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STATIONARY FLUCTUATIONS FOR THE FACILITATED EXCLUSION

PROCESS

CLÉMENT ERIGNOUX AND LINJIE ZHAO

Abstract. We derive the stationary fluctuations for the Facilitated Exclusion Process (FEP) in

one dimension in the symmetric, weakly asymmetric and asymmetric cases. Our proof relies on

the mapping between the FEP and the zero-range process, and extends the strategy in [10], where

hydrodynamic limits were derived for the FEP, to its stationary fluctuations. Our results thus

exploit works on the zero-range process’s fluctuations [17, 19], but we also provide a direct proof in

the symmetric case, for which we derive a sharp estimate on the equivalence of ensembles for the

FEP’s stationary states.

1. Introduction

The facilitated exclusion process (FEP) was first introduced in [24] in the physics community,

indicating the existence of a new universality class of nonequilibrium phase transitions in the presence

of a conserving field. In the FEP, particles can jump if and only if their target neighboring site is

empty (exclusion rule) and another neighboring site is occupied (the facilitated rule). Particles with

an occupied neighboring site are referred to as active. As a result of the facilitated rule, the FEP

is ultimately absorbed in some frozen configuration (all particles are isolated) if the particle density

is below a critical value ρc depending on the dimension, and can stay active for unbounded times

otherwise. Over the past years, much progress has been made in dimension one, where the critical

value is ρc := 1/2. In a series of papers [5, 6, 10], the authors and their collaborators have shown that

the macroscopic behaviors of the FEP are described by parabolic, resp. hyperbolic, Stefan problems

when the process is symmetric, resp. asymmetric. The above results correspond to law of large

numbers for the empirical density of the process and are called hydrodynamic limits in the literature

[22].

A natural question that arises once the hydrodynamic limit of the FEP is established is to consider

fluctuations for the process, which play the role of the central limit theorem for interacting particle

systems. Very recently, Barraquand et al. [3] investigated this issue when the process is weakly asym-

metric and starts from step-like initial distributions. The specific form of the initial distribution allows

them to map the process into the simple exclusion process on the half-line with particle creation (and

no annihilation) at the origin. Different from their setting, we let the process start from its stationary

measure and prove central limit theorems for the density fluctuation fields in the following three cases:

symmetric, weakly asymmetric and asymmetric. Roughly speaking, we show in this article that

(i) in the symmetric case, the density fluctuation fields converge to the solution of a stochastic heat

equation;
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(ii) in the weakly asymmetric case with weak asymmetry of order N−1, where N is the scaling

parameter, the density fluctuation fields converge to the solution of a stochastic Burgers-like

equation;

(iii) in the asymmetric case, the density fluctuation fields translates along characteristics of the cor-

responding hydrodynamic equation up to time Nγ for γ < 4/3.

In the proof of the symmetric case, we obtain a sharp estimate on the equivalence of ensembles (see

Proposition 5.5) for the FEP, improving the bound in [5], which is of independent interest. The latter

is essential to derive the so-called Boltzmann-Gibbs principle (see Proposition 5.4), which plays an

important role when considering fluctuations from hydrodynamic limits.

The mathematical novelty involved in proving the above results and the techniques in this article

are the following:

• In [10], the authors together with M. Simon proved hydrodynamic limits for the FEP and

FZRP, both in the symmetric and asymmetric cases by using a classical mapping between

the FEP and the facilitated zero-range process (FZRP). In the present article, we extend the

mapping technique to investigate the fluctuations of FEP. We remark that when the FEP starts

from its stationary measure, the FEP can be mapped to the classical rate one zero-range process

(ZRP), which is not degenerate. Despite this, we still need to give sharp and uniform estimates

on the positions of empty sites in order to express the density fluctuation field of the FEP as

that of the ZRP, see Section 4 for details. We also need new non-trivial identities (see. (3.9))

between the two process’s invariant states. Once this is done, the derivation of macroscopic

fluctuations for the FEP follow from previous results on the ZRP [17, 19]. Moreover, we believe

the techniques used in this article should also work for non-stationary fluctuations of FEP, but

we leave this question as future work.

• Over the last ten years, much efforts have been made to understand the weak Kardar-Parisi-

Zhang (KPZ) universality conjecture, which states that for weakly asymmetric systems with

weak asymmetry of order N−1 and with only one conservation law, the density fluctuation

fields converge to the solution of the stochastic Burgers equation. Since the seminal work of

[18], this has been proven to be true for a large class of models [19, 9]. The second contribution

of the article is to provide another example of a degenerate system that validates the weak

KPZ universality conjecture.

1.1. Related references. The FEP has been widely explored in recent years after being introduced

in [24]. In the physics literature, its critical behavior, namely its critical density and critical exponents

have been investigated in different dimensions in [4, 8, 23]. In [13] the authors found the phenomenon

of jump continuity at the leading edge of rarefaction waves, which is quite different from asymmetric

simple exclusion. In the mathematics literature, the stationary states of the facilitated exclusion, either

in the continuous or discrete time setting, have been studied in [1, 7, 14, 15, 16]. Limit theorems have

also been proved in [2] for the position of the rightmost particle starting from step initial condition.

We underline that the results mentioned above are concentrated on dimension one, and few rigorous

results are known in higher dimensions.

The mapping between exclusion processes and the zero-range processes is well known, and has been

put to use in varied contexts. It is used for instance in [21] in order to prove a central limit theorem for

a tagged particle in the asymmetric simple exclusion process; in [12], the weakly asymmetric zero-range
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process with a stochastic reservoir at the boundary (associated with the dynamics of two-dimensional

Young diagrams) is mapped to the weakly asymmetric simple exclusion process on the full line without

any boundary condition, for which the hydrodynamic limit is known. In [11], the authors used the

mapping when considering non-equilibrium fluctuations for the rate one zero-range process; more

precisely, they proved a non-equilibrium version of the Boltzmann-Gibbs principle of the zero-range

process, from which the non-equilibrium fluctuations follow directly. Compared with [11] we use the

mapping in the opposite direction and map the two processes at the level of density fluctuation fields.

1.2. Outline of the paper. In Section 2 we start by introducing the facilitated exclusion process,

recalling its basic properties and stationary distributions. Then, we introduce the object we are

interested in, namely the fluctuations field, in Subsection 2.2 and the limiting processes (depending on

the strength of the asymmetry) in Definitions 2.1 and 2.3. We state our main results, characterizing the

macroscopic stationary fluctuations of the FEP, in Theorems 2.2 and 2.3. In Section 3 we describe the

mapping between the FEP and a constant rate zero-range process, which is one of the main ingredients

to derive our main result. Section 4 is devoted to the proof of Theorems 2.2 and 2.3, the main idea

being to express the density fluctuation field of the FEP as that of the ZRP. In Section 5 we give a

alternative proof in the symmetric case, where a sharp estimate on the equivalence of ensembles is

obtained, see Proposition 5.5. Some new and useful properties of the stationary measures of the FEP

are given in Appendix A.

1.3. General Notations. To ease reading, we indicate in color the new notations that are intro-

duced inside of paragraphs. We are interested in the stationary fluctuations (under the stationary

distribution πρ at density ρ ∈ [0, 1] fixed. Throughout, given a random variable X, we will denote by

X = X − Eπρ
(X) the corresponding centered variable. N := {0, 1, 2, . . . , } is the set of non-negative

integers.

Since we are working on two different processes, it is convenient to introduce distinct notations for

these two processes and we summarize them below.

FEP ZRP

Microscopic space variable x y

Configuration ηx ωy

Macroscopic space variable u v := (1− ρ)u

macroscopic density ρ(u) α(v)

Stationary distributions πρ µρ

Distribution of the stationary trajectory PNρ PN
ν

Expectation w.r.t. the trajectory’s distribution ENρ ENν

Note that the static distributions for the zero-range process is parametrized by the exclusion process’s

density ρ rather than the zero-range density α, but they could straightforwardly be expressed as

distributions of the α through equation (3.6) below. In the case of the trajectory’s distribution, we

parametrize by the initial state ν of the system.

2. Notation and results

2.1. Facilitated exclusion process. Let N ∈ N be the scaling parameter for our process. The

facilitated exclusion process on Z is a Markov process on the set of configurations Σ := {0, 1}Z. A

configuration η ∈ Σ is sequences of 0’s and 1’s indexed by Z, namely ηx = 1 if and only if site x ∈ Z is
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occupied by a particle. The infinitesimal generator ruling the evolution in time of this Markov process

is given by LN , which acts on local functions f : Σ → R as

LNf(η) :=
∑
x∈Z

(
pNcx,x+1(η) + qNcx+1,x(η)

)(
f(ηx,x+1)− f(η)

)
, (2.1)

where

pN = sN2 +Nγ and qN = sN2, (2.2)

where s ∈ {0, 1}, γ ∈ R∪{−∞}, and ηx,x′
denotes the configuration obtained from η by swapping the

values at sites x and x′,

ηx,x
′

z =


ηx′ if z = x,

ηx if z = x′,

ηz otherwise.

The jump rates cx,x′(η) in (2.1) encode two dynamical constraints:

(i) the exclusion rule, which imposes no more than one particle at each site,

(ii) the facilitated rule, a kinetic constraint which asks for a neighboring occupied site in order for a

particle to jump to the other neighboring empty site.

More precisely, we define

cx,x+1(η) = ηx−1ηx(1− ηx+1), cx+1,x(η) = (1− ηx)ηx+1ηx+2. (2.3)

In this article, we consider the following two cases:

• the weakly asymmetric case where s = 1 and γ ⩽ 3/2;

• the asymmetric case, where s = 0 and γ < 4/3.

Note that letting s = 1 and γ = −∞, we obtain the symmetric case, which is therefore considered as

a special case of the weakly asymmetric one.

Let us now recall some results from previous work [5, 6]: because of the kinetic constraint (ii), the

facilitated exclusion process displays a phase transition at the critical density ρc =
1
2 . Indeed, pairs of

neighboring empty sites cannot be created by the dynamics, because to do so would require an isolated

particle jumping out. Therefore, if at initial time the density of particles ρ is bigger than ρc (at least

half of the sites are occupied), then particles will perform random jumps in the microscopic system

until there are no longer two neighboring empty sites. Similarly, if initially ρ < ρc (at least half of the

sites are empty), particles will perform random jumps until all particles can no longer move because

they are surrounded by empty sites. The particle configurations can therefore be divided into three

categories:

• the ergodic configurations, where all empty sites are isolated, namely:

η is ergodic if, for any x ∈ Z, ηx + ηx+1 ⩾ 1; We denote, for any connected set B ⊂ Z, by

EB :=
{
η ∈ {0, 1}B , ηx + ηx+1 ⩾ 1 ∀(x, x+ 1) ∈ B

}
(2.4)

the set of ergodic configurations on B.

• the frozen configurations, where all particles are isolated, namely:

η is frozen if, for any x ∈ Z, ηx + ηx+1 ⩽ 1; Similarly, for a box B ⊂ Z, we denote by

FB :=
{
η ∈ {0, 1}B , ηx + ηx+1 ⩽ 1 ∀(x, x+ 1) ∈ B

}



STATIONARY FLUCTUATIONS FOR THE FACILITATED EXCLUSION PROCESS 5

the set of ergodic configurations on B.

• the transient configurations, which are the remaining ones, those which are neither ergodic,

nor frozen. They are called transient in [5, 6] because starting from a transient configuration,

restricting the dynamics to a finite box B, the microscopic process will locally evolve towards

either the ergodic or frozen components on B in an a.s. finite number of jumps.

Note in particular that the alternated configurations, where each particle is surrounded by empty

sites and vice-versa, are critical, since their density is exactly 1
2 , and it is convenient for them to be

considered both frozen and ergodic: they are indeed frozen (no particle is allowed jump in them), and

because they have probability non-zero under the grand canonical distribution of the process, whose

support we refer to as the ergodic component, it is natural to see them as ergodic as well.

As a consequence, the infinite volume invariant measures of the facilitated process are not indepen-

dent products of homogeneous Bernoulli measures (as in the standard Simple Exclusion Process for

instance). Instead, they are given for ρ > 1
2 , ℓ ⩾ 1, by the measures

πρ

(
η|Λℓ

= σ
)
= 1{σ∈Eℓ}(1− ρ)

(
1− ρ

ρ

)ℓ−1−p(
2ρ− 1

ρ

)2p−ℓ+1−σ(1)−σ(ℓ)

, (2.5)

where Λℓ := {1, . . . , ℓ} for ℓ ⩾ 1, Eℓ := EΛℓ
denotes the set of configurations which are ergodic on

Λℓ, and p = p(ℓ, σ) :=
∑
x∈Λℓ

σx is the number of particles in Λℓ. On can think of these measures as

product Bernoulli distributions conditioned to being in the ergodic component. Furthermore, they are

translation invariant, and one can easily check that under πρ, we have Eπρ
(η0) = ρ. The formula above,

however, is not always very convenient to compute local function’s expectations. For this reason, we

describe below in (3.9) an alternative construction for πρ.

Consider as initial distribution the infinite volume stationary measure πρ, and the process η(t)

started from πρ and with generator LN on EZ. We denote by PNρ its distribution, and by ENρ the

corresponding expectation.

2.2. Stationary fluctuations field. Denote by S := S(R) the Schwartz space of functions with fast

decaying derivatives on R, and by S ′ its dual space, namely the space of tempered distributions. Further

denote by D([0, T ],S ′) the set of càdlàg trajectories on S ′. We now define the density fluctuation field

trajectory (YNt )t⩾0 ∈ D([0, T ],S ′) of the process η, acting on smooth compactly supported functions

G ∈ S as

YNt (G) =
1√
N

∑
x∈Z

ηx(t)G
(
x
N − tvNγ−1

)
, (2.6)

where ηx(t) = ηx(t)− ρ and v := v(ρ) is the average macroscopic speed of asymmetric particles in the

stationary state, namely

v(ρ) :=
d

dρ
Eπρ

(ηx−1ηx(1− ηx+1)) =
d

dρ

(1− ρ)(2ρ− 1)

ρ
=

1− 2ρ2

ρ2
. (2.7)

Note that because of the asymmetry, mass moves rightwards at a velocity of order O(Nγ−1), which is

the reason for shifting in time the test function by vtNγ−1. In what follows, we will use the notation

vN = vNγ−1, (2.8)

for the macroscopic velocity of particles in the system in its stationary state.
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We denote by QNρ := PNρ ◦ (YN )−1 the pushforward of PNρ through the mapping

YN : {η(t), t ⩾ 0} 7→ {YNt , t ⩾ 0},

that is, QNρ is the distribution of the stationary fluctuation field YNt when η is stationary state PNρ .

In the asymmetric and weakly asymmetric cases mentioned above, we are now ready to define the

limiting processes and introduce our main results.

2.3. Diffusion coefficient and compressibility. We start by introducing the relevant macroscopic

quantities to appear in the macroscopic fluctuation field of the FEP. The hydrodynamic behavior of

the symmetric FEP (see [6]) is characterized by the Stefan problem

∂tρ = ∂2u
{
a(ρ)1{ρ⩾1/2}

}
= ∂u

{
D(ρ)1{ρ⩾1/2}∂uρ

}
,

where a(ρ) average density of active particles under πρ and D(ρ) the diffusion coefficient,

a(ρ) := πρ(ηx = 1 | ηx−1 = 1) =
2ρ− 1

ρ
and D(ρ) = a′(ρ) =

1

ρ2
. (2.9)

We further define the conductivity

σ(ρ) := πρ(c0,1) =
(2ρ− 1)(1− ρ)

ρ
. (2.10)

and the compressibility as

χ(ρ) :=
∑
x∈Z

Covπρ(η0, ηx) = ρ(1− ρ)(2ρ− 1). (2.11)

Identities (2.9) and (2.10) are direct applications of the explicit formula (2.5). We prove in Ap-

pendix A.2 this explicit formula (2.11) for the compressibility. Note that, as expected, the Einstein

(fluctuation-dissipation) relation σ = Dχ holds.

2.4. Stationary fluctuations. In order to introduce our main results, we start by choosing s = 1 and

γ ⩽ 3/2 in (2.2) to consider the weakly asymmetric case. We denote by Kt(u, v) the one-dimensional

heat kernel

Kt(u, v) :=
1√
4πt

e
(u−v)2

4t , (2.12)

we now introduce the notion of solution to the stochastic heat equation for the case γ < 3/2.

Definition 2.1 (Solution to the stochastic heat equation). We say that Y := (Yt)t⩾0 taking values

a.s. in C([0, T ],S ′) is a stationary solution to the stochastic heat equation

∂tYt = D(ρ)∂2uYt +
√

2σ(ρ)∂uẆt (2.13)

if it is a stationary generalized Ornstein-Uhlenbeck process on S ′ with mean 0 and covariance given by

E(Yt(G)Ys(H)) = χ(ρ)

∫
R×R

G(u)K(t−s)D(ρ)(u, v)H(v)dudv = χ(ρ)⟨Tt−sG,H⟩,

for G,H ∈ S and s ⩽ t, where Tt is the semi-group associated with the self-adjoint operator D(ρ)∂2u
and ⟨·, ·⟩ is the L2 inner product on R.

We will use the following result, which states that solutions to the stochastic heat equation are

solution to a martingale problem.
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Proposition 2.1 (Characterization of solutions to (2.13)). Fix a stochastic process Y taking values

a.s. in C([0, T ],S ′), and assume that for any G ∈ S,

Mt(G) := Yt(G)− Y0(G)−D(ρ)

∫ t

0

Ys(∂
2
uG)ds

and

Nt(G) :=
[
Mt(G)

]2 − 2tσ(ρ)∥∂uG∥2L2(R)

are both integrable martingales w.r.t. Y ’s natural filtration, and that for any t ⩾ 0,

E(Yt(G)Yt(H)) = χ(ρ)⟨G,H⟩. (2.14)

Then, Y is a stationary solution to the stochastic heat equation in the sense of Definition 2.1.

In the case γ = 3/2, a non-linear contribution coming from the asymmetric jumps appears in the

fluctuation regime. To define the proper limiting equation, we need to introduce further definitions.

First, define

ι(u) = (1/2)1[−1,1](u),

and let φ ∈ S be a mollifier on R, namely a non-negative compactly supported function such that∫
R φ(u)du = 1. We then define

φε(u) = ε−1φ(u/ε) and ιε(u) = ε−1ι(u/ε).

We now approximate the dirac measure in u by the smooth convolution δu,ε = φε3 ∗ ιε(· − u) ∈ S,
straightforward computations show that

∥δ0,ε∥2L2(R) ⩽ ε−1 and lim
ε→0

ε−1/2∥δ0,ε − ιε∥L2(R) = 0.

We now introduce a necessary L2 condition in the case where γ = 3/2.

Definition 2.2 (L2 Energy condition). Fix a process Y taking values a.s. in C([0, T ],S ′), and for

0 ⩽ s ⩽ t ⩽ T , we define Aεs,t ∈ S ′ by

Aεs,t(G) =

∫ t

s

∫
R
Ys′(δu,ε)

2∂uG(u)du ds
′.

We say that Y satisfies the L2 energy condition if for any G ∈ S(R), Aεs,t(G) is Cauchy in L2 as

ε → 0, and the limit in L2 does not depend on the mollifier φ. We then denote by As,t = As,t[Y ] the

limit of Aεs,t.

Note that we do not know a priori whether A0,t is time-differentiable, therefore we do not give an

analogous definition to 2.1 for solutions to the stochastic Burgers equation. Instead, we directly use

the characterization of solutions in terms of martingales, analogous to Proposition 2.1.

Definition 2.3 (Solution to the stochastic Burgers equation). We say that a stochastic process Y

taking values a.s. in C([0, T ],S ′) is a stationary solution to the stochastic Burgers equation

∂tYt = D(ρ)∂2uYt +
1

2
D′(ρ)∂uY

2
t +

√
2σ(ρ)∂uẆt. (2.15)

if

i) For any t > 0, and G,H ∈ S,

E(Yt(G)Yt(H)) = χ(ρ)⟨G,H⟩. (2.16)
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ii) Y satisfies the L2 energy condition (cf. Definition 2.2), so that for any t ⩾ 0, the tempered

distribution A0,t[Y ] ∈ S ′ is well-defined.

iii) For any G ∈ S,

Mt(G) := Yt(G)− Y0(G)−D(ρ)

∫ t

0

Ys(∂
2
uG)ds+

1

2
D′(ρ)A0,t(G)

Nt(G) :=
[
Mt(G)

]2 − 2tσ(ρ)∥∂uG∥2L2(R)

are both integrable martingales w.r.t. Y ’s natural filtration.

We are now in a position to state our main result, which derives the fluctuation field in the weakly

asymmetric case.

Theorem 2.2 (Weakly asymmetric case). For s = 1, the FEP’s fluctuation field {YNt , 0 ⩽ t ⩽ T}
introduced in (2.6) converges in the uniform topology on D

(
[0, T ],S ′(R)

)
, as N → ∞ to a process

{Yt, 0 ⩽ t ⩽ T}, which is

i) solution to the stochastic heat equation in the sense of Proposition 2.1 for γ < 3/2,

ii) solution to the stochastic Burgers equation in the sense of Definition 2.3 for γ = 3/2.

This convergence is to be understood as a weak uniform convergence of the distribution of YN to that

of Y .

To give a more explicit description of this convergence, by Skorokhod’s representation theorem, in

both cases one can build the limiting process {Yt, 0 ⩽ t ⩽ T} on the same probability space (Ω,F ,P)
as the facilitated exclusion process {ηt, 0 ⩽ t ⩽ T}, and have that for any G ∈ S

lim sup
N→∞

sup
0⩽t⩽T

|YNt (G)− Yt(G)| = 0 P-a.s..

Note that this result does not seem to explicitly depend on the value of γ, except through the condition

γ = 3/2 or γ < 3/2, which may seem strange since the particle’s motion does. This is natural, however,

because we are looking at the scaling limit of the moving field YNt , which translates at a γ-dependent

speed.

We now consider the (totally) asymmetric FEP, and let s = 0 and γ < 4/3 in (2.2), in which case

we have the following result.

Theorem 2.3 (Totally asymmetric case). For s = 0 and γ < 4/3, the FEP’s fluctuation field

{YNt , 0 ⩽ t ⩽ T} introduced in (2.6) converges in the weak topology on D
(
[0, T ],S ′), as N → ∞

to a stationary Gaussian process Y with covariance

E(Yt(G)Ys(H)) = χ(ρ)⟨G,H⟩.

In other words, the limiting process Yt =
√

2σ(u)∂uWt is a time-integrated space-time white noise, or,

equivalently, the space derivative of a (2, 1)-Brownian sheet.

Once again, the limiting process does not depend on the asymmetry exponent γ, because the field

YNt we are looking at is taken in a moving frame that does depend on γ.

The proof of Theorems 2.2 and 2.3 is the purpose of Section 4. In order to prove these two results,

we will rely on a classical mapping to an attractive zero-range process, already exploited to derive the
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η

ω = Π(η)

0X0X−1 X1 X2

−1 0 1 2

Figure 3.1. Representation of the mapping Π between a FEP ergodic configurations
η and zero-range configuration ω

FEP’s hydrodynamic limit in both symmetric and weakly asymmetric cases, and described in details

in Section 3. The derivation of the stationary fluctuations field’s scaling limit then follows from a

regularity estimate on the mapping in the stationary state (cf. Proposition 4.1 below), together with

the derivation of stationary fluctuation already obtained in the weakly asymmetric case in [19] and in

the totally asymmetric case in [17].

In Section 5, we then offer a direct, alternative proof of Theorem 2.2 in the symmetric case s = 1,

γ = −∞. The latter relies on a sharp bound (of order ℓ−1 log2 ℓ) for the equivalence of ensembles (cf.

Proposition 5.5 below) which is interesting in its own right since it significantly improves on the one

obtained so far in [5, Proposition 6.9, p. 697] (of order ℓ−1/4).

3. Mapping to the constant rate zero-range process

We start by describing a classical mapping between the facilitated exclusion process and a zero-

range process. In the ergodic component EZ (cf. (2.4)), we have no ergodicity issues, and this mapping

can be built straightforwardly to the unconstrained, constant-rate zero-range process.

3.1. Static mapping. Recall the definition (2.4) of the ergodic component EZ, and fix an ergodic

configuration η ∈ EZ. Let X0 = X0(η) ⩽ 0 be the position, of the first empty site in η to the left of

(or at) the origin, meaning that ηX0
= 0 and ηx = 1 for X0 < x ⩽ 0. For any y > 0 (resp. y < 0), we

define Xy as the position of the y-th empty site to the right (resp. to the left) of X0. We then define

ωy := Xy+1 −Xy − 2. (3.1)

Recall N = {0, 1, 2, . . . }, and note that ωy ∈ N, so that ω ∈ NZ defines a zero-range configuration,

because η was assumed to be ergodic. Of course, the mapping η 7→ ω is not 1-to-1, since knowledge of

the position of the initial empty site X0 is necessary to revert the construction.

Instead, denote by Π : η 7→ (ω,X0), the mapping represented in Figure 3.1 which, with an ergodic

configuration η, associates the zero-range configuration ω ∈ NZ built through (3.1) and the position of

the first empty site left of the origin. It is straightforward to show that the mapping Π is a bijection

between the FEP’s ergodic configuration EZ, and the set

ÊZ := {(ω,X0) ∈ NZ × Z | − ω0 − 1 ⩽ X0 ⩽ 0}. (3.2)
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The reverse mapping Π−1 is easily defined; choose a zero-range configuration ω ∈ NZ and an integer

−ω0 − 1 ⩽ X0 ⩽ 0. The associated ergodic configuration η is then built by placing an empty site in

η at site X0, and then choosing the consecutive positions Xy of empty sites in η according to ω and

(3.1). We then have as wanted η = Π−1(ω,X0).

3.2. Dynamic mapping. We now consider a dynamical version of the mapping above : to do so,

consider a trajectory {η(t), t ⩾ 0} of the FEP starting from an ergodic configuration η(0) ∈ EZ. Let

X0(0) be the position of the first empty site in η(0) to the left of (or at) the origin at the initial time.

Then, as before we define for any y > 0 (resp. y < 0), Xy(0) is the position of the y-th empty site

to the right (resp. to the left) of X0(0). We keep track of each trajectory {Xy(t), t ⩾ 0} of the y-th

empty site for y ∈ Z in {η(t), t ⩾ 0}. Since the jumps are nearest neighbor, the orders of the empty

sites are preserved along the evolution of the process, i.e. for any t ⩾ 0,

. . . < X−1(t) < X0(t) < X1(t) < . . . .

We then define as in the static case

ωy(t) := Xy+1(t)−Xy(t)− 2 for y ∈ Z. (3.3)

In order not to confuse with the static mapping, we denote Π⋆[η] this dynamic mapping between

trajectories, meaning that Π⋆[η](t) = ω(t). Note that we do not have in general that Π⋆[η](t) = Π(η(t)),

unless the tagged empty site that was at time 0 the first left of the origin is still the first left of the

origin at time t.

It is straightforward to show that if η is a FEP, {ω(t), t ⩾ 0} = Π⋆[η] evolves as the classical

zero-range process with generator L zr
N , which acts on local functions f : NZ → R as

L zr
N f(ω) =

∑
y∈Z

1{ωy⩾1}
{
pN
(
f(ωy,y+1)− f(ω)

)
+ qN

(
f(ωy,y−1)− f(ω)

)}
. (3.4)

Since we use different letters for exclusion (η) and zero-range (ω) configurations, without confusion,

we also denote ωy,y±1 the zero-range configuration obtained from ω after a particle jumps from y to

y ± 1,

ωy,y±1
y′ =


ωy − 1 if y′ = y,

ωy + 1 if y′ = y ± 1,

ωy′ otherwise.

Given a distribution ν on NZ, we denote by PN
ν the distribution of the zero-range process started from

the initial state ω(0) ∼ ν and driven by the generator L zr
N and by ENν the corresponding expectation.

3.3. Stationary states. We now consider the stationary states for the zero-range process. We define

the (grand-canonical) equilibrium distributions for the generator L zr
N as the product distributions with

marginals in ωy given by geometric distributions with parameter the active density a(ρ) (cf. (2.9)),

namely

µρ(ωy = k) = a(ρ)k(1− a(ρ)), k ⩾ 0. (3.5)

Define

α(ρ) :=
a(ρ)

1− a(ρ)
=

2ρ− 1

1− ρ
, (3.6)
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one easily obtains the identity Eµρ
(ωy) = α(ρ), and that µρ is stationary for L zr

N . Further denote by

µ̂ρ the distribution on ÊZ (defined in (3.2)) such that under µ̂ρ,

• the zero-range configuration ω|Z\{0} is distributed as µρ, defined by (3.5), everywhere except

at the origin.

• At the origin, ω0 is distributed, independently from the rest of the configuration, as

µ̂ρ(ω0 = k) = (k + 2)a(ρ)kρ(1− a(ρ))2 (3.7)

• the distribution of X0 conditionally to ω is uniform in {−ω0 − 1, . . . , 0}.

In other words, for any (ω, x) ∈ ÊZ, we have

µ̂ρ(ω, x) = ρ(1− a(ρ))µρ(ω) (3.8)

We claim that the stationary state πρ for the FEP can be built through the mapping, by

πρ = µ̂ρ ◦Π and µ̂ρ = πρ ◦Π−1. (3.9)

Note that through this mapping identity, sites in the zero-range process are associated with clusters

of particles in the FEP, namely consecutive particles preceded by an empty site. Given the apparent

breaking of translation invariance in the definition of the central cluster (ω0) in µ̂ρ, it is not a priori

clear that µ̂ρ ◦Π would yield a translation invariant distribution. The core of the argument is that the

central particle cluster, the one of the origin, needs the shifted distribution (3.7) to account for the

multiple ways it can be placed at the origin, since X0 ∼ Unif({−ω0−1, . . . , 0}). The proof of identity
(3.9) is given in Appendix A.1, where we given an alternative construction for π̃ρ := µ̂ρ ◦Π, and prove

that the latter is translation invariant, and satisfies (2.5).

It might also appear counter-intuitive that the stationary state πρ for the FEP dynamics is mapped

to a distribution µ̂ρ whose marginal in ω is not stationary for the mapped zero-range dynamics (due

to the loss of translation invariance at the origin in ω). This is to be expected however, because the

mapped dynamics must be considered instead on the pair (ω,X0), and jumps at the origin have effects

on both components, so that the term coming from the displacement of the tagged empty site offsets

the loss of stationarity of the zero-range due to the lack of stationarity at the origin. This statement

is explored in more detail in Appendix A.3.

The core of the arguments amounts to the following : to build πρ, one has to put i.i.d. particle

clusters (meaning sets of consecutive particles followed by an empty site) with geometric number of

particles distributed as 1 + µρ(·), (i.e. 1 + ω) and then randomly shift the configuration by choosing

the origin (i.e. X0). If the origin is empty, then one can simply build i.i.d. clusters and everything

works as expected. If the origin is occupied, however, one needs to choose “at random” an occupied

site, and choosing an occupied site “at random” biases towards larger particle clusters, because the

latter contain by definition more particles. In other words, building geometric clusters of particles,

and then choosing one particle uniformly among those, the distribution of the cluster of the chosen

particle is no longer going to be geometrically distributed, and its distribution is instead going to be

the tilted distribution (3.7).

In what follows, we will use the following result, which can be straightforwardly proved using the

zero-range process’s attractiveness.
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Proposition 3.1 (Discrepancies due to the distortion at the origin). There exists a coupling Q between

two trajectories ω, ξ of the rate 1 zero-range process such that ω(0) ∼ µρ, ξ(0) ∼ µ̂ρ, and such that∑
y∈Z

|ξy(t)− ωy(t)| = |ξ0(0)− ω0(0)| = ξ0(0)− ω0(0) Q− a.s.

In other words, there exists a coupling between two zero-range processes such that the total number of

discrepancies at any time between the two is equal to the number of discrepancies initially at the origin.

We do not detail the proof of this result, it is a direct consequence of our choice of initial distri-

butions, and the classical so-called basic coupling, which we now briefly describe. Because the initial

distributions are identical everywhere except at the origin, we can choose ωy(0) = ξy(0) for any y ̸= 0.

At the origin, we biased the distribution µ̂ρ towards large clusters, we can therefore couple ω and ξ

in such a way that ω0(0) ⩽ ξ0(0). Because the constant rate zero-range process is attractive, we then

endow each site with i.i.d. Poisson clock, and each time the clock rings on a site in which both ω and

ξ have particles, a particle performs the same jump in the two configurations. If instead, only ξ has

a particle, we make it jump normally in ξ and nothing happens in ω. Under this basic coupling, it is

straightforward to show that both ω and ξ are constant rate zero-range processes, and that Proposition

3.1 holds.

Because it yields a tight control of discrepancies, Proposition 3.1 will allow us to assume that the

mapped zero-range process is initially in a stationary state as well rather than µ̂ρ, and therefore to

prove the mapping estimates we need in the stationary state, as well as use the stationary fluctuations

results obtained in [17, 19].

3.4. Position of the tagged empty site in the dynamic mapping. Given a trajectory ω :=

{ω(t), t ⩾ 0} of the zero-range process, we denote by JZR
x,x+1(t) ∈ Z the particle current going through

(x, x+1) in [0, t], namely the total particle number going through the edge (x, x+1) before time t. It

can be formally written as

JZR
x,x+1(t) =

∑
y⩾x+1

{
ωy(t)− ωy(0)

}
. (3.10)

It is straightforward to show that in the stationary state, its expectation is given by

ENµρ

(
JZR
x,x+1(t)

)
= tNγµρ(ω0 ⩾ 1) = tNγ 2ρ− 1

ρ
. (3.11)

As before, we denote by JZR
x,x+1(t) := JZR

x,x+1(t)− tNγ(2ρ− 1)/ρ the corresponding centered variable.

Consider now a trajectory {η(t), t ⩾ 0} of the FEP, and {ω(t), t ⩾ 0} = Π⋆[η] the mapped zero-

range trajectory introduced in Section 3.2. Then, the position X0(t) of the tagged empty site at time

t can then be expressed in terms of the mapped zero-range process ω through the identity

X0(t) = −JZR
−1,0(t) +X0(0). (3.12)

We now give an estimate of the variance of stationary current going through the origin, that will be

used repeatedly in the proof of Theorems 2.2 and 2.3.

Lemma 3.2. There exists a constant C independent of N such that

ENρ
[

sup
0⩽t⩽T

JZR
−1,0(t)

2
]
⩽ C(logN)3

[
Nγ + sN4/3

]
= O

(
N3/2(logN)3

)
. (3.13)
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Proof. Because we need an estimate that is uniform in time, the proof of this estimate is rather

technical. We first get back to the zero-range stationary case. First note that according to identity

(3.9),

ENρ
[

sup
0⩽t⩽T

JZR
−1,0(t)

2
]
= ENµ̂ρ

[
sup

0⩽t⩽T
JZR
−1,0(t)

2
]
,

where as before ENν is the expectation w.r.t. the distribution of the zero-range process started from the

initial state ω(0) ∼ ν. The right-hand side above is the expectation of the current going through (−1, 0)

for a zero-range process started from the state µ̂ρ characterized in (3.9). According to Proposition 3.1

above, since the current discrepancy is less than the total particle discrepancy, we obtain that∣∣∣∣ ENρ [ sup
0⩽t⩽T

JZR
−1,0(t)

2
]
−Eµρ

[
sup

0⩽t⩽T
JZR
−1,0(t)

2
] ∣∣∣∣ ⩽ |ENµ̂ρ

(ω0(0))−ENµρ
(ω0(0))|2 := C(ρ)

is at most bounded by a constant, so that it is enough to prove (3.13) starting from the zero-range’s

stationary distribution µρ.

We now consider the stationary zero-range process ω initially distributed as µρ. For ℓ > 0, let

Gℓ(u) =
(
1− u

ℓ

)+
1{u⩾0}.

Then,

1√
N

∑
x∈Z

Gℓ
(
x
N

)[
ωx(t)− ωx(0)

]
=

1√
N

∑
x∈Z

Gℓ
(
x
N

)[
JZR
x−1,x(t)− JZR

x,x+1(t)
]

=
1√
N
JZR
−1,0(t)−

1√
N

Nℓ∑
x=0

1

Nℓ
JZR
x,x+1(t), (3.14)

where JZR
x,x+1(t) was introduced after (3.11). Once again, we define

g(k) = 1{k⩾1} −
2ρ− 1

ρ
.

For x ∈ Z,

Mx,x+1(t) = JZR
x,x+1(t)−

∫ t

0

sN2[g(ωx(s))− g(ωx+1(s)] +Nγg(ωx(s))ds

are independent PN
µρ
-martingales with quadratic variation

⟨Mx,x+1⟩t =
∫ t

0

(sN2 +Nγ)g(ωx(s)) + sN2g(ωx+1(s))ds = O(sN2 +Nγ). (3.15)

In particular, (3.14) rewrites

JZR
−1,0(t) =

∑
x∈Z

Gℓ
(
x
N

)[
ωx(t)− ωx(0)

]
+

1

Nℓ

Nℓ∑
x=0

Mx,x+1(t) +
sN

ℓ

∫ t

0

[
g(ω0(s))− g(ωNℓ+1(s))

]
ds+

Nγ−1

ℓ

∫ t

0

Nℓ∑
x=0

g(ωx(s))ds. (3.16)

We first bound the last line in (3.16). For the martingale term, by Doob’s inequality and (3.15),

ENµρ

[
sup

0⩽t⩽T

( 1

Nℓ

Nℓ∑
x=0

Mx,x+1(t)
)2]

⩽ 4ENµρ

[( 1

Nℓ

Nℓ∑
x=0

Mx,x+1(T )
)2]

⩽ C
sN +Nγ−1

ℓ
. (3.17)
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For the last two terms in (3.16), which are time integrals, by Cauchy-Schwarz inequality and since

both g(ωx(s)) and ωx(s) are bounded in L2(PN
µρ
),

ENµρ

[
sup

0⩽t⩽T

(sN
ℓ

∫ t

0

[
g(ω0(s))− g(ωNℓ+1(s))

]
ds
)2]

⩽ CT 2 sN
2

ℓ2
, (3.18)

ENµρ

[
sup

0⩽t⩽T

(Nγ−1

ℓ

∫ t

0

Nℓ∑
x=0

g(ωx(s))ds
)2]

⩽ CT 2N
2γ−1

ℓ
. (3.19)

Now, we bound the first term on the right side of (3.16). Clearly,

ENµρ

[(∑
x∈Z

Gℓ
(
x
N

)
ωx(0)

)2]
⩽ CNℓ. (3.20)

It remains to bound

ENµρ

[
sup

0⩽t⩽T

(∑
x∈Z

Gℓ
(
x
N

)
ωx(t)

)2]
. (3.21)

The main issue to estimate this quantity lies in the time supremum inside the expectation. Without it,

one would straightforwardly obtain a bound of order O(Nℓ) since the zero-range process is stationary.

Below, we will show that (3.21) is of order O
(
N(logN)3ℓ

)
. To this end, we first divide the time interval

[0, T ] into small intervals of size ε = εN := N−100. More precisely, let ti = iTε for 0 ⩽ i ⩽ 1/ε. Note

that in order for the set of configurations {ω(ti), 0 ⩽ i ⩽ 1/ε} to be different than {ω(t), 0 ⩽ t ⩽ T},
there must have been an interval [ti, ti+1[ in which at least two particle jumps occurred. In particular,

we bound (3.21) by

ENµρ

[
sup

0⩽i⩽ε−1

(∑
x∈Z

Gℓ
(
x
N

)
ωx(ti)

)2]
+ENµρ

[
sup

0⩽t⩽T

(∑
x∈Z

Gℓ
(
x
N

)
ωx(t)

)2
1AN

]
, (3.22)

where AN is the event

AN =

1/ε−1⋃
i=0

{
at least two particle jumps occurred in the box{−1, . . . , Nℓ+ 1}

during the time interval [ti, ti + 1[
}
. (3.23)

Since for any fixed i, the number of jumps in the box [−1, Nℓ+ 1] during the time interval [ti, ti+1] is

bounded by a Poisson random variable of parameter TεN2(Nℓ+ 1) = O(N−97ℓ), we have

PN
µρ
(AN ) ⩽ Cε−1

(
N−97ℓ

)2
= O

(
N−94ℓ2

)
.

By Cauchy-Schwarz inequality, we bound the second term in (3.22) by

ENµρ

[
sup

0⩽t⩽T

(∑
x∈Z

Gℓ
(
x
N

)
ωx(t)

)4]1/2
PN
µρ

(
AN
)1/2

⩽
{∑
x∈Z

Gℓ
(
x
N

)4
ENµρ

[
sup

0⩽t⩽T

(
ωx(t)

)4]}1/2

PN
µρ

(
AN
)1/2

.

A very rough bound shows that

ENµρ

[
sup

0⩽t⩽T
ω0(t)

4
]
⩽ CN8. (3.24)
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Indeed, let N0,T be the number of particles that are initially outside of the box [−2N2T, 2N2T ] and

visit the origin before time T . Then,

ENµρ

[
sup

0⩽t⩽T
ω0(t)

4
]
⩽ C

(
ENµρ

[( ∑
|y|⩽2N2T

ωy(0)
)4]

+ENµρ

[
N4

0,T

])
⩽ C

(
N8 +ENµρ

[
N4

0,T

])
.

Dividing the sets Z\[−2N2T, 2N2T ] into⋃
k⩾2

(
[(−k − 1)N2T,−kN2T ] ∪ [kN2T, (k + 1)N2T ]

)
, (3.25)

and since a particle travels at speed at most N2, standard large deviation arguments yield

ENµρ

[
N4

0,T

]
⩽ C

∑
k⩾1

N8e−CkN
2

⩽ CN8e−CN
2

,

which proves (3.24). Thus, although this bound is certainly not optimal, the second term in (3.22) by

is finally bounded by CN−40ℓ2.

We now turn to the first term in (3.22). Define the event

BN =
{

sup
0⩽i⩽1/ε

∣∣∣∑
x∈Z

Gℓ
(
x
N

)
ωx(ti)

∣∣∣ > N1/2(logN)3/2ℓ1/2
}
. (3.26)

By Cauchy-Schwarz inequality and (3.24), we write

ENµρ

[
sup

0⩽i⩽1/ε

(∑
x∈Z

Gℓ
(
x
N

)
ωx(ti)

)2]
⩽ N(logN)3ℓ+ENµρ

[
sup

0⩽i⩽1/ε

(∑
x∈Z

Gℓ
(
x
N

)
ωx(ti)

)2
1BN

]
⩽ N(logN)3ℓ+ENµρ

[
sup

0⩽i⩽1/ε

(∑
x∈Z

Gℓ
(
x
N

)
ωx(ti)

)4]1/2
PN
µρ
(BN )1/2

⩽ N(logN)3ℓ+ CN5ℓPN
µρ
(BN )1/2.

Using the stationarity of the zero-range process and a standard large deviation principle, by union

bound,

PN
µρ
(BN ) ⩽

C

ε
e−C(logN)3 .

Thus, the first term in (3.22) is bounded by CN(logN)3ℓ for N large enough, which finally yields

ENµρ

[
sup

0⩽t⩽T

(∑
x∈Z

Gℓ
(
x
N

)
ωx(t)

)2]
= O(N−40ℓ2 +Nℓ(logN)3). (3.27)

Putting together Equations (3.17), (3.18), (3.19), (3.20), (3.27), and by the elementary inequality

(
∑n
k=1 ak)

2 ⩽ n
∑n
k=1 a

2
k, we obtain,

ENµρ

[
sup

0⩽t⩽T
JZR
−1,0(t)

2
]
⩽ C

(
N−40ℓ2 +N(logN)3ℓ+

sN +Nγ−1

ℓ
+

sN2

ℓ2
+
N2γ−1

ℓ

)
.

We then prove the first bound in (3.13) by taking ℓ = N1/3 if γ ⩽ 4/3 and s = 1, and by taking

ℓ = Nγ−1 otherwise. For the second bound in (3.13), we simply use our assumption that γ ⩽ 3/2. □

Remark 3.3. Note that to bound (3.21), the main ingredient is a large deviation principle for the sum∑
x∈ZGℓ

(
x
N

)
ωx(t), and the time-uniform bound turns out to have an O((logN)3) correction compared

with the one without the supremum inside the expectation. This technique holds as soon as the quantity

to estimate has exponentially decaying tails (in particular when a large deviations principle holds) and



16 CLÉMENT ERIGNOUX AND LINJIE ZHAO

result will be used repeatedly in the following section. Since the argument will always be analogous, we

will not always detail the time uniform estimate, and instead refer to the proof of Lemma 3.2. To be

quite explicit, except for Martingales, for which Doob’s inequality yields the wanted result, the scheme

to obtain a time-uniform estimate will always be the following

1. Divide the time interval into a polynomial number (e.g. 1/ε := N100) of small time intervals

[ti, ti + 1[. By observing all the ω(ti), one actually observes all the {ω(t), 0 ⩽ t ⩽ T}, unless two

jumps occurred in one of the small time intervals.

2. Since the process in a box of size K jumps at rate O(KN2), if K = O(N2), the latter happens with

arbitrarily small probability, by letting ε be as small as wanted.

3. Then, the supremum over the ti’s is obtained by stationarity and union bound, which makes us loose

a factor 1/ε, which is not a problem if the probability that the relevant quantity is too large vanishes

exponentially in N .

4. Proof of Theorems 2.2 and 2.3

In this section, we now prove Theorems 2.2 and 2.3, by using the mapping defined in the previous

section.

4.1. Mapping estimates. We need to express the density fluctuation field YNt (G) defined in (2.6) for

FEP through that of the zero-range process. We keep the same notations as in the dynamical mapping

defined in Section 3.2, (Xy(t)) is the sequence of successive empty sites in η(t) seen from the tagged

empty site X0(t), and ω = Π⋆[η] is the resulting constant rate zero-range process. Straightforward

computations then yield

YNt (G) =
1√
N

∑
x∈Z

ηx(t)G
(
x
N − tvN

)
=

1√
N

∑
y∈Z

[
− ρG

(
Xy(t)
N − tvN

)
+

Xy+1(t)−1∑
x=Xy(t)+1

(1− ρ)G
(
x
N − tvN

)]

=
1− ρ√
N

∑
y∈Z

G
(
Xy(t)
N − tvN

)
ωy(t) +

1− ρ√
N

∑
y∈Z

Xy+1(t)−1∑
x=Xy(t)+1

[
G
(
x
N − tvN

)
−G

(Xy(t)
N − tvN

)]
,

(4.1)

where according to (3.6),

ωy(t) := ωy(t)−ENµρ
(ω0(0)) = ωy(t)−

2ρ− 1

1− ρ
. (4.2)

We first deal with the second term on the right side in (4.1), and show that it vanishes in L1(PNρ )

uniformly in time as N → ∞. In what follows, we define

yN = yN (T, ρ) := (1− ρ)TNv′N , v′N = vN +Nγ−1 2ρ− 1

ρ
= Nγ−1 1− ρ

ρ2
, (4.3)

we claim the following.

Proposition 4.1. For any smooth function G ∈ S with compact support,

lim
N→∞

ENρ
[

sup
0⩽t⩽T

∣∣∣ 1√
N

∑
y∈Z

Xy+1(t)−1∑
x=Xy(t)+1

[
G
(
x
N − tvN

)
−G

(Xy(t)
N − tvN

)]∣∣∣] = 0. (4.4)
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Proof. Denote

MG(y, t) = sup
Xy(t)⩽x⩽Xy+1(t)

|G′( x
N − tvN

)
|.

By Taylor’s expansion, since for any y, the number of terms in the sum over x is ωy(t) + 1 (cf. (3.3))

ENρ
[

sup
0⩽t⩽T

∣∣∣ 1√
N

∑
y∈Z

Xy+1(t)−1∑
x=Xy(t)+1

[
G
(
x
N − tvN

)
−G

(Xy(t)
N − tvN

)]∣∣∣]
⩽ ENρ

[
sup

0⩽t⩽T

∣∣∣ 1

N3/2

∑
y∈Z

(ωy(t) + 1)2MG(y, t)
∣∣∣]. (4.5)

The next step is to restrict the support of the sum over y. Recall (4.3) and define

ΓN := {y ∈ Z : |y − yN | < N4/3},

so that

ENρ
[

sup
0⩽t⩽T

∣∣∣ 1

N3/2

∑
y∈Z

(ωy(t) + 1)2MG(y, t)
∣∣∣]

⩽ ENρ
[

sup
0⩽t⩽T

1

N3/2

∑
y∈ΓN

(ωy(t) + 1)2MG(y, t)
]
+ ENρ

[
sup

0⩽t⩽T

1

N3/2

∑
y∈Γc

N

(ωy(t) + 1)2MG(y, t)
]

⩽
∥G′∥∞
N3/2

ENρ
[

sup
0⩽t⩽T

∑
y∈ΓN

(ωy(t)+1)2
]
+

1

N3/2

∑
y∈Γc

N

ENρ
[

sup
0⩽t⩽T

(ωy(t)+1)8
]1/4

ENρ
[

sup
0⩽t⩽T

MG(y, t)
4/3
]3/4

,

(4.6)

by Hölder inequality. Note that

ENρ
[ ∑
y∈ΓN

(ωy(t) + 1)2
]
⩽ CN4/3

and that the sum inside the expectation satisfies a large deviations principle. Following the same steps

as in the proof of Lemma 3.13 (see Remark 3.3), we obtain that the first term on the right-hand side

in (4.6) is O
(
N4/3−3/2(logN)3

)
and therefore vanishes as N → ∞. We now consider the second sum.

First observe that

ENρ
[

sup
0⩽t⩽T

(ω0(t) + 1)8
]
⩽ ENρ

[
sup

0⩽t⩽T

∑
|y|⩽(logN)2

(ωy(t) + 1)8
]
⩽ C(logN)8, (4.7)

where in the second inequality we use Remark 3.3 again. Thus, the second term on the right-hand

side in (4.6) is bounded by

C(logN)2

N3/2

∑
y∈Γc

N

ENρ
[

sup
0⩽t⩽T

MG(y, t)
4/3
]3/4

.

Denote by A := A(G) > 0 the size of G’s support, meaning that G vanishes on the set R \ [−A,A].
Since MG(y, t) = 0 if |Xy(t)

N − tvN | > A and |Xy+1(t)
N − tvN | > A, using (4.5) and a union bound, we

obtain that the expectation in (4.4) is bounded from above by

C(ρ,G)(logN)2

N3/2

∑
y or y−1∈Γc

N

PNρ
(

inf
0⩽t⩽T

|Xy(t)
N − tvN | ⩽ A

)3/4
+O(N−1/6(logN)3) (4.8)

We now need to show that for any y /∈ ΓN ,
Xy(t)
N − vN t is w.h.p. outside of the support of G.
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Fix y ∈ Z, using (3.3) and (3.12), we obtain

Xy(t) =

y∑
y′=1

[ωy′−1(t) + 2] +X0(t) =

y∑
y′=1

[ωy′−1(t) + 2]− JZR
−1,0(t) +X0(0). (4.9)

Recall from (4.3) the definition of v′N .. Using (3.11) and (4.2), we therefore write,

Xy(t)
N − vN t =

1

N

 y∑
y′=1

ωy′−1(t) + 2y − JZR
−1,0(t) +X0(0)

− vN t

=
1

N

 y∑
y′=1

ωy′−1(t)− JZR
−1,0(t)

− tv′N +
2y +X0(0)

N
+

y

N

2ρ− 1

1− ρ

=
1

N

 y∑
y′=1

ωy′−1(t)− JZR
−1,0(t) +X0(0) +

y − yN
(1− ρ)

 .
For y ∈ ΓcN , shorten y := |y − yN |/(1− ρ) ⩾ N4/3. Since ρ ∈ [0, 1], in order to have

inf
0⩽t⩽T

∣∣Xy(t)
N − vN t

∣∣ ⩽ A,

we must have either

X0(0) ⩾
y −NA

3
, sup

0⩽t⩽T

∣∣∣∣∣∣
y∑

y′=1

ωy′−1(t)

∣∣∣∣∣∣ ⩾
y −NA

3
or sup

0⩽t⩽T

∣∣∣ JZR
−1,0(t)

∣∣∣ ⩾
y −NA

3
. (4.10)

By a standard large deviations estimate, the first event occurs with exponentially small probability

under PNρ , which we denote by

py := PNρ
(
X0(0) ⩾

y −NA

3

)
= O(e−c(y−NA)) (4.11)

for some positive constant c independant of y. In what follows, the constant c can change from line

to line. Under the product geometric distribution µρ defined in (3.5), a large deviations estimate also

yields that as y → +∞

µρ

1

y

y∑
y′=1

ωy′−1 ⩾ x

 = O(e−cyx
2

), (4.12)

for some positive constant c. Note that because of the non-stationarity at the origin, ω(t) is not a

stationary Facilitated Zero-Range process. However, thanks to Proposition 3.1, the equilibrium large

deviations estimate (4.12) yields

qy := PNρ

 sup
0⩽t⩽T

∣∣∣∣∣∣
y∑

y′=1

ωy′−1(t)

∣∣∣∣∣∣ ⩾
y −NA

3


= PN

µρ

 sup
0⩽t⩽T

∣∣∣∣∣∣
y∑

y′=1

ωy′−1(t)

∣∣∣∣∣∣ ⩾
y −NA

3

 = O
(
N4y6e−c(y−NA)2/|y| + y−4

)
, (4.13)

where in the last step, we divide the time interval [0, T ] into N4y6 small intervals and use the same

argument as in Lemma 3.2 (cf. Remark 3.3). We split the exponent depending on whether y ∈ BN :=
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ΓcN ∩ {−2yN , . . . , 2yN} or y ∈ ΓcN \BN . If y ∈ BN

(y −NA)2

|y|
⩾

(N4/3 −NA)2

2yN
⩾ cN8/3−γ ⩾ cN

since γ is assumed to be less than 3/2. If instead, y ∈ ΓcN \ BN , we have y/|y| = 1 − yN/y ⩾ 1/2, so

that the probability above is of order O(e−cy). Putting those to statement together yields

qy ⩽ N4+6γe−cN1{y∈BN} +N4y6e−cy1{y∈Γc
N\BN} + y−4. (4.14)

Finally, to estimate the probability of the last event in (4.10), we use Lemma 3.2 and Chebychev’s

inequality, to get

ry := PNρ
(

sup
0⩽t⩽T

∣∣∣JZR
−1,0(t)

∣∣∣ ⩾ y −NA

3

)
⩽
cN3/2(logN)3

(y −NA)2
. (4.15)

Since

PNρ
(

inf
0⩽t⩽T

|Xy(t)
N − tvN | ⩽ A

)
⩽ py + qy + ry, (4.16)

putting (4.11), (4.14) and (4.15), we obtain that for any y ∈ ΓcN

PNρ
(

inf
0⩽t⩽T

|Xy(t)
N − tvN | ⩽ A

)3/4
⩽
cN9/8(logN)9/4

y3/2
.

Summing this identity over y ∈ ΓcN and multiplying by N−3/2 yields that the first term in (4.8) vanishes

as N → ∞ as wanted, which proves the Lemma. □

Now, we deal with the first term on the right side of (4.1), in which we want to replace

Xy(t) by
y

1− ρ
− tNγ 2ρ− 1

ρ
, (4.17)

where the second term represents the mean displacement of a tagged empty site in a time t. Recall

from (4.3) that

v′N = vN +Nγ−1 2ρ− 1

ρ
= Nγ−1 1− ρ

ρ2
,

which represents the macroscopic velocity of a given particle relative to the position of a tagged empty

site. Lemma 4.2 below justifies replacement (4.17), and proves, together with (4.1) and Proposition

4.1, that for any ε > 0,

lim sup
N→∞

PNρ
(

sup
0⩽t⩽T

∣∣∣YNt (G)− 1− ρ√
N

∑
y∈Z

G
( y

N(1− ρ)
− tv′N

)
ωy(t)

∣∣∣ > ε
)
= 0. (4.18)

We now state and prove the replacement (4.17).

Lemma 4.2. For any test function G with compact support, for any ε > 0,

lim
N→∞

PNρ
[

sup
0⩽t⩽T

∣∣∣ 1√
N

∑
y∈Z

ωy(t)
[
G
(Xy(t)

N − vN t
)
−G

(
y

N(1−ρ) − tv′N
)]∣∣∣ > ε

]
= 0. (4.19)

Note that the sum inside the probability can involve an infinite number of non zero contributions

even for a function G with compact support. To overcome this difficulty, fix a smooth compactly

supported test function G ∈ S, and as before let A > 0 be the size of its support. Recall yN =

(1− ρ)TNv′N . Define

ΓN (G) := {yN − 2AN(1− ρ), . . . , yN + 2AN(1− ρ)}.

Then, the above lemma follows immediately from the following two results.
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Lemma 4.3. For any test function G with compact support,

lim
N→∞

ENρ
[

sup
0⩽t⩽T

∣∣∣ 1√
N

∑
y∈ΓN (G)

ωy(t)
[
G
(Xy(t)

N − vN t
)
−G

(
y

N(1−ρ) − tv′N
)]∣∣∣] = 0. (4.20)

Lemma 4.4. For any test function G with compact support,

RN,T (G) := sup
0⩽t⩽T

∣∣∣ 1√
N

∑
y/∈ΓN (G)

ωy(t)
[
G
(Xy(t)

N − vN t
)
−G

(
y

N(1−ρ) − tv′N
)]∣∣∣ (4.21)

vanishes in probability as N → ∞.

We now prove Lemmas 4.3 and 4.4.

Proof of Lemma 4.3. For y ∈ ΓN (G), and ℓ ⩾ 1, define

∆ℓ
y(G) := G

(Xy(t)
N − tvN

)
−G

(
y

N(1−ρ) − tv′N
)
− 1

2ℓ+ 1

∑
|z−y|⩽ℓ

[
G
(Xz(t)

N − tvN
)
−G

(
z

N(1−ρ) − tv′N
)]
.

Summing by parts, we bound the absolute value in (4.20) by∣∣∣ 1√
N

∑
y∈ΓN (G)

ωy(t)∆
ℓ
y(G)

∣∣∣+ ∣∣∣ 1√
N

∑
y∈ΓN (G)

ωℓy(t)
[
G
(Xy(t)

N − tvN
)
−G

(
y

N(1−ρ) − tv′N
)]∣∣∣,

where ωℓy(t) = (2ℓ+ 1)−1
∑

|z−y|⩽ℓ ωz(t). By (4.7) and Remark 3.3, if ℓ > Nδ for some δ > 0, then

there exists some constant C = C(ρ) such that

ENρ
[

sup
0⩽t⩽T

ωy(t)
2
]1/2

⩽ C(logN)4 and ENρ
[

sup
0⩽t⩽T

ωℓy(t)
2
]1/2

⩽ C(log ℓ)3/
√
ℓ,

we obtain that the expectation in (4.20) is bounded from above by triangular and Cauchy-Schwarz

inequality by

C(logN)4√
N

∑
y∈ΓN (G)

ENρ
[

sup
0⩽t⩽T

∆ℓ
y(G)

2
]1/2

+
C(log ℓ)3√

Nℓ

∑
y∈ΓN (G)

ENρ
[

sup
0⩽t⩽T

(
G
(Xy(t)

N − tvN
)
−G

(
y

N(1−ρ) − tv′N
))2]1/2

. (4.22)

To estimate the first term, rewrite

∆ℓ
y(G) =

1

2ℓ+ 1

∑
|z−y|⩽ℓ

[
G
(Xy(t)

N − vN t
)
−G

(Xz(t)
N − vN t

)]
− 1

2ℓ+ 1

∑
|z−y|⩽ℓ

[
G
(

y
N(1−ρ) − tv′N

)
−G

(
z

N(1−ρ) − tv′N
)]
.

The second line above is a discrete laplacian, and is therefore of order O(ℓ2/N2). To estimate the first

line, we shorten Uy :=
Xy(t)
N − vN t, and develop G(Uz) around Uy to obtain by translation and time

invariance, and using the elementary inequality (a+ b+ c)2 ⩽ 3a2 + 3b2 + 3b2

ENρ
[

sup
0⩽t⩽T

∆ℓ
y(G)

2
]
=

3

N2(2ℓ+ 1)2
ENρ

 sup
0⩽t⩽T

G′(Uy)
2

(
ℓ∑

z=−ℓ

[Xy(t)−Xy+z(t)]

)2


+O

(
1

N4
ENρ

(
sup

0⩽t⩽T
[X0(t)−Xℓ(t)]

4

))
+O(ℓ4/N4). (4.23)
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Rewrite

Xy(t)−Xz(t) =

y∑
y′=z+1

[ωy′−1(t) + 2],

where the ωy′−1(t) are i.i.d. geometric variables, so that by Remark 3.3, for ℓ > (logN)2

ENρ
(

sup
0⩽t⩽T

[X0(t)−Xℓ(t)]
4

)
= O(ℓ4(log ℓ)3).

In the first term in the right-hand side (4.23), we rewrite the sum as

ℓ∑
z=−ℓ

[Xy(t)−Xy+z(t)] = −
ℓ∑

z=1

(ℓ+ 1− z) (ωy+z−1(t)− ωy−z(t)) .

In the right hand side, terms for z ̸= z′ are independent, mean-0 variables, so that by Remark 3.3,

ENρ

 sup
0⩽t⩽T

G′(Uy)
2

(
ℓ∑

z=−ℓ

[Xy(t)−Xy+z(t)]

)2


⩽ C(G)ENρ

 sup
0⩽t⩽T

(
ℓ∑

z=−ℓ

[Xy(t)−Xy+z(t)]

)2
 = O

(
ℓ3(log ℓ)3

)
.

Combining these bounds yield

ENρ ( sup
0⩽t⩽T

∆ℓ
y(G)

2) = O

(
ℓ(log ℓ)3

N2
+
ℓ4(log ℓ)3

N4

)
. (4.24)

We now deal with the second term in (4.22), and write∣∣G(Xy(t)
N − vN t

)
−G

(
y

N(1−ρ) − tv′N
)∣∣

⩽ ∥G′∥∞
∣∣∣Xy(t)

N
− y

N(1− ρ)
+ tNγ−1 2ρ−1

ρ

∣∣∣ = N−1∥G′∥∞
∣∣∣ y∑
y′=1

ωy′−1(t)− JZR
−1,0(t) +X0(0)

∣∣∣.
Since, by Remark 3.3,

sup
y∈ΓN (G)

ENρ

 sup
0⩽t⩽T

 y∑
y′=1

ωy′−1(t)

2
 = O

(
N3/2(logN)3

)
,

and ENρ (X0(0)
2) is a constant, we can bound the second term in (4.22) by

C(G, ρ)(log ℓ)3√
Nℓ

{
N3/4(logN)3/2 +

√
ENρ
[

sup
0⩽t⩽T

JZR
−1,0(t)

2
]}

= O

(
N1/4(logN)3/2(log ℓ)3

ℓ1/2

)
,

according to Lemma 3.2. Adding up this estimate to (4.24), we bound (4.22) and therefore (4.20) by

C(logN)4(log ℓ)3
( ℓ1/2
N1/2

+
ℓ2

N3/2
+
N1/4

ℓ1/2

)
,

so that choosing ℓ = N5/8 proves the Lemma. □

Proof of Lemma 4.4. Recall that A is the size of the support of G, therefore

y /∈ ΓN (G) =⇒ G
(

y
N(1−ρ) − tv′N

)
= 0,
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so that the second part of RN,t(G) vanishes, and we can write

PNρ (|RN,T (G)| > 0) ⩽ PNρ
(
∃y /∈ ΓN (G) such that inf

0⩽t⩽T
|Xy(t)
N − vN t| ⩽ A

)
Since the positions of the empty sites are ordered in y, letting

y1 = y1,N := yN − 2AN(1− ρ) and y2 = y2,N := yN + 2AN(1− ρ),

we rewrite

PNρ (|RN,T (G)| > 0) ⩽ PNρ ( inf
0⩽t⩽T

|Xy1
(t)

N − vN t| ⩽ A) + PNρ ( inf
0⩽t⩽T

|Xy2
(t)

N − vN t| ⩽ A)

Using the same notations as in (4.11), (4.13) and (4.15), we have y1 = y2 = 2AN , therefore (4.16)

yields that PNρ (|RN,T (G)| > 0) vanishes as N → ∞, and in particular RN,T (G) vanishes in probability

as wanted. □

4.2. Proof of Theorem 2.2 and 2.3. We define

Φ(α) =
α

1 + α
,

recall the definition (4.3) of v′N , and that α := α(ρ) the density of the zero-range process defined in

(3.6). Straightforward computations yield

v′N =
Nγ−1

1− ρ
Φ′(α)

We introduce the density fluctuation field of the zero-range process, namely

ZN
t (G) =

1√
N

∑
y∈Z

ωy(t)G
(
y
N − tv′N (1− ρ)

)
=

1√
N

∑
y∈Z

ωy(t)G
(
y
N − tNγ−1Φ′(α)

)
, (4.25)

and given a test function G, define

G̃ρ(u) := (1− ρ)G

(
u

1− ρ

)
and Ĝρ(u) :=

1

(1− ρ)
G(u(1− ρ)),

so that (̂G̃ρ)ρ = G. So far, we have shown in (4.18) that for any ε ⩾ 0,

lim sup
N→∞

PNρ ( sup
0⩽t⩽T

|YNt (G)−ZN
t (G̃ρ)| > ε) = 0. (4.26)

We now conclude the proof of Theorem 2.2 and 2.3 by stating the following results, which were

extracted from [19] and [17].

Theorem 4.5 ([19, Proposition 2.1 and Theorem 2.2]). Consider a random distribution Z0 ∈ S ′ with

covariance

E(Z0(G)Z0(H)) = χ̃⟨G,H⟩, (4.27)

where

χ̃(α) =
Φ′(α)

Φ(α)
=
ρ(2ρ− 1)

(1− ρ)2

is the zero-range process’s compressibility. Then, for s = 1, the zero-range fluctuation process {ZN
t , 0 ⩽

t ⩽ T} converges in the uniform topology on D
(
[0, T ],S ′) to a process {Zt, 0 ⩽ t ⩽ T} with initial

state characterized by (4.27), which is the solution
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(i) of the stochastic heat equation

∂tZt = Φ′(α)∂2uZt +√2Φ
(
α
)
∂uẆt. (4.28)

in the sense of Proposition 2.1 with D = Φ(α), σ = Φ′(α), and χ = χ̃(α) for γ < 3/2.

(ii) of the stochastic Burgers equation

∂tZt = Φ′(α)(ρ)∂2uZt +
1

2
Φ′′(α)∂uZ

2
t +

√
2Φ(α)∂uẆt. (4.29)

in the sense of Definition 2.3 with χ = χ̃(α) for γ = 3/2.

Theorem 4.6 ([17, Theorem 2.5]). For γ < 4/3, and s = 0, the zero-range fluctuation process

{ZN
t , 0 ⩽ t ⩽ T} converges weakly in D([0, T ],S ′) to the stationary Gaussian process {Zt, 0 ⩽ t ⩽ T}

in C([0, T ],S ′) with mean zero and covariance given by

E[Zt(G)Zs(H)] = χ̃⟨G,H⟩,

for any s, t ⩾ 0 and G,H ∈ S.

Remark 4.7. In [17], the authors considered the fluctuation fields in a different space H−k instead of

S ′. However, the choices of the spaces are only relevant when proving tightness of the fluctuation fields,

and the readers could check directly that the fluctuation fields are also tight in the space D([0, T ],S ′)

with respect to the weak uniform topology.

Remark 4.8. Although the results in [17] are only stated for γ ⩾ 0, they are obvious true for γ < 0

since in this case the evolution of the dynamics is too weak to affect the macroscopic behavior of the

process.

Clearly, a process {Yt, 0 ⩽ t ⩽ T} is solution of (2.13) (resp. (2.15)) iff the process defined by

Zt(G) := Yt(Ĝρ) is solution of (4.28) (resp. (4.29)). Thanks to (4.26), Theorem 2.2 is therefore a

direct consequence of Theorem 4.5.

Similarly, Theorem 2.3 is a direct consequence of Theorem 4.6.

5. Proof by sharp estimates

In this section, we give an alternative proof of Theorem 2.2 which does not rely on the mapping to

the zero-range process. Doing so, we obtain a sharper estimate (in O(log2 ℓ/ℓ) on the equivalence of

ensembles for the FEP than the one previously obtained in [5] (in O(ℓ−1/4)) to derive the supercritical

hydrodynamic limit. This estimate is the main argument needed to derive equilibrium fluctuations,

and we feel it is interesting on its own, which is the reason why we give this alternative proof.

Theorem 5.1 (Symmetric case). For s = 1, γ = −∞, the FEP’s fluctuation field

YNt (G) =
1√
N

∑
x∈Z

ηx(t)G(x/N), (5.1)

converges in the weak uniform topology on D
(
[0, T ],S ′), as N → ∞ to a process {Yt, 0 ⩽ t ⩽ T},

which is solution to the stochastic heat equation in the sense of Proposition 2.1, meaning that for any

G ∈ S,

Mt(G) := Yt(G)− Y0(G)−D(ρ)

∫ t

0

Ys(∂
2
uG)ds

Nt(G) :=
[
Mt(G)

]2 − 2tσ(ρ)∥∂uG∥2L2(R)
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are both integrable martingales w.r.t. Y ’s natural filtration, and that for any t ⩾ 0,

E(Yt(G)Yt(H)) = χ(ρ)⟨G,H⟩. (5.2)

First note that in the stationary state, direct calculation immediately yields (5.2). Furthermore, for

any compactly supported test functions G : R → R, by Dynkin’s martingale formula,

MN
t (G) := YNt (G)− YN0 (G)−

∫ t

0

LNYNs (G)ds

is a martingale with quadratic variation given by

⟨MN
· (G)⟩t =

∫ t

0

LNYNs (G)2 − 2YNs (G)LNYNs (G)ds.

Direct calculations yield

LNYNs (G) =
1√
N

∑
x∈Z

[τxh(η(s))− a(ρ)]∂2,Nu G(x/N),

where h(η) = η−1η0 + η0η1 − η−1η0η1, a(ρ) is h’s average under πρ defined in (2.9) and ∂2,Nu G is a

discrete approximation of G’s laplacian,

∂2,Nu G(x/N) = N2 [G((x+ 1)/N) +G((x− 1)/N)− 2G(x/N)] .

Furthermore,

⟨MN
· (G)⟩t =

∫ t

0

1

N

∑
x∈Z

cx,x+1(ηs)[∂
N
u G(x/N)]2ds.

where similarly

∂Nu G(x/N) = N [G((x+ 1)/N)−G(x/N)] .

Note that by the Cauchy-Schwarz inequality and from the exponential decay of correlations under

the measure πρ, one straightforwardly obtains the following result :

Lemma 5.2. For any compactly supported test functions G : R → R,

lim
N→∞

⟨MN
· (G)⟩t = tσ(ρ)||∂uG||L2(R) in L2(πρ),

where σ(ρ) is defined in (2.10).

Indeed, to prove the above result, one just note that

lim
N→∞

ENρ
[
⟨MN

· (G)⟩t
]
= tσ(ρ)||∂uG||L2(R)

and the variance of ⟨MN
· (G)⟩t is bounded by a constant multiple of

t2

N2

∑
x∈Z

[∂Nu G(x/N)]4,

which has order O(N−1) and thus vanishes as N → ∞. Following classical estimates (see [25] for

example), it is not hard to show the following result.

Lemma 5.3. The sequence {YNt , 0 ⩽ t ⩽ T} is tight with respect to the weak uniform topology of

D([0, T ],S ′).
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The main ingredient to derive the equilibrium fluctuations for the FEP is the Boltzmann-Gibbs

principle, whose proof will be adapted from [22]. For any local function ψ : Σ → R, denote

ψ̃(ρ) = Eπρ [ψ].

Proposition 5.4 (Boltzmann-Gibbs principle). For any local function of the configuration ψ, any

compactly supported smooth function G, and any t > 0, we have

lim
N→∞

ENρ

(∫ t

0

ds
1√
N

∑
x∈Z

G(x/N)τxVψ(η(s))

)2
 = 0, (5.3)

where

Vψ(η) = ψ(η)− ψ̃(ρ)− ψ̃′(ρ)(η0 − ρ),

and τxψ(η) = ψ(η·−x) denotes the translation of ψ by x.

By Proposition 5.4 and Lemma 5.2, for any limit Y· of YN· and any compactly supported test

functions G ∈ S,

Yt(G)− Y0(G)−D(ρ)

∫ t

0

Ys(∂
2
uG)ds

is a martingale with quadratic variation

tσ(ρ)||∂uG||L2(R),

which proves Theorem 5.1. We now prove Proposition 5.4.

5.1. Boltzmann-Gibbs Principle. In this section, we prove Proposition 5.4. Since it is the main

case of interest, let us assume ψ depends only on the values of η0 and η±1. The proof is divided into

several steps, and it can be straightforwardly adapted when ψ depends on the value of η in a finite

box Bψ.

Step 1. Fix ℓ > 0, which will goes to infinity after N → ∞. For i ∈ Z, fix points xi < yi in Z such

that x0 = 0, and for i ∈ Z
yi − xi = ℓ− 1, yi + 3 = xi+1.

Let Ai = {xi, . . . , yi}. Then, the length of the interval Ai is ℓ for each i. Denote

Aoi = {xi + 1, . . . , yi − 1}, Bi = {yi, . . . , xi+1}.

Fix some point zi ∈ Aoi . Then, we rewrite the sum inside the expectation in (5.3) as∑
x∈Z

G(x/N)τxVψ =
∑
i∈Z

∑
x∈Bi

G(x/N)τxVψ +
∑
i∈Z

∑
x∈Ao

i

(
G(x/N)−G(zi/N)

)
τxVψ

+
∑
i∈Z

G(zi/N)
∑
x∈Ao

i

τxVψ. (5.4)

For the first term above, by Cauchy-Schwarz inequality and the invariance of the measure πρ,

ENρ

(∫ t

0

ds
1√
N

∑
i∈Z

∑
x∈Bi

G(x/N)τxVψ(ηs)

)2
 ⩽ t2Eπρ

( 1√
N

∑
i∈Z

∑
x∈Bi

G(x/N)τxVψ(η)

)2


=
t2

N

∑
i ̸=i′

Covπρ

∑
x∈Bi

G(x/N)τxVψ(η),
∑
x∈Bi′

G(x/N)τxVψ(η)


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+
t2

N

∑
i∈Z

Eπρ

(∑
x∈Bi

G(x/N)τxVψ(η)

)2
 . (5.5)

Since |Bi| = 4, it is easy to see that there exists a constant C = C(G,ψ) such that the second term

on the right hand side is bounded by Ct2/ℓ, which vanishes in the limit as ℓ→ ∞. Since the distance

between the two boxes Bi and Bi′ is of order |i− i′|ℓ, by the exponential decay of correlations of the

measure πρ (cf. [5, Corollary 6.6]), there exists a constant C independent of N such that the first term

in the last inequality is bounded by

t2

N

∑
i ̸=i′

Eπρ

[∣∣∣ ∑
x∈Bi

G(x/N)τxVψ(η)
∣∣∣]Eπρ

∣∣∣ ∑
x∈Bi′

G(x/N)τxVψ(η)
∣∣∣
 e−Cℓ|i−i′|.

We may bound the above term by

Ct2

N

CN/ℓ∑
i,i′=−CN/ℓ

e−Cℓ|i−i
′| ⩽

Ct2

ℓ

for some constant C = C(G,ψ).

For the contribution of the second term in (5.4), by smoothness of the function G, there exists a

constant C = C(G,ψ) such that∣∣∣ 1√
N

∑
i∈Z

∑
x∈Ao

i

(
G(x/N)−G(zi/N)

)
τxVψ

∣∣∣ ⩽ Cℓ√
N
,

which vanishes as N → ∞.

Step 2. It remains to deal with the contribution of third term in (5.4). For any finite set F ⊂ Z,
denote by ηF the empirical density of particles in the set F in configuration η,

ηF =
1

|F |
∑
x∈F

ηx.

For i ∈ Z, define
Ṽψ,i(η) = Eπρ

[ ∑
x∈Ao

i

τxVψ
∣∣ηAi , ηxi−1, ηyi+1

]
.

Then, by Cauchy-Schwarz inequality,

ENρ

(∫ t

0

ds
1√
N

∑
i∈Z

G(zi/N)
∑
x∈Ao

i

τxVψ(η(s))
)2

⩽ 2ENρ

(∫ t

0

ds
1√
N

∑
i∈Z

G(zi/N)
{ ∑
x∈Ao

i

τxVψ(η(s))− Ṽψ,i(η(s))
})2

+ 2ENρ

[(∫ t

0

ds
1√
N

∑
i∈Z

G(zi/N)Ṽψ,i(η(s))
)2]

. (5.6)

We first prove the second term above converges to zero as N → ∞, ℓ→ ∞. Shorten

A = A0 = {0, . . . , ℓ− 1},
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and Ṽψ = Ṽψ,0. By Cauchy-Schwarz inequality and the exponential decay of correlations of the measure

πρ (cf. [5, Corollary 6.6]), there exists a constant C = C(G) such that

ENρ

[(∫ t

0

ds
1√
N

∑
i∈Z

G(zi/N)Ṽψ,i(η(s))
)2]

⩽ Ct2ℓEπρ

[(
Eπρ

[1
ℓ

∑
x∈Ao

τxψ
∣∣ηA, ηx0−1, ηy0+1

]
− ψ̃(ηA)

)2]
+ Ct2ℓEπρ

[(
ψ̃(ηA)− ψ̃(ρ)− ψ̃′(ρ)(ηA − ρ)

)2]
+O(ℓ−1). (5.7)

Fix ε0 > 0 such that ρ− ε0 > 1/2 and that ρ+ ε0 < 1. We bound the first term above by

Ct2ℓ
{
Eπρ

[(
Eπρ

[1
ℓ

∑
x∈Ao

τxψ
∣∣ηA, ηx0−1, ηy0+1

]
− ψ̃(ηA)

)2
1|ηA−ρ|<ε0

]
+ Pπρ

(
|ηA − ρ| ⩾ ε0

)}
.

According to Corollary A.1, under πρ, {ηx}x⩾0 is an ergodic Markov chain with finite state space

{0, 1}, and with transition probability

p(0, 1) = 1, p(1, 1) = 1− p(1, 0) =
2ρ− 1

ρ
.

By [20], for any ε > 0, there exists a finite constant C such that

Pπρ

(
|ηA − ρ| ⩾ ε

)
⩽ Cε−2e−Cℓε

2

.

Together with Proposition 5.6, the first term in (5.7) is bounded by

Ct2
[
(log ℓ)4/ℓ+ ℓe−Cℓ

]
.

By Taylor’s expansion and the above large deviation estimates, the second term in (5.7) is bounded

by

Ct2ℓEπρ

[
(ηA − ρ)4

]
⩽ Ct2ℓ

[
Eπρ

[
(ηA − ρ)41|ηA−ρ|<ℓ−1/3

]
+ Pπρ

(
|ηA − ρ| > ℓ−1/3

)]
⩽ Ct2

[
ℓ−1/3 + ℓ5/3e−Cℓ

1/3
]
.

Step 3. To conclude the proof, it remains to show

lim
N→∞

ENρ

(∫ t

0

ds
1√
N

∑
i∈Z

G(zi/N)
{ ∑
x∈Ao

i

τxVψ(η(s))− Ṽψ,i(η(s))
})2 = 0. (5.8)

By Kipnis-Varadhan’s inequality (see e.g. [22, Proposition A1.6.1, p333]), the above term is bounded

by

20t sup
f∈L2(πρ)

{ 1√
N

∑
i∈Z

G(zi/N)Eπρ

[{ ∑
x∈Ao

i

τxVψ − Ṽψ,i

}
f
]
− Eπρ

[
f(−LN )f

]}
. (5.9)

To make notations short, let fi = τx0−xif . Define A = A ∪ {x0 − 1, y0 + 1}. For σ ∈ {0, 1}A, denote

f(σ) = Eπρ
[f |η|A = σ].

Since πρ is translation invariant, and
∑
x∈Ao τxVψ − Ṽψ depends only on the values of (ηx, x ∈ A),

Eπρ

[{ ∑
x∈Ao

i

τxVψ − Ṽψ,i

}
f
]
= Eπρ

[{ ∑
x∈Ao

τxVψ − Ṽψ

}
fi

]
= Eπρ

[{ ∑
x∈Ao

τxVψ − Ṽψ

}
fi

]
. (5.10)
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We now project on hyperplanes with fixed number of particles in A = {x0 . . . , y0}. However, πρ is not

constant on such a set because the probability to see a local configuration depends on its boundary

values. For this reason, aside from conditionning to the number of particles in A, we also condition to

fixed boundary values; For any triplet k = (k, a, b) ∈ {0, . . . , ℓ} × {0, 1}2, define

ΣA,k =

{
η ∈ {0, 1}Z,

∑
z∈A

ηz = k, ηx0−1 = a, ηy0+1 = b

}
,

the set of configurations on A with k particles in A and with boundary states (a, b). We can now

rewrite the last term in the right-hand side of (5.10) as∑
k

mkEA,k

[{ ∑
x∈Ao

τxVψ − Ṽψ

}
fi

]
,

where mk = πρ(ΣA,k), and for any g defined on {0, 1}A,

EA,k[g] = Eπρ

[
g(η|A) | η ∈ ΣA,k

]
.

For any k = (k, a, b) ∈ {0, . . . , ℓ} × {0, 1}2 and any function g : {0, 1}A → R, define LA,k as

LA,kg(η) =

y0∑
z=x0

cx,x+1(η)(g(η
x,x+1)− g(η))

with the convention that ηx0−1 = a, ηy0+1 = b. Note tha the generator does not in fact depend on the

number k of particles in A, just on the boundary states a and b. Recall that πρ only charges ergodic

configurations, we claim that
∑
x∈Ao τxVψ− Ṽψ is in the range of LA,k, i.e. that there exists a function

g on ΣA,k such that ∑
x∈Ao

τxVψ − Ṽψ = LA,kg.

The claim follows directly from the fact that EA,k
[∑

x∈Ao τxVψ − Ṽψ
]
= 0 and from the following

observations:

(i) the codimension of LA,k’s range is one in the space of functions on ΣA,k. Indeed, if LA,kg = 0,

then EA,k
[
gLA,kg

]
= 0, implying that g is constant on ΣA,k by ergodicity. In particular, the

dimension of the kernel of LA,k is one, which proves the claim.

(ii) The set of mean-0 functions is also of codimension 1, and it contains the range of LA,k. In

particular, the range of LA,k is the set of mean-0 functions.

Then, by Cauchy-Schwarz inequality, for any γ > 0,

EA,k

[{ ∑
x∈Ao

τxVψ − Ṽψ

}
fi

]
⩽ γEA,k

[{ ∑
x∈Ao

τxVψ − Ṽψ

}
(−LA,k)

−1
{ ∑
x∈Ao

τxVψ − Ṽψ

}]
+ γ−1EA,k

[
fi(−LA,k)fi

]
.

Therefore, we may bound the first term in (5.9) by

1√
N

∑
i∈Z

G(zi/N)Eπρ

[{ ∑
x∈Ao

i

τxVψ − Ṽψ,i

}
f
]

⩽
1√
N

∑
i∈Z

γG(zi/N)
∑
k

mkEA,k

[{ ∑
x∈Ao

τxVψ − Ṽψ

}
(−LA,k)

−1
{ ∑
x∈Ao

τxVψ − Ṽψ

}]
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+
1√
N

∑
i∈Z

γ−1G(zi/N)
∑
k

mkEA,k

[
fi(−LA,k)fi

]
. (5.11)

It is also easy to see that there exists a constant Cℓ = Cℓ(ψ) such that

EA,k

[{ ∑
x∈Ao

τxVψ − Ṽψ

}
(−LA,k)

−1
{ ∑
x∈Ao

τxVψ − Ṽψ

}]
⩽ Cℓ.

By convexity and translation invariance of the Dirichlet form,

N2
∑
i

∑
k

mkEA,k

[
fi(−LA,k)fi

]
⩽ Eπρ

[
f(−LN )f

]
.

Taking γ = G(zi/N)/(N5/2ℓ), we may bound (5.9) by Cℓt/N
2. This proves (5.8) and concludes the

proof of the theorem.

5.2. Equivalence of ensembles. In this subsection, we improve on the equivalence of ensembles

estimate given in [5]. Throughout this section, for ℓ > 0 and x ∈ Z we define

Bℓ(x) = {x− ℓ, . . . , x+ ℓ} and Bℓ := Bℓ(0) = {−ℓ, . . . , ℓ}.

For any δ, introduce

Eℓ(δ) = {(ℓ+ 1)(1 + δ), . . . , (2ℓ+ 1)(1− δ)} Eℓ := Eℓ(0) = {ℓ+ 1, . . . , 2ℓ+ 1},

which are the possible numbers of particles in Bℓ after cropping densities δ close to 1/2 and 1.

Fix two boundary conditions a := (a1, a2) ∈ {0, 1}2, and j ∈ Eℓ, and let

Eaℓ,j =
{
η ∈ EBℓ

, a1 + η−ℓ ⩾ 1, a2 + ηℓ ⩾ 1 and
∑
x∈Bℓ

ηx = j
}
,

which is the set of configurations on Bℓ with j particles, and which are ergodic when supplemented

with boundary conditions η−ℓ−1 = a1, ηℓ+1 = a2. Let π
a
ℓ,j be the uniform measure on Eaℓ,j , and denote

by Eaℓ,j the corresponding expectation. Denote ρℓ(j) = j/(2ℓ+ 1).

Proposition 5.5. Fix an integer k ⩾ 0 and a local ergodic configuration σ ∈ EBk
. Then, for any

δ > 0, there exists a constant C > 0 such that for any j ∈ Eℓ(δ) and a ∈ {0, 1}2

max
x∈Bℓ−(log ℓ)2

|πaℓ,j(η|Bk(x) = σ)− πρℓ(j)(η|Bk
= σ)| ⩽ C(log ℓ)2

ℓ
. (5.12)

Note that this estimate is much sharper than the one O(ℓ−1/4) obtained in [5]. Further note that

the sharp bound for the SSEP would be of order 1/ℓ, and since the FEP’s stationary states are

locally correlated, it is natural to have corrections of order log(ℓ) w.r.t. the SSEP. Low densities below

1/2+δ/2 are excluded because as ρ→ 1/2, long range correlations appear in πρ, whereas high densities

larger than 1− δ are excluded for technical reasons. As a direct consequence of the above proposition,

we have the following version of equivalence of ensembles. Since the proof is straightforward, we do

not detail it here.

Proposition 5.6 (Equivalence of ensembles). Let f : EZ → R be a local function, whose support is

contained in Bℓ0 for some ℓ0 > 0. Then, for any δ > 0, there exists a constant C > 0 such that for

any a ∈ {0, 1}2, and any j ∈ Eℓ(δ),∣∣∣1
ℓ

∑
x∈Bℓ−ℓ0

Eaℓ,j [τxf ]− Eπρℓ(j)
[f ]
∣∣∣ ⩽ C(log ℓ)2

ℓ
.
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In the remainder of this subsection, we prove Proposition 5.5. For integers ⌊ℓ/2⌋ ⩽ j ⩽ ℓ, let Nℓ,j

be the number of ergodic configurations in Λℓ := {1, . . . , ℓ} with j particles. It is easy to see that

Nℓ,j =

(
j + 1

ℓ− j

)
,

since to build an ergodic configuration, the ℓ−j empty sites need to be placed at one of the extremities,

or at one of the j−1 places in-between particles. We start by stating and proving two technical lemmas.

Lemma 5.7. Fix ℓ1 < ℓ2 such that ℓ1 + ℓ2 = ℓ. Then∑
j1+j2=j

Nℓ1,j1 ×Nℓ2,j2 = Nℓ,j +
∑

j1+j2=j−2

Nℓ1−2,j1 ×Nℓ2−2,j2 . (5.13)

By induction, if ℓ1 is odd, then this formula yields

∑
j1+j2=j

Nℓ1,j1 ×Nℓ2,j2 =

(ℓ1−3)/2∑
m=0

Nℓ−4m,j−2m +
∑

j1+j2=j−ℓ1+1

N1,j1 ×Nℓ2−ℓ1+1,j2 ,

and if ℓ1 is even, then

∑
j1+j2=j

Nℓ1,j1 ×Nℓ2,j2 =

(ℓ1−4)/2∑
m=0

Nℓ−4m,j−2m +
∑

j1+j2=j−ℓ1+2

N2,j1 ×Nℓ2−ℓ1+2,j2 .

Proof. Note that the left hand side of (5.13) is the number of configurations η ∈ {0, 1}Λℓ with j

particles, which are ergodic on {1, . . . ℓ1} and on {ℓ1 + 1, . . . ℓ}. Any such configuration is either

ergodic, or such that ηℓ1 = ηℓ1+1 = 0, ηℓ1−1 = ηℓ1+2 = 1, and is ergodic both on {1, . . . , ℓ1 − 2} and

on {ℓ1 + 3, . . . , ℓ}, which yields (5.13). □

Lemma 5.8. Fix ρ ∈ [1/2, 1]. Then, there exists a constant C = C(ρ) such that, for any integer ℓ > 0

large enough,

0 ⩽
ℓ−1∑
m=1

{ m∏
n=1

1− ρ+ n
ℓ

ρ+ n
ℓ

−
(1− ρ

ρ

)m}
⩽
C(log ℓ)2

ℓ
. (5.14)

Proof. It is easy to see the term in (5.14) is non-negative. The result is trivial if ρ = 1/2. Now suppose

ρ ∈ (1/2, 1). Denote

am =

m∏
n=1

1 + n
(1−ρ)ℓ

1 + n
ρℓ

− 1.

Fix M =M(ρ) such that M log 1+ρ
2−ρ > 1. If m ⩽M log ℓ, then

am ⩽
(1 + M log ℓ

(1−ρ)ℓ

1 + M log ℓ
ρℓ

)M log ℓ

− 1 ⩽ eC(ρ)(log ℓ)2/ℓ − 1 ⩽
C(ρ)(log ℓ)2

ℓ
.

Therefore,
log ℓ∑
m=1

{ m∏
n=1

1− ρ+ n
ℓ

ρ+ n
ℓ

−
(1− ρ

ρ

)m}
=

log ℓ∑
m=1

am

(1− ρ

ρ

)m
⩽
C(ρ)(log ℓ)2

ℓ
.

Observe that

am+1 =
1 + m+1

(1−ρ)ℓ

1 + m+1
ρℓ

(am + 1)− 1 =
1 + m+1

(1−ρ)ℓ

1 + m+1
ρℓ

am + (m+ 1)

1
(1−ρ)ℓ −

1
ρℓ

1 + m+1
ρℓ

.
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Since m+ 1 ⩽ ℓ,

am+1 ⩽
ρ(2− ρ)

(1− ρ)(1 + ρ)
am +

C(ρ)m

ℓ
.

In particular,

am ⩽ C(ρ)
[( ρ(2− ρ)

(1− ρ)(1 + ρ)

)m
+
m

ℓ

]
.

Since 2− ρ < 1 + ρ,

ℓ−1∑
m=M log ℓ

{ m∏
n=1

1− ρ+ n
ℓ

ρ+ n
ℓ

−
(1− ρ

ρ

)m}
=

ℓ−1∑
m=M log ℓ

am

(1− ρ

ρ

)m
⩽ C(ρ)

ℓ−1∑
m=M log ℓ

(1− ρ

ρ

)m[( ρ(2− ρ)

(1− ρ)(1 + ρ)

)m
+
m

ℓ

]
⩽ C(ρ)

((
2−ρ
1+ρ

)M log ℓ
+ ℓ−1

)
⩽
C(ρ)

ℓ
.

The case ρ = 1 is easier and could be proved in the same way. This concludes the proof. □

We are now ready to prove Proposition 5.5.

Proof of Proposition 5.5. Let j0 =
∑
y∈Bk

ηy be the number of particles in η. Fix a number j of

particles, and boundary conditions a ∈ {0, 1}2. Then,

πaℓ,j(η|Bk(x) = σ) =

∑
j1+j2=j−j0

(
j1+a1+η−k−1
x−k+ℓ−j1

)(
j2+a2+ηk−1
ℓ−x−k−j2

)(
j+a1+a2−1

2ℓ+1−j
) ,

and

πρℓ(j)(η|Bk
= σ) = (1− ρℓ(j))

(1− ρℓ(j)

ρℓ(j)

)2k−j0(2ρℓ(j)− 1

ρℓ(j)

)2j0−2k−η−k−ηk
.

We only consider the case where ℓ+ x− k+ a1 + η−k − 2 is odd, and the other case can be treated

in the same way. Without loss of generality, we assume x < 0. By Lemma 5.7,∑
j1+j2=j−j0

(
j1 + a1 + η−k − 1

x− k + ℓ− j1

)(
j2 + a2 + ηk − 1

ℓ− x− k − j2

)
=

∑
j1+j2=j−j0

Nℓ+x−k+a1+η−k−2,j1+a1+η−k−2Nℓ−x−k+a2+ηk−2,j2+a2+ηk−2

=

(x−k+ℓ+a1+η−k−5)/2∑
m=0

N2ℓ−2k+a2+a1+ηk+η−k−4−4m,j−j0+a2+a1+ηk+η−k−4−2m

+
∑

j1+j2=j−j0−x+k−ℓ+a2+ηk−1

N1,j1N−2x+a2−a1+ηk−η−k+1,j2

=

(x−k+ℓ+a1+η−k−5)/2∑
m=0

(
j − j0 + a2 + a1 + ηk + η−k − 3− 2m

2ℓ− 2k − j + j0 − 2m

)
+

(
j − j0 − x+ k − ℓ+ a2 + ηk

ℓ− x− k − j + j0 + 2− a1 − η−k

)
+

(
j − j0 − x+ k − ℓ+ a2 + ηk − 1

ℓ− x− k − j + j0 + 3− a1 − η−k

)
.

Therefore,

πaℓ,j(σ|Bk(x) = η) =

(x−k+ℓ+a1+η−k−5)/2∑
m=0

(
j−j0+a2+a1+ηk+η−k−3−2m

2ℓ−2k−j+j0−2m

)(
j+a1+a2−1

2ℓ+1−j
) + Fℓ,j(x, k, η),
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where

Fℓ,j(x, k, η) =

(
j−j0−x+k−ℓ+a2+ηk

ℓ−x−k−j+j0+2−a1−η−k

)
+
(
j−j0−x+k−ℓ+a2+ηk−1
ℓ−x−k−j+j0+3−a1−η−k

)(
j+a1+a2−1

2ℓ+1−j
) . (5.15)

In Lemma 5.9 below, we prove that |Fℓ,j(x, k, η)| ⩽ Cℓ−1. Observe that(
j−j0+a2+a1+ηk+η−k−3−2m

2ℓ−2k−j+j0−2m

)(
j+a1+a2−1

2ℓ+1−j
) =

(j − j0 + a2 + a1 + ηk + η−k − 3− 2m)!

(j + a1 + a2 − 1)!

× (2ℓ+ 1− j)!

(2ℓ− 2k − j + j0 − 2m)!
× (2j − 2ℓ+ a1 + a2 − 2)!

(2j − 2ℓ+ 2k − 2j0 − 3 + a2 + a1 + ηk + η−k)!

By Lemma 5.8,

(x−k+ℓ+a1+η−k−5)/2∑
m=0

∣∣∣ (j−j0+a2+a1+ηk+η−k−3−2m
2ℓ−2k−j+j0−2m

)(
j+a1+a2−1

2ℓ+1−j
)

−
( 1

ρℓ(j)

)j0+2−ηk−η−k+2m(
1− ρℓ(j)

)1+2k−j0+2m(
2ρℓ(j)− 1

)2j0−2k+1−ηk−η−k
∣∣∣ ⩽ C(log ℓ)2

ℓ
.

Note also that

∞∑
m=0

( 1

ρℓ(j)

)j0+2−ηk−η−k+2m(
1− ρℓ(j)

)1+2k−j0+2m(
2ρℓ(j)− 1

)2j0−2k+1−ηk−η−k

=
( 1

ρℓ(j)

)j0−ηk−η−k
(
1− ρℓ(j)

)1+2k−j0(
2ρℓ(j)− 1

)2j0−2k−ηk−η−k

= πρℓ(j)(η|Bk
= σ).

Therefore,∣∣∣πaℓ,j(η|Bk(x) = σ)− πρℓ(j)(η|Bk
= σ)

∣∣∣ ⩽ C(log ℓ)2

ℓ

+

∞∑
m=ℓ/4

( 1

ρℓ(j)

)j0+2−ηk−η−k+2m(
1− ρℓ(j)

)1+2k−j0+2m(
2ρℓ(j)− 1

)2j0−2k+1−ηk−η−k

⩽
C(log ℓ)2

ℓ
.

This concludes the proof. □

Lemma 5.9. The error term defined in (5.15) satisfies

|Fℓ,j(x, k, η)| ⩽ Cℓ−1.

Proof. We only prove (
j−j0−x+k−ℓ+a2+ηk

ℓ−x−k−j+j0+2−a1−η−k

)(
j+a1+a2−1

2ℓ+1−j
) ⩽ Cℓ−1,

since the remaining term could be treated in the same way. Developing the above factorial, we rewrite

the left term as

(j − j0 − x+ k − ℓ+ a2 + ηk)!

(j + a1 + a2 − 1)!
× (2ℓ+ 1− j)!

(ℓ− x− k − j + j0 + 2− a1 − η−k)!

× (2j − 2ℓ+ a1 + a2 − 2)!

(2j − 2ℓ− 2 + 2k − 2j0 + η−k + ηk + a1 + a2)!
.



STATIONARY FLUCTUATIONS FOR THE FACILITATED EXCLUSION PROCESS 33

There exists some constant C such that the above term is bounded by

C
(1− ρℓ(j)

ρℓ(j)

)ℓ+x
.

Since −ℓ + (log ℓ)2 ⩽ x ⩽ 0 and ρℓ(j) > (1 + δ)/2, it is easy to see the last line is bounded by Cℓ−1.

This concludes the proof. □

Appendix A. Stationary distributions

A.1. Proof of (3.9). In this section, we give a more straightforward interpretation of the stationary

measure πρ, and prove (3.9). First note that (3.9) yields the following construction for πρ: we first build

the central cluster, by sampling ω0 according to (3.7), and then randomly translating it by choosing

X0 uniformly in {−ω0 − 1, . . . , 0}. We then define X1 = X0 + ω0 + 2 ⩾ 1,

ηX0 = ηX1 = 0

and

ηx = 1 for X0 < x < X1.

Then, both (ηX0−x)x⩾0 and (ηX1+x)x⩾0 are Markov chains on {0, 1} with the same distribution, and

with transition probabilities for x ⩾ 0

P(η̃x+1 = 1 | η̃x = 1) = a(ρ), P(η̃x+1 = 0 | η̃x = 1) = 1− a(ρ), (A.1)

where a(ρ) is the active density defined in (2.9) whereas

P(η̃x+1 = 1 | η̃x = 0) = 1. (A.2)

We now prove (3.9). Denote by π̃ρ the distribution following the construction above, we want to

prove that π̃ρ = πρ, where πρ is given by (2.5). We first show that π̃ρ is translation invariant. To do

so, fix a local configuration σ on Λ = {−ℓ, . . . , ℓ}, we can safely assume that there is at least an empty

site to the left of the origin, and two empty sites to the right of the origin. Otherwise, we can simply

derive the value of π̃ρ(η|Λ = σ) by extending σ on a larger set Λ. As a consequence of this assumption,

the origin and site 1’s clusters are both fully contained in Λ, where we call a particle cluster an empty

site followed by all its consecutive particles. Two cases can arise: either σ1 = 1, in which case the

origin and site 1 are in the same cluster. Then, since the position of the origin in the cluster is chosen

uniformly, we have by construction

π̃ρ(η|Λ = σ) = π̃ρ(η|τ−1Λ = σ·+1),

where we defined τ−1Λ = {−1 − ℓ, ℓ − 1}. The other possibility is that σ1 = 0, in which case by

translating the event {η|Λ = σ} by −1, we change the origin’s cluster. For this reason, we need to

compute explicitly the probability of obtaining σ. In σ, denote by X0 := −ωσ0 − 2 the position of the

first empty site left of the origin, X1 = 1 by assumption is the position of the first empty site right

of the origin, and X2 = ωσ1 + 3 the position of the second empty site to the right of the origin. By

construction, to obtain σ under µ̃ρ, we need

1) To choose the right size for the central cluster (the one of the origin), which occurs with probability

p1 := (ωσ0 + 2)a(ρ)ω
σ
0 ρ(1− a(ρ))

given by (3.7).
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2) To choose the right position for the central cluster, which occurs with probability p2 := 1/(ωσ0 +2).

3) To build the next cluster right of the origin according to the Markovian construction, which then

occurs with geometric probability

p3 := µρ(ω1 = ωσ1 ) = a(ρ)ω
σ
1 (1− a(ρ))

given by (3.5).

4) To build, by the Markovian construction, the rest of the configuration σ outside of those two

clusters, which occurs with probability denote p4 := p4(σ).

With these notations, we can now write

π̃ρ(η|Λ = σ) = p1p2p3p4. (A.3)

Similarly, to obtain σ·+1 in the translated box τ−1Λ, we need

1) To choose the right size for the central cluster, which has now changed because of the translation,

this occurs with probability

q1 := (ωσ1 + 2)a(ρ)ω
σ
1 ρ(1− a(ρ))

2) To choose the right position for the central cluster, which occurs with probability q2 := 1/(ωσ1 +2).

3) To build the cluster left of the origin according to the Markovian construction, which now occurs

with probability

q3 := µρ(ω−1 = ωσ0 ) = a(ρ)ω
σ
0 (1− a(ρ)).

given by (3.5).

4) To build by the Markovian construction the rest of the configuration σ outside of those two clusters,

which occurs with probability denote q4 := p4(σ)

We obtain

π̃ρ(η|τ−1Λ = σ·+1) = q1q2q3q4 = π̃ρ(η|Λ = σ), (A.4)

which proves that π̃ρ is translation invariant since Λ is of arbitrary size.

By translation invariance, the average density Eπ̃ρ
(η0) is the average density of an arbitrary cluster,

which is

Eπ̃ρ
(η0) =

1 + a(ρ)
1−a(ρ)

2 + a(ρ)
1−a(ρ)

=
1

2− a(ρ)
= ρ. (A.5)

We now prove that π̃ρ also satisfies the explicit formula (2.5) for πρ. To do so, we are going to use

the translation invariance of π̃ρ, and the fact that very far from the origin, the central cluster has

no influence, and the configuration’s construction is Markovian. For this purpose, choose x ∈ Z, an
ergodic configuration σ ∈ EΛ on Λ := Λℓ(x) = {x+ 1, . . . , x+ ℓ}, and denote by

n◦• := card{z ∈ Λ \ {x+ ℓ}, σz = 0, σz+1 = 1},

n•◦ := card{z ∈ Λ \ {x+ ℓ}, σz = 1, σz+1 = 0},

n•• := card{z ∈ Λ \ {x+ ℓ}, σz = σz+1 = 1}.
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Since σ was assumed ergodic, n◦• + n•◦ + n•• = ℓ − 1. Furthermore, denoting by p =
∑
z∈Λ σz the

number of particles in σ, ℓ− p is its number of empty sites, therefore

n◦• = ℓ− p− (1− σx+ℓ) and n•◦ = ℓ− p− (1− σx+1).

In other words, the number of ◦• is ℓ− p except if the last site is empty, in which case it is ℓ− p− 1,

and similarly for •◦. From those identities, we finally obtain

n•• = 2p− ℓ+ 1− σx+1 − σx+ℓ.

Fix now x ≫ 1, unless the central cluster reaches x, which occurs with probability exponentially

small in x, we can use the markovian construction of π̃ρ. Since π̃ρ(ηx+1 = σx+1) = ρσx+1(1− ρ)1−σx+1

according to (A.5) and translation invariance, we obtain using the transition rates (A.1), (A.2)

π̃ρ(η|Λ = σ) = π̃ρ(η|Λ\{x+1} = σ|Λ\{x+1})π̃ρ(ηx+1 = σx+1) +O(e−cx)

= 1n◦•(1− a(ρ))n•◦a(ρ)n••ρσx+1(1− ρ)1−σx+1 +O(e−cx).

Letting x → ∞ and using π̃ρ’s translation invariance, we recover (2.5) and obtain as wanted that

π̃ρ = πρ.

Thanks to (3.9), we also have the following result.

Corollary A.1. Under πρ, both (ηx)x⩾0 and (η−x)x⩾0 are distributed as homogeneous Markov chains,

started from η0 ∼ Bernoulli(ρ), and with transition probabilities given by (A.1) and (A.2). However,

these two Markov chains are not independant.

Proof. For any x0 ∈ Z, by construction, P(ηx0
= 1) = ρ, and the distribution of (ηx0+x)x⩾0 converges

as x0 → ∞ to that of a homogeneous Markov chain with transition probabilities given by (A.1) and

(A.2), because the influence of the initial cluster’s construction vanishes. But by translation invariance,

this distribution does not depend on x0, which proves the corollary. □

A.2. Compressibility. We prove here for the sake of completeness identity (2.11) for the equilibrium

compressibility for the FEP, namely

χ(ρ) =
∑
x∈Z

Covπρ
(η0, ηx) = ρ(1− ρ)(2ρ− 1).

To prove it, it is convenient to consider the construction π̃ρ for πρ obtained in Section A.1 rather than

(2.5). We start by writing by translation invariance of πρ that

χ(ρ) = lim
y→∞

∑
x∈Z

Covπρ
(ηy, ηx+y) = ρ(1− ρ) + 2 lim

y→∞

∑
x⩾1

Covπρ
(ηy, ηx+y). (A.6)

Because we send y to∞, we do not need to take into account the central cluster, so that the distribution

of (ηx+y)x⩾0, in the limit y → ∞ is that of a Markov chain with transition probabilities given by

(A.1) and (A.2). Consider therefore the distribution νρ of a markov chain (ηx)x⩾0 with transition

probabilities given by (A.1) and (A.2).

We now define

gx = νρ(η0ηx = 1), and hx = gx − ρ2 = Covνρ(η0, ηx),

and straightforward computation yield h1 = ρ(a(ρ)− ρ) = −(1− ρ)2. We then write

gx+1 = νρ(η0ηxηx+1 = 1) + νρ(η0(1− ηx)ηx+1 = 1).
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Because νρ only charges the ergodic component, the second term in the right-hand side is equal to

νρ(η0(1 − ηx) = 1) = ρ − gx, whereas the first is νρ(η0ηxηx+1 = 1) = a(ρ)gx. This straightforwardly

yields

hx+1 = −1− ρ

ρ
hx =⇒ hx = ρ(1− ρ)

(
ρ− 1

ρ

)x
,

so that using (A.6), we obtain

χ(ρ) = ρ(1− ρ) + 2
∑
x⩾1

hx = ρ(1− ρ)(2ρ− 1)

as wanted.

A.3. Stationary states and mapping. In this section, we comment on why the mapped distribution

µ̂ρ(ω = ·) defined in Section 3.3 is not a stationary state for the zero-range generator (3.4). The reason

is straightforward, because we need to consider instead the generator L̂ zr
N on the mapped pair (ω,X0).

More precisely, given a FEP trajectory η = {η(t), t ⩾ 0} the process (ω,X0)(t) := Π(η(t)) defined by

the mapping Π defined in Section 3.1 is a Markov process with generator L̂ zr
N defined on functions f

on ÊZ (cf. 3.2) as

L̂ zr
N f(ω, x) = L zr,⋆

N f(·, x)(ω)

+ 1{ω−1⩾1}pN

{
f(ω−1,0, x− 1)− f(ω, x)

}
+ 1{ω1⩾1}qN

{
f(ω1,0, x)− f(ω, x)

}
+ 1{ω0⩾1}pN

{
f(τ−1(ω

0,1), 0)1{x=−ω0−1} + f(ω0,1, x)1{x>−ω0−1} − f(ω, x)
}

+ 1{ω0⩾1}qN

{
f(τ1(ω

0,−1),−ω−1 − 2)1{x=0} + f(ω0,−1, x+ 1)1{x<0} − f(ω, x)
}

where L zr,⋆
N is the zero-range generator defined in (3.4), except that all jumps to and from the origin

are suppressed, and (τxω)y = ωy−x is the configuration translated by x. Note that the contribution of

L zr,⋆
N does not affect the position of x, since the tagged empty site in the exclusion configuration only

changes when an ω-particle jumps over the edge (−1, 0), or when an ω-particle jumps from site 0 to

site 1 and an empty site is at the origin in η.

By applying the mapping back and forth, it is then straightforward to show that, for any function

f(ω) of the zero-range configuration,

Eµ̂ρ
(L̂ zr

N f) = 0,

so that the distribution µ̂ρ is invariant w.r.t. the generator L̂ zr
N on ÊZ. However, projected on ω, L̂ zr

N

is not the generator of the constant rate zero-range process, but rather the modified generator

L̂ zr
N f(ω) = L zr

N f(ω)

+1{ω0⩾1, x=−ω0−1}pN

{
f(τ−1(ω

0,1))1{x=−ω0−1}−f(ω0,1)
}
+1{ω0⩾1, x=0}qN

{
f(τ1(ω

0,−1))−f(ω0,−1)
}
,

where the two last terms account for the configuration translation when the origin’s cluster changes

because an empty site jumped over the exclusion edge (0, 1). Note that obviously, the generator above

is not a Markov generator on the set of zero-range configurations NZ, since it is defined in parts by the

external variable x. This identity shows why the mapped stationary distribution µ̂ρ is not invariant

w.r.t. the generator of the constant rate zero-range process.
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