the third author also has proved analogous curvature bounds [Suz23]
in the setting of Dyson Brownian motion.
This geometry differs from the one we consider throughout the rest of the paper. For instance, the
process associated to this differential geometry is a diffusion process; while the Ornstein–Uhlenbeck
semi-group defines a jump process. Our analysis on the Poisson space also holds without any
geometric assumptions on the base space; while [AKR98; EH15] require that the space is a manifold
with some geometric assumptions.

1.4.4 Curvature of theWiener space

Together with Gaussian measures, Poisson random measures are ubiquitous in probability theory.
Among other common properties, they share the existence of an orthogonal systems of “chaoses”.
Consequently, they admit a “differential calculus”, known as the Malliavin calculus, completely
characterised by their probabilistic properties. In particular, we expect the geometric and functional
analytic results one can deduce from this differential calculus to be independent of properties of
the underlying space. In this regard, [FSS09] derives synthetic Ricci-curvature lower bounds for
infinite-dimensional Wiener spaces, equipped with a Gaussian measure, that are as good as the
finite-dimensional ones. Our result parallels theirs on the configuration space, equipped with a
Poisson measure. Let us however highlight two fundamental differences:

• The generator of the Ornstein–Uhlenbeck process on the Gaussian space is diffusive; while
our operator is purely non-local.

• TheWiener space comes naturally equipped with an extended distance, the so-calledCameron–
Martin distance, while their is no canonical distance on the configuration space.

1.5 Outline of the paper

Throughout the paper, we let 𝑋 be a complete and separable metric space. Section 2 recalls the
necessary definitions regarding the configuration space 𝛶 over 𝑋, and establishes some topological
results regarding the topology of point processes. Of particular importance, we define the space𝒫1(𝛶)
of point processeswith finite firstmoment andwe endow it with a Polish topology (Theorem2.11). We
show that mapping a point process in𝒫1(𝛶) to its reduced Campbell measure is an homeomorphism
(Theorem 2.10). In Section 3, we recall definitions regarding the Ornstein–Uhlenbeck semi-group 𝖯 as
well as the difference operator 𝖣 and their interactions with the relative entropyℋ and the Fisher
information ℐ.
In Section 4, we give a precise formulation to the continuity equation (1.1). We show (Proposition 4.3)
that the Ornstein–Uhlenbeck evolution is a solution to the continuity equation, and that every
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solution has a continuous representative (Theorem 4.11). We also obtain a closed formula for the
entropy production along solutions to the continuity equations (Theorem 4.13).
In Section 5.1, we define and study the Lagrangian ℒ and the action 𝒜 that are necessary to obtain
our transport distance𝒲. We also study a entropic regularization 𝒥𝜀 of𝒲, that is of independent
interest. We first state several properties of the Lagrangian (Lemmas 5.1, 5.2 and 5.5) necessary to
apply the direct method of the calculus of variations in order to prove existence of minimizing curves.
We also establish in Lemma 5.4 that the action of the Ornstein–Uhlenbeck semi-group contracts the
Lagrangian. We then define the action 𝒜 and verify the existence of minimizers in the infimum. In
that regard, we establish the compactness of sub-level sets in Lemma 5.9. After defining the extended
distance𝒲, we summarize its main properties in Theorem 5.15.
In Section 5.2, we show that𝒲 is finite on the domain ofℋ. Themain tool is the Talagrand inequality
(Theorem 5.17) comparing𝒲 andℋ. We then establish in Theorem 5.27 one of the main result of
this work: on the domain ofℋ the Ornstein–Uhlenbeck semi-group is an EVI-gradient flow for the
entropy. From this follows several important consequences such as the geodesic convexity of the
relative entropy in Theorem 5.28 and the HWI inequality Theorem 5.30.
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2 Topological results for point processes

2.1 Topological preliminaries for spaces of functions and measures

Given a measure 𝜇 on some measurable space, we write |𝜇| for its variation; and for a non-negative
measurable or 𝜇-integrable functions 𝑓, we write 𝜇(𝑓) = ∫ 𝑓d𝜇 for the integral of 𝑓 with respect
to 𝜇. We say that a locally convex topological vector space is complete if it is complete with respect to
each of the seminorms defining its locally convex topology.

2.1.1 The weak topology

Given a topological space (𝐸, 𝜏), we write𝔅(𝐸) for the Borel sets of𝐸, and𝔎(𝐸) for the Borel compact
sets. We writeℱ𝑏(𝐸) for the set of ℝ-valued bounded Borel functions, and 𝒞𝑏(𝐸) for those that are
bounded and continuous. We write𝒫(𝐸) for the set of all Borel probability, andℳ𝑏(𝐸) for the set of
Borel finite signed measures on 𝐸. For 𝐵 ∈ 𝔅(𝐸) we define the evaluation map 𝜄𝐵 ∶ 𝜆 ↦ 𝜆(𝐵) for
every Borel measure 𝜆. For 𝐹 ∈ ℱ(𝐸), we also write 𝜄𝐹 whenever this is well-defined. For an event
𝐵 ∈ 𝔅(𝐸), we also write 𝔅𝐵(𝐸) for the 𝜎-algebra of events depending only on 𝐵. More precisely,
𝔅𝐵(𝑋) is the 𝜎-algebra of all 𝐵′ ∈ 𝔅(𝑋) such that either 𝐵′ ⊂ 𝐵 or𝑋 ⧵𝐵 ⊂ 𝐵′. The spacesℱ𝑏(𝐸) and
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𝒞𝑏(𝐸) are endowed with the uniform norm under which they are Banach spaces. Likewise,𝒫(𝐸)
andℳ𝑏(𝐸) are always endowed with the weak topology, that is the initial topology associated with 𝜄𝐹 ,
𝐹 ∈ 𝒞𝑏(𝐸).
We also use the superscript+ to indicate a subset of non-negative functions ormeasures. For instance,
we writeℳ+

𝑏 (𝐸) for the cone of non-negative finite Borel measures, ℱ
+(𝐸) for the non-negative

Borel functions.

2.1.2 The vague topology

When (𝐸, 𝑑) is a metric space, we write𝔅0(𝐸) for the bounded measurable sets. We writeℱ0(𝐸) for
the space of bounded measurable that vanish outside of a bounded set, and 𝒞0(𝐸) for those that are
also continuous.
Given a closed and bounded 𝐵 ⊂ 𝐸, we write 𝒞𝑏,𝐵(𝐸) for the subspace of functions 𝑓 ∈ 𝒞0(𝐸)
vanishing outside of 𝐵; this set 𝒞𝑏,𝐵(𝐸) is equipped with the uniform norm, under which it is a
Banach space. The set 𝒞0(𝐸) can be endowed with the inductive limit topology associated to the
inclusions 𝒞𝑏,𝐸𝑛(𝐸) → 𝒞0(𝐸), where (𝐸𝑛) is any strictly increasing sequence of closed balls of 𝐸
whose union covers 𝐸. Since, for all 𝑛 ∈ ℕ, the topology induced on𝒞𝑏,𝐸𝑛(𝐸) by𝒞𝑏,𝐸𝑛+1(𝐸) coincides
with that of 𝒞𝑏,𝐸𝑛(𝐸), the inductive limit is strict, and by [Bou81, Prop. 9 (iii), p. II.35], 𝒞0(𝐸) is
complete. This topology is in general not metrizable. A sequence (𝑓𝑛) ⊂ 𝒞0(𝐸) converges to 𝑓 for
the inductive topology we just defined, provided there exists a closed ball 𝐵 such that the supports of
all the 𝑓𝑛’s are contained in 𝐵, and (𝑓𝑛) converges to 𝑓 in 𝒞𝑏,𝐵(𝐸). We endow the setℱ0(𝐸) with a
similar inductive limit topology. We also considerℳ0(𝐸) the space of signed Borel measures that
are finite on bounded sets. The setℳ0(𝐸) is endowed with the vague topology, that is the initial
topology associated with 𝜄𝐹 , 𝐹 ∈ 𝒞0(𝐸). The importance of the inductive-limit topology on 𝒞0(𝐸) is
highlighted by the fact that if 𝐹𝑛 → 𝐹 in 𝒞0(𝐸), then 𝜈(𝐹𝑛) → 𝜈(𝐹) for all 𝜈 ∈ ℳ0(𝐸).
Remark 2.1. All the objects associated with a metric space (𝐸, 𝑑) as above depend on the metric
structure of 𝑑 and not only on the topology generated by 𝑑. For instance, 𝑑 and 𝑑 ∧ 1 generate the
same topology. However, every set is bounded with respect to 𝑑 ∧ 1.

2.1.3 Topological properties of the weak and vague topology

Let us recall some fundamental results regarding the topology of the spaces of measures we consider.

Theorem 2.2. Assume either that (𝐸, 𝜏) is a Polish space (for statements regarding the weak topology);
or that (𝐸, 𝑑) is a complete and separable metric space (for statements regarding the vague topology).
Then:

(𝑖) The weak topology onℳ+
𝑏 (𝐸), resp. the vague topology onℳ

+
0 (𝐸), is induced by that of the simple

convergence on a countable set of𝒞𝑏(𝐸), resp.𝒞0(𝐸). Namely, there exists (ℎ𝑘) ⊂ 𝒞𝑏(𝐸), resp.𝒞0(𝐸),
such that the weak topology onℳ+

𝑏 (𝐸), resp. the vague topology onℳ
+
0 (𝐸), is the locally convex topology

generated by the seminorms
𝜇 ↦ |𝜇(ℎ𝑘)|, 𝑘 ∈ ℕ.

Furthermore, the spaces𝒫(𝐸),ℳ+
𝑏 (𝐸), andℳ

+
0 (𝐸) are Polish.

(𝑖𝑖) A set ∆ ⊂ ℳ0(𝐸) is vaguely relatively sequentially compact if and only if both of the following
conditions hold:

∀𝐵 ∈ 𝔅0(𝐸) sup
𝜇∈∆

|𝜇|(𝐵) < ∞;(2.1a)

∀𝐵 ∈ 𝔅0(𝐸) ∀𝜀 > 0 ∃𝐾𝜀 ∈ 𝔎(𝐸) ∶ sup
𝜇∈∆

|𝜇|(𝐵 ⧵ 𝐾𝜀) ≤ 𝜀.(2.1b)

A set ∆ ⊂ ℳ𝑏(𝐸) is weakly relatively sequentially compact if and only if (2.1a) and (2.1b) hold with
𝐵 = 𝐸.
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Proof. (𝑖) [Par67, Thms. 6.2, 6.5, & 6.6] for the case of𝒫(𝐸) with (𝐸, 𝜏) Polish. The case ofℳ+
𝑏 (𝐸)

is treated similarly. Now, assume that (𝐸, 𝑑) is complete and separable. Then it is also Polish,
thus, by the previous case, we can find a countable family (𝑔𝑘) ⊂ 𝒞𝑏(𝐸) that induces the weak
topology onℳ+

𝑏 (𝐸). We fix a point 𝑜 ∈ 𝑋, and we consider a sequence (𝑓𝑘) ⊂ 𝒞0(𝐸) such that
1𝐵(𝑜,𝑘) ≤ 𝑓𝑘 ≤ 1𝐵(𝑜,𝑘+1). We take (ℎ𝑘) an enumeration of {𝑓𝑗𝑔𝑖 ∶ 𝑗, 𝑖 ∈ ℕ}. Then

𝜌(𝜇, 𝜇′) ≔
∑

𝑘∈ℕ
2−𝑘

|||||||
∫ ℎ𝑘d(𝜇 − 𝜇′)

|||||||
,

is a distance metrizing the vague topology onℳ+
0 (𝐸), and it is complete.

(𝑖𝑖) [Bog07, Thm. 8.6.2].

2.2 Point processes, intensity measures, Campbell measures, Laplace transforms

Let (𝑋, 𝑑) be a complete and separable metric space equipped with𝑚 ∈ ℳ+
0 (𝑋). We write 𝛶 = 𝛶(𝑋)

for the space of configurations over 𝑋, that is the ℕ0 ∪ {∞}-valued Borel measures on 𝑋 that are finite
on every bounded set.

Lemma 2.3 ([GHP21, Lem. 2.1]). The set 𝛶 is closed inℳ+
0 (𝑋). In particular, it is a Polish space.

A point process 𝜇 is any element of𝒫(𝛶). Fix a point process 𝜇. We write 𝐼𝜇 for the intensity measure
of 𝜇, that is

𝐼𝜇(𝐵) ≔ 𝜇(𝜄𝐵) = ∫ 𝜂(𝐵)𝜇(d𝜂), 𝐵 ∈ 𝔅(𝑋).

The reduced Campbell measure is

𝐶𝜇(𝐴 × 𝐵) ≔ ∬ 1𝐵(𝑥)1𝐴(𝜂 − 𝛿𝑥)𝜂(d𝑥)𝜇(d𝜂), 𝐴 ∈ 𝔅(𝛶), 𝐵 ∈ 𝔅(𝑋).

It is a well-known fact [LP18, Thm. 4.1] in the theory of point processes that 𝜇 is a Poisson point
process (with intensity 𝐼𝜇) if and only if 𝐶𝜇 = 𝜇⊗𝐼𝜇. We refer to this relation as to theMecke identity.
When 𝜇 is a Poisson point process, for all probability densities 𝑓 ∈ 𝐿1(𝜇), we have that

(2.2)
d𝐶𝑓𝜇

d(𝑓𝜇 ⊗ 𝐼𝑓𝜇)
(𝜂, 𝑥) = 𝑓(𝜂 + 𝛿𝑥)

∫𝛶 𝑓(𝛾 + 𝛿𝑥)𝜇(d𝛾)
, 𝜂 ∈ 𝛶, 𝑥 ∈ 𝑋.

However, for a generic point process 𝜇, the Campbell measure 𝐶𝜇 is not absolutely continuous with
respect to 𝜇 ⊗ 𝐼𝜇, see for instance, [OS16] for an explicit counter-example.
Finally, the Laplace transform of 𝜇 is the map

Λ𝜇(ℎ) ≔ ∫ exp(−𝜂(ℎ))𝜇(d𝜂), ℎ ∈ 𝒞+
0 (𝑋).

2.3 The weak convergence on𝒫(𝛶)
We define 𝒢 as the (algebraic) linear span of functions of the form e−𝜄ℎ for some ℎ ∈ ℱ+

0 (𝑋). Set
𝒮 ≔ 𝒢 ∩ 𝒞𝑏(𝛶). Let us recall the following characterization of the weak convergence on𝒫(𝛶).

Theorem 2.4 ([Kal17, Thm. 4.11]). The space𝒫(𝛶) is Polish. Moreover, for all (𝜇𝑛) ⊂ 𝒫(𝛶) and
𝜇 ∈ 𝒫(𝛶). Then,

(2.3)
[
𝜇𝑛

𝒫(𝛶)
,,,,,→
𝑛→∞

𝜇
]
⇔

[
𝜇𝑛(𝐹) → 𝜇(𝐹), 𝐹 ∈ 𝒮

]
⇔

[
Λ𝜇𝑛(ℎ) → Λ𝜇(ℎ), ℎ ∈ 𝒞+

0 (𝑋)
]
.
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In general, there exists a no countable set𝒟 ⊂ 𝒮 convergence-determining for the weak topology on
𝒫(𝛶). We now provide a partial ansatz to this result. For 𝜆 ∈ ℳ+

0 (𝑋), the class𝔅
𝜆
0(𝑋) of continuity

sets for 𝜆 consists of the sets 𝐵 ∈ 𝔅0(𝑋) such that 𝜆(𝜕𝐵) = 0. We then define

(2.4) 𝒫𝜆(𝛶) ≔
{
𝜇 ∈ 𝒫(𝛶) ∶ continuity sets for 𝜆 are also continuity sets for 𝐼𝜇

}
.

In particular, 𝜇 ∈ 𝒫𝜆(𝛶) whenever 𝐼𝜇 ≪ 𝜆.

Lemma 2.5. Take 𝜆 ∈ ℳ+
0 (𝑋). There exists a countable set 𝒢

𝜆 ⊂ 𝒢 such that the trace topology of
𝒫(𝛶) on𝒫𝜆(𝛶) is induced by the topology of simple convergence on 𝒢𝜆, namely it is induced by the
seminorms

(2.5) 𝜇 ↦ |𝜇(𝐹)|, 𝐹 ∈ 𝒢𝜆.

Remark 2.6. We could also use Theorem 2.2 (𝑖) to find a countable subset of 𝒞𝑏(𝛶) to construct the
seminorms. However, we cannot use𝒞𝑏(𝛶) in the definition of the continuity equation (𝐂𝐄𝑇) below.

Proof. By [Kal17, Lem. 1.9 (v)],𝔅𝜆
0(𝑋) is a dissecting ring in the sense of [Kal17, p. 24]. By [Kal17,

Lem. 1.9 (i)], there exists a countable dissecting ring ℑ𝜆 ⊂ 𝔅𝜆
0(𝑋). Let ℐ

𝜆 be the set of simple,
ℑ𝜆-measurable,ℚ ∩ [0, 1]-valued functions on 𝑋. In a more prosaic way,ℐ𝜆 is the set of functions ℎ
of the form

ℎ =
𝑙∑

𝑖=1
𝑞𝑖1𝐵𝑖 , 𝑙 ∈ ℕ, (𝑞𝑖) ⊂ ℚ ∩ [0, 1], (𝐵𝑖) ⊂ ℑ𝜆.

Thenℐ𝜆 is countable and we define:

𝒢𝜆 ≔ {e−𝜄ℎ ∶ ℎ ∈ ℐ𝜆}.

Let us verify that 𝒢𝜆 is an appropriate choice for the claim. Let (𝜇𝑛) ⊂ 𝒫𝜆(𝛶) and 𝜇 ∈ 𝒫𝜆(𝛶). As a
subset of the Polish space𝒫(𝛶), the space𝒫𝜆(𝛶) is metrizable, and in particular, second-countable.
It is thus sufficient to verify that convergence of (𝜇𝑛) with respect to the family of seminorms (2.5) is
equivalent to weak convergence. By construction,ℑ𝜆 is a dissecting ring consisting of continuity sets
of 𝐼𝜇. If 𝜇𝑛 → 𝜇 in𝒫(𝛶), we get 𝜇𝑛(𝐹) → 𝜇(𝐹) for all 𝐹 ∈ 𝒢𝜆, by [Kal17, Thm. 4.11 (iii)]. Conversely,
assume that 𝜇𝑛(𝐹) → 𝜇(𝐹) for all 𝐹 ∈ 𝒢𝜆. Then the same holds for all 𝐹 in the closure 𝒢𝜆 of 𝒢𝜆

with respect to the uniform topology. For 𝐵 ∈ ℑ𝜆, 𝑞 ∈ ℚ ∩ [0, 1], and 𝑟 ∈ [0, 1], we have that

sup
𝜂∈𝛶

||||e
−𝑞𝜂(𝐵)−e−𝑟𝜂(𝐵)|||| = sup

𝑛∈ℕ

||||e
−𝑞𝑛 −e−𝑟𝑛|||| ,,,,→𝑞→𝑟

0.

Together with the triangle inequality, this shows that 𝒢𝜆 contains functions of the form e−𝜄ℎ for ℎ a
simple, ℑ𝜆-measurable, [0, 1]-valued function on 𝛶. By Theorem 2.4, 𝜇𝑛 → 𝜇 in𝒫(𝛶).

2.4 Locally integrable point processes

Without further assumptions, 𝐼𝜇 is merely a non-negative measure on 𝑋, not necessarily finite on
bounded sets. This motivates the following definition. We consider the set𝒞𝑏,0(𝛶 ×𝑋) of continuous
and bounded functions on 𝛶 × 𝑋 that vanish outside of a set of the form 𝛶 × 𝐵 for some 𝐵 ∈ 𝔅0(𝑋).
As for 𝒞0(𝑋) or ℱ0(𝑋), the space 𝒞𝑏,0(𝛶 × 𝑋) can be endowed with an inductive limit topology.
More precisely, it is the strict inductive limit of the Banach spaces 𝒞𝑏,𝛶×𝐵(𝛶 × 𝑋) of continuous and
bounded functions on 𝛶×𝑋 vanishing outside of 𝛶×𝐵 for some closed bounded set 𝐵 ⊂ 𝑋. Similarly
to the vague topology, we consider the setℳ𝑏,0(𝛶 × 𝑋) of signed Borel measures 𝜈 on 𝛶 × 𝑋 such
that 𝜈(𝛶 × 𝐵) < ∞ for all 𝐵 ∈ 𝔅0(𝑋). We equip it with the locally convex topology induced by the
seminorms

𝜈 ↦ |𝜈(𝐹)|, 𝐹 ∈ 𝒞𝑏,0(𝛶 × 𝑋).
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Theorem 2.2 also works forℳ𝑏,0(𝛶 × 𝑋), when we take for “bounded sets” the sets of the form 𝛶 × 𝐵
for some 𝐵 ∈ 𝔅0(𝑋). To see this we can consider the complete and separable metric space 𝐸 = 𝛶×𝑋
endowed with a distance of the form 𝑑′ ⊕ 𝑑 where 𝑑′ is any bounded distance on 𝛶 that is complete
and induces the topology of 𝛶. Then, a set is bounded if 𝐸 if and only if it is contained in 𝛶 × 𝐵 for
some 𝐵 bounded in 𝑋, and the topology ofℳ𝑏,0(𝛶 × 𝑋) we defined is the vague topology ofℳ0(𝐸).

Definition 2.7. We say that a point process 𝜇 is locally integrable if 𝐼𝜇 ∈ ℳ0(𝑋). We write𝒫1(𝛶) for
the set of all locally integrable point processes.

We now equip𝒫1(𝛶) with a suitable topology. We say that 𝐹 ∈ ℱ(𝛶) has sublinear growth, provided
there exists 𝑐 > 0 and ℎ ∈ 𝒞0(𝑋) such that:

|𝐹(𝜂)| ≤ 𝑐(1 + 𝜂(ℎ)), 𝜂 ∈ 𝛶.

We write 𝒞1(𝛶) for the set of continuous functions with sublinear growth.
Remark 2.8. We always have 𝒞𝑏(𝛶) ⊂ 𝒞1(𝛶) with a strict inclusion, since for all ℎ ∈ 𝒞0(𝑋) ⧵ {0},
𝜄ℎ ∈ 𝒞1(𝛶) ⧵ 𝒞𝑏(𝛶). This is true even when 𝑋 = {∗} is the one-point space.

Definition 2.9. Weequip𝒫1(𝛶)with the initial topology associatedwith themappings 𝜄𝐹 ,𝐹 ∈ 𝒞1(𝛶).
In other words, it is the locally convex topology defined by the family of semi-norms

𝜇 ↦ |𝜇(𝐹)|, 𝐹 ∈ 𝒞1(𝛶).

We now establish that the space𝒫1(𝛶) with the above topology is Polish. A central tool in proving
so is the following property of the Campbell map.

Theorem 2.10. The map 𝐶∶ 𝒫1(𝛶) → ℳ+
𝑏,0(𝛶 × 𝑋), 𝜇 ↦ 𝐶𝜇 is a homeomorphism onto its image.

Proof. We write ℐ for the image of 𝐶. For all 𝜇 ∈ 𝒫1(𝛶) and 𝐵 ∈ 𝔅0(𝑋), 𝐶𝜇(𝛶 × 𝐵) = 𝐼𝜇(𝐵) < ∞.
Moreover, 𝐶𝜇 is always non-negative. Thus,ℐ ⊂ ℳ+

𝑏,0(𝛶 × 𝑋), and the assertion is well-posed. In
the rest of the proof, we write 𝛶∗ ≔ 𝛶 ⧵ {∅}, where ∅ is the empty configuration. By [Bou74, IX,
p.57, Prop. 1], the open set 𝛶∗ is also Polish.

𝐶 is into. Let 𝜇 and 𝜇′ ∈ 𝒫1(𝛶) such that 𝐶𝜇 = 𝐶𝜇′ . Let 𝐴 ∈ 𝔅(𝛶), 𝐵 ∈ 𝔅0(𝑋), and

𝑢(𝜂, 𝑥) = 1
𝜂(𝐵) + 1

1𝐵(𝑥) 1𝐴(𝜂 + 𝛿𝑥) 𝜂 ∈ 𝛶, 𝑥 ∈ 𝑋.

Then, we have that

𝐶𝜇(𝑢) = ∬
𝐵
𝑢(𝜂 − 𝛿𝑥, 𝑥)𝜂(d𝑥)𝜇(d𝜂) = ∬ 1𝐴(𝜂)

1𝐵(𝑥)
𝜂(𝐵)

𝜂(d𝑥)𝜇(d𝜂) = 𝜇(𝐴 ∩ {𝜂(𝐵) > 0}).

Letting 𝐵 ↗ 𝑋 we get that 𝜇(𝐴) = 𝜇′(𝐴) for all𝐴 ∈ 𝔅(𝛶∗) by monotone convergence. Thus 𝜇 and 𝜇′
coincide as measures on 𝛶∗ but since they are probability measures on 𝛶, we have that

𝜇(∅) = 1 − 𝜇(𝛶∗) = 𝜇′(∅).

Thus 𝜇 = 𝜇′ on𝒫1(𝛶).
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𝐶 is continuous. Take 𝜇𝑜 ∈ 𝒫1(𝛶) and 𝑙 ∈ ℕ. For 𝑖 = 1, … , 𝑙, let 𝑢𝑖 ∈ 𝒞𝑏,0(𝛶 × 𝑋), and 𝜀𝑖 > 0. We
set

𝑉 ≔
𝑙⋂

𝑖=1

{
𝐶𝜇 ∶ 𝜇 ∈ 𝒫1(𝛶), |(𝐶𝜇 − 𝐶𝜇𝑜)(𝑢𝑖)| ≤ 𝜀𝑖

}
.

The set 𝑉 is a neighbourhood in ℐ of 𝐶𝜇𝑜 and the class of all sets 𝑉 of this form is a fundamental
system of neighbourhoods of 𝐶𝜇𝑜 (for instance, [Bou69, II, pp. 2-4]). Thus it suffices to show that
𝐶−1(𝑉) is a neighbourhood of 𝜇𝑜. Now, since 𝐶 is into, we have that

𝐶−1(𝑉) =
𝑙⋂

𝑖=1

{
𝜇 ∈ 𝒫1(𝛶) ∶ |(𝐶𝜇 − 𝐶𝜇𝑜)(𝑢𝑖)| ≤ 𝜀𝑖

}
.

Let 𝑖 = 1, … , 𝑙. We set, for 𝜂 ∈ 𝛶, 𝐹𝑖(𝜂) ≔ ∫ 𝑢𝑖(𝜂 − 𝛿𝑥, 𝑥)𝜂(d𝑥). By Lemma 2.15 below, 𝐹𝑖 ∈ 𝒞1(𝛶).
Moreover,

(𝐶𝜇 − 𝐶𝜇𝑜)(𝑢𝑖) = ∬ 𝑢𝑖(𝜂 − 𝛿𝑥, 𝑥)𝜂(d𝑥)(𝜇 − 𝜇𝑜)(d𝜂) = (𝜇 − 𝜇𝑜)(𝐹𝑖).

Thus, we get

𝐶−1(𝑉) =
𝑙⋂

𝑖=1

{
𝜇 ∈ 𝒫1(𝛶) ∶ |(𝜇 − 𝜇𝑜)(𝐹𝑖)| ≤ 𝜀𝑖

}
,

which, by definition of the topology on𝒫1(𝛶), is a neighbourhood of 𝜇𝑜 in𝒫1(𝛶).

𝐶−1 is continuous. Sinceℳ+
𝑏,0(𝛶 × 𝑋) is Polish, it is sufficient to show that 𝐶−1 is sequentially

continuous. Thus, let us consider (𝜇𝑛) ⊂ 𝒫1(𝛶) and 𝜇 ∈ 𝒫1(𝛶) such that 𝐶𝜇𝑛 → 𝐶𝜇 inℳ𝑏,0(𝛶 × 𝑋).
Take ℎ ∈ 𝒞0(𝑋) with ℎ ≥ 0. We have the following bound:

||||e
−𝑠𝜂(ℎ)−e−𝑡𝜂(ℎ)|||| ≤ |𝑠 − 𝑡||𝜂(ℎ)|, 𝑠, 𝑡 ∈ (0, 1), 𝜂 ∈ 𝛶.

Since 𝜇 ∈ 𝒫1(𝛶) and ℎ ∈ 𝒞0(𝑋), we have that 𝜄ℎ ∈ 𝐿1(𝜇). Since, 𝜇 ∈ 𝒫1(𝛶), by Lebesgue dominated
convergence theorem, we find that the map (0, 1) ∋ 𝑡 ↦ Λ𝜇(𝑡ℎ) is differentiable with derivative
given by:

d
d𝑡Λ𝜇(𝑡ℎ) = 𝐶𝜇(𝑢𝑡),

where
𝑢𝑡(𝜂, 𝑥) ≔ −ℎ(𝑥) e−𝑡ℎ(𝑥) exp (−𝑡 ∫ ℎd𝜂) , 𝜂 ∈ 𝛶, 𝑥 ∈ 𝑋, 𝑡 ∈ (0, 1).

Now, observe that,

|𝐶𝜇𝑛(𝑢𝑡)| = ∫ 𝜂(ℎ) e−𝑡𝜂(ℎ) 𝜇𝑛(d𝜂) ≤ 𝐼𝜇𝑛(ℎ) = 𝐶𝜇𝑛(1 ⊗ ℎ).

The right-hand side is uniformly boundedwith respect to 𝑛 ∈ ℕ since, by assumption (𝐶𝜇𝑛) converges
inℳ𝑏,0(𝛶 × 𝑋) and 1 ⊗ ℎ ∈ 𝒞𝑏,0(𝛶 × 𝑋). Thus, by dominated convergence:

Λ𝜇𝑛(ℎ) = 1 + ∫
1

0
𝐶𝜇𝑛(𝑢𝑡)d𝑡 ,,,,,→𝑛→∞

1 + ∫
1

0
𝐶𝜇(𝑢𝑡)d𝑡 = Λ𝜇(ℎ).

Thus (𝜇𝑛) converges weakly to 𝜇 (Theorem 2.4). Take 𝐹 ∈ 𝒞1(𝛶). By definition, we can find
ℎ ∈ 𝒞0(𝑋) such that |𝐹| ≤ 𝑐(𝜄ℎ + 1) for some 𝑐 > 0. Now the convergence of the Campbell measures
implies the convergence of the intensity measures inℳ0(𝑋). Thus, by [Kal21, Lem. 5.11], we get
that 𝜄ℎ is uniformly integrable with respect to (𝜇𝑛). So that 𝐹 is also uniformly integrable with
respect to (𝜇𝑛). By the continuous mapping theorem, 𝐹♯𝜇𝑛 → 𝐹♯𝜇 in distribution, together with
uniform integrability, this gives by [Kal21, Lem. 5.11], that 𝜇𝑛(𝐹) → 𝜇(𝐹). This shows that 𝜇𝑛 → 𝜇
in𝒫1(𝛶).
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Now we turn to the proof of Polishness.

Theorem 2.11. The space𝒫1(𝛶) is Polish.

Proof. It is sufficient to show that𝒫1(𝛶) is homeomorphic to a Polish space (for instance, [Bou74, IX,
p. 58, Cor. 2]). Thus, in view of the previous theorem and [Bou74, IX, p. 57, Prop. 1], it suffices to show
that the imageℐ of 𝐶 inℳ+

𝑏,0(𝛶 ×𝑋) is closed. Take (𝜇𝑛) ⊂ 𝒫1(𝛶) such that 𝐶𝜇𝑛 → 𝜎 ∈ ℳ+
𝑏,0(𝛶 ×𝑋).

By continuity of the projection 𝛶 × 𝑋 → 𝑋, the sequence (𝐼𝜇𝑛) also converges to some measure in
ℳ+

0 (𝑋). This yields that ∆ ≔ (𝐼𝜇𝑛) is relatively compact, so that by Theorem 2.2 it satisfies (2.1).
Precisely, take 𝐵 ∈ 𝔅0(𝑋), by (2.1b), we have that

inf
𝐾∈𝔎(𝑋)

sup
𝑛∈ℕ

∫
(
𝜂(𝐵 ⧵ 𝐾) ∧ 1

)
𝜇𝑛(d𝜂) ≤ inf

𝐾∈𝔎(𝑋)
sup
𝑛∈ℕ

𝐼𝜇𝑛(𝐵 ⧵ 𝐾) = 0;

while, by (2.1a) and Markov’s inequality, we get that

sup
𝑛∈ℕ

𝜇𝑛(𝜂(𝐵) > 𝑟) ≤ 1
𝑟 sup𝑛∈ℕ

𝐼𝜇𝑛(𝐵) ≤
𝑐
𝑟 .

The two previous equations show that the conditions of [Kal17, Thm. 4.10] are satisfied and thus up
to extraction we can find 𝜇 ∈ 𝒫(𝛶) such that 𝜇𝑛 → 𝜇 in𝒫(𝛶).
Now, let ℎ ∈ 𝒞0(𝑋). By [Kal21, Lem. 5.11], we get 𝜇 ∈ 𝒫1(𝛶) with 𝐼𝜇(ℎ) ≤ lim inf𝑛 𝐼𝜇𝑛(ℎ) < ∞. By
definition, the map 𝜂 ↦ 𝜂(ℎ) is continuous. Thus, the set {𝜂(ℎ) + 1 ≥ 𝑟} is a closed set, for every
𝑟 > 0, and the map

𝑢𝑟(𝜂, 𝑥) ≔ ℎ(𝑥)1{𝜂(ℎ)+1≥𝑟}, 𝜂 ∈ 𝛶, 𝑥 ∈ 𝑋,

is upper semi-continuous. By the Portmanteau Theorem,

lim sup
𝑛

∫ 𝜂(ℎ) 1{𝜂(ℎ)≥𝑟}d𝜇𝑛 ≤ lim sup
𝑛

𝐶𝜇𝑛(𝑢𝑟) ≤ 𝜎(𝑢𝑟).

By dominated convergence, the right-hand side converges to 0 as 𝑟 → ∞. In particular, 𝜄ℎ is uniformly
integrable with respect to (𝜇𝑛). By an argument similar to the one used in the previous proof, we
conclude that 𝜇𝑛 → 𝜇 in𝒫1(𝛶). Since 𝐶 is continuous andℳ𝑏,0(𝛶 × 𝑋) is Hausdorff, this shows
that 𝜎 = 𝐶𝜇.

Actually in the previous proofs, we have established the two following results that we extract here
for convenience.

Proposition 2.12. Let (𝜇𝑛)𝑛∈ℕ ⊂ 𝒫1(𝛶) and 𝜇 ∈ 𝒫(𝛶). Then, the following are equivalent:

(𝑖) 𝜇 ∈ 𝒫1(𝛶) and 𝜇𝑛
𝒫1(𝛶),,,,,→
𝑛→∞

𝜇.

(𝑖𝑖) 𝐶𝜇𝑛
ℳ𝑏,0(𝛶×𝑋),,,,,,,,,→
𝑛→∞

𝐶𝜇.

(𝑖𝑖𝑖) 𝜇𝑛
𝑤𝑒𝑎𝑘𝑙𝑦
,,,,,,→
𝑛→∞

𝜇 and 𝐼𝜇𝑛
ℳ0(𝑋),,,,,,→
𝑛→∞

𝐼𝜇.

Proof. The equivalence between (𝑖) and (𝑖𝑖) follows from Theorem 2.10 since 𝐶 is a homemorphism.
We proved that (𝑖𝑖) implies (𝑖𝑖𝑖) implies (𝑖) in the proof of the continuity of 𝐶−1 in Theorem 2.10.
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Remark 2.13. Take 𝑑1 (resp. 𝑑2) a distance that completely metrizes the topology of𝒫(𝛶) (resp. that
ofℳ+

0 (𝑋)). In view of the above result the distance

𝑑(𝜇, 𝜇) ≔ 𝑑1(𝜇, 𝜇′) + 𝑑2(𝐼𝜇, 𝐼𝜇′), 𝜇, 𝜇′ ∈ 𝒫1(𝛶),

metrizes the topology of𝒫1(𝛶). However, this distance may in general be not complete.
Indeed, take 𝑋 = {∗}, the one-point space. Then, 𝛶 is identified with ℕ0, andℳ0(𝑋) is identified
withℝ. Let 𝜇𝑛 be the law of a random variable that takes the value 𝑛 with probability 1∕𝑛, and 0with
probability 1 − 1∕𝑛. Then 𝜇𝑛 → 𝛿0 in𝒫(ℕ0) so that (𝜇𝑛)𝑛 is Cauchy with respect to 𝑑1. Moreover,
we have that 𝐼𝜇𝑛 = 1 for all 𝑛 ∈ ℕ, so that (𝐼𝜇𝑛)𝑛 is Cauchy with respect to 𝑑2. Thus, (𝜇𝑛)𝑛 is Cauchy
with respect to 𝑑. However, it does not converge in𝒫1(ℕ0), since 𝐼𝛿0 = 0.

Proposition 2.14. Let𝒜 ⊂ 𝒫1(𝛶). Then, the following are equivalent:

(𝑖) 𝒜 is relatively compact in𝒫1(𝛶);

(𝑖𝑖) 𝒜 is relatively compact in𝒫(𝛶) and, for all ℎ ∈ 𝒞0(𝑋), the map 𝜄ℎ is uniformly integrable with
respect to𝒜.

Proof. Assume that 𝒜 is relatively compact in 𝒫1(𝛶). Take a sequence in 𝒜. Up to extraction it
converges in𝒫1(𝛶). Thus, by Proposition 2.12 (𝑖𝑖𝑖), it converges weakly. This shows that𝒜 is weakly
sequentially relatively compact, and thus relatively compact in 𝒫(𝛶). The uniform integrability
follows from [Kal21, Lem. 5.11] together with Proposition 2.12 (𝑖𝑖𝑖).
Conversely, assume that𝒜 is weakly relatively compact and that we have the uniform integrability
condition. Then up to extraction every sequence in𝒜 weakly converges, and by the uniform integra-
bility and [Kal21, Lem. 5.11], we find that the intensiy measures also converge. By Proposition 2.12,
we deduce that𝒜 is then sequentially relatively compact in𝒫1(𝛶), and thus it is relatively compact,
since𝒫1(𝛶) is Polish by Theorem 2.11.

Let us finish with the proof of the lemma used above.

Lemma 2.15. If 𝑢 ∈ 𝒞𝑏,0(𝛶 × 𝑋), then

𝐹∶ 𝜂 ↦,→ ∫ 𝑢(𝜂 − 𝛿𝑥, 𝑥)𝜂(d𝑥), 𝜂 ∈ 𝛶,

satisfies 𝐹 ∈ 𝒞1(𝛶).

Proof. Without loss of generality, we assume that 𝑢 ≥ 0. Indeed, for 𝑢 ∈ 𝒞𝑏,0(𝛶 × 𝑋), we also have
that 𝑢+ and 𝑢− ∈ 𝒞𝑏,0(𝛶 × 𝑋). Since 𝑢 ∈ 𝒞𝑏,0(𝛶 × 𝑋), there exists 𝑐 > 0 and ℎ ∈ 𝒞0(𝑋) such that
ℎ ≥ 0 and

𝑢(𝜂, 𝑥) ≤ 𝑐ℎ(𝑥), 𝜂 ∈ 𝛶, 𝑥 ∈ 𝑋.

We have that

|𝐹(𝜂𝑛) − 𝐹(𝜂)| ≤ 𝑐
|||||||
∫ ℎ(𝑥)(𝜂𝑛 − 𝜂)(d𝑥)

|||||||
+ ∫ |||𝑢(𝜂𝑛 − 𝛿𝑥, 𝑥) − 𝑢(𝜂 − 𝛿𝑥, 𝑥)|||𝜂(d𝑥).

The first term vanishes as 𝑛 → ∞, by definition of vague convergence. Since 𝑢 is continuous
the integrand in the second term also vanishes and is dominated by 2𝑐ℎ ∈ 𝐿1(𝜂). By dominated
convergence, the corresponding integral also vanishes. This shows that 𝐹 is continuous. We also
have that 𝐹(𝜂) ≤ 𝑐𝜂(ℎ) which shows that 𝐹 ∈ 𝒞1(𝛶).
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3 Discrete operators and the Ornstein–Uhlenbeck dynamics

3.1 Mehler’s formula, difference operator, divergence of a function

We refer the reader to [Las16] for more details and proofs regarding objects introduced in this section.
We fix a Poisson point process 𝜋 with intensity𝑚 ∈ ℳ+

0 (𝑋).
For all 𝜋-integrable 𝐹 ∈ ℱ(𝛶), we define the Ornstein–Uhlenbeck semi-group by

𝖯𝑡𝐹(𝜂) ≔ 𝔼
[
𝐹(𝜂(e−𝑡) + 𝜉𝑡)

]
, 𝜂 ∈ 𝛶, 𝑡 ≥ 0,

where 𝜂(𝑠) is the 𝑠-thinning of 𝜂 and 𝜉𝑡 is distributed as a Poisson point process with intensity
(1 − e−𝑡)𝑚 and is independent of the thinning.
The family 𝖯 = (𝖯𝑡)𝑡≥0 is a Markov semigroup on 𝐿1(𝜋). Moreover, it maps continuous functions to
continuous functions. For all point processes 𝜇, we define by duality

𝖯⋆𝑡 𝜇(𝐴) ≔ 𝜇(𝖯𝑡1𝐴), 𝐴 ∈ 𝔅(𝛶), 𝑡 ≥ 0.

It is readily verified that this indeed defines a measure. If 𝜇 = 𝜌𝜋, then 𝖯⋆𝑡 𝜇 = (𝖯𝑡𝜌)𝜋 for all 𝑡 ≥ 0.
We also have that 𝖯⋆𝑡 maps𝒫1(𝛶) to𝒫1(𝛶) for all 𝑡 > 0, and that

(3.1) 𝖯⋆𝑡 𝜇
𝒫1(𝛶),,,,,→
𝑡→0

𝜇, 𝜇 ∈ 𝒫1(𝛶).

Proof of (3.1). Let 𝜂 ∼ 𝜇 and ℎ ∈ 𝒞0(𝑋), and set 𝜂𝑡 ≔ 𝜂(e−𝑡). By [Kal17, Lem. 3.1], we have that

𝔼[exp(−𝜂𝑡(ℎ))] = 𝔼[exp(∫ log
(
1 − e−𝑡(1 − e−ℎ)

)
d𝜂)].

Since log
(
1 − e−𝑡(1 − e−ℎ)

)
≤ (1 − e−ℎ), by dominated convergence and [Kal17, Thm. 4.11], we

get that law(𝜂𝑡) → 𝜇 in𝒫(𝛶). Similar computations show that law(𝜉𝑡) → 𝛿∅ in𝒫(𝛶). Thus, by
continuity of the sumand the continuousmapping theorem,we conclude that 𝖯⋆𝑡 𝜇 = law(𝜂𝑡+𝜉𝑡) → 𝜇
in𝒫(𝛶). The Mehler formula also implies that

(3.2) 𝐼𝖯⋆𝑡 𝜇(ℎ) = e−𝑡 𝐼𝜇(ℎ) + (1 − e−𝑡)𝑚(ℎ) ,,,,→
𝑡→0

𝐼𝜇(ℎ),

which concludes the proof in view of Proposition 2.12.

For 𝐹 ∈ ℱ(𝛶) we write

𝖣𝑥𝐹(𝜂) ≔ 𝐹(𝜂 + 𝛿𝑥) − 𝐹(𝜂), 𝜂 ∈ 𝛶, 𝑥 ∈ 𝑋,

and regard 𝖣𝐹 as the map
𝖣𝐹∶ 𝛶 × 𝑋 ∋ (𝜂, 𝑥) ↦ 𝖣𝑥𝐹(𝜂).

The difference operator and the semi-group satisfy a commutation relation à la Bakry–Émery [Las16,
Lem. 6]:

(𝐁𝐄) 𝖣𝖯𝑡𝐹 = e−𝑡 𝖯𝑡𝖣𝐹, 𝐹 ∈ 𝐿2(𝜋).

For all 𝑢 ∈ 𝐿1(𝜋 ⊗𝑚), we define a formal adjoint to 𝖣, namely the Skorokhod divergence

𝖣⋆𝑢(𝜂) ≔ ∫ 𝑢(𝜂 − 𝛿𝑥, 𝑥)𝜂(d𝑥) − ∫ 𝑢(𝜂, 𝑥)𝑚(d𝑥), 𝜂 ∈ 𝛶.

By the Mecke formula, 𝖣⋆𝑢 ∈ 𝐿1(𝜋).
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3.2 Sobolev spaces

Due to its discrete nature, 𝖣 does not give rise to a good notion of smooth functions. As a partial
substitute, let us define the Sobolev spaces associated with 𝖣. For all 𝐹 ∈ ℱ(𝛶) and 𝑘 ∈ ℕ, we
can define iteratively 𝖣𝑘𝐹 ∈ ℱ(𝛶 × 𝑋𝑘). We can thus define the Sobolev spaces of order 𝑘 ∈ ℕ and
𝑝 ∈ [1,∞] as the set𝒲𝑘,𝑝 = 𝒲𝑘,𝑝(𝛶) containing all 𝐹 ∈ 𝐿𝑝(𝜋) such that 𝖣𝑘′𝐹 ∈ 𝐿𝑝(𝜋 ⊗𝑚⊗𝑘′) for
all 𝑘′ ≤ 𝑘. It is endowed with the norm

‖𝐹‖𝑘,𝑝 ≔ ‖𝐹‖𝐿𝑝(𝜋) +
𝑘∑

𝑘′=1
‖𝐷𝑘′𝐹‖𝐿𝑝(𝜋⊗𝑚⊗𝑘′ ).

3.3 Generator of the Ornstein–Uhlenbeck semi-group

The Markov generator of 𝖯 on 𝐿2(𝜋) is the unbounded operator 𝖫 with𝒟om𝖫 consisting of all the
functions 𝐹 ∈ 𝐿2(𝜋) such that the following limit exists

𝖫𝐹 ≔ 𝐿2(𝜋)- lim
𝑡→0

𝖯𝑡 − 𝗂𝖽
𝑡 𝐹.

By [Las16, Props. 3 & 4], we have that𝒟om𝖫 = 𝒲2,2; for 𝐹 ∈ 𝒟om𝖫∩𝒲1,1, we have the following
representation

𝖫𝐹(𝜂) = −𝖣⋆𝖣𝐹(𝜂) = ∫
(
𝐹(𝜂 + 𝛿𝑥) − 𝐹(𝜂)

)
𝑚(d𝑥) − ∫

(
𝐹(𝜂) − 𝐹(𝜂 − 𝛿𝑥)

)
𝜂(d𝑥), 𝜂 ∈ 𝛶,

and the following integration by parts holds

∫ 𝐹 𝖫𝐺 d𝜋 = −∫ 𝖣𝐹 𝖣𝐺 d(𝜋 ⊗𝑚), 𝐹 ∈ 𝒲1,2, 𝐺 ∈ 𝒟om𝖫.(3.3)

In view of the general theory of Dirichlet forms [MR92, Thm. 2.20], we have the following regular-
ization property

(3.4) 𝖯𝑡𝐿2(𝜋) ⊂ 𝒟om𝖫, 𝑡 > 0.

The inverse of 𝖫 is defined for all 𝐹 ∈ 𝐿2(𝜋) such that ∫ 𝐹d𝜋 = 0 via [Las16, Thm. 7]:

𝖫−1𝐹(𝜂) ≔ −∫
∞

0
𝖯𝑠𝐹(𝜂)d𝑠.

3.4 Relative entropy

Let 𝜋 be the Poisson point process with intensity𝑚, and 𝜇 be a point process. The relative entropy of
𝜇 with respect to 𝜋 is

ℋ(𝜇 | 𝜋) ≔ ∫ 𝜌 log 𝜌d𝜋 if 𝜇 ≪ 𝜋, 𝜌 = d𝜇
d𝜋 ,

and ℋ(𝜇 | 𝜋) = ∞ otherwise. We write 𝒟omℋ for the set of 𝜇 ∈ 𝒫(𝛶) with ℋ(𝜇 | 𝜋) < ∞.
The following result recasts well-known properties of the relative entropy with respect to the weak
topology in the setting of𝒫1(𝛶).

Lemma 3.1. We have that 𝒟omℋ ⊂ 𝒫1(𝛶). Moreover, ℋ( ⋅ | 𝜋) is lower semi-continuous with
respect to the𝒫1(𝛶)-topology and its sub-level sets are relatively compact in𝒫1(𝛶).
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Proof. Set 𝜃(𝑠) ≔ 𝑠 log 𝑠 − 𝑠 +1 for 𝑠 ≥ 0 and 𝜃(𝑠) ≔ ∞ otherwise. We denote its Legendre transform
by

𝜃∗(𝑡) ≔ sup
𝑠∈ℝ

(
𝑠𝑡 − 𝜃(𝑠)

)
= e𝑡 −1, 𝑡 ∈ ℝ.

The functions 𝜃 and 𝜃∗ are convex conjugate to each other, and a pair of Young functions. We define,
the Orlicz norm

‖𝐹‖𝐿𝜃 ≔ sup{∫ 𝐹𝐺d𝜋 ∶ ∫ 𝜃∗(|𝐺|) ≤ 1}, 𝐹 ∈ ℱ(𝛶).

Let 𝜇 = 𝜌𝜋 ∈ 𝒟omℋ and note that ∫ 𝜃(𝜌)d𝜋 = ℋ(𝜇 | 𝜋). For 𝑟 ∈ ℝ and 𝐵 ∈ 𝔅0(𝑋) set
𝐹𝑟(𝜂) ≔ 𝜂(𝐵)1{𝜂(𝐵)>𝑟}. In view of [KR61, Eq. (9.13), p. 73], we find that

(3.5)
|||||||
∫ 𝐹𝑟𝜌d𝜋

|||||||
≤ ‖𝐹𝑟‖𝐿𝜃∗

(
1 ∧ℋ(𝜇 | 𝜋)

)
.

On the one hand, by Fenchel’s inequality, we have that

(3.6) ‖𝐹𝑟‖𝐿𝜃∗ ≤ ‖𝐹0‖𝐿𝜃∗ ≤ ∫ (e𝜂(𝐵)−1)d𝜋 + 1.

This quantity is finite in view of the exponential integrability of Poisson random variables. The second
inequality above shows that𝒟omℋ ⊂ 𝒫1(𝛶). On the other hand, by dominated convergence,

∫ 𝜃∗(𝑎𝐹𝑟)d𝜋 = ∫ 1{𝑎𝜂(𝐵)>𝑟}(e𝑎𝜂(𝐵)−1)𝜋(d𝜂) ,,,,,→𝑟→∞
0, 𝑎 > 0.

In view of the equivalence of the Orlicz and the Luxembourg norms [KR61, Eq. (9.24), p. 80], the
latter convergence implies that

lim
𝑟→∞

‖𝐹𝑟‖𝐿𝜃∗ = 0.

Together with (3.5), this shows that the uniform integrability condition in Proposition 2.14 is satisfied
on sub-level sets ofℋ( ⋅ | 𝜋). By [DZ10, Lem. 6.2.12], these sub-level sets are also weakly relatively
compact, thus we conclude they are relatively compact in𝒫1(𝛶) by Proposition 2.14. Sinceℋ( ⋅ | 𝜋)
is weakly lower semi-continuous (e.g., [DZ10, Lem. 6.2.13]) and since the𝒫1(𝛶)-topology is finer
than the weak topology, we get the lower semi-continuity.

3.5 Fisher information

The (modified) Fisher information of 𝜇 ∈ 𝒫(𝛶) is

ℐ(𝜇 | 𝜋) ≔ ∫ 𝖣𝜌 𝖣 log 𝜌d(𝜋 ⊗𝑚) if 𝜇 ≪ 𝜋, 𝜌 = d𝜇
d𝜋 ,

if 𝜇 = 𝜌𝜋, and ℐ(𝜇 | 𝜋) ≔ ∞ otherwise. We write𝒟omℐ for the set of 𝜇’s with ℐ(𝜇 | 𝜋) < ∞. By
convexity of 𝜃, we have that (𝑎 − 𝑏)(log 𝑎 − log 𝑏) = (𝑎 − 𝑏)(𝜃′(𝑎) − 𝜃′(𝑏)) ≥ 0 for all 𝑎 and 𝑏 ∈ ℝ.
This shows that ℐ(𝜇 | 𝜋) is well-defined, although potentially∞, for all 𝜇 ∈ 𝒫(𝛶). The relative
entropy and the Fisher information are related through themodified logarithmic Sobolev inequality
[Wu00, Cor. 2.2]:

(3.7) ℋ(𝜇 | 𝜋) ≤ ℐ(𝜇 | 𝜋), 𝜇 ∈ 𝒫(𝛶).

Theorem 3.2. The functional ℐ( ⋅ | 𝜋) is lower semi-continuous on𝒫1(𝛶).

Proof. The lower semi-continuity of the Fisher information will follow from that of similar function-
als defined at the level of functions, by a uniform integrability argument, as we now show.
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Weak 𝐿1loc lower semi-continuity. Let 𝐿1loc(𝜋 ⊗𝑚) be the space of (equivalence classes of) Borel
functions 𝑢∶ 𝛶 × 𝑋 → ℝ such that

‖𝑢‖𝐵 ≔ ∫
𝛶×𝐵

|𝑢|d(𝜋 ⊗𝑚) < ∞, 𝐵 ∈ 𝔅0(𝑋).

Equippedwith the locally convex topology induced by the family of semi-norms ‖ ⋅ ‖𝐵 with𝐵 ∈ 𝔅0(𝑋),
the space 𝐿1loc(𝜋 ⊗𝑚) is a Fréchet space, and every continuous linear functional on 𝐿1loc(𝜋 ⊗𝑚) is
represented by some 𝑢 ∈ 𝐿∞(𝜋 ⊗𝑚) with 𝑢 vanishing outside of some 𝐵 ∈ 𝔅0(𝑋), see Lemma 6.1.
Let us define

𝜓(𝑠, 𝑡) ≔ {
(
log(𝑠 + 𝑡) − log 𝑠

)
𝑡, if 𝑠 > 0, 𝑡 > −𝑠;

+∞, otherwise;

and

ℐ𝜋(𝜌, 𝑢) ≔ ∫
𝛶×𝑋

𝜓(𝜌, 𝑢)d(𝜋 ⊗𝑚), 𝜌 ∈ 𝐿1(𝜋), 𝑢 ∈ 𝐿1loc(𝜋 ⊗𝑚);

ℐ𝜋,𝐵(𝜌, 𝑢) ≔ ∫
𝛶×𝐵

𝜓(𝜌, 𝑢)d(𝜋 ⊗𝑚), 𝜌 ∈ 𝐿1(𝜋), 𝑢 ∈ 𝐿1loc(𝜋 ⊗𝑚), 𝐵 ∈ 𝔅0(𝑋).

We fix 𝐵 ∈ 𝔅0(𝑋) and we write𝑚𝐵 for the restriction of𝑚 to 𝐵. Since 𝜋 ⊗𝑚𝐵 is a finite non-atomic
measure, and since 𝜓 ≥ 0, by [Iof77, Thm. 1] we find that ℐ𝜋,𝐵 is lower semi-continuous with respect
to the weak topology of 𝐿1(𝜋) × 𝐿1(𝜋 ⊗ 𝑚𝐵). By [Bou81, II, p. 53, Prop. 8], this weak topology is
actually the product topology of the weak topologies on 𝐿1(𝜋) and 𝐿1(𝜋 ⊗𝑚𝐵).
Let (𝜌𝛼) ⊂ 𝐿1(𝜋) be a net weakly converging to 𝜌 ∈ 𝐿1(𝜋) and (𝑢𝛼) ⊂ 𝐿1loc(𝜋 ⊗𝑚) be a net weakly
converging to 𝑢 ∈ 𝐿1loc(𝜋 ⊗𝑚). On the one hand, in view of Lemma 6.1, we find that (𝑢𝛼1𝐵) is a net
converging weakly in 𝐿1(𝜋 ⊗𝑚𝐵) to 𝑢1𝐵. On the other hand,

lim inf
𝛼

ℐ𝜋,𝐵(𝜌𝛼, 𝑢𝛼) = lim inf
𝛼

ℐ𝜋,𝐵(𝜌𝛼, 𝑢𝛼1𝐵) ≥ ℐ𝜋,𝐵(𝜌, 𝑢1𝐵) = ℐ𝜋,𝐵(𝜌, 𝑢).

Thus, by the lower semi-continuity established above, we find that ℐ𝜋,𝐵 is actually lower semi-
continuous with respect to the weak topology on 𝐿1(𝜋) × 𝐿1loc(𝜋 ⊗𝑚).
Since 𝜓 ≥ 0, the functional 𝐵 ↦ ℐ𝜋,𝐵 is monotone increasing. By monotone convergence

sup
𝐵∈𝔅0(𝑋)

ℐ𝜋,𝐵 = ℐ𝜋.(3.8)

Thus, as a supremum of lower semi-continuous functions, ℐ𝜋 is also lower semi-continuous with
respect to the weak topology on 𝐿1(𝜋) × 𝐿1loc(𝜋 ⊗𝑚).

𝒫1(𝛶)-lower semicontinuity. Fix 𝑏 ≥ 0. We show that

𝐴𝑏 ≔ {𝜇 = 𝜌𝜋 ∈ 𝒫1(𝛶) ∶ ℐ(𝜇 | 𝜋) ≤ 𝑏}

is closed in𝒫1(𝛶). In view of Theorem 2.11, it suffices to show that it is sequentially closed. Consider
(𝜇𝑛) ⊂ 𝐴𝑏, with 𝜇𝑛 = 𝜌𝑛𝜋, converging to some 𝜇 ∈ 𝒫1(𝛶). By (3.7) and a theorem of la Vallée-
Poussin [DM75, Thm. 22, p. 38], the set𝐴𝑏 is uniformly integrable when regarded as a subset of 𝐿1(𝜋).
Hence, by the Dunford–Pettis Theorem [DM75, Thm. 25, p. 43], the family (𝜌𝑛) is weakly relatively
compact in 𝐿1(𝜋). Since (𝜇𝑛) converges to 𝜇 in𝒫1(𝛶), we thus find that there exists 𝜌 ∈ 𝐿1(𝜋) with
𝜇 = 𝜌𝜋 and (𝜌𝑛) converges to 𝜌 weakly in 𝐿1(𝜋).
Let 𝑣 ∈ 𝐿∞(𝜋 ⊗𝑚) such that there exists 𝐵 ∈ 𝔅0(𝑋) with 𝑣 = 0 𝜋 ⊗𝑚-almost everywhere outside
of 𝛶 × 𝐵. Take ℎ ∈ 𝒞0(𝑋) such that 0 ≤ ℎ ≤ 1 and ℎ = 1 on 𝐵. In view of Proposition 2.14, we
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find that (𝜄ℎ𝜌𝑛) is uniformly integrable in 𝐿1(𝜋). By Dunford–Pettis theorem, the sequence (𝜄ℎ𝜌𝑛)
converges weakly in 𝐿1(𝜋) to (𝜄ℎ𝜌). By the Mecke formula, we get that

∫
𝛶×𝑋

𝑣 𝖣𝜌𝑛d(𝜋 ⊗𝑚) = ∫
𝛶
[∫

𝐵
𝑣(𝜂 − 𝛿𝑥, 𝑥)𝜂(d𝑥) − ∫

𝐵
𝑣(𝜂, 𝑥)𝑚(d𝑥)]𝜌𝑛(𝜂)𝜋(d𝜂)

= ∫
𝛶
𝐹𝜄ℎ𝜌𝑛d𝜋 − ∫

𝛶
𝐺𝜌𝑛d𝜋,

where

𝐹(𝜂) = ∫
𝐵

𝑣(𝜂 − 𝛿𝑥, 𝑥)
𝜂(ℎ)

𝜂(d𝑥) ≤ ‖𝑣‖𝐿∞(𝜋⊗𝑚),

𝐺(𝜂) = ∫
𝐵
𝑣(𝜂, 𝑥)𝑚(d𝑥) ≤ 𝑚(𝐵)‖𝑣‖𝐿∞(𝜋⊗𝑚).

Thus, both 𝐹 and 𝐺 ∈ 𝐿∞(𝜋). By the weak convergence of (𝜌𝑛)𝑛 and (𝜄ℎ𝜌𝑛)𝑛, we thus find that
(𝖣𝜌𝑛)𝑛 converges weakly in 𝐿1loc(𝜋 ⊗𝑚).
By weak lower semi-continuity of ℐ𝜋 on 𝐿1(𝜋) × 𝐿1loc(𝜋 ⊗𝑚) established in the first part of the proof,

ℐ(𝜇 | 𝜋) = ℐ𝜋(𝜌, 𝖣𝜌) ≤ lim inf
𝑛

ℐ𝜋(𝜌𝑛, 𝖣𝜌𝑛) = lim inf
𝑛

ℐ(𝜇𝑛 | 𝜋) ≤ 𝑏.

This shows that 𝜇 ∈ 𝐴𝑏 and concludes the proof.

By Jensen’s inequality bothℋ( ⋅ | 𝜋) and ℐ( ⋅ | 𝜋) are decreasing along the dual Ornstein–Uhlenbeck
semi-group. In particular, both 𝒟omℋ and 𝒟omℐ are stable under the action of 𝖯⋆. For local
Dirichlet forms, in a quite general setting, the semigroup maps 𝐿2 densities to the domain of the
Fisher information. In our non-local setting, similar results are not available. Thus, we carry out ad
hoc computations owing to the explicit formula of the Dirichlet form in the Poisson setting.

Theorem 3.3. Let 𝜇 ∈ 𝒟omℋ and 𝑡 > 0.

(𝑖) The Ornstein–Uhlenbeck semi-group is regularizing:

(3.9) 𝖯⋆𝑡 𝜇 ∈ 𝒟omℐ .

(𝑖𝑖) The Fisher information controls the entropy production along the Ornstein–Uhlenbeck semi-group:

(3.10) ℋ(𝖯⋆𝑡 𝜇 | 𝜋) = ℋ(𝜇 | 𝜋) − ∫
𝑡

0
ℐ(𝖯⋆𝑠 𝜇 | 𝜋)d𝑠.

(𝑖𝑖𝑖) The Ornstein–Uhlenbeck semi-group converges exponentially fast to equilibrium:

(3.11) ℋ(𝖯⋆𝑡 𝜇 | 𝜋) ≤ e−𝑡ℋ(𝜇 | 𝜋).

Remark 3.4. (𝑖) and (𝑖𝑖) are the usual de Bruijn’s identity. They are classical for diffusions. See, for
instance, [BGL14, Prop. 5.2.2] or [AGS14a, Thm. 4.16]. We provide a proof for Poisson processes, for
completeness.

Proof. (𝑖) and (𝑖𝑖) Assume first that 𝜌 ∈ 𝐿2(𝜋). As before, write 𝜃(𝑠) ≔ 𝑠 log 𝑠 − 𝑠 + 1, for 𝑠 ≥ 0 and
𝜃(𝑠) ≔ ∞ otherwise. For all 𝑘 ∈ ℕ, set

(3.12) 𝜃𝑘(𝑠) ≔ ∫
𝑠

1
𝑘 ∧ log 𝑟 ∨ (−𝑘)d𝑟, 𝑠 ≥ 0,
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and 𝜃𝑘(𝑠) ≔ ∞ otherwise. Then, (𝜃𝑘) is an increasing sequence of Lipschitz functions converging to
𝜃. Let 𝑡 > 0, by (3.4), 𝖯𝑡𝜌 ∈ 𝒟om𝖫. Since 𝜃′𝑘 is Lipschitz, we also find that 𝜃

′
𝑘(𝖯𝑡𝜌) ∈ 𝒟omℰ [BH91,

Prop. 3.3.1, p. 14]. Thus,

∫ 𝜃𝑘(𝜌)d𝜋 − ∫ 𝜃𝑘(𝖯𝑡𝜌)d𝜋 = −∫
𝑡

0
∫ 𝜃′𝑘(𝖯𝑡𝜌)𝖫𝖯𝑡𝜌d𝜋d𝑡 = ∫

𝑡

0
∫ 𝖣𝜃′𝑘(𝖯𝑡𝜌)𝖣𝖯𝑡𝜌d𝜋d𝑚.

As 𝑘 → ∞, by monotone convergence, the left-hand side converges toℋ(𝖯⋆𝑡 𝜇 | 𝜋) −ℋ(𝜇 | 𝜋). Now,
we also claim that the right-hand side is also monotone. First, by convexity of 𝜃𝑘, we find that the
integrand on the right-hand side is non-negative. Differentiating twice yields that 𝜃𝑘+1−𝜃𝑘 is convex.
It thus follows, that

(3.13) (𝜃′𝑘+1(𝑠) − 𝜃′𝑘+1(𝑟))(𝑠 − 𝑟) ≥ (𝜃′𝑘(𝑠) − 𝜃′𝑘(𝑟))(𝑠 − 𝑟), 𝑠, 𝑟 ≥ 0.

The above formula is the monotonicity of the integrand. We obtain (3.10) by monotone convergence.
This also gives (3.9) for almost every 𝑡. We conclude it holds for every 𝑡 by continuity.
Now we only assume that 𝜇 = 𝜌𝜋 ∈ 𝒟omℋ For 𝑘 ∈ ℕ, let 𝜇𝑘 ≔ (𝜌 ∧ 𝑘)𝜋∕𝑍𝑘. We explicitly
compute

ℐ(𝖯⋆𝑡 𝜇𝑘 | 𝜋) =
1
𝑍𝑘

∫ 𝖣(𝖯𝑡𝜌 ∧ 𝑘)𝖣𝜃′𝑘(𝖯𝑡𝜌)d𝜋d𝑚.

Similarly to (3.13), we have for 𝑠 and 𝑟 ≥ 0:

(log(𝑠 ∧ (𝑘 + 1)) − log(𝑟 ∧ (𝑘 + 1)))(𝑠 ∧ (𝑘 + 1)− 𝑟 ∧ (𝑘 + 1)) ≥ (log(𝑠 ∧ 𝑘)− log(𝑟 ∧ 𝑘))(𝑠 ∧ 𝑘 − 𝑟 ∧ 𝑘).

By the previous argument for 𝐿2(𝜋)-densities, we get that

ℋ(𝖯⋆𝑡 𝜇𝑘 | 𝜋) −ℋ(𝜇𝑘 | 𝜋) = ∫
𝑡

0
ℐ(𝖯⋆𝑠 𝜇𝑘 | 𝜋)d𝑠.

Since 𝑍𝑘 → 1, we conclude by monotone convergence taking 𝑘 → ∞.
(𝑖𝑖𝑖) Grönwall lemma together with (𝑖𝑖) and (3.7).

Remark 3.5. The statement above and its proof can be immediately extended to functions rather
than probability measures. For 𝜌 ∈ 𝐿1(𝜋), write

ℋ𝜋(𝜌) ≔ ∫ 𝜌 log 𝜌d𝜋 − ∫ 𝜌d𝜋 log ∫ 𝜌d𝜋;

ℐ𝜋(𝜌) ≔ ∫ 𝖣𝜌𝖣 log 𝜌d𝜋d𝑚.

Ifℋ𝜋(𝜌) < ∞, then
d
d𝑡 ℋ𝜋(𝖯𝑡𝜌) = −ℐ𝜋(𝖯𝑡𝜌), 𝑡 > 0.

4 Continuity equation

In order to construct a Riemannian distance, we first present a notion of infinitesimal variation of a
curve 𝜇̄ = (𝜇𝑡) ⊂ 𝒫1(𝛶). Informally, the variation is obtained through a weak formulation of the
discrete continuity equation (1.1). In order to give a more rigorous definition let us recall that we
write 𝒮 for the algebraic linear span of functions of the form e−𝜄ℎ , ℎ ∈ 𝒞+

0 (𝑋). For 𝑇 > 0, we say that
𝜇̄ = (𝜇𝑡) ∈ ℱ([0, 𝑇],𝒫(𝛶)) and 𝜈̄ = (𝜈𝑡) ∈ ℱ([0, 𝑇],ℳ𝑏,0(𝛶 × 𝑋)) solve the continuity equation on
[0, 𝑇] provided

(𝐂𝐄𝑇) 0 = ∫
𝑇

0
𝜑̇(𝑡) ∫ 𝐺d𝜇𝑡d𝑡 + ∫

𝑇

0
𝜑(𝑡) ∫ 𝖣𝐺d𝜈𝑡d𝑡, 𝐺 ∈ 𝒮, 𝜑 ∈ 𝒞∞

𝑐 ((0, 𝑇)),
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and

(4.1) ∫
[0,𝑇]

|𝜈𝑡|(𝛶 × 𝐵)d𝑡 < ∞, 𝐵 ∈ 𝔅0(𝑋).

Here, and in all the paper, 𝜑̇ indicates a time derivative, and we identify 𝜈̄ with a measure on
𝛶 × 𝑋 × [0, 1], by

𝜈̄(d𝜂d𝑥d𝑡) = ∫ 𝜈𝑡(d𝜂d𝑥)d𝑡.

With this identification, (4.1) can be written 𝜈̄ ∈ ℳ𝑏,0(𝛶 × 𝑋 × [0, 𝑇]). Informally, we can say that 𝜈̄
is tangent to the curve 𝜇̄.
Remark 4.1. Contrary to (1.1), the curve 𝜈̄ does not depend explicitly on 𝜇̄. When constructing the
distance in Section 5.1, the action functional will automatically select solutions of a particular form.
Let us start with the following stability property for solutions to the continuity equation.
Lemma 4.2. Let (𝜇̄𝑛, 𝜈̄𝑛) be a sequence of solutions to the continuity equation, 𝜇̄ ∈ ℱ([0, 𝑇],𝒫(𝛶)),
and 𝜈̄ ∈ ℳ𝑏,0(𝛶 × 𝑋 × [0, 𝑇]) such that

𝜇𝑛,𝑡
𝒫(𝛶)
,,,,,→
𝑛→∞

𝜇𝑡, 𝑎.𝑒. 𝑡 ∈ [0, 𝑇],

𝜈̄𝑛
ℳ𝑏,0(𝛶×𝑋×[0,𝑇]),,,,,,,,,,,,,,,→

𝑛→∞
𝜈̄.

Proof. The convergence of the first term in the right-hand side of (𝐂𝐄𝑇) follows from the assumption
on (𝜇̄𝑛) together with the dominated convergence theorem. The convergence of the second term in
the right-hand side of (4.1) and (𝐂𝐄𝑇) follow directly from the assumptions on (𝜈̄𝑛).

4.1 Examples of solutions to the continuity equation

We start with an important example of solutions to the continuity equation built from the dual
Ornstein–Uhlenbeck semi-group.
Proposition 4.3. Let 𝜇0 ≔ 𝜌0𝜋 ∈ 𝒫1(𝛶). For all 𝑡 ≥ 0, set

𝜇𝑡 ≔ 𝖯⋆𝑡 𝜇0 = 𝖯𝑡𝜌𝜋, 𝜈𝑡 ≔ −𝖣𝖯𝑡𝜌 d(𝜋 ⊗𝑚).
Then (𝜇̄, 𝜈̄) is a solution to the continuity equation.
Proof. Since 𝜇 ∈ 𝒫1(𝛶), by the Mecke identity we have that

(4.2) ∫
𝛶
∫
𝐵
𝜌(𝜂 + 𝛿𝑥)𝑚(d𝑥)𝜋(d𝜂) = 𝐼𝜇(𝐵) < ∞, 𝐵 ∈ 𝔅0(𝑋).

Thus,

∫
𝑇

0
|𝜈𝑡|(𝛶 × 𝐵)d𝑡 = ∫

𝛶
∫
𝐵
|𝖣𝖯𝑡𝜌|d𝑚d𝜋 ≤ ∫

𝑇

0

(
𝐼𝜇𝑡 (𝐵) + 𝑚(𝐵)

)
d𝑡.

The right-hand side is finite by (3.2). This shows that 𝜈̄ satisfies (4.1).
Let 𝜑 ∈ 𝒞∞

𝑐 ((0, 𝑇)) and 𝐺 ∈ 𝒮. We compute

∫
𝑇

0
𝜑̇(𝑡) ∫ 𝐺d𝜇𝑡d𝑡 = ∫

𝑇

0
𝜑̇(𝑡) ∫ 𝖯𝑡𝐺d𝜇0d𝑡

= −∫
𝑇

0
𝜑(𝑡) ∫ d

d𝑡𝖯𝑡𝐺d𝜇0d𝑡

= −∫
𝑇

0
𝜑(𝑡) ∫ 𝖫𝖯𝑡𝐺d𝜇0d𝑡

= ∫
𝑇

0
𝜑(𝑡)∬ 𝖣𝐺𝖣𝖯𝑡𝜌d𝜋d𝑚d𝑡.
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We have used the symmetry of 𝖯 with respect to 𝜋, an integration by parts with respect to the 𝑡
variable, (3.3) and (3.4).

The Ornstein–Uhlenbeck flow also preserves solutions of the continuity equation in the following
sense.

Proposition 4.4. Let 𝜀 > 0. Assume that (𝜇̄, 𝜈̄) is a solution to the continuity equation. Consider the
measures given for all 𝑡 ∈ [0, 𝑇] by

𝜇𝜀𝑡 ≔ 𝖯⋆𝜀 𝜇𝑡, 𝜈𝜀𝑡 ≔ e−𝜀 𝖯⋆𝜀 𝜈𝑡.

Then (𝜇̄𝜀, 𝜈̄𝜀) is also a solution to the continuity equation.

Proof. Let 𝜑 ∈ 𝒞∞
𝑐 and 𝐺 ∈ 𝒮. Then, 𝖯𝜀𝐺 ∈ 𝒮. By (𝐂𝐄𝑇) for (𝜇̄, 𝜈̄)

0 = ∫
𝑇

0
𝜑̇𝑡 ∫ 𝖯𝜀𝐺d𝜇𝑡d𝑡 + ∫

𝑇

0
𝜑𝑡 ∫ 𝖣𝖯𝜀𝐺d𝜈𝑡d𝑡.

We conclude (𝐂𝐄𝑇) for (𝜇̄𝜀, 𝜈̄𝜀), since, by (𝐁𝐄), 𝖣𝖯𝜀𝐺 = e−𝜀 𝖯𝜀𝖣𝐺.
Since 𝖯⋆ acts on 𝜈̄ only on the first coordinate, if 𝜈̄ satisfies (4.1) so does 𝖯⋆𝜀 𝜈̄.

Solutions to the continuity equation are also invariant under time reparametrization.

Lemma 4.5 ([AGS08, Lemma 8.1.3]). Consider a strictly increasing and absolutely continuous function
𝜆∶ [0, 𝑇′] → [0, 𝑇], such that its inverse is also absolutely continuous. Then (𝜇̄, 𝜈̄) solves (𝐂𝐄𝑇) if and
only if (𝜇̄◦𝜆, 𝜆′ ⋅ 𝜈̄◦𝜆) solves the continuity equation on (0, 𝑇′).

4.2 Extending the notion of solutions

Let ℋ be the space of all 𝐺 ∈ ℱ𝑏(𝛶) such that 𝖣𝐺 ∈ ℱ𝑏,0(𝛶 × 𝑋). (𝐂𝐄𝑇) makes sense for every
𝐹 ∈ ℋ. In particular, it is possible to define another notion of solution to the continuity equation
by replacing 𝒮 byℋ in (𝐂𝐄𝑇). The goal of this section is to shows that it yields the same notion of
solution.

4.2.1 The algebra of local sets in 𝛶

Let 𝐵 ∈ 𝔅0(𝑋) be closed. We write𝔄𝐵(𝛶) for the set of all 𝐴 ∈ 𝔅(𝛶) such that

∀𝑥 ∈ 𝑋 ⧵ 𝐵 𝜂 ∈ 𝐴 ⇔ 𝜂 + 𝛿𝑥 ∈ 𝐴.

It is easily verified that𝔄𝐵(𝛶) is a sub-𝜎-algebra of𝔅(𝛶) and that 𝐹 is𝔄𝐵(𝛶)-measurable if and only
if 𝖣𝐹 vanishes outside of 𝛶 × 𝐵. Let 𝛶𝐵 be the set of configurations supported in 𝐵. Since 𝐵 is closed,
𝛶𝐵 is closed subset of 𝛶, by the Portmanteau theorem, and thus it is a Polish space. We shall need
the following lemma. Let𝔅𝐵(𝛶) = 𝜎

(
𝜄𝐵′ ∶ 𝐵′ ∈ 𝔅𝐵(𝑋)

)
, and write pr𝐵 ∶ 𝛶 → 𝛶𝐵 for the canonical

projection.

Lemma 4.6. The following 𝜎-algebras coincide

𝔅𝐵(𝛶) = 𝔄𝐵(𝛶) = pr−1𝐵 𝔅(𝛶𝐵).

Proof. Let 𝐵′ ∈ 𝔅𝐵(𝑋). Since 𝜄𝐵′ is𝔄𝐵(𝛶)-measurable, we find that𝔅𝐵(𝛶) ⊂ 𝔄𝐵(𝛶). On the other
hand,𝔅(𝛶) is generated by all sets of the form

(4.3) {𝜂(𝐶1) = 𝑘1, … , 𝜂(𝐶𝑙) = 𝑘𝑙}, 𝑙 ∈ ℕ, (𝐶𝑖) ∈ 𝔅0(𝑋)𝑙, (𝑘𝑖) ∈ ℕ𝑙.

Since𝔄𝐵(𝛶) is a sub-𝜎-algebra of𝔅(𝛶), it is generated by those sets in (4.3) that are also in𝔄𝐵(𝛶). It
is readily verified that every set 𝐴 as in (4.3) satisfies 𝐴 ∈ 𝔄𝐵(𝛶) if and only if 𝐶𝑖 ⊂ 𝐵 for all 𝑖. Thus
𝔄𝐵(𝛶) ⊂ pr−1𝐵 𝔅(𝛶). The fact that𝔅𝐵(𝛶) and pr−1𝐵 𝔅(𝛶) coincide is standard.
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Finally, let us define the algebra
𝔄(𝛶) ≔ ∪𝐵𝔄𝐵(𝛶).

The reader can easily verify that𝔄(𝛶) is an algebra but in general not a 𝜎-algebra. We have thatℋ is
the set of 𝐹 ∈ ℱ𝑏(𝛶) that are also𝔄(𝛶)-measurable.

4.2.2 The topology ofℋ and 𝒞1
𝑇(ℋ)

For all closed 𝐵 ∈ 𝔅0(𝑋), we writeℋ𝐵 for the space of 𝐺 ∈ ℋ, such that 𝖣𝐺 = 0 outside of 𝛶 × 𝐵.
Alternatively,ℋ𝐵 is the set of 𝐹 ∈ ℱ𝑏(𝛶) that are 𝔄𝐵(𝛶)-measurable. The spaceℋ𝐵 is a Banach
space for the norm

‖𝐺‖ℋ𝐵 ≔ ‖𝐺‖ℱ𝑏(𝛶) + ‖𝖣𝐺‖ℱ𝑏(𝛶×𝑋).
The topology onℋ is the strict inductive limit in 𝑛 ∈ ℕ of the Banach spacesℋ𝑛 = ℋ𝐵(𝑜,𝑛), for any
fixed 𝑜 ∈ 𝑋. By [Bou81, Prop. 9 (iii), p. II.34],ℋ is complete. We consider the space 𝒞1

𝑐 ((0, 𝑇),ℋ) of
continuously differentiable and compactly supported functions 𝐹∶ (0, 𝑇) → ℋ. In order to equip
𝒞1
𝑐 ((0, 𝑇),ℋ) with a suitable topology let us introduce some notation. Given a locally convex linear

space 𝐸, we write 𝒞1
𝑇(𝐸) = 𝒞1

𝑐 ((0, 𝑇), 𝐸), and, for 𝑛 ∈ ℕ, 𝒞1
𝑇,𝑛(𝐸) for the space of those functions

𝐹 that are supported on [1∕𝑛, 𝑇 − 1∕𝑛]. We omit 𝐸 from the notation when 𝐸 = ℝ. For all 𝑘 and
𝑛 ∈ ℕ, the spaces 𝒞1

𝑇,𝑘(ℋ𝑛) are Banach spaces. We equip 𝒞1
𝑇,𝑘(ℋ) with the strict inductive limit

topology in 𝑛 ∈ ℕ and 𝑘 fixed. Then, we equip 𝒞1
𝑇(ℋ) with the strict inductive limit topology in

𝑘 ∈ ℕ of the 𝒞1
𝑇,𝑘(ℋ). This also coincides with the strict inductive limit in 𝑛 ∈ ℕ of 𝒞1

𝑇,𝑛.

Lemma 4.7. The setℋ⊗𝒞∞
𝑐 ((0, 𝑇)) is dense in𝒞1

𝑇(ℋ).

Proof. Let 𝐹 ∈ 𝒞1
𝑇(ℋ) and 𝜀 > 0. There exists 𝑛 ∈ ℕ such that 𝐹 ∈ 𝒞1

𝑇,𝑛(ℋ𝑛). Sinceℋ𝑛 ⊗𝒞1
𝑇,𝑛 is

dense in 𝒞1
𝑇,𝑛(ℋ𝑛), there exists 𝐹𝜀 ∈ ℋ𝑛 ⊗𝒞1

𝑇,𝑛 ⊂ ℋ ⊗𝒞1
𝑇 such that

‖𝐹𝜀 − 𝐹‖𝑛 ≤ 𝜀.

Let 𝑝 be a continuous seminorm on 𝒞1
𝑇(ℋ). By the universal property of inductive limits [Bou81,

Prop. 5, p. II.29], there exists 𝑐 > 0 such that

𝑝(𝐹𝜀 − 𝐹) ≤ 𝑐‖𝐹𝜀 − 𝐹‖𝑛 ≤ 𝑐𝜀.

Thusℋ⊗𝒞1
𝑇 is dense in 𝒞

1
𝑇(ℋ). We obtain thatℋ⊗𝒞∞

𝑐 ((0, 𝑇)) is dense by mollification.

4.2.3 The continuity equation holds on 𝒞1
𝑇(ℋ)

Proposition 4.8. Let (𝜇̄, 𝜈̄) be a solution to the continuity equation. Then,

(4.4) ∫
𝑇

0
𝜇𝑡(𝐹̇𝑡)d𝑡 + ∫

𝑇

0
𝜈𝑡(𝖣𝐹𝑡)d𝑡 = 0, 𝐹 ∈ 𝒞1

𝑇(ℋ).

Proof. Let (𝜇̄, 𝜈̄) be a solution to the continuity equation. We split the proof in two parts.

(4.4) holds for 𝐹 = 𝐺 ⊗ 𝜑 ∈ ℋ ⊗𝒞∞
𝑐 ((0, 𝑇)). Let 𝐵 ∈ 𝔅0(𝑋) closed. Write ℋ̂𝐵 for the space of

functions 𝐺 ∈ ℋ𝐵 such that (𝐂𝐄𝑇) holds for 𝐺 ⊗ 𝜑, for all 𝜑 ∈ 𝒞∞
𝑐 ((0, 𝑇)). Since (𝐂𝐄𝑇) is linear

with respect to 𝐺, ℋ̂𝐵 is a linear space containing constants.
Take (𝐺𝑛) ⊂ ℋ̂𝐵 converging uniformly to some𝐺. Firstly, sinceℋ𝐵 is a Banach space for the uniform
convergence, 𝐺 ∈ ℋ𝐵. Secondly, we have that 𝐺𝑛 → 𝐺 uniformly on 𝛶 and 𝖣𝐺𝑛 → 𝖣𝐺 uniformly
on 𝛶 × 𝐵. Thus, applying (𝐂𝐄𝑇) to 𝐺𝑛 ⊗ 𝜑, passing to the limit, and invoking Lebesgue dominated
convergence theorem, we find that 𝐺 ⊗ 𝜑 solves (𝐂𝐄𝑇). This shows that 𝐺 ∈ ℋ̂𝐵, and that ℋ̂𝐵 is
closed under uniform convergence.
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Take (𝐺𝑛) ⊂ ℋ̂𝐵 an increasing and bounded sequence of non-negative functions. Write 𝐺 = lim𝑛 𝐺𝑛.
By monotone convergence, we get that

∫
𝑇

0
𝜑̇(𝑡)𝜇𝑡(𝐺𝑛)d𝑡 ,,,,,→𝑛→∞

∫
𝑇

0
𝜑̇(𝑡)𝜇𝑡(𝐺)d𝑡.

By (4.1) and definition ofℋ𝐵, |𝖣𝐺𝑛 ⊗ 𝜑| ≤ 𝑐1𝛶×𝐵×[0,𝑇] ∈ 𝐿1(𝜈̄). Thus, by dominated convergence,

𝜈̄(𝖣𝐺𝑛 ⊗ 𝜑) ,,,,,→
𝑛→∞

𝜈̄(𝖣𝐺 ⊗ 𝜑).

This shows that 𝐺 ∈ ℋ̂𝐵, and that ℋ̂𝐵 is stable under uniformly bounded monotone convergence.
Thus, ℋ̂𝐵 satisfies the assumptions of the monotone class theorem [DM75, Thm. 21, p. 20]. Let 𝒮𝐵
be the linear span of functions of the form e−𝜄ℎ for ℎ ∈ 𝒞𝑏,𝐵(𝑋). By construction, 𝒮𝐵 ⊂ ℋ̂𝐵 and 𝒮𝐵
is stable by multiplication. Thus, ℋ̂𝐵 contains all the bounded functions measurable with respect
to the 𝜎-algebra generated by 𝒮𝐵. An argument similar to that of [Las16, Lem. 2] shows that this
𝜎-algebra contains all the 𝜄ℎ for ℎ ∈ 𝒞𝑏,𝐵(𝑋) and 𝐵′ ⊂ 𝐵. By Lemma 4.6, this 𝜎-algebra is 𝔄𝐵(𝛶).
This shows that ℋ̂𝐵 = ℋ𝐵.
Take 𝐺 ∈ ℋ. By definition, there exists 𝐵 ∈ 𝔅0(𝑋) such that 𝐺 ∈ ℋ𝐵. We conclude by the first part.

(4.4) holds for 𝐹 ∈ 𝒞1
𝑇(ℋ). By Lemma 4.7, we can find (𝐹𝑛) ⊂ ℋ ⊗𝒞∞

𝑐 ((0, 𝑇)) converging to 𝐹
in 𝒞1

𝑇(ℋ). By the previous part of the proof, we have that

𝜇̄(𝐹̇𝑛) + 𝜈̄(𝐹𝑛) = 0.

By definition of the convergence on 𝒞1
𝑇(ℋ), we can apply dominated convergence to conclude.

4.3 Properties of the continuity equation

In this section we obtain several results concerning the evolution of certain quantities along the
continuity equation. All the results are a consequence of the following simple observation.

Lemma 4.9. Take 𝐺 ∈ ℋ and 𝐵𝐺 ∈ 𝔅0(𝑋) so that 𝖣𝐺 = 0 outside of 𝛶 × 𝐵𝐺 . Assume that 𝜑 ⊗ 𝐺
satisfy (𝐂𝐄𝑇) for all 𝜑 ∈ 𝒞∞

𝑐 ((0, 𝑇)). Then, there exists 𝐿𝐺 ∈ 𝔅((0, 𝑇)) of full measure such that

(4.5) 𝜇𝑡(𝐺) − 𝜇𝑠(𝐺) ≤ 2‖𝐺‖∞ ∫
𝑡

𝑠
|𝜈𝑟|(𝛶 × 𝐵𝐺)d𝑟, 𝑡, 𝑠 ∈ 𝐿𝐺 .

Proof. The assumptions ensure that 𝑡 ↦ 𝜇𝑡(𝐺) ∈ 𝑊1,1(0, 𝑇) with distributional derivative given by

d
d𝑡𝜇𝑡(𝐺) = 𝜈𝑡(𝖣𝐺), 𝑡 ∈ [0, 𝑇].

For short, we write 𝑁𝑡(𝐵) = |𝜈𝑡|(𝛶 × 𝐵) for 𝑡 ∈ [0, 𝑇] and 𝐵 ∈ 𝔅0(𝑋). By assumption, there exists
𝐵𝐺 ∈ 𝔅0(𝑋) such that 𝖣𝐺 = 0 outside of 𝛶 × 𝐵𝐺 . We then have that

|𝜇̇𝑡(𝐺)| ≤ 2𝑁𝑡(𝐵𝐺)‖𝖣𝐺‖∞ ≤ 𝑁𝑡(𝐵𝐺)‖𝐺‖∞, 𝑡 ∈ [0, 𝑇].

By Lebesgue differentiation theorem, there exists 𝐿𝐺 ⊂ 𝔅(0, 𝑇) of full measure such that

𝜇̇𝑡(𝐺) = lim
𝜀→0

1
2𝜀 ∫

𝑡+𝜀

𝑡−𝜀
𝜇𝑠(𝐺)d𝑠, 𝑡 ∈ 𝐿𝐺 .

This gives (4.5) and concludes the proof.
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4.3.1 The intensity measure along the continuity equation

A first application of this result is the following control on the intensity measure.

Theorem 4.10. Let (𝜇̄, 𝜈̄) be a solution to the continuity equation with 𝜇0 ∈ 𝒫1(𝛶). Then, for almost
every 𝑡 ∈ [0, 𝑇], 𝜇𝑡 ∈ 𝒫1(𝛶) and

𝐼𝜇𝑡 (𝐵) = 𝐼𝜇0(𝐵) + ∫
𝑡

0
𝜈𝑠(𝛶 × 𝐵)d𝑠, 𝐵 ∈ 𝔅0(𝑋).

Proof. Let ℎ ∈ ℱ0(𝑋). By Proposition 4.8, we have that the continuity equation holds for 𝜄ℎ ⊗ 𝜑,
𝜑 ∈ 𝒞∞

𝑐 ((0, 𝑇)). Take (ℎ𝑘) ⊂ 𝒞0(𝑋) as in Theorem 2.2 (𝑖). For all 𝑘 ∈ ℕ, take 𝐵𝑘 ∈ 𝔅0(𝑋) such that
ℎ𝑘 = 0 outside of 𝐵𝑘. We set

𝑎𝑘 ≔ 2−𝑘
(
1 ∧ |𝜈̄|(𝛶 × 𝐵𝑘 × [0, 𝑇])

−1).

By construction of the ℎ𝑘’s, the distance

𝜌(𝜆, 𝜎) ≔
∑

𝑘∈ℕ
𝑎𝑘|(𝜆 − 𝜎)(ℎ𝑘)|, 𝜆, 𝜎 ∈ ℳ+

0 (𝑋),

metrizes the vague topology onℳ+
0 (𝑋).

Now, we invoke Lemma 4.9, with 𝐺𝑘 = 𝜄ℎ𝑘 and 𝐵𝐺𝑘 = 𝐵𝑘. This yields a set 𝐿 ∶= ∩𝑘𝐿𝐺𝑘 of full
measure, such that

𝜌(𝐼𝜇𝑡 , 𝐼𝜇𝑠) ≤ 𝑐 ∫
𝑡

𝑠

∑

𝑘∈ℕ
𝑎𝑘|𝜈𝑟|(𝛶 × 𝐵𝑟) ≤ 𝑐|𝑡 − 𝑠|, 𝑠, 𝑡 ∈ 𝐿.

This shows that 𝑡 ↦ 𝐼𝜇𝑡 ∈ ℳ+
0 (𝑋) is uniformly continuous on the dense set 𝐿 ⊂ [0, 𝑇]. By the

theorem of continuation of uniformly continuous maps [Bou71, II, p. 20, Thm. 2], we can extend it
to a continuous map 𝜎∶ [0, 𝑇] → ℳ+

0 (𝑋).
Since, 𝜎𝑡 = 𝐼𝜇𝑡 for almost every 𝑡 ∈ [0, 𝑇], we get that

∫
𝑇

0
𝜑̇(𝑡)𝜎𝑡(ℎ)d𝑡 + ∫

𝑇

0
𝜑(𝑡)𝜎𝑡(1 ⊗ ℎ)d𝑡 = 0, ℎ ∈ ℱ0(𝑋), 𝜑 ∈ 𝒞∞

𝑐 ((0, 𝑇)).

Taking a sequence (𝜑𝑙) ⊂ 𝒞∞
𝑐 ((0, 1)) such that, as 𝑙 → ∞, 𝜑𝑙 → 1[𝑡0,𝑡1] and 𝜑̇𝑙 → 𝛿𝑡0 − 𝛿𝑡1 , we thus

obtain that

𝜎𝑡1(ℎ) = 𝜎𝑡0(ℎ) + ∫
𝑡

0
𝜈𝑠(𝛶 ⊗ ℎ), ℎ ∈ ℱ0(𝑋).

The claim follows immediately.

4.3.2 Existence of continuous solutions

Theorem 4.11. Every solution (𝜇̄′, 𝜈̄) to the continuity equation with 𝜇0 ∈ 𝒫1(𝛶) admits a representa-
tive (𝜇̄, 𝜈̄) such that [0, 𝑇] ∋ 𝑡 ↦ 𝜇𝑡 ∈ 𝒫1(𝛶) is continuous. Moreover, for all 𝑡0 and 𝑡1 ∈ [0, 𝑇]:

(4.6) 𝜇𝑡1(𝐹𝑡1) − 𝜇𝑡0(𝐹𝑡0) = ∫
𝑡1

𝑡0
𝜇𝑡(𝐹̇𝑡) + 𝜈𝑡(𝖣𝐹𝑡)d𝑡, 𝐹 ∈ 𝒞1([0, 𝑇],ℋ).

Proof. We consider the non-negative measure

𝜆(𝐵) = 𝐼𝜇0(𝐵) + ∫
𝑇

0
|𝜈𝑠|(𝛶 × 𝐵)d𝑠, 𝐵 ∈ 𝔅(𝑋).
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In view of Lemma 2.5 and Theorem 4.10, we find a countable set (𝐺𝑘) = 𝒢𝜆 ⊂ 𝒢 such that on
{𝜇′𝑡 ∶ 𝑡 ∈ [0, 𝑇]} the topology of𝒫(𝛶) is induced by that of the simple convergence on 𝒢𝜆. For all
𝑘 ∈ ℕ, write 𝐵𝑘 for a bounded set such that 𝐺𝑘 ∈ ℋ𝐵𝑘 , and set

𝑏𝑘 = 2−𝑘
(
1 ∧ |𝜈̄|(𝛶 × 𝐵𝑘 × [0, 𝑇])

−1),

𝛿(𝜇′𝑡, 𝜇′𝑠) =
∑

𝑘∈ℕ
𝑏𝑘|||(𝜇𝑡 − 𝜇𝑠)(𝐺𝑘)|||, 𝑡, 𝑠 ∈ [0, 𝑇].

Then 𝛿 is a distance on (𝜇′𝑡)metrizing the topology of𝒫(𝛶). Invoking Lemma 4.9 and arguing as
in the proof of Theorem 4.10 shows that on the dense subset 𝐿 = ∩𝐿𝐺𝑘 , the map 𝑡 ↦ 𝜇′𝑡 ∈ 𝒫(𝛶)
is uniformly continuous with respect to 𝛿. We can then extend it to a continuous map 𝑡 ↦ 𝜇𝑡 ∈
𝒫(𝛶). The fact that 𝜇̄ actually takes its values in 𝒫1(𝛶) and is continuous is a consequence of
Theorem 4.10 and Proposition 2.12. Formula (4.6) is obtained for functions 𝐹 ∈ 𝒞1

𝑇(ℋ) from (4.4)
and by considering a sequence of smooth functions on (𝑡0, 𝑡1) and converging to 1(𝑡0,𝑡1) and whose
derivatives converges to 𝛿𝑡0 − 𝛿𝑡1 in the sense of distributions (see [Erb14, Lem. 3.1] for details). This
extends to 𝐹 ∈ 𝒞1([0, 𝑇],ℋ) by approximation.

Corollary 4.12. If (𝜇̄, 𝜈̄) is a solution with 𝜇0 ∈ 𝒫1(𝛶), we have that

(4.7) 𝜇𝑡(𝐹) = 𝜇0(𝐹) + ∫
𝑡

0
𝜈𝑠(𝖣𝐹)d𝑠, 𝐹 ∈ ℋ.

Proof. Apply (4.6) with 𝐹𝑡 = 𝐹 for all 𝑡 ∈ [0, 𝑇].

4.3.3 The relative entropy along the continuity equation

In (3.10), we have that the Fisher information controls the entropy production along 𝖯⋆. A similar
result holds for the entropy along the continuity equation.
Theorem 4.13. Let (𝜇̄, 𝜈̄) be a solution to the continuity equation such that, for all 𝑡 ∈ [0, 𝑇], 𝜇𝑡 =
𝜌𝑡𝜋 ∈ 𝒟omℋ and 𝜈𝑡 = 𝑤𝑡(𝜋 ⊗𝑚), and

(4.8) ∫
𝑇

0
ℐ(𝜇𝑡 | 𝜋)d𝑡 + ∫

𝑇

0
∫ |𝑤𝑡|2

𝖣 log 𝜌𝑡
𝖣𝜌𝑡

d𝑡 < ∞.

Then, for all 𝑡 ∈ [0, 𝑇]:

(4.9) ℋ(𝜇𝑡 | 𝜋) −ℋ(𝜇0 | 𝜋) = ∫
𝑡

0
∫ 𝖣 log 𝜌𝑠d𝜈𝑠d𝑠.

Remark 4.14. Let us comment on the assumption (4.8). First of all by the Cauchy–Schwarz inequality
this ensures that 𝖣 log 𝜌 ∈ 𝐿1(𝜈̄), so that the right-hand side of (4.9) is well-defined. Secondly, the
condition on the Fisher information is not very restrictive. Indeed, if we start with a solution of the
continuity equation in𝒟omℋ, then by Proposition 4.3 we can always perturb it by the Ornstein–
Uhlenbeck semi-group in order to have a solution satisfying the finiteness of the Fisher entropy by
(3.10). Lastly, the condition involving the second integral in (4.8) might seem more exotic. However,
this quantity plays a natural role in the definition of the action and the variational distance in the
next section.
Remark 4.15. Let us consider (𝜇̄, 𝜈̄) a solution to the continuity equation given by the dual Ornstein–
Uhlenbeck semi-group, as in Proposition 4.3. In this case,

∫
𝑡

0
∫ 𝖣 log 𝜌𝑠d𝜈𝑠d𝑠 = −∫

𝑡

0
ℐ(𝖯⋆𝑠 𝜇0 | 𝜋)d𝑠,

and formula (3.10) regarding the entropy production along the Ornstein–Uhlenbeck semi-group
coincides with (4.9).
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Proof. For convenience, we first give a short heuristic proof of the statement that goes back at least
to the seminal work of [OV00]. We thus assume that 𝜌 ∈ 𝒞1([0, 𝑇],ℋ), with 𝜌 bounded away from
0. Since

𝖣 log 𝜌 = log(𝜌 + 𝖣𝜌) − log 𝜌,
we find that log 𝜌 is also in 𝒞1([0, 𝑇],ℋ). Applying (4.6) to 𝐹 = log 𝜌 yields

ℋ(𝜇𝑡 | 𝜋) −ℋ(𝜇0 | 𝜋) = ∫
𝑡

0
∫ 𝜌̇𝑠d𝜋d𝑠 + ∫

𝑡

0
∫ 𝖣 log 𝜌𝑠d𝜈𝑠d𝑠.

Since 𝜌𝑡 is a probability density for all 𝑡, ∫ 𝜌̇𝑠d𝜋 = 0. This shows the claim in this case. The rest of
the proof formalizes this idea for general densities. We stress however that all the ideas are contained
in this short argument.
Now, we only assume that 𝖣 log 𝜌 ∈ 𝐿1(𝜈̄). We shall need two stability results for solutions to the
continuity equation under regularization.

Stability of the continuity equation under time regularization. Let 𝜓 be smooth, compactly
supported, non-negative, symmetric mollifier on ℝ, and 𝜀 > 0. We define

𝜓𝜀 ≔
1
𝜀 𝜓

( ⋅
𝜀
)

𝜌𝜀𝑡 ≔ ∫
𝑇

0
𝜌𝜏𝜓𝜀(𝑡 − 𝜏)d𝜏,

𝑤𝜀
𝑡 ≔ ∫

𝑇

0
𝑤𝜏𝜓𝜀(𝑡 − 𝜏)d𝜏.

Then 𝜌̄𝜀 ∈ 𝒞1([0, 𝑇], 𝐿1(𝜋)). Setting 𝜇𝜀𝑡 ≔ 𝜌𝜀𝑡𝜋 and 𝜈𝜀𝑡 ≔ 𝑤𝜀
𝑡 (𝜋 ⊗𝑚), we also have that (𝜇̄𝜀, 𝜈̄𝜀) solves

the continuity equation. Indeed taking 𝐹 ∈ 𝒞𝑇(ℋ), and letting

𝐹𝜀𝜏 ≔
1
𝜀 ∫

𝑇

0
𝐹𝑡𝜓(

𝜏 − 𝑡
𝜀 )d𝑡,

we have that 𝐹𝜀𝜏 ∈ 𝒞𝑇(ℋ) for all sufficiently small 𝜀 > 0, and

∫
𝑇

0
𝐹̇𝑡d𝜇𝜀𝑡d𝑡 =

1
𝜀 ∫

𝑇

0
∫

𝑇

0
∫ 𝐹̇𝑡𝜓(

𝑡 − 𝜏
𝜀 )𝜌𝜏d𝜋d𝑡d𝜏

= ∫
𝑇

0
∫ 𝐹̇𝜀𝜏𝜌𝜏d𝜋d𝜏

= −∫
𝑇

0
∫ 𝖣𝐹𝜀𝜏𝑤𝜏d(𝜋 ⊗𝑚)d𝜏

= −∫
𝑇

0
𝖣𝐹𝑡𝑤𝜀

𝑡d(𝜋 ⊗𝑚)d𝑡.

Since 𝐹 ∈ 𝒞𝑇(ℋ) is arbitrary, (𝐂𝐄𝑇) holds for (𝜇̄𝜀, 𝜈̄𝜀). Moreover, by construction, 𝜈̄𝜀 satisfies (4.1).
This shows that (𝜇̄𝜀, 𝜈̄𝜀) is a solution to the continuity equation.

Stability of the continuity equation under space regularization. Now, fix 𝐵 ∈ 𝔅0(𝑋), and
define

𝜌𝐵𝑡 ≔ 𝔼𝜋[𝜌𝑡 ||| 𝔄𝐵(𝛶)],
𝑤𝐵
𝑡 ≔ 𝔼𝜋⊗𝑚[𝑤𝑡1𝛶×𝐵 ||| 𝔄𝐵(𝛶) ⊗𝔅𝐵(𝑋)].
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See, for instance, [DM80, §§39–43, pp. 36–43] for reminders on conditional expectations and
martingales with respect to 𝜎-finite measures. In a more prosaic way, we have that

(4.10) 𝑤𝐵
𝑡 (⋅, 𝑥) = 1𝐵(𝑥) 𝔼𝜋[𝑤𝑡(⋅, 𝑥) ||| 𝔄𝐵(𝛶)], 𝑥 ∈ 𝑋.

In view of the independence property of Poisson point processes, we have the explicit formula:

𝜌𝐵𝑡 (𝜂) = ∫ 𝜌𝑡(𝜂↾𝐵 + 𝜉)𝜋𝑋⧵𝐵(d𝜉),

where, for 𝐶 ∈ 𝔅(𝑋), 𝜋𝐶 is a Poisson point process with intensity 𝑚↾𝐶 . We let 𝜇𝐵𝑡 = 𝜌𝐵𝑡 𝜋 and
𝜈𝐵𝑡 = 𝑤𝐵

𝑡 (𝜋 ⊗𝑚), and we claim that (𝜇̄𝐵, 𝜈̄𝐵) is a solution to the continuity equation. By the tower
property of conditional expectation

|𝜈̄𝐵|(𝛶 × 𝑋 × [0, 𝑇]) = ∫
𝑇

0
𝔼𝜋⊗𝑚

[
|𝑤𝐵

𝑡 |
]
d𝑡 ≤ ∫

𝑇

0
𝔼𝜋⊗𝑚[|𝑤𝑡1𝛶×𝐵|]d𝑡 = |𝜈̄|(𝛶 × 𝐵 × [0, 𝑇]) < ∞.

Thus, 𝜈̄𝐵 satisfies (4.1). Now, let 𝑢 be bounded and 𝔄𝐵(𝛶) ⊗ 𝔅𝐵(𝑋)-measurable. In view, of the
explicit formula

𝖣⋆(𝑢1𝛶×𝐵)(𝜂) = ∫
𝐵
𝑢(𝜂 − 𝛿𝑥, 𝑥)𝜂(d𝑥) − ∫

𝐵
𝑢(𝜂, 𝑥)𝑚(d𝑥),

we find that, for 𝑦 ∉ 𝐵,

𝖣⋆(1𝛶×𝐵𝑢)(𝜂 + 𝛿𝑦) = ∫
𝐵
(𝜂 − 𝛿𝑥 + 𝛿𝑦, 𝑥)(𝜂 + 𝛿𝑦)(d𝑥) − ∫

𝐵
𝑢(𝜂 + 𝛿𝑦, 𝑥)𝑚(d𝑥) = 𝖣⋆(𝑢1𝛶×𝐵)(𝜂).

Thus, 𝖣⋆(1𝛶×𝐵𝑢) is𝔄𝐵(𝛶)-measurable. For 𝐹 ∈ ℋ, by the Mecke formula, we thus find that

∫ 𝖣𝐹1𝛶×𝐵𝑢d𝜋d𝑚 = ∫ 𝐹𝖣⋆(1𝛶×𝐵𝑢)d𝜋

= ∫ 𝔼𝜋[𝐹 ||| 𝔄𝐵(𝛶)]𝖣⋆(1𝛶×𝐵𝑢)d𝜋

= ∫ 𝖣𝔼𝜋[𝐹 ||| 𝔄𝐵(𝛶)]𝑢d𝜋d𝑚.

Since 𝑢 was arbitrary,

𝔼𝜋⊗𝑚[𝖣𝐹 ||| 𝔄𝐵(𝛶) ⊗𝔅𝐵(𝑋)]1𝛶×𝐵 = 𝖣𝔼𝜋[𝐹 | 𝔄𝐵].

Thus, for 𝐹 ∈ 𝒞𝑇(ℋ),

∫
𝑇

0
∫ 𝐹̇𝑡d𝜇𝐵𝑡 d𝑡 = ∫

𝑇

0
∫ 𝔼𝜋

[
𝐹̇𝑡
|||| 𝔄𝐵(𝛶)

]
d𝜇𝑡d𝑡

= −∫
𝑇

0
∫ 𝖣𝔼𝜋[𝐹𝑡 ||| 𝔄𝐵(𝛶)]𝑤𝑡d𝜋d𝑚d𝑡

= −∫
𝑇

0
∫ 𝖣𝐹𝑡 𝔼𝜋⊗𝑚[𝑤𝑡1𝛶×𝐵 ||| 𝔄𝐵(𝛶) ⊗𝔅𝐵(𝑋)].

This shows that (𝜇̄𝐵, 𝜈̄𝐵) solves (𝐂𝐄𝑇).
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Combining the two regularizations. Now we define

𝜌𝜀,𝐵𝑡 = 𝔼𝜋
[
𝜌𝜀𝑡
|||| 𝔄𝐵(𝛶)

]
,

𝑤𝜀,𝐵
𝑡 = 𝔼𝜋⊗𝑚

[
𝑤𝜀
𝑡1𝛶×𝐵

|||| 𝔄𝐵(𝛶) ⊗𝔅𝐵(𝑋)
]
.

We also consider the two associated measures (𝜇̄𝜀,𝐵, 𝜈̄𝜀,𝐵). Note that the two regularizations commute,
that is we would get the same objects by first applying the regularization in space and then in time.
From what precedes, we have that (𝜇̄𝜀,𝐵, 𝜈̄𝜀,𝐵) is a solution to the continuity equation. Differentiating
under the integral sign, we get that 𝜌̄𝜀,𝐵 ∈ 𝒞1([0, 𝑇], 𝐿1(𝜋)). The two previous facts show that
𝜌̇𝜀,𝐵𝑡 = 𝖣⋆𝑤𝜀,𝐵

𝑡 . Fix 𝑘 ∈ ℕ, recall 𝜃𝑘 defined in (3.12). We then find that

∫ 𝜃𝑘(𝜌𝜀,𝐵𝑡 )d𝜋 − ∫ 𝜃𝑘(𝜌𝜀,𝐵0 )d𝜋 = ∫
𝑡

0
∫ 𝜃′𝑘(𝜌

𝜀,𝐵
𝑠 )𝖣⋆𝑤𝜀,𝐵

𝑠 d𝜋d𝑠

= ∫
𝑡

0
∬ 𝖣𝜃′𝑘(𝜌

𝜀,𝐵
𝑠 )𝑤𝜀,𝐵

𝑠 d𝜋d𝑚d𝑠.

As 𝜀 → 0, we have that 𝜌̄𝜀,𝐵 → 𝜌̄𝐵 in 𝒞0([0, 𝑇], 𝐿1(𝜋)), and 𝑤𝜀,𝐵
𝑠 → 𝑤𝐵

𝑠 in 𝐿1(𝜋 ⊗ 𝑚) for all almost
every 𝑠 ∈ [0, 𝑇]. Thus by dominated convergence, we get that

∫ 𝜃𝑘(𝜌𝐵𝑡 )d𝜋 − ∫ 𝜃𝑘(𝜌𝐵0 )d𝜋 = ∫
𝑡

0
∬ 𝖣𝜃′𝑘(𝜌

𝐵
𝑠 )𝑤𝐵

𝑠 d𝜋d𝑚d𝑠 = ∫
𝑡

0
∫ 𝜃′𝑘(𝜌

𝐵
𝑠 )𝖣⋆𝑤𝐵

𝑠 d𝜋d𝑠.

By monotone convergence as 𝑘 → ∞, we find that

(4.11) ℋ(𝜇𝐵𝑡 | 𝜋) −ℋ(𝜇𝐵0 | 𝜋) = ∫
𝑡

0
∫ log 𝜌𝐵𝑠 𝖣⋆𝑤𝐵

𝑠 d𝜋d𝑠 = ∫
𝑡

0
∬ 𝖣 log 𝜌𝐵𝑠 𝑤𝐵

𝑠 d𝜋d𝑚d𝑠.

By the theorem of almost sure convergence of martingales, we find that 𝜌𝐵𝑡 → 𝜌𝑡 almost surely as
𝐵 → 𝑋. By [DM80, Eq. 103.1, p. 186], we have that sup𝐵 𝜌𝐵𝑡 ∈ 𝐿 log 𝐿(𝜋). Thus, the martingale
also converges in 𝐿 log 𝐿(𝜋) by dominated convergence. It follows that we can take the limit in the
left-hand side of (4.11).
We now show that we can also pass to the limit in the right-hand side. First of all, by the theorem of
almost sure convergence of martingales which also holds for 𝜎-finite measures [DM80, §41, p. 37],
we have that 𝑤𝐵 → 𝑤 almost surely. Thus in order to conclude it suffices to show that (𝖣 log 𝜌𝐵𝑤𝐵)
is uniformly integrable in 𝐿1(𝜋 ⊗𝑚⊗ d𝑡). Firstly, by the convexity of (𝑠, 𝑡) ↦ (log 𝑠 − log 𝑡)(𝑠 − 𝑡)
and Jensen’s inequality for conditional expectation

𝖣𝑥 log 𝜌𝐵𝑡 𝖣𝑥𝜌𝐵𝑡 ≤ 𝔼𝜋[𝖣𝑥 log 𝜌𝑡𝖣𝑥𝜌𝑡 ||| 𝔄𝐵(𝛶)].

Secondly, by the convexity of (𝑤, 𝑠, 𝑡) ↦ 𝑤2(log 𝑠 − log 𝑡)∕(𝑠 − 𝑡), Jensen’s inequality for conditional
expectation, and (4.10)

(||||𝑤
𝐵
𝑡 (⋅, 𝑥)

||||
2𝖣𝑥 log 𝜌𝐵𝑡

𝖣𝑥𝜌𝐵𝑡
) ≤ 𝔼𝜋[𝑤2

𝑡 (⋅, 𝑥)
𝖣𝑥 log 𝜌𝑡
𝖣𝑥𝜌𝑡

|||||||
𝔄𝐵(𝛶)].

Finally, writing

|𝖣𝑥 log 𝜌𝐵𝑡 𝑤𝐵
𝑡 (⋅, 𝑥)|2 = (𝖣𝑥 log 𝜌𝐵𝑡 𝖣𝑥𝜌𝐵𝑡 )(

||||𝑤
𝐵
𝑡 (⋅, 𝑥)

||||
2𝖣𝑥 log 𝜌𝐵𝑡

𝖣𝑥𝜌𝐵𝑡
),

and using the two previous inequalities together with 2𝑎𝑏 ≤ 𝑎2 + 𝑏2 yields

|𝖣𝑥 log 𝜌𝐵𝑡 𝑤𝐵
𝑡 | ≤

1
2(𝔼𝜋[𝖣𝑥 log 𝜌𝑡𝖣𝑥𝜌𝑡

||| 𝔄𝐵(𝛶)] + 𝔼𝜋[𝑤2
𝑡 (⋅, 𝑥)

𝖣𝑥 log 𝜌𝑡
𝖣𝑥𝜌𝑡

|||||||
𝔄𝐵(𝛶)]).
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Since this holds for all 𝑥 ∈ 𝐵 and all 𝑡 ∈ [0, 𝑇], we actually have shown that

|𝖣 log 𝜌𝐵𝑤𝐵| ≤ 𝔼𝜋⊗𝑚⊗d𝑡[
1
2(𝖣 log 𝜌𝖣𝜌 + 𝑤2𝖣 log 𝜌

𝖣𝜌 )
|||||||
𝔄𝐵(𝛶) ⊗𝔅𝐵(𝑋) ⊗𝔅(0, 𝑇)].

By [DM80, Thm. 41.1, p. 38] and (4.8), the right-hand side is the sum of two uniformly integrable
martingales and is thus uniformly integrable.

5 Synthetic Ricci curvature bounds on the Poisson space

5.1 A variational distance on the Poisson space

5.1.1 The Lagrangian functional

In view of what precedes, it is natural to consider vector fields to be elements ofℳ𝑏,0(𝛶 × 𝑋). Let us
define the length of the tangent vector 𝜈 at 𝜇. We set

𝜃(𝑠, 𝑡) ≔ 𝑠 − 𝑡
log 𝑠 − log 𝑡 , 𝑠, 𝑡 ∈ ℝ+,

and
𝛼(𝑠, 𝑡, 𝑤) ≔ |𝑤|2

𝜃(𝑠, 𝑡)
, 𝑤 ∈ ℝ, 𝑠, 𝑡 ∈ ℝ+,

where by convention 0∕0 ≔ 0. For convenience, for 𝐹 ∈ ℱ+(𝛶) we also write

𝐹̂(𝜂, 𝑥) = 𝜃
(
𝐹(𝜂), 𝐹(𝜂 + 𝛿𝑥)

)
= 𝖣𝑥𝐹(𝜂)
𝖣𝑥 log 𝐹(𝜂)

, 𝜂 ∈ 𝛶, 𝑥 ∈ 𝑋.

For all 𝜇 ∈ 𝒫1(𝛶) and 𝜈 ∈ ℳ𝑏,0(𝛶 × 𝑋), let us define

ℒ(𝜇, 𝜈) = ∫ 𝛼(
d𝜇 ⊗𝑚
d𝜎 ,

d𝐶𝜇
d𝜎 , d𝜈d𝜎)d𝜎,

where 𝜎 ∈ ℳ𝑏,0(𝛶 × 𝑋) is non-negative such that 𝜇 ⊗ 𝜋, 𝐶𝜇, and 𝜈 are absolutely continuous with
respect to 𝜎. By homogeneity, the value of the action is independent of the choice of 𝜎. Provided
𝜇 = 𝜌𝜋 and 𝜈 = 𝑤(𝜋 ⊗𝑚), in view of (2.2), we can choose 𝜎 = 𝜋 ⊗𝑚, and we find that:

ℒ(𝜇, 𝜈) = ∫ 𝛼
(
𝜌(𝜂), 𝜌(𝜂 + 𝛿𝑥), 𝑤(𝜂, 𝑥)

)
𝜋(d𝜂)𝑚(d𝑥) = ∫ |𝑤|2

𝜌̂ d𝜋d𝑚.

We can then interpret ℒ(𝜇, 𝜈) as the norm of the “tangent vector” 𝜈 in the “tangent space” to𝒫1(𝛶)
at 𝜇 ∈ 𝒫1.
In view of the convexity of 𝛼 we immediately get the following lemma.

Lemma 5.1. The Lagrangian ℒ is jointly convex.

Lemma 5.2. The map ℒ∶ 𝒫1(𝛶) ×ℳ𝑏,0(𝛶 × 𝑋) → ℝ+ is lower semi-continuous.

Proof. By Theorem 2.11 and sinceℳ𝑏,0(𝛶×𝑋) is metrizable, it is enough to establish sequential lower
semi-continuity. Let (𝜇𝑛) ⊂ 𝒫1(𝛶) converging to 𝜇 ∈ 𝒫1(𝛶) and (𝜈𝑛) ⊂ ℳ𝑏,0(𝛶 × 𝑋) converging to
𝜈 ∈ ℳ𝑏,0(𝛶 × 𝑋). Since 𝛼 is lower semi-continuous and convex we can write

𝛼(𝑝) = sup
{
𝑝 ⋅ 𝑞 − 𝛼∗(𝑞) ∶ 𝑞 ∈ ℚ3} ,
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where 𝛼∗ is the Fenchel conjugate of 𝛼. For 𝑝 and 𝑞 ∈ ℚ3, we let 𝛼𝑞(𝑝) = 𝑝 ⋅ 𝑞 − 𝛼∗(𝑞). Then, by
monotone convergence,

ℒ(𝜇, 𝜈) = ∫ sup
𝑞∈ℚ3

𝛼𝑞(
d𝜇 ⊗𝑚
d𝜎 ,

d𝐶𝜇
d𝜎 , d𝜈d𝜎)d𝜎

= sup
𝑞∈ℚ3

∫ 𝛼𝑞(
d𝜇 ⊗𝑚
d𝜎 ,

d𝐶𝜇
d𝜎 , d𝜈d𝜎)d𝜎.(5.1)

By (𝑖𝑖) in Proposition 2.12, we find that, for 𝑞 fixed, the integral in the last line of (5.1) is continuous
on𝒫1(𝛶) ×ℳ𝑏,0(𝛶 × 𝑋). As a supremum of continuous functions ℒ is lower semi-continuous.

Whenever 𝜇 in absolutely continuous with respect to 𝜋, the following result shows that we can
restrict our study to 𝜈 ∈ ℳ𝑏,0(𝛶 × 𝑋) that are absolutely continuous with respect to 𝜋 ⊗ 𝑚. The
Lemma below is an adaptation to our setting of [Erb14, Lemma 2.3]. Since our notation is quite
different from this reference, we give a complete proof.

Lemma 5.3. Let 𝜇 = 𝜌𝜋 ∈ 𝒫(𝛶) and 𝜈 ∈ ℳ𝑏,0(𝛶 × 𝑋) such that ℒ(𝜇, 𝜈) < ∞. Then, 𝜈 is absolutely
continuous with respect to 𝜋 ⊗𝑚.

Proof. Take 𝐴 ∈ 𝔅(𝛶) and 𝐵 ∈ 𝔅0(𝑋) such that 𝜋(𝐴)𝑚(𝐵) = 0, and 𝜎 ∈ ℳ𝑏,0(𝛶 × 𝑋) non-negative
and such that 𝜋 ⊗𝑚 ≪ 𝜎 and 𝜈 ≪ 𝜎. The homogeneity of 𝜃 yields:

0 = ∫
𝐴×𝐵

𝜃(𝜌(𝜂), 𝜌(𝜂 + 𝛿𝑥))𝜋(d𝜂)𝑚(d𝑥) = ∫
𝐴×𝐵

𝜃(
d(𝜇 ⊗𝑚)

d𝜎 ,
d𝐶𝜇
d𝜎 )d𝜎.

By positivity of 𝜃 and 𝜎, the integrand vanishes 𝜎-almost everywhere on 𝐴 × 𝐵. By definition of ℒ:

ℒ(𝜇, 𝜈) = ∫
|||||
d𝜈
d𝜎
|||||
2

𝜃
(d(𝜇⊗𝑚)

d𝜎
, d𝐶𝜇
d𝜎

)d𝜎.

The above quantity is finite by assumption. Since the denominator vanishes on 𝐴 × 𝐵 so does the
numerator. Thus 𝜈(𝐴 × 𝐵) = 0.

Lemma 5.4. Let 𝜇 = 𝜌𝜋 ∈ 𝒫(𝛶) and 𝜈 ∈ ℳ𝑏,0(𝛶 × 𝑋). Then,

ℒ(𝖯⋆𝑡 𝜇, 𝖯⋆𝑡 𝜈) ≤ ℒ(𝜇, 𝜈), 𝑡 > 0.

Proof. We can assume thatℒ(𝜇, 𝜈) < ∞ otherwise there is nothing to prove. By Lemma 5.3, we have
that 𝜈 = 𝑤(𝜋 ⊗𝑚). By (2.2), we find that

ℒ(𝖯⋆𝑡 𝜇, 𝖯⋆𝑡 𝜈) = ∫ 𝛼(𝖯𝑡𝜌(𝜂), 𝖯𝑡𝜌(𝜂 + 𝛿𝑥), 𝖯𝑡𝑤(𝜂, 𝑥))d(𝜋 ⊗𝑚).

We conclude by convexity of 𝛼, Jensen’s inequality, and invariance of 𝖯 with respect to 𝜋.

We finish with a useful bound.

Lemma 5.5. Let 𝜇 ∈ 𝒫1(𝛶) and 𝜈 ∈ ℳ𝑏,0(𝛶 × 𝑋). Then:

|𝜈|(𝐴 × 𝐵) ≤
( 1
2

(
𝑚(𝐵) + 𝐼𝜇(𝐵)

)
ℒ(𝜇, 𝜈)

)1∕2
, 𝐴 ∈ 𝔅(𝛶), 𝐵 ∈ 𝔅0(𝑋).

31



Proof. Take 𝜎 = (𝜇 ⊗ 𝑚) + 𝐶𝜇 + |𝜈| so that we have, 𝜇 ⊗ 𝑚 = 𝜌1𝜎, 𝐶𝜇 = 𝜌2𝜎, and 𝜈 = 𝑤𝜎. We
assume that ℒ(𝜇, 𝜈) < ∞, otherwise there is nothing to prove. We have that

|𝜈|(𝐴 × 𝐵) = ∫
𝐴×𝐵

|𝑤|d𝜎

= ∫
𝐴×𝐵

√
𝜃(𝜌1, 𝜌2)

√
𝛼(𝑤, 𝜌1, 𝜌2)d𝜎

≤ (∫
𝐴×𝐵

𝜃(𝜌1, 𝜌2)d𝜎)
1∕2

(∫
𝐴×𝐵

𝛼(𝜌1, 𝜌2, 𝑤)d𝜎)
1∕2

= (∫
𝐴×𝐵

𝜃(𝜌1, 𝜌2)d𝜎)
1∕2√

ℒ(𝜇, 𝜈).

Bounding from above the logarithmic mean with the arithmetic mean, we have

∫
𝐴×𝐵

2𝜃(𝜌1, 𝜌2)d𝜎 ≤ ∫
𝛶×𝐵

(𝜌1 + 𝜌2)d𝜎 = (𝜇 ⊗𝑚)(𝛶 × 𝐵) + 𝐶𝜇(𝛶 × 𝐵) = 𝑚(𝐵) + 𝐼𝜇(𝐵) < ∞,

which completes the proof.

5.1.2 The action functional

We now define the action associated with a curve 𝜇̄ ∈ ℱ([0, 1],𝒫(𝛶)). We set

𝒜(𝜇̄) ≔ inf ∫
1

0
ℒ(𝜇𝑡, 𝜈𝑡)d𝑡,

where the infimum runs over all 𝜈̄ such that (𝜇̄, 𝜈̄) is a solution to the continuity equation on [0, 1].
Whenever there is no such 𝜈̄, we set 𝒜(𝜇̄) = ∞.
As a direct application of Proposition 4.3 and Lemma 5.4, we obtain the following contraction
property for the action.

Proposition 5.6. For all 𝜀 > 0,
𝒜(𝖯⋆𝜀 𝜇̄) ≤ e−2𝜀𝒜(𝜇̄).

We now establish that𝒜 is a good functional for minimization problems.

Lemma 5.7. The functional𝒜 is convex.

Proof. Let 𝜇̄ and 𝜇̄′ with finite action. Thus, there exists 𝜈̄ and 𝜈̄′ such that (𝜇̄, 𝜈̄) and (𝜇̄′, 𝜈̄′) solve
(𝐂𝐄𝑇). Let 𝜏 ∈ [0, 1]. Then, with 𝜈̄𝜏 = (1 − 𝜏)𝜈̄ + 𝜏𝜈̄′ and 𝜇̄𝜏 = (1 − 𝜏)𝜇̄ + 𝜏𝜇̄, we have that
(𝜇̄𝜏, 𝜈̄𝜏) ∼ (𝐂𝐄𝑇). Since ℒ is convex by Lemma 5.1, we get:

𝒜(𝜇̄𝜏) ≤ ∫
1

0
ℒ
(
(1 − 𝜏)𝜇𝑡 + 𝜏𝜇′𝑡, (1 − 𝜏)𝜈𝑡 + 𝜏𝜈𝑡

)
d𝑡 ≤ (1 − 𝜏)𝒜(𝜇̄) + 𝜏𝒜(𝜇̄′).

Fix 𝜉 ∈ 𝒫1(𝛶). We write

𝒞𝜉
(
[0, 1],𝒫1(𝛶)

)
≔
{
𝜇̄ ∈ 𝒞([0, 1],𝒫1(𝛶)) ∶ 𝜇0 = 𝜉

}
.

As a consequence of Theorem 2.11, the space 𝒞𝜉
(
[0, 1],𝒫1(𝛶)

)
is Polish when endowed with the

topology of uniform𝒫1(𝛶)-convergence.

Lemma 5.8. The functional𝒜∶ 𝒞𝜉([0, 1],𝒫1(𝛶)) → [0,∞] is lower semi-continuous.
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Lemma 5.9. The action𝒜 has compact sub-level sets in𝒞𝜉([0, 1],𝒫1(𝛶)).

Proof of Lemmas 5.8 and 5.9. Let 𝑟 ∈ (0,∞) and set ∆ = {𝒜(𝜇̄) ≤ 𝑟} ∩ {𝜇0 = 𝜉}. Take (𝜇̄𝑛) ⊂ ∆.
Since 𝒜(𝜇̄𝑛) ≤ 𝑟, for all 𝑛 ∈ ℕ, there exists 𝜈̄𝑛 ∈ ℳ𝑏,0(𝛶 × 𝑋̄) with (𝜇̄𝑛, 𝜈̄𝑛) solving the continuity
equation on [0, 1] and

𝒜(𝜇̄𝑛) ≤ ∫
1

0
ℒ(𝜇𝑛,𝑡, 𝜈𝑛,𝑡)d𝑡 ≤ 𝑟 + 1.

Let 𝐴 ∈ 𝔅(𝛶), 𝐵 ∈ 𝔅0(𝑋), and 𝐼 ∈ 𝔅([0, 1]). In view of Lemma 5.5, Theorem 4.10, and Cauchy–
Schwarz inequality for all 𝑛 ∈ ℕ:

|𝜈̄𝑛|(𝐴 × 𝐵 × 𝐼) ≤ ∫
𝐼

√
𝑚(𝐵) + 𝐼𝜇0(𝐵) + |𝜈̄𝑛|(𝐴 × 𝐵 × [0, 𝑡]) ℒ(𝜇𝑛,𝑡, 𝜈𝑛,𝑡)

1∕2 d𝑡

≤
√
𝑚(𝐵) + 𝐼𝜇0(𝐵) + |𝜈̄𝑛|(𝐴 × 𝐵 × [0, 1]) |𝐼|(𝑟 + 1).

(5.2)

Setting 𝐼 ≔ [0, 1] in (5.2) yields

|𝜈̄𝑛|(𝐴 × 𝐵 × [0, 1]) ≤
√
|𝜈̄𝑛|(𝐴 × 𝐵 × [0, 1]) + 𝑚(𝐵) + 𝐼𝜇0(𝐵) (𝑟 + 1).

Solving explicitly this equation yields

(5.3) |𝜈̄𝑛|(𝐴 × 𝐵 × [0, 1]) ≤ 𝑎𝑟 + 𝑏𝑟
√
𝑚(𝐵) + 𝐼𝜇0(𝐵),

with 𝑎𝑟 and 𝑏𝑟 > 0 depending only on 𝑟. This shows that (2.1a) in Theorem 2.2 is satisfied.
Let us now show that (2.1b) is satisfied. Let 𝜀 > 0. By Theorem 2.2, we can find Γ ∈ 𝔎(𝛶),𝐾 ∈ 𝔎(𝑋),
and 𝐽 ∈ 𝔎([0, 1]) such that

|[0, 1] ⧵ 𝐽| + 𝑚(𝐵 ⧵ 𝐾) + 𝐼𝜇0(𝐵 ⧵ 𝐾) ≤ 𝜀.

Now let ∆ ≔ Γ × 𝐾 × 𝐽 ∈ 𝔎(𝛶 × 𝑋 × [0, 1]). Then by (5.2) and (5.3), we get that

|𝜈̄𝑛|
(
(𝛶 × 𝐵 × [0, 1]) ⧵ ∆

)
≤ |𝜈̄𝑛|

((
𝛶 ⧵ Γ

)
× (𝐵 ⧵ 𝐾) × ([0, 1] ⧵ 𝐽)

)

≤ 𝜀(𝑟 + 1)
√
𝜀 + 𝑎𝑟 + 𝑏𝑟

√
𝜀.

Thus, Theorem 2.2 (𝑖𝑖) applies, and, up to passing to a subsequence, we can find 𝜈̄ ∈ ℳ𝑏,0(𝛶 × 𝑋̄)
such that 𝜈̄𝑛 → 𝜈̄, as 𝑛 → ∞.
Recall that𝔄(𝛶) is the algebra defined in Section 4.2.1. Define,

𝜇𝑡(𝐴) ≔ 𝜇0(𝐴) + ∫
𝑡

0
𝜈𝑟(𝖣1𝐴)d𝑟, 𝐴 ∈ 𝔄(𝛶).

By Corollary 4.12, we find that for all 𝐹 ∈ ℋ, 𝜇𝑡(𝐹) is the limit of 𝜇𝑛𝑡 (𝐹). Thus 𝜇𝑡 is a non-negative set
function on the algebra𝔄(𝛶) with total mass 1. By Hahn’s extension theorem [DS88, Thm. III.5.8, p.
136], it can be uniquely be extended to a probability measure 𝜇𝑡 on 𝜎(𝔄(𝛶)) = 𝔅(𝛶). Moreover, since
𝒢 ⊂ ℋ, we find that 𝜇𝑛𝑡 → 𝜇𝑡 in𝒫(𝛶). A similar argument at the level of intensity measures shows
that actually 𝜇𝑛𝑡 → 𝜇𝑡 in𝒫1(𝛶). By Lemma 4.2, the find that (𝜇̄, 𝜈̄) is a solution to the continuity
equation. Thus, by lower semi-continuity of ℒ (Lemma 5.2), we find that 𝜇̄ ∈ ∆. This shows that ∆
is compact and this establishes the two lemmas.

As a consequence of the properties of 𝒜 established above, we obtain the following result.

Theorem 5.10. Let 𝜇̄ ∈ 𝒞
(
[0, 1],𝒫1(𝛶)

)
such that𝒜(𝜇̄) < ∞, then there exists 𝜈̄ ∈ ℳ𝑏,0(𝛶 × 𝑋̄) such

that (𝜇̄, 𝜈̄) solves the continuity equation on [0, 1] and

𝒜(𝜇̄) = ∫
1

0
ℒ(𝜇𝑡, 𝜈𝑡)d𝑡.

33



5.1.3 The variational distance end the entropic costs

We now define our distance𝒲 . Actually, we derive our entropic curvature for𝒲 through properties
of a regularized version of it.

Definition 5.11. For 𝜀 ≥ 0, we define the entropic cost by

𝒥𝜀(𝜉0, 𝜉1) ≔ inf{𝒜(𝜇̄) + 𝜀 ∫
1

0
ℐ(𝜇𝑡 | 𝜋)d𝑡 ∶ 𝜇0 = 𝜉0, 𝜇1 = 𝜉1}.

We also set𝒲 ≔ 𝒥1∕20 .

We call the quantity 𝒥𝜀 the entropic cost in analogy with the continuous setting (see [GT21] and the
references therein). It can be thought of as an entropic regularization of𝒲 . Properties specific to𝒲
are studied below.

Theorem 5.12. Let 𝜀 ≥ 0 and 𝜉0 and 𝜉1 such that 𝒥𝜀(𝜉0, 𝜉1) < ∞. Then, there exists (𝜇̄𝜀, 𝜈̄𝜀) solving
the continuity equation such that

𝒥𝜀(𝜉0, 𝜉1) = ∫
1

0
ℒ(𝜇𝜀𝑡 , 𝜈𝜀𝑡 )d𝑡 + 𝜀 ∫

1

0
ℐ(𝜇𝜀𝑡 | 𝜋)d𝑡.

Proof. Since 𝜀 is fixed, in this proof we drop the dependence on 𝜀 whenever no confusion may arise.
The relative Fisher information is lower semi-continuous, by Theorem 3.2, and convex, by Jensen’s
inequality. Thus in view of Lemmas 5.7 and 5.8, we get the lower semi-continuity and convexity of

(5.4) 𝒜𝜀(𝜇̄) ≔ 𝒜(𝜇̄) + 𝜀 ∫
1

0
ℐ(𝜇𝑡 | 𝜋)d𝑡.

Thus the set 𝐴𝜀 ≔ {𝒜𝜀 ≤ 𝑟} is closed for all 𝑟 ∈ (0,∞). Clearly, we have that 𝐴𝜀 ⊂ {𝒜 ≤ 𝑟}. Thus, 𝐴𝜀
is relatively compact by Lemma 5.9. The result follows from standard optimization arguments.

Theorem 5.13. Let 𝜉0 and 𝜉1 such that 𝒥𝜀𝑜(𝜉0, 𝜉1) < ∞ for some 𝜀𝑜 > 0. For 𝜀 ∈ (0, 𝜀𝑜), write (𝜇̄𝜀, 𝜈̄𝜀)
for a minimizer of 𝒥𝜀(𝜉0, 𝜉1). Then, we have that

𝒥𝜀(𝜉0, 𝜉1) ,,,,,→𝜀→0+
𝒲2(𝜉0, 𝜉1).

Moreover, up to passing to a subsequence

(𝜇̄𝜀, 𝜈̄𝜀) ,,,,,→
𝜀→0+

(𝜇̄, 𝜈̄),

for a minimizer (𝜇̄, 𝜈̄) for𝒲(𝜉0, 𝜉1).

Proof. Let us write 𝑟 ≔ 𝒥𝜀𝑜(𝜉0, 𝜉1) + 1 < ∞, and 𝐴 ≔ {𝒜𝜀𝑜 ≤ 𝑟}. Since the family (𝒜𝜀) is decreasing
in 𝜀 when regarded as functionals on 𝐴, we have

𝒥𝜀(𝜉0, 𝜉1) = inf {𝒜𝜀(𝜇̄) ∶ 𝜇0 = 𝜉0, 𝜇1 = 𝜉1, 𝜇̄ ∈ 𝐴}.

On 𝐴, we have that𝒜𝜀 ↘ 𝒜 pointwise, and that𝒜 is lower semi-continuous. Thus, by [Dal93, Prop.
5.7],𝒜𝜀 Γ-converges to𝒜 on 𝐴. Now, since 𝒜𝜀 ≥ 𝒜 and since 𝒜 has compact-sublevel sets, the first
part of the claim follows from [Dal93, Prop. 7.7 & Thm. 7.8]. The second part of the claim follows
from [Dal93, Cor. 7.20] provided we can show that {(𝜇̄𝜀, 𝜈̄𝜀) ∶ 𝜀 ∈ (0, 𝜀𝑜)} is compact. We argue as in
Lemma 5.9. Indeed, by construction 𝜇̄𝜀 ∈ {𝒜𝜀 ≤ 𝑟} ⊂ {𝒜 ≤ 𝑟}. Thus, (5.2) holds with 𝜀 in place of of
𝑛 and the rest of the argument is the same.
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We now study the properties of𝒲. We start with a classical argument.

Lemma 5.14. For all 𝑇 > 0, and 𝜉0 and 𝜉1 ∈ 𝒫1(𝛶):

𝒲(𝜉0, 𝜉1) = inf{∫
𝑇

0
ℒ

1
2 (𝜇𝑡, 𝜈𝑡)d𝑡 ∶ (𝜇̄, 𝜈̄) ∼ (𝐂𝐄𝑇), 𝜇0 = 𝜉0, 𝜇𝑇 = 𝜉1}.

Proof. Follows from a standard reparametrization argument, for instance [DNS09, Thm. 5.4] with
Lemma 4.5.

We now summarize the main property of𝒲.

Theorem 5.15. (𝑖) The map𝒲 defines an extended distance on𝒫1(𝛶).

(𝑖𝑖) The topology induced by𝒲 on𝒫1(𝛶) is stronger than that of𝒫1(𝛶).

(𝑖𝑖𝑖) The map𝒲 is lower semi-continuous on𝒫1(𝛶) × 𝒫1(𝛶).

(𝑖𝑣) Bounded sets with respect to𝒲 are𝒫1(𝛶)-relatively compact.

(𝑣) For every 𝜂 ∈ 𝒫1(𝛶) the accessible component {𝒲(𝜂, ⋅) < ∞} is a complete geodesic space when
equipped with𝒲 .

Proof. (𝑖) The symmetry is immediate. We obtain the triangle inequality by concatenation and using
Lemma 5.14. Now take 𝜉0 and 𝜉1 ∈ 𝒫1(𝛶) with𝒲(𝜉0, 𝜉1) = 0. By Theorem 5.12, take 𝜇̄ realizing
𝒲(𝜉0, 𝜉1). Then 𝒜(𝜇̄) = 0, thus 𝜈̄ = 0 and 𝜉0 = 𝜉1. This shows that𝒲 is an extended distance.
(𝑖𝑖) Let (𝜉𝑛) ⊂ 𝒫1(𝛶) and 𝜉 ∈ 𝒫1(𝛶) be such that𝒲(𝜉𝑛, 𝜉) → 0. For all 𝑛 ∈ ℕ, take (𝜇̄𝑛, 𝜈̄𝑛) realizing
the infimum in𝒲(𝜉𝑛, 𝜉). Let (ℎ𝑘) ⊂ 𝒞0(𝑋) be as in Lemma 2.5. For all 𝑘 ∈ ℕ, set 𝐺𝑘 ≔ e−𝜄ℎ𝑘 ,
𝐵𝑘 ∈ 𝔅0(𝑋) such that 𝖣𝐺𝑘 = 0 outside of 𝐵𝑘. Arguing as in the proof of Theorem 4.11, and then
using Lemma 5.5, we find that

|||||||
∫ 𝐺𝑘d(𝜉𝑛 − 𝜉)

|||||||
≤ |𝜈̄𝑛|(𝛶 × 𝐵𝑘 × [0, 1])

≤ ∫
1

0

(
𝑚(𝐵𝑘) + 𝐼𝜇𝑛,𝑡 (𝐵𝑘)

) 1
2ℒ(𝜇𝑛,𝑡, 𝜈𝑛,𝑡)

1
2d𝑡

≤ 𝐶𝑘𝒲(𝜉𝑛, 𝜉).

Thus, by Lemma 2.5, we find that 𝜉𝑛 → 𝜉 with respect to the𝒫(𝛶)-topology. Take ℎ ∈ 𝒞0(𝑋). By
Theorem 4.10 and Lemma 5.5, we find that

||||𝐼𝜉𝑛(ℎ) − 𝐼𝜉(ℎ)
|||| ≤ |𝜈̄𝑛|(1 ⊗ ℎ ⊗ 1[0,1])

≤ ∫
1

0

(
𝑚(ℎ) + 𝐼𝜇𝑛,𝑡 (ℎ)

) 1
2ℒ(𝜇𝑛,𝑡, 𝜈𝑛,𝑡)

1
2d𝑡

≤ 𝐶𝒲(𝜉𝑛, 𝜉)

for some constant 𝐶 > 0 depending on ℎ. This shows that 𝐼𝜉𝑛 → 𝐼𝜉 inℳ0(𝑋). By Proposition 2.12,
we find that 𝜉𝑛 → 𝜉 in𝒫1(𝛶).
(𝑖𝑖𝑖) Fix 𝑟 ≥ 0, we want to show closedness of the set

𝐴 ≔ {(𝜉, 𝜒) ∈ 𝒫1(𝛶) × 𝒫1(𝛶) ∶ 𝒲(𝜉, 𝜒) ≤ 𝑟}.

Let (𝜉𝑛) and (𝜒𝑛) ⊂ 𝐴 converging respectively to 𝜉 and 𝜒 ∈ 𝒫1(𝛶). By Theorem 5.12, for all 𝑛 ∈ ℕ,
there exists a solution to the continuity equation (𝜇̄𝑛, 𝜈̄𝑛) realizing𝒲(𝜉𝑛, 𝜒𝑛). Since 𝜉𝑛 → 𝜉 and
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𝜒𝑛 → 𝜒 arguing as in the proof of Lemma 5.9, we can find (𝜇̄, 𝜈̄) solving the continuity equation and
joining 𝜉 to 𝜒. Thus, by Lemma 5.8, we find that

𝒲(𝜒, 𝜉) ≤ 𝒜(𝜇̄) ≤ lim inf
𝑛→∞

𝒜(𝜇̄𝑛) = lim inf
𝑛→∞

𝒲(𝜒𝑛, 𝜉𝑛).

(𝑖𝑣) Follows from Lemma 5.9.
(𝑣) The geodesic property follows from Theorem 5.12, the geodesic being given by the minimizing
curve 𝜇̄. The completeness follows from (𝑖𝑖𝑖) and (𝑖𝑣).

The quantity 𝒥
1
2
𝜀 is not a distance for 𝜀 > 0 (the reparametrization argument given in Lemma 5.14

does not work here). However, we have the following quasi-triangle inequality.

Proposition 5.16. Let 𝜉0, 𝜉1, 𝜉2 ∈ 𝒫1(𝛶) and 𝜀 > 0. Then,

𝒥𝜀(𝜉0, 𝜉2) ≤ 2𝒥𝜀(𝜉0, 𝜉1) + 2𝒥𝜀(𝜉1, 𝜉2).

Proof. We assume that the right hand side is finite. Let (𝜇̄1, 𝜈̄1) and (𝜇̄2, 𝜈̄2) realizing the two infima.
By concatenation, using Lemma 4.5 and that the Lagrangian is quadratic in 𝜈, we find that

𝒥𝜀 ≤ 4 ∫
1∕2

0
ℒ(𝜇12𝑡, 𝜈

1
2𝑡)d𝑡 + 𝜀 ∫

1∕2

0
ℐ(𝜇2𝑡 | 𝜋)d𝑡 + 4 ∫

1

1∕2
ℒ(𝜇22𝑡−1, 𝜈

2
2𝑡−1)d𝑡 + 𝜀 ∫

1

1∕2
ℐ(𝜇22𝑡−1 | 𝜋)d𝑡.

This gives the claim by an immediate change of variable and since 𝜀∕4 ≤ 𝜀.

5.2 The geometry of (𝒟omℋ,𝒲)
5.2.1 The metric space (𝒟omℋ,𝒲)

We first show that Theorem 5.15 is non-trivial by showing that 𝒟omℋ yields an example of an
accessible component for𝒲. The central tool is the following Talagrand inequality.

Theorem 5.17. For all 𝜇 ∈ 𝒫1(𝛶),

(5.5) 𝒲2(𝜇, 𝜋) ≤ ℋ(𝜇 | 𝜋).

Moreover, for all 𝜇 ∈ 𝒟omℋ and all 𝜀 ≥ 0,

𝒥𝜀(𝜇, 𝜋) < ∞.

Remark 5.18. Classically, the Talagrand inequality is a consequence of the convexity of the entropy
(Theorem 5.28). Since𝒲 can be infinite, we derive the Talagrand inequality a priori by other means.

Proof. We show (5.5) first. We can assume that 𝜇 ∈ 𝒟omℋ otherwise the claim is empty. Let 𝑇 > 0.
By Proposition 4.3 and (3.7) and (3.10), we find that

𝒲(𝜇, 𝖯⋆𝑇𝜇) ≤ ∫
𝑇

0
ℐ(𝖯⋆𝑡 𝜇 | 𝜋)1∕2d𝑡

≤ ∫
𝑇

0

ℐ(𝖯⋆𝑡 𝜇 | 𝜋)
ℋ(𝖯⋆𝑡 𝜇 | 𝜋)1∕2

d𝑡

= −∫
𝑇

0

d
d𝑡 ℋ(𝖯⋆𝑡 𝜇 | 𝜋)1∕2d𝑡

= ℋ(𝜇 | 𝜋)1∕2 −ℋ(𝖯⋆𝑇𝜇 | 𝜋)1∕2.
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We conclude by letting 𝑇 → ∞, and by lower semi-continuity of𝒲 (Theorem 5.15 (𝑖𝑖𝑖)).
Now let us prove the second part of the claim. On the one hand, since 𝜇 ∈ 𝒟omℋ, by (3.9)
and Proposition 4.3, we see that 𝒥𝜀(𝜇, 𝖯⋆𝛿 𝜇) < ∞ for all 𝛿 > 0. In view of Proposition 5.16, it thus
sufficient to show that 𝒥𝜀(𝖯⋆𝛿 , 𝜋) < ∞. Since𝒲(𝜇, 𝜋) < ∞ by the first part, we can consider a
solution (𝜇̄, 𝜈̄) to the continuity equation minimal for𝒲(𝜇, 𝜋). Applying Proposition 4.4 to this
solution, and using that 𝖯⋆𝛿 𝜋 = 𝜋 yields that (𝖯⋆𝛿 𝜇̄, e

−𝛿 𝖯⋆𝛿 𝜈̄) is an admissible candidate for the
minimization problem of 𝒥𝜀(𝖯⋆𝛿 𝜇, 𝜋). Furthermore, by (3.9), we find that it has finite 𝜀-energy. The
proof is complete.

The following definition is thus very natural.

Definition 5.19. We write𝒫∗
1 (𝛶) for the𝒲-closure of𝒟omℋ.

The following is a consequence of Theorems 5.15 and 5.17.

Corollary 5.20. The space (𝒫∗
1 (𝛶),𝒲) is a complete geodesic space.

Remark 5.21. We have
𝒟omℋ ⊂ 𝒫∗

1 (𝛶) ⊂ 𝒫1(𝛶).
A priori each inclusion could be strict.

Proposition 5.22. Fix 𝜇 and 𝜉 ∈ 𝒫∗
1 (𝛶) then

d+
d𝑡 𝒲(𝖯⋆𝑡 𝜇, 𝜉) ≤

√
ℐ(𝖯⋆𝑡 𝜇 | 𝜋), 𝑡 > 0.

Proof. Assume that 𝜇 = 𝜌𝜋 ∈ 𝒟omℐ, otherwise there is nothing to prove. Write, for 𝑡 > 0, 𝜇𝑡 ≔ 𝖯⋆𝑡 𝜇
and 𝜈𝑡 ≔ 𝖣𝜌d(𝜋 ⊗𝑚). By Proposition 4.3, (𝜇̄, 𝜈̄) is a solution to the continuity equation, and

ℒ(𝜇𝑡, 𝜈𝑡) = ℐ(𝜇𝑡 | 𝜋).

Thus by Proposition 5.23, we get:

𝒲(𝜇𝑡+𝑠, 𝜉) −𝒲(𝜇𝑡, 𝜉) ≤ 𝒲(𝜇𝑡+𝑠, 𝜇𝑡) ≤ ∫
𝑡+𝑠

𝑡
|𝜇̇𝑢|d𝑢 ≤ ∫

𝑡+𝑠

𝑡

√
ℐ(𝜇𝑢 | 𝜋)d𝑢.

The claim immediately follows.

Recall that a curve 𝜇̄ ∈ ℱ([0, 𝑇],𝒫1(𝛶)) is absolutely continuous with respect to𝒲 provided there
exists 𝑔 ∈ 𝐿1(0, 𝑇) such that:

𝒲(𝜇𝑠, 𝜇𝑡) ≤ ∫
𝑡

𝑠
𝑔(𝑟)d𝑟, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇.

By definition themetric derivative of 𝜇̄ is the minimal 𝑔 in the above inequality denoted by 𝑡 ↦ |𝜇̇𝑡|.
Recall from [AGS08, Thm. 1.1.2], that, for almost every 𝑡 ∈ (0, 𝑇),

|𝜇̇𝑡| = lim
𝜀→0

𝒲(𝜇𝑡+𝜀, 𝜇𝑡)
𝜀 .

Proposition 5.23. The curve 𝜇̄ ∈ 𝒞
(
[0, 𝑇],𝒫∗

1 (𝛶)
)
is absolutely continuous with respect to𝒲 if and

only if there exists 𝜈̄ ∈ ℳ𝑏,0(𝛶 × 𝑋̄) such that (𝜇̄, 𝜈̄) ∼ (𝐂𝐄𝑇) and

∫
𝑇

0

√
ℒ(𝜇𝑡, 𝜈𝑡)d𝑡 < ∞.

In this case, |𝜇̇𝑡|2 ≤ ℒ(𝜇𝑡, 𝜈𝑡) for almost every 𝑡 ∈ [0, 𝑇]. Moreover, there exists a unique 𝜈̄′ ∈ ℳ𝑏,0(𝛶 ×
𝑋̄) such that (𝜇̄, 𝜈̄′) ∼ (𝐂𝐄𝑇) and

(5.6) |𝜇̇𝑡|2 = ℒ(𝜇𝑡, 𝜈′𝑡), for a.e. 𝑡 ∈ [0, 𝑇].
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Proof. See [DNS09, Thm. 5.17]: the precompactness result in [DNS09, Cor. 4.10] corresponds to
Lemmas 5.8 and 5.9.

In the previous section, we have informally chosenℳ𝑏,0(𝛶 × 𝑋) to be the tangent space of𝒫1(𝛶).
However, it would be natural to consider only vector fields that have minimal Lagrangian. In order
to do so, observe that if (𝜇̄, 𝜈̄) and (𝜇̄, 𝜈̄′) solve the continuity equation, then for all 𝑡 ∈ [0, 1], 𝜈𝑡 − 𝜈′𝑡
is divergence-free, in the sense that

(𝜈𝑡 − 𝜈′𝑡)(𝖣𝐹) = 0, 𝐹 ∈ ℋ.

This leads to the following definition of the tangent space, for 𝜇 ∈ 𝒫∗
1 (𝛶),

𝑇𝜇𝒫∗
1 (𝛶) ≔

{
𝜈 ∈ ℳ𝑏,0(𝛶 × 𝑋) ∶ ℒ(𝜇, 𝜈) ≤ ℒ(𝜇, 𝜈 + 𝜈′) < ∞, 𝜈′ divergence-free

}
.

From Proposition 5.23 and this definition, we get the following result.

Corollary 5.24. Take (𝜇̄, 𝜈̄) a solution to the continuity equation such that 𝜇̄ is absolutely continuous
with respect to𝒲 , and 𝜇𝑡 ∈ 𝒫∗

1 (𝛶), for all 𝑡 ∈ [0, 1]. Then, 𝜈̄ is the unique solution to (5.6) if and only
if 𝜈𝑡 ∈ 𝑇𝜇𝑡𝒫1(𝛶).

As in the Euclidean case [AGS08, Section 8.1], we obtain an explicit representation of the tangent as
a closure of gradient fields.

Proposition 5.25. Assume that 𝜇 = 𝜌𝜋 ∈ 𝒫∗
1 (𝛶). Then, 𝑇𝜇𝒫

∗
1 (𝛶) is the set of measures 𝜈 = 𝑤(𝜋⊗𝑚)

such that 𝑤 is in the 𝐿2(𝜋 ⊗𝑚)-closure of {𝖣𝐹 ∶ 𝐹 ∈ ℋ}.

Proof. In view of Lemma 5.3, the claim follows by observing that 𝜈′ = 𝑤′(𝜋 ⊗𝑚) is divergence-free
if and only if ∫ 𝖣𝐹𝑤′d𝜋d𝑚 = 0 for all 𝐹 ∈ ℋ and that the space of such densities is the orthogonal
space to the space of gradient fields.

5.2.2 Evolution variation inequality and entropic curvature bounds

We now establish the main results of the paper, namely we show that of the Ornstein–Uhlenbeck
semi-group is the gradient flow ofℋ(⋅ | 𝜋) on (𝒫∗

1 (𝛶),𝒲). Despite𝒲 being an extended distance
on𝒫1(𝛶), the space (𝒫∗

1 (𝛶),𝒲) is a metric space in the usual sense (that is, not extended).
Following Proposition 5.6 and Theorem 5.17, the following contraction estimates hold.

Theorem 5.26. For 𝜇0 and 𝜇1 ∈ 𝒫1(𝛶), and 𝑡 ≥ 0:

𝒲(𝖯⋆𝑡 𝜇0, 𝖯⋆𝑡 𝜇1) ≤ e−𝑡𝒲(𝜇0, 𝜇1);(5.7)
𝒲(𝖯⋆𝑡 𝜇0, 𝜋) ≤ e−𝑡ℋ(𝜇0 | 𝜋).(5.8)

We now establish a much stronger relationship between𝒲 andℋ by showing that 𝖯⋆ is the gradient
flow of the entropy with respect to𝒲.

Theorem 5.27. The space𝒟omℋ is geodesically convex with respect to𝒲 . Furthermore, the following
Evolution Variation Inequality holds: for all 𝜇 and 𝜉 ∈ 𝒟omℋ,

(EVI) ℋ(𝖯⋆𝑠 𝜇 | 𝜋) +
1
2
d
d𝑠𝒲

2(𝖯⋆𝑠 𝜇, 𝜉) +
1
2𝒲

2(𝖯⋆𝑠 𝜇, 𝜉) ≤ ℋ(𝜉 | 𝜋), 𝑠 ≥ 0.

Proof. By the semigroup property of 𝖯⋆ it suffices to show the claim at 𝑠 = 0. Our strategy consists
in starting from a minimizing curve (𝜇̄, 𝜈̄) for𝒲(𝜇, 𝜉) and 𝛿 > 0 construct a deformation (𝜇̄𝛿, 𝜈̄𝛿)
that is admissible for𝒲(𝖯⋆𝛿 𝜇, 𝜉) and then use estimates from the previous section in order to control
𝒲(𝖯⋆𝛿 𝜇, 𝜉) − 𝒲(𝜇, 𝜉). However, since the Ornstein–Uhlenbeck semi-group is only regularizing
from 𝒟omℋ to 𝒟omℐ, and that we have a priori no information on the regularity of geodesics,
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we implement this strategy in two steps. First, we use the entropic cost 𝒥𝜀 for which we know that
minimizing curves are in the domain of the Fisher information, in order to derive a weaker version
of (EVI) for 𝒥𝜀, and for𝒲 passing to the limit. Second, we can use this weak (EVI) in order to deduce
that𝒟omℋ is geodesically convex, thus gaining some regularity of geodesics. This regularity is
sufficient in order to reimplement the above strategy but directly at the level of𝒲 rather than 𝒥𝜀.
Since𝒲 has more structure than 𝒥𝜀 we can deduce (EVI).

Approximation of minimizers via the Ornstein–Uhlenbeck semi-group Let 𝜀 > 0. By
Theorem 5.17, we get that 𝒥𝜀(𝜇, 𝜉) < ∞. By Theorem 5.12, we can consider (𝜇̄𝜀, 𝜈̄𝜀) solving the
continuity equation and realizing 𝒥𝜀(𝜇, 𝜉). By the finiteness of ℐ(𝜇𝜀𝑡 | 𝜋) for almost every 𝑡 ∈ [0, 1]
and Theorem 4.11, we can write, for all 𝑡 ∈ [0, 1], 𝜇𝜀𝑡 = 𝜌𝜀𝑡𝜋 for some probability density. By
Lemma 5.3, we can take 𝜈𝜀𝑡 = 𝑤𝜀

𝑡 (𝜋 ⊗𝑚). Recall that by Proposition 4.3, we can use the Ornstein–
Uhlenbeck to construct solutions to the continuity equation from a fixed initial measure. Here we
use a similar strategy with an additional correction taking into account that 𝜇̄ also depends on 𝑡.
Namely, for all 𝛿 > 0, we define

𝜇𝜀,𝛿𝑡 = 𝖯⋆𝑡𝛿𝜇
𝜀
𝑡 = 𝜌𝜀,𝛿𝑡 𝜇,

𝜈𝜀,𝛿𝑡 = e−𝑡𝛿 𝖯⋆𝑡𝛿𝜈
𝜀
𝑡 − 𝛿𝖣𝖯𝑡𝛿𝜌𝜀𝑡 (𝜋 ⊗𝑚) = 𝑤𝜀,𝛿

𝑡 (𝜋 ⊗𝑚).

By construction, we have 𝜇𝜀,𝛿0 = 𝜇𝜀0 = 𝜉 and 𝜇𝜀,𝛿1 = 𝖯⋆𝛿 𝜇. Let us show that (𝜇̄𝜀,𝛿, 𝜈̄𝜀,𝛿) solves the
continuity equation. Indeed, let 𝐹 ∈ 𝒞1

𝑐 ([0, 1], 𝒮). By definition of 𝖫, we have

(5.9) 𝜕𝑡𝖯𝑡𝛿𝐹𝑡 = 𝛿𝖫𝖯𝑡𝛿𝐹𝑡 + 𝖯𝑡𝛿𝜕𝑡𝐹𝑡.

By definition of 𝖯⋆ and (5.9),

∫
1

0
∫ 𝜕𝑡𝐹𝑡d𝖯⋆𝑡𝛿𝜇

𝜀
𝑡d𝑡 = ∫

1

0
∫ 𝖯𝛿𝑡𝜕𝑡𝐹𝑡d𝜇𝜀𝑡d𝑡

= ∫
1

0
∫ (𝜕𝑡𝖯𝑡𝛿𝐹𝑡 − 𝛿𝖫𝖯𝑡𝛿𝐹𝑡)d𝜇𝜀𝑡d𝑡.

(5.10)

On the one hand, since, by definition, (𝜇̄𝜀, 𝜈̄𝜀) solves the continuity equation, and since 𝖣𝖯𝑡𝛿 =
e−𝑡𝛿 𝖯𝑡𝛿𝖣, we have that:

(5.11) ∫
1

0
∫ 𝜕𝑡𝖯𝑡𝛿𝐹𝑡d𝜇𝜀𝑡d𝑡 = −∫

1

0
∫ 𝖣𝖯𝑡𝛿𝐹𝑡d𝜈𝜀𝑡d𝑡 = −∫

1

0
∫ e−𝑡𝛿𝐹𝑡d𝜈𝜀𝑡d𝑡.

On the other hand, since 𝖫 and 𝖯 commute, and by integration by part between 𝖫 and 𝖣 provided by
the Mecke formula

(5.12) −𝛿 ∫
1

0
∫ 𝖫𝖯𝑡𝛿𝐹𝑡d𝜇𝜀𝑡d𝑡 = 𝛿 ∫

1

0
∫ 𝖣𝐹𝑡𝖣𝖯𝑡𝛿𝜌𝜀𝑡d(𝜋 ⊗𝑚)d𝑡.

combining (5.10), (5.11) and (5.12), we find that

∫
1

0
∫ 𝜕𝑡𝐹𝑡d𝜇𝜀,𝛿𝑡 d𝑡 = −∫

1

0
∫ 𝖣𝐹𝑡d𝜈𝜀,𝛿𝑡 d𝑡.

That is to say that (𝜇̄𝜀,𝛿, 𝜈̄𝜀,𝛿) solves the continuity equation.
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Expansion of the Lagrangian along the approximation By the Cauchy–Schwarz inequality,

∫
1

0
∫ |𝖣 log 𝜌𝜀,𝛿𝑡 𝑤𝜀,𝛿

𝑡 |d(𝜋 ⊗𝑚)d𝑡 = ∫
1

0
∫ |||||𝖣 log 𝜌

𝜀,𝛿
𝑡 𝖣𝜌𝜀,𝛿𝑡

|||||
1∕2
||||||||||

𝖣 log 𝜌𝜀,𝛿𝑡
𝖣𝜌𝜀,𝛿𝑡

𝑤𝜀,𝛿
𝑡

||||||||||

1∕2

d(𝜋 ⊗𝑚)d𝑡

≤ (∫
1

0
ℐ(𝜇𝜀,𝛿𝑡 | 𝜋)d𝑡 ∫

1

0
ℒ(𝜇𝜀,𝛿𝑡 , 𝜈𝜀,𝛿𝑡 )d𝑡)

1
2

.

Using that (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, we get

∫
1

0
ℒ(𝜇𝜀,𝛿𝑡 , 𝜈𝜀,𝛿𝑡 )d𝑡 ≤ ∫

1

0
e−2𝛿𝑡 ℒ(𝖯⋆𝑡𝛿𝜇

𝜀
𝑡 , 𝖯⋆𝑡𝛿𝜈

𝜀
𝑡 )d𝑡 + 𝛿2 ∫

1

0
∫

|𝖣𝖯𝑡𝛿𝜌𝜀𝑡 |2

𝜃(𝖯𝑡𝛿𝜌𝜀𝑡 + 𝖣𝖯𝑡𝛿𝜌𝜀𝑡 , 𝖯𝑡𝛿𝜌𝜀𝑡 )
d(𝜋 ⊗𝑚)d𝑡.

By Lemma 5.4, the first term is not larger than 𝒜(𝜇̄𝜀) which is finite by construction. The second
term is, by definition, 𝛿2 ∫ 10 ℐ(𝖯

⋆
𝑡𝛿𝜇

𝜀
𝑡 | 𝜋)d𝑡. By the contractivity of the Fisher information along the

Ornstein–Uhlenbeck semi-group and the assumption on 𝜇𝜀, we have that

∫
1

0
ℐ(𝜇𝜀,𝛿𝑡 | 𝜋)d𝑡 ≤ ∫

1

0
ℐ(𝜇𝜀𝑡 | 𝜋)d𝑡 < ∞.

Thus, we have established that

(5.13) ∫
1

0
∫ |𝖣 log 𝜌𝜀,𝛿𝑡 𝑤𝜀,𝛿

𝑡 |d(𝜋 ⊗𝑚)d𝑡 < ∞.

By definition, we have that
𝑤𝜀,𝛿
𝑡 = e−𝑡𝛿 𝖯𝑡𝛿𝑤𝜀

𝑡 − 𝛿𝖣𝜌𝜀,𝛿𝑡 .

Using that (𝑎 − 𝑏)2 = 𝑎2 − 2(𝑎 − 𝑏)𝑏 − 𝑏2, we find that

|𝑤𝜀,𝛿
𝑡 |2 = e−2𝑡𝛿|𝖯𝑡𝛿𝑤𝜀

𝑡 |2 − 2𝛿𝑤𝜀,𝛿
𝑡 𝖣𝜌𝜀,𝛿𝑡 − 𝛿2|𝖣𝜌𝜀,𝛿𝑡 |2.

Thus, for 𝑡 ∈ [0, 1], expanding the square in this way in the definition of ℒ, we get

(5.14) ℒ(𝜇𝜀,𝛿𝑡 , 𝜈𝜀,𝛿𝑡 ) = e−2𝑡𝛿 ℒ(𝖯⋆𝑡𝛿𝜇
𝜀
𝑡 , 𝖯⋆𝑡𝛿𝜈

𝜀
𝑡 ) − 2𝛿 ∫ 𝑤𝜀,𝛿

𝑡 𝖣 log 𝜌𝜀,𝛿𝑡 d(𝜋 ⊗𝑚) − 𝛿2 ℐ(𝜇𝜀,𝛿𝑡 | 𝜋),

the first quantity is finite by Lemma 5.4, the second term is finite by (5.13), and the last term is finite
by assumption. Using that ℐ ≥ 0 and the contraction estimate Lemma 5.4 for the Lagrangian yields:

(5.15) ℒ(𝜇𝜀,𝛿𝑡 , 𝜈𝜀,𝛿𝑡 ) − ℒ(𝜇𝜀𝑡 , 𝜈𝜀𝑡 ) ≤
(
e−2𝑡𝛿 −1

)
ℒ(𝜇𝜀𝑡 , 𝜈𝜀𝑡 ) − 2𝛿 ∫ 𝑤𝜀,𝛿

𝑡 𝖣 log 𝜌𝜀,𝛿𝑡 d(𝜋 ⊗𝑚).

The Ornstein–Uhlenbeck semi-group is an 𝐸𝑉𝐼(0)-gradient flow By Theorem 4.13, we find
that

(5.16) d
d𝑡 ℋ(𝜇𝜀,𝛿𝑡 | 𝜋) = ∫ 𝖣 log 𝜌𝜀,𝛿𝑡 𝑤𝜀,𝛿

𝑡 d(𝜋 ⊗𝑚).

Since (𝜇̄𝜀, 𝜈̄𝜀) is a minimizer for 𝒥𝜀(𝜇, 𝜉), and since (𝜇̄𝜀,𝛿, 𝜈̄𝜀,𝛿) is admissible for 𝒥𝜀(𝖯⋆𝛿 𝜇, 𝜉)

(5.17) 𝒥𝜀(𝖯⋆𝛿 𝜇, 𝜉) − 𝒥𝜀(𝜇, 𝜉) ≤ ∫
1

0

(
ℒ(𝜇𝜀,𝛿𝑡 , 𝜈𝜀,𝛿𝑡 ) − ℒ(𝜇𝜀𝑡 , 𝜈𝜀𝑡 )

)
d𝑡 + 𝜀 ∫

1

0

(
ℐ(𝜇𝜀,𝛿𝑡 | 𝜋) − ℐ(𝜇𝜀𝑡 | 𝜋)

)
d𝑡.
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The second term in the right-hand side is non-positive by the contractivity of the Fisher information
along the Ornstein–Uhlenbeck semi-group. Since ℒ ≥ 0 we can discard the first term in the right-
hand side of (5.15), and by Theorem 4.13, this gives

ℒ(𝜇𝜀,𝛿𝑡 , 𝜈𝜀,𝛿𝑡 ) − ℒ(𝜇𝜀𝑡 , 𝜈𝜀𝑡 ) ≤ −2𝛿 dd𝑡 ℋ(𝜇𝜀,𝛿𝑡 | 𝜋).

Reporting in (5.17) yields

(5.18) 𝒥𝜀(𝖯⋆𝛿 𝜇, 𝜉) − 𝒥𝜀(𝜇, 𝜉) ≤ −2𝛿
(
ℋ(𝖯⋆𝛿 𝜇 | 𝜋) −ℋ(𝜉 | 𝜋)

)
.

In (5.18), we first let 𝜀 → 0 and invoke Theorem 5.13, and then divide by 2𝛿 and take lim sup𝛿→0+ .
This yields

ℋ(𝜇 | 𝜋) + d+
d𝑠 ↾𝑠=0

1
2𝒲

2(𝖯⋆𝑠 𝜇, 𝜉) ≤ ℋ(𝜉 | 𝜋).

Using the semi-group property of 𝖯⋆ this yields that 𝖯⋆ is an 𝐸𝑉𝐼(0)-gradient flow ofℋ. In particular,
by [DS08, Thm. 2.1], we have that𝒟omℋ is geodesically convex.

TheOrnstein–Uhlenbeck semi-group is an𝐸𝑉𝐼(1)-gradientflow Nowwe repeat the argument
above working directly with𝒲2. By Theorem 5.12, take (𝜇̄, 𝜈̄) realizing𝒲2(𝜇, 𝜉). By the geodesic
convexity of𝒟omℋ, we find that, for all 𝑡 ∈ [0, 1], 𝜇𝑡 = 𝜌𝑡𝜋, and thus 𝜈𝑡 = 𝑤𝑡𝜋⊗𝑚 by Lemma 5.3.
Construct (𝜇̄𝛿, 𝜈̄𝛿) as above. By Lemma 5.14 and the Cauchy–Schwarz inequality, we have that

𝒲(𝖯⋆𝛿 𝜇, 𝜉) ≤

√
√√√∫

1

0
e−2𝛿𝑡 d𝑡 ∫

1

0
e2𝛿𝑡 ℒ(𝜇𝛿𝑡 , 𝜈𝛿𝑡 )d𝑡.

For all 𝑡 ∈ [0, 1], 𝜇𝑡 ∈ 𝒟omℋ, thus 𝜇𝛿𝑡 ∈ 𝒟omℐ by (3.9). Actually, by (3.10), we find that (4.8) in
Theorem 4.13 is satisfied. In particular, we obtain an expression similar to (5.14) for (𝜇̄𝛿, 𝜈̄𝛿). Since
ℐ ≥ 0, and using Lemma 5.4, we get that

𝒲2(𝖯⋆𝛿 𝜇, 𝜉) ≤ 𝑎(𝛿)[∫
1

0
ℒ(𝖯⋆𝑡𝛿𝜇𝑡, 𝖯

⋆
𝑡𝛿𝜈𝑡)d𝑡 − 2𝛿 ∫

1

0
e2𝑡𝛿 d

d𝑡 ℋ(𝜇𝛿𝑡 | 𝜋)d𝑡]

≤ 𝑎(𝛿)[∫
1

0
ℒ(𝜇𝑡, 𝜈𝑡)d𝑡 − 2𝛿 ∫

1

0
e2𝑡𝛿 d

d𝑡 ℋ(𝜇𝛿𝑡 | 𝜋)d𝑡],
(5.19)

where

𝑎(𝛿) = ∫
1

0
e−2𝑡𝛿 d𝑡 = 1 − e−2𝛿

2𝛿 .

By integration by parts, we find that

(5.20) ∫
1

0
e2𝑡𝛿 d

d𝑡 ℋ(𝜇𝛿𝑡 | 𝜋)d𝑡 = e2𝛿ℋ(𝖯⋆𝛿 𝜇 | 𝜋) −ℋ(𝜉 | 𝜋) − 2𝛿 ∫
1

0
e2𝑡𝛿ℋ(𝜇𝛿𝑡 | 𝜋)d𝑡.

Substituting (5.20) in (5.19), and using that (𝜇̄, 𝜈̄) is a minimizer for𝒲2(𝜇, 𝜉), we get

𝒲2(𝖯⋆𝛿 𝜇, 𝜉) −𝒲2(𝜇, 𝜉) ≤ (𝑎(𝛿) − 1) ∫
1

0
ℒ(𝜇𝑡, 𝜈𝑡)d𝑡

+ 2𝛿𝑎(𝛿)
[
ℋ(𝜉 | 𝜋) − e2𝛿ℋ(𝖯⋆𝛿 𝜇 | 𝜋)

]

+ 4𝑎(𝛿)𝛿2 ∫
1

0
e2𝑡𝛿ℋ(𝜇𝛿𝑡 | 𝜋)d𝑡.
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Dividing by 𝛿 and taking lim sup𝛿→0+ , and using the lower semi-continuity ofℋ and thatℋ decreases
along 𝖯 yields

d+
d𝑠 ↾𝑠=0 𝒲

2(𝖯⋆𝑠 𝜇, 𝜉) ≤ −𝒲2(𝜇, 𝜉) + 2(ℋ(𝜉 | 𝜋) −ℋ(𝜇 | 𝜋)),

which is exactly (EVI) for 𝑠 = 0. This yields (EVI) for all 𝑠 by the semi-group property of 𝖯⋆.

We now draw two standard conclusions from the above Evolution Variation Inequality.

Theorem 5.28 ([DS08, Thm. 2.1]). The relative entropy is 1-geodesically convex. Namely, let 𝜇0 and
𝜇1 ∈ 𝒟omℋ. Take {𝜇𝑡 ∶ 𝑡 ∈ [0, 1]} a geodesic joining 𝜇0 to 𝜇1. Then,

ℋ(𝜇𝑡 | 𝜋) ≤ (1 − 𝑡)ℋ(𝜇0 | 𝜋) + 𝑡ℋ(𝜋1 | 𝜋) −
𝑡(1 − 𝑡)

2 𝒲2(𝜇0, 𝜇1), 𝑡 ∈ [0, 1].

The descending slope ofℋ at 𝜇 ∈ 𝒟omℋ plays the role of the length of the gradient in our non-
smooth setting:

|𝐷−ℋ|(𝜇) ≔ lim sup
𝜉→𝜇

(ℋ(𝜇 | 𝜋) −ℋ(𝜉 | 𝜋))+
𝒲(𝜇, 𝜉)

.

Theorem 5.29 ([AG13, Prop. 4.6]). The Ornstein–Uhlenbeck semi-group is a gradient flow of the
entropy in the following sense:

|𝐷−ℋ|(𝖯⋆𝑡 𝜇) = − d
d𝑡 ℋ(𝖯⋆𝑡 𝜇 | 𝜋) = ℐ(𝖯⋆𝑡 𝜇 | 𝜋).

We also have the following Poisson equivalent of the celebrated HWI inequality.

Theorem 5.30. Let 𝜇 ∈ 𝒫1(𝛶). Then:

ℋ(𝜇 | 𝜋) ≤ 𝒲(𝜇, 𝜋)
√
ℐ(𝜇 | 𝜋) − 1

2𝒲
2(𝜇, 𝜋).

Proof. The proof is identical to [EM12, Thm. 7.3]. The equivalent of [EM12, Prop. 4.1] in our setting
is Proposition 5.22.

6 Appendix

Lemma 6.1. Let (𝐸,ℱ,𝑚) be a 𝜎-finite measure space, and𝔅 ⊂ ℱ be a family of measurable sets
such that

(𝑎) there exists an 𝑚-negligible set 𝑁 and a countable nested exhaustion (𝐵𝑛)𝑛∈ℕ ⊂ 𝔅 of 𝐸 ⧵ 𝑁
additionally such that for every 𝐵 ∈ 𝔅 there exists 𝑛 ∈ ℕ so that 𝐵 ⊂ 𝐵𝑛.

For 𝑝 ∈ [1,∞) let
𝐿𝑝loc(𝐸) = {𝑓 ∈ 𝐿0(𝐸) ∶ ‖𝑓 1𝐵‖𝐿𝑝 < ∞,𝐵 ∈ 𝔅}

be endowed with the topology induced by the family of semi-norms

‖𝑓‖𝑝,𝐵 = ‖𝑓 1𝐵‖𝐿𝑝

Then, 𝐿𝑝loc(𝐸) is a Fréchet space. Further let 𝑞 be the Hölder conjugate exponent to 𝑝. Then, 𝑇 ∈ 𝐿𝑝loc(𝐸)
∗

if and only if there exists 𝐵 ∈ 𝔅 and 𝑔𝐵 ∈ 𝐿𝑞(𝐸) with 𝑔𝐵 ≡ 0 on 𝐸 ⧵ 𝐵 and such that

𝑇(𝑓) = ∫
𝐸
𝑔𝐵𝑓d𝑚, 𝑓 ∈ 𝐿𝑝loc(𝐸).
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Proof. It is clear that 𝐿𝑝loc(𝐸) = 𝐿𝑝loc(𝐸 ⧵ 𝑁), thus we may and will assume with no loss of generality
that 𝑁 = ∅. By (𝑎) and monotonicity of the semi-norms 𝐵 ↦ ‖ ⋅ ‖𝑝,𝐵, the topology of 𝐿

𝑝
loc(𝐸) is

induced by the countable family of semi-norms ‖ ⋅ ‖𝑝,𝐵𝑛 with (𝐵𝑛)𝑛 as in (𝑎); thus 𝐿
𝑝
loc(𝐸) is a Fréchet

space.
Now, let 𝑇 ∈ 𝐿𝑝loc(𝐸)

∗. By continuity of 𝑇 there exist 𝑘 ∈ ℕ, constants 𝑎1, … , 𝑎𝑘 > 0, and sets
𝐵1, … , 𝐵𝑘 ∈ 𝔅 so that |𝑇(𝑓)| ≤ ∑𝑘

𝑖=1 𝑎𝑖‖𝑓‖𝑝,𝐵𝑖 for all 𝑓 ∈ 𝐿𝑝loc(𝐸). Setting 𝑎 = max𝑖≤𝑘 𝑎𝑖, again
by (𝑎) there exists 𝐵 ∈ 𝔅 so that

|𝑇(𝑓)| ≤ 𝑎𝑘‖𝑓‖𝑝,𝐵, 𝑓 ∈ 𝐿𝑝loc(𝐸).

Consider the map 1𝐵 ∶ 𝐿
𝑝
loc(𝐸) → 𝐿𝑝(𝐵). By the above inequality, ker 1𝐵 ⊂ ker 𝑇, hence 𝑇 = 𝑇𝐵◦1𝐵

factors over some 𝑇𝐵 ∈ 𝐿𝑝(𝐵)∗. Since (𝐵,𝑚𝐵) is 𝜎-finite, 𝑇𝐵 is represented by some function
𝑔 ∈ 𝐿𝑞(𝐵) in the standard way. Letting 𝑔𝐵 denote the extension by 0 of 𝑔 ∈ 𝐿𝑞(𝐵) to 𝐸, we have
therefore that

𝑇(𝑓) = 𝑇𝐵(1𝐵𝑓) = ∫
𝐵
𝑔1𝐵𝑓d𝑚𝐵 = ∫

𝐸
𝑔𝐵𝑓d𝑚, 𝑓 ∈ 𝐿𝑝loc(𝐸).

The reverse implication is straightforward.

Remark 6.2. We note that the previous Lemma applies to every metric measure space (𝐸, 𝑑,𝑚) when
𝔅 = 𝔅0(𝐸) and𝑚 is finite on𝔅0(𝐸).
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