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Standfirst: The implementation of particle tracking techniques with deep neural network
approaches presents a promising way where classical tracking methods fail. Determining
particle motion within complex flow structures with neural-network-enhanced-tracking methods
however requires the development of high accuracy flow estimators with low computational
cost.

Determining accurately flow fields near objects is crucial to problems ranging from fundamental
physics to biology, and applications in engineering. A key approach in experimental fluid
dynamics consists in learning quantitative information from collected data by constructing a
vector field that describes the local displacements in the flow. With the drastic improvement in
camera and data acquisition technologies, the ever-increasing volume of data presents new
challenges for post-processing information, particularly in the development of motion
estimation algorithms for three-dimensional particle tracking. These algorithms must not only
handle an immense quantity of data but also adapt to widely varying conditions. As a result,
there is a growing need for the development of novel, advanced algorithms, with machine
learning techniques emerging as a particularly well-suited approach to tackle these problems.
However, implementing machine learning tools to particle tracking velocimetry (PTV) datasets
has remained challenging. The deep learning based approach presented by Liang et al. [1] uses
a multifaceted series of deep neural networks called GotFlow3D to estimate particle
displacements for PTV in three dimensions.

In applied physics and engineering, particle image velocimetry (PIV) and PTV are ubiquitous
techniques to determine flow fields. While the first one informs on the velocity components at
fixed positions in a flow field, the later provides the velocity variations along the trajectories of
individual particles over time. Together, these measurement techniques provide complementary
information about a given fluid flow. The development of deep neural networks, especially
convolutional neural networks (CNN) techniques, has shown their potential to match or
outperform state-of-the-art classical PIV algorithms [2, 3], their applicability to PTV
measurements, however, remains less obvious. PTV datasets consists in lists of particle
trajectories that are individually tracked, producing collected data that are not organized on a
gridded structure and preventing the direct application of CNN-based approaches [4].

Typically, PTV analysis from experimental data is limited from particle loss during the particle
linking step. Particle linkage can fail in regions of fast displacement when particles move farther
than the PTV algorithm can track between two consecutive images. Increasing the tracking



characteristic length scale, allowing the PTV algorithm to search over larger distances, can lead
to extremely large computational times and errors.

The authors introduce a novel deep learning based approach called Graph Optimal Transport
“GotFlow3D" that can learn a three-dimensional flow field directly from two consecutive
frames of particle images and be implemented as a-priori knowledge of the flow field into
predictor-corrector schemes to assist an existing PTV algorithm (Fig. 1). In this approach,
existing scene flow learning networks, commonly used for rigid body motion, are leveraged to
circumvent the difficulties associated with unstructured point clouds datasets [5-8]. A graph
neural network (GNN) is used to extract spatial geometric information from particles positions,
the scene flow is then generalized to a complex non-rigid flow motion by using an
optimal-transport guided recurrent neural network (RNN) framework.

GotFlow3D framework operation can be divided in three steps: first, geometric features are
extracted from 3D particle coordinates in two consecutive frames using a series of GNNs (Fig.
1a), then the particles correspondence between the two frames is established using an optimal
transport plan, finally the displacement field is iteratively updated using RNNs (Fig. 1b). More
specifically, a static graph gathers spatial information about the individual particles and their
k-nearest neighbours and is set prior to the training procedure in the first step, while another
graph is determined from dynamic features during the flow learning process. This second
dynamic graph corresponds to an extended network connecting particles with similar features
across the entire domain. These two kinds of graphs are then fused into a static-dynamic GNN
(SDGNN) that is employed to determine the optimal transport plan.

After training with a synthetic training dataset, GotFlow3D performance is evaluated with a
series of testing datasets (Fig. 1c) and compared with other scene flow learning methods such
as FlowNet3D [6], FLOT [7], PointPWC-Net [8] or PV-RAFT [9]. In all tested scenarios, GotFlow3D
exhibits a better performance, especially in determining small-scale structures present in more
complex flows. GotFlow3D appears to outperform other existing techniques in robustness and
generalization when tested for artificially altered dataset, noisy particles positions, and low
sampling rate.

The potential for improving PTV-based analysis is also evaluated by integrating GotFlow3D in
the particle tracking process for classical PTV approaches (Fig. 1d). The presented method helps
increase the spatial density of particle displacement fields by providing “a guess” to an existing
PTV algorithm such that less particles are lost during the particle linking stage between two
consecutive time frames. In both tested flows, velocity fields produced by GotFlow3D-enhanced
PTV algorithms exhibit a higher density of vector fields, indicating a lower particle loss rate,
specifically in regions with large displacements.

By recovering particle trajectories typically lost in conventional approaches, emerging PTV
techniques augmented with deep neural networks such as GofFlow3D offer potential to
advance tracking performance across diverse flow regimes of varying complexity. Irrespective of
the particular neural architecture employed, these methods exhibit exceptional aptitude for



interpolation but more limited extrapolation capabilities. This underscores the need for
judicious scrutiny when deploying these algorithms to predict flow fields significantly detached
from the parameter space of training data. The next step will be to extend predictions far
beyond the embedding space with careful evaluation of model limitations and uncertainty
guantification to ensure robustness in more complex scenarios.

Figure 1. GotFlow3D working scheme. a) Geometric features extraction from 3D particles coordinates in two
consecutive frames. b) Iterative updates of the displacement field. c) Flow learning evaluation. d) Integration for
enhanced-PTV approach evaluation.
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