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Minimal Gelbrich distance to uncorrelation
Matthieu Borelle, Teodoro Alamo, Member, IEEE , Cristina Stoica, Senior Member, IEEE , Sylvain Bertrand,

Eduardo F. Camacho, Life Fellow, IEEE

Abstract— This paper reports new properties of the
Wasserstein/Gelbrich distance and associated ambiguity
sets to analyze the correlation between two scalar random
variables. A simple closed expression is derived for the Gel-
brich distance between two bidimensional random distribu-
tions. Moreover, the minimum disturbance in the Gelbrich
metric required to reach uncorrelation between two random
variables is obtained. This allows us to determine the ro-
bustness of the Pearson coefficient within an ambiguity set.
A numerical example showcases the potential use of the
obtained results in the field of variable selection.

Index Terms— Wasserstein distance, Gelbrich distance,
Pearson coefficient, ambiguity set, distributionally robust
optimization.

I. INTRODUCTION

VARIABLE selection is a fundamental task in statistical
analysis / statistical inference, aiming to identify a subset

of variables that are most relevant for a given problem. Tradi-
tionally, correlation measures, such as the Pearson coefficient
[1] have been widely employed to quantify the strength and
direction of the relationship between variables. However, re-
lying solely on correlation measures could overlook important
aspects of the data, such as its robustness to the lack of
knowledge about the data-generating probability distribution,
or its potential time-varying nature.

In this context, the concept of ambiguity set [2] plays a fun-
damental role. An ambiguity set is a collection of probability
distributions representing the uncertainty about the true data-
generating distribution. It is a key component in models where
the underlying distribution is not precisely known, but there
is a requirement to make robust decisions that perform well
under various possible scenarios. The ambiguity set is often
defined as a ball in the space of probability distributions that
contains all distributions close to a nominal or a priori most
likely distribution with respect to a given probability metric
[2]. The motivation of the current paper derives from the
possible degradation of the Pearson coefficient in an ambiguity
set.
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mail: {matthieu.borelle; sylvain.bertrand}@onera.fr).

T. Alamo and E.F. Camacho are with Department of Ingenierı́a
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In the realm of distributionally robust optimization and
estimation, different notions of distance between distributions
are available. For example, Prokhorov [3] and Wasserstein
distances [2] are used to assess how different two probability
measures are (see also [4] for many other possibilities).
Derived from the optimal transport problem [5], by quantifying
the minimum work needed to transport the mass from one
distribution to another, the Wasserstein distance captures both
global and local features of the distributions, offering a more
nuanced understanding of their dissimilarity. Related with the
Wasserstein metric is the Gelbrich distance [6], [7], which has
a simple expression and is used to lower bound the Wasserstein
distance, especially in the Gaussian case. Since both of them
define a metric, they differ from other popular measures [8],
such as the Kullback-Leibler divergence. The versatility and
applicability of the Wasserstein and Gelbrich distances make
them a valuable tool fostering advancements in data analysis,
machine learning (e.g., in the context of generative adversarial
networks [9]), estimation and control (e.g., Kalman filtering
[10], [11], model predictive control [12]), game theory [13]
and allowing to solve distributionally robust decision problem
in various fields: finance [14], energy production [15], imaging
[16], and beyond.

The current work proposes a new perspective by incorporat-
ing the Gelbrich distance into the analysis of the correlation
between two scalar random variables. The proposed results
capture the correlation between variables and their resilience
to distributional deviations (i.e., distributional robustness of the
correlation coefficient). Closed expressions for the minimum
Gelbrich distance required to reach uncorrelation between
two scalar random variables are further contributions. The
proposed methodology enables the identification of variables
that exhibit both strong correlation and robustness to various
data conditions. A numerical example on system identification
illustrates how the results of the paper can be applied in the
context of variable selection.

This paper is organized as follows. Section II familiarizes
the reader with the Wasserstein distance. Section III intro-
duces the Gelbrich distance used as a lower bound for the
Wasserstein distance. The minimal Gelbrich distance to reach
uncorrelation is developed in Section IV. In Section V, a
numerical example illustrates the proposed results. Concluding
remarks are provided in Section VI.

Notation

Denote the set of symmetric positive semidefinite matrices
in Rd×d by Sd+ = { S ∈ Sd : S ⪰ 0 }. The square root of



S ∈ Sd+ is denoted by S
1
2 , which is the positive semidefinite

matrix satisfying (S
1
2 )2 = S. The notation Tr(A) designates

the trace of the matrix A.

II. WASSERSTEIN DISTANCE

The Wasserstein distance offers a unique perspective on
measuring the dissimilarity or discrepancy between probability
distributions. Derived from the optimal transport problem [5],
Wasserstein distances provide a quantitative measure of the
required “effort” to transform one distribution into another.
This concept draws an intuitive analogy to the transportation of
mass, where the distances capture the minimal cost of moving
masses from one distribution to another. The key idea behind
Wasserstein distances lies in comparing not just the locations
of the masses or the shapes of the distributions, but rather their
entire structures. It identifies the most cost-effective way to
transport the mass from one distribution to another (see Fig. 1).
Recent results on the Wasserstein distance can be found, for
instance, in [17], [18], [2].
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Fig. 1. Illustration of the transport of a normal probability distribution
p(x) to another one q(x)

Definition 1 (Wasserstein p-distance [19], [7]): Consider
a metric space (M, c), e.g., M = Rd and c(x, y) = ∥x− y∥2,
∀x, y ∈ M . The Wasserstein p-distance between two
probability measures µ and ν, with finite p-moments on M ,
is given by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

{∫
M×M

c(x, y)p π(dx, dy))

}) 1
p

(1)
where Π(µ, ν) is the set of all probability distributions π
defined on M × M with marginals µ and ν, often called
couplings or transport plans.

Even though the Wasserstein p-distance between two prob-
ability measures seems to be difficult to compute, the Wasser-
stein 2-distance between Gaussian distributions studied in [19]
has a much simpler expression that will be explored in the next
section.

III. GELBRICH DISTANCE

This section briefly describes the Gelbrich distance, which
is further used as a lower bound for the Wasserstein distance.

Definition 2 (Gelbrich distance [6], [7]): Suppose that the
tuples (µΣ,Σ) ∈ Rn × Sn+ and (µS , S) ∈ Rn × Sn+ represent
the mean and covariance matrices of random distributions QΣ

and QS . Then, the Gelbrich distance GD(QΣ,QS) between
QΣ and QS is defined as

GD(QΣ,QS) =

(
∥µΣ − µS∥22

+Tr
(
S +Σ− 2(Σ

1
2SΣ

1
2 )

1
2

)) 1
2

.

(2)

This metric allows us to define the notion of ambiguity set.
Denote by Pd the set of all the probability distributions of
dimension d. Define the ambiguity set Aα centred at QΣ ∈ Pd

and its radius α ≥ 0 as

Aα = {QS ∈ Pd | GD(QΣ,QS) ≤ α}. (3)

As stated in [7], the squared Gelbrich distance (2) is both
convex and continuous on the parameters µΣ, µS , Σ and S.
The next property states that the Gelbrich distance is a lower
bound of the Wasserstein distance [6], [7].

Property 1: Suppose that (µΣ,Σ) and (µS , S) represent the
mean and covariance matrices of distributions QΣ and QS .
Then, the following expression holds

W2(QΣ,QS) ≥ GD(QΣ,QS), (4)

with W2(QΣ,QS) the Wasserstein 2-distance between distri-
butions QΣ and QS .

Notice that the inequality (4) can be replaced with the
equality W2(QΣ,QS) = GD(QΣ,QS) if both QΣ and QS

are Gaussian distributions [7].
The Gelbrich distance relies on the computation of Σ

1
2 and(

Σ
1
2SΣ

1
2

) 1
2

. The next property shows that, in the particular
case of two-dimensional distributions, the Gelbrich distance
can be more easily calculated.

Property 2: Suppose that (µΣ,Σ) and (µS , S) represent
the mean and covariance matrices of the two-dimensional
distributions QΣ and QS . Then, the Gelbrich distance is

GD(QΣ,QS) =

(
∥µΣ − µS∥22 +Tr(S +Σ)

−2

√
Tr(SΣ) + 2

√
det(SΣ)

) 1
2

.

Proof: Using the definition of the Gelbrich distance (2),
it suffices to show that for every pair of matrices Σ ∈ S2+ and
S ∈ S2+, the following equality holds

Tr

((
Σ

1
2SΣ

1
2

) 1
2

)
=

√
Tr(SΣ) + 2

√
det(SΣ).

Consider a generic matrix A ∈ R2×2. Its characteristic
equation det(λI−A) = 0 is equivalent to

λ2 − Tr(A)λ+ det(A) = 0. (5)

Recalling the Cayley-Hamilton theorem [20], a square ma-
trix satisfies its characteristic equation, i.e.,

A2 − Tr(A)A+ det(A)I = 0, ∀A ∈ R2×2. (6)



The positive semidefinite matrix H = Σ
1
2SΣ

1
2 has a unique

symmetric semidefinite square root (see e.g., Theorem 7.2.6
in [20]) denoted by H

1
2 . Using A = H

1
2 in (6), the following

expression is obtained

H − Tr(H
1
2 )H

1
2 + det(H

1
2 )I = 0. (7)

Applying the trace operator to expression (7) leads to

Tr(H)−
(
Tr(H

1
2 )
)2

+ 2det(H
1
2 ) = 0.

Then, using the commutativity of the trace operator, the
following result can be inferred(

Tr(H
1
2 )
)2

= Tr(H) + 2 det(H
1
2 )

= Tr
(
Σ

1
2SΣ

1
2

)
+ 2
√

det(H)

= Tr (SΣ) + 2

√
det(Σ

1
2SΣ

1
2 )

= Tr (SΣ) + 2
√

det(SΣ).

Remark 1: In comparison with (2), where it is required to
compute two times the square root of a two by two matrix,
Property 2 provides a simple expression written in terms of the
determinant and trace of a two by two matrix. This expression
for the Gelbrich distance, which is a novel result to the best
knowledge of the authors, paves the way for the results of the
next section.

IV. MINIMUM GELBRICH DISTANCE TO UNCORRELATION

The Pearson coefficient (also known as the correlation
coefficient) is a measure of the linear correlation between two
sets of data [1]. Consider the random scalar variables x and
y. Denote by µx, µy their mean and by Σ the covariance of

the two-dimensional random vector
[

x
y

]
, i.e., µx = E{x},

µy = E{y} and

Σ =

[
Σxx Σxy

Σxy Σyy

]
= E

{[
x− µx

y − µy

] [
x− µx

y − µy

]⊤}
.

One can compute the Pearson correlation coefficient ρ̄ between
x and y as

ρ̄ =
E{(x− µx)(y − µy)}√

E{(x− µx)2}E{(y − µy)2}
=

Σxy√
ΣxxΣyy

.

The Pearson coefficient takes values between −1 and 1. A
value close to −1 or 1 indicates a strong linear relationship,
while a value close to 0 suggests a weak or no linear relation-
ship (no linear correlation). The sign indicates the direction of
the relationship, while the magnitude represents the strength
[1].

The Pearson coefficient is often used to determine if a
given covariate x ∈ R is useful to reduce the error y ∈ R
provided by a given estimator. If the error y is highly correlated
with x (absolute value of the Pearson coefficient sufficiently
close to 1), then adapting the estimator by incorporating x
to the list of covariates would translate into an improvement
of the estimator. If the correlation is close to zero, then

the incorporation of x will increase the estimator complexity
without significantly improving the estimations. However, the
previous analysis is valid only when a precise knowledge of
the joint probability distribution is available. If one has to take
into consideration that the probability distribution belongs to
an ambiguity set, then the decision process is more difficult.
One should consider not only the nominal Pearson coefficient
(corresponding to the centre of the ambiguity set) but also the
possible variations of it in the ambiguity set.

This section proposes a robustness analysis of a given
nominal Pearson coefficient in terms of its distance to uncor-
relation. In particular, we analyze the minimal perturbation to
the bivariate distribution (measured by means of the Gelbrich
distance) required to force that the two variables of the
distribution are no longer correlated.

Let us denote by U the set of two-dimensional probabilistic
distributions for which there is no correlation term. This means
that the two-dimensional distribution QS belongs to U if the
covariance matrix S ∈ S2+ corresponding to QS is diagonal,
i.e.,

S ∈ SU =

{[
σ2
1 0
0 σ2

2

]
: σ1 ≥ 0, σ2 ≥ 0

}
.

The problem under consideration is determining in an ana-
lytical way the minimum Gelbrich distance DU (QΣ) of a
two-dimensional probability distribution QΣ to the set of
uncorrelated distributions U . To this aim, we consider the
optimization problem

DU (QΣ) = min
QS∈U

GD(QΣ,QS).

From Property 1, we derive that DU (QΣ) constitutes a lower
bound on the Wasserstein 2-distance to uncorrelation

min
QS∈U

W2(QΣ,QS) ≥ min
QS∈U

GD(QΣ,QS) = DU (QΣ).

As commented before, the Wasserstein 2-distance equals the
Gelbrich distance in the case of Gaussian distributions. Thus,
the previous lower bound is exact under a Gaussian assumption
on QΣ and QS .

The following theorem provides a closed-form expression
for the minimum Gelbrich distance to uncorrelation.

Theorem 1: Suppose that QΣ is a two-dimensional distribu-

tion with covariance Σ =

[
Σxx Σxy

Σxy Σyy

]
. Then, the minimum

Gelbrich distance DU (QΣ) of QΣ to uncorrelation is derived
from

D2
U (QΣ) =

2Σ2
xy

Tr(Σ) +
√

(Σxx − Σyy)2 + 4det(Σ)
.

Moreover, the following inequalities hold

Σ2
xy

max{Σxx,Σyy}
≥ D2

U (QΣ) ≥
Σ2

xy

Tr(Σ)
.

Proof: Denote by µΣ the mean of distribution QΣ.
By definition, and taking into consideration the closed-form
expression for the Gelbrich distance from Property 2, the



following result holds

D2
U = min

µS∈R2,S∈SU

(
∥µΣ − µS∥22 +Tr(S +Σ)

−2

√
Tr(SΣ) + 2

√
det(SΣ)

)
.

Clearly, the minimum is attained at µS = µΣ. Thus, the
previous expression leads to

D2
U = min

S∈SU

(
Tr(S +Σ)− 2

√
Tr(SΣ) + 2

√
det(SΣ)

)
. (8)

Given S =

[
σ2
1 0
0 σ2

2

]
∈ SU , consider the terms Tr(SΣ)

and
√
det(SΣ) that can be further rewritten

Tr(SΣ) = Tr

([
σ2
1 0
0 σ2

2

] [
Σxx Σxy

Σxy Σyy

])
= σ2

1Σxx + σ2
2Σyy,√

det(SΣ) =
√

det(Σ) det(S) =
√
det(Σ)σ1σ2.

With these terms, the expression (8) becomes

D2
U = min

σ1≥0,σ2≥0

(
Tr(Σ) + σ2

1 + σ2
2

−2

√
σ2
1Σxx + σ2

2Σyy + 2
√
det(Σ)σ1σ2

)
.

Notice that the constraints σ1 ≥ 0, σ2 ≥ 0 are not active
at the solution of the optimization problem. This is due to
the fact that the signs of σ1 and σ2 affect only the term
2
√
det(Σ)σ1σ2, and the larger this term is, the smaller the

functional to be minimized. Therefore, we conclude that the
same value for D2

U is obtained if one removes the constraints
σ1 ≥ 0, σ2 ≥ 0. Thus, this leads to

D2
U = min

σ1∈R,σ2∈R

(
Tr(Σ) + σ2

1 + σ2
2

−2

√
σ2
1Σxx + σ2

2Σyy + 2
√
det(Σ)σ1σ2

)

= min
σ1∈R,σ2∈R

(
Tr(Σ) + σ2

1 + σ2
2

−2

√[
σ1

σ2

]⊤ [
Σxx

√
det(Σ)√

det(Σ) Σyy

] [
σ1

σ2

])
.

For a fixed value of τ2 = σ2
1 + σ2

2 , the values of σ1 and σ2

that minimize the functional are the ones corresponding to the
eigenvector of the largest eigenvalue λmax of

H =

[
Σxx

√
det(Σ)√

det(Σ) Σyy

]
.

With this result, it can be further derived

D2
U = min

σ1∈R,σ2∈R

(
Tr(Σ) + σ2

1 + σ2
2 − 2

√
λmax(σ2

1 + σ2
2)

)
.

Due to the Perron-Frobenious theorem [20], which states that
the largest eigenvalue of a matrix with all its components non-
negative is non-negative, we have that λmax ≥ 0. Then, the

following result is derived

D2
U = min

σ1∈R,σ2∈R

(
Tr(Σ) + σ2

1 + σ2
2

−2
√
λmax

√
σ2
1 + σ2

2

)
= min

τ≥0

(
Tr(Σ) + τ2 − 2

√
λmaxτ

)
The optimal value τ∗ for τ =

√
σ2
1 + σ2

2 satisfies 2τ∗ −
2
√
λmax = 0. Thus, τ∗ =

√
λmax and D2

U verifies

D2
U = min

τ≥0

(
Tr(Σ) + τ2 − 2

√
λmaxτ

)
= Tr(Σ)− λmax.

(9)

A closed expression for λmax is obtained in what follows.
From (6), the characteristic polynomial of matrix H verifies

0 = det(λI−H)

= λ2 − Tr(H)λ+ det(H)

= λ2 − Tr(H)λ+ΣxxΣyy − det(Σ)

= λ2 − Tr(Σ)λ+Σ2
xy.

Thus, the largest eigenvalue of matrix H is computed as the
largest root of the previous second order equation

λmax =
Tr(Σ) +

√
(Tr(Σ))2 − 4Σ2

xy

2

=
Tr(Σ) +

√
Σ2

xx +Σ2
yy + 2ΣxxΣyy − 4Σ2

xy

2

=
Tr(Σ) +

√
(Σxx − Σyy)2 + 4det(Σ)

2
. (10)

From (9) and (10), we finally obtain

D2
U = Tr(Σ)− λmax

= Tr(Σ)−
Tr(Σ) +

√
(Σxx − Σyy)2 + 4det(Σ)

2

=
Tr(Σ)−

√
(Σxx − Σyy)2 + 4det(Σ)

2
.

Then, multiplying the numerator and denominator by
Tr(Σ) +

√
(Σxx − Σyy)2 + 4det(Σ), it leads to

D2
U =

(Σxx +Σyy)
2 − (Σxx − Σyy)

2 − 4 det(Σ)

2(Tr(Σ) +
√
(Σxx − Σyy)2 + 4det(Σ))

=
2Σ2

xy

Tr(Σ) +
√

(Σxx − Σyy)2 + 4det(Σ)
, (11)

which proves the main claim of the theorem.
From (11), and using det(Σ) ≥ 0, we further obtain

D2
U ≤

2Σ2
xy

Tr(Σ) +
√
(Σxx − Σyy)2

=
2Σ2

xy

Tr(Σ) + max{Σxx − Σyy,Σyy − Σxx}

=
Σ2

xy

max{Σxx,Σyy}
.



The following result can be also derived from (11)

D2
U =

2Σ2
xy

Tr(Σ) +
√
(Σxx − Σyy)2 + 4det(Σ)

=
2Σ2

xy

Tr(Σ) +
√
(Tr(Σ))2 − 4Σ2

xy

≥
2Σ2

xy

Tr(Σ) +
√
(Tr(Σ))2

=
Σ2

xy

Tr(Σ)
,

which concludes the proof.
Remark 2: Robust estimation and measuring dependency

problems (which are closely related) can benefit from the
proposed results. The minimax theorem (e.g., [10]) can be
used to minimize the worst-case mean square estimation
error across all distributions in a given Wasserstein/Gelbrich
ambiguity set.

The main contribution of this section is a straightforward
formula that provides the minimal Gelbrich distance from
one bi-variate distribution to uncorrelation. The next section
provides an application of this analytical expression in the
context of robust system identification.

V. ILLUSTRATIVE EXAMPLE

By means of a system identification example, this section
illustrates the novel insights that can be obtained according to
the results of this paper.

Suppose a set of noisy data {zk}Nk=1 and {uk}Nk=1 corre-
sponding to the output and input of a given dynamical system.
Consider an estimator ẑk for zk obtained by means of a linear
regression of the covariates zk−1, zk−2 and uk−1

ẑk = −â1zk−1 − â2zk−2 + b̂1uk−1. (12)

Assume that the coefficients â1, â2 and b̂1 have already been
identified on the training set by any standard identification
approach (such as the least square method [21]). In this
context, a relevant task is to determine if it is worthwhile
to include an additional term in the nominal estimator, e.g.,
one depending on zk−3. Denote by estimator 1 the nominal
estimator (12) and by estimator 2 the following estimator with
a supplementary term (obtained with the same identification
approach as the nominal estimator)

z̃k = −ã1zk−1 − ã2zk−2 − ã3zk−3 + b̃1uk−1. (13)

Estimator 2 is expected to perform better than estimator 1
under the assumption that covariate zk−3 is a relevant in-
gredient for the prediction of zk. However, assessing if the
incorporation of a given covariate (like zk−3) would translate
into a consistently improved performance of the estimator is
not simple. To address this question, we first compute the
estimation error ek on the training set, associated with the
nominal estimator (12)

ek = zk−ẑk = zk+â1zk−1+â2zk−2−b̂1uk−1, k = 3, . . . , N.

Then, we compute the mean of {ek}Nk=3 and {zk−3}Nk=4,
and the covariance matrix between {ek}Nk=3 and {zk−3}Nk=4.
This leads to the first two moments of the nominal bi-
variate distribution between the error ek and zk−3 (denoted

by µx, µy , and Σ in the notation of the paper). The reader
can notice that the obtained moments are just an estimation
because of the limitations in the number of samples N , the
noise in the measurements, etc. Moreover, in a time-varying
system, the first moments relating ek and zk might vary
with time. We suppose now that a bound on the Gelbrich
distance α to the real parameters µS and ΣS is available.
We notice that the existing methodologies to obtain α are
often of probabilistic nature since they are usually based on
concentration inequalities (see, e.g., [17], [22], [23], [24]).

Using Theorem 1 we compute the minimal Gelbrich dis-
tance DU of the nominal pair (µΣ,Σ) to uncorrelation. When
comparing DU to α, two cases are observed:

• α ≥ DU (case 1): In this case, the ambiguity set contains
a bi-variate distribution with no correlation between zk−3

and ek. Thus, we conclude that it might not be advisable
to add zk−3 as a covariate in the estimator of zk.

• α < DU (case 2): In this case, it would be reasonable to
add the covariate zk−3 in the estimator because the nom-
inal Pearson coefficient does not vanish in the obtained
ambiguity set.
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Fig. 2. Comparison RMSE obtained by the estimators for the pairs
(µS, S) that are at Gelbrich distance larger than DU .

To illustrate how the Gelbrich distance to the nominal values
µΣ and Σ degrades the performance of estimator 2, which
incorporates the additional covariate zk−3, we have randomly
generated M pairs (µS , S) and computed for each of them its
Gelbrich distance to (µΣ,Σ) and the corresponding Root Mean
Square Error (RMSE) when using estimators 1 and 2. On one
hand, our simulations show that the performance of estimator
2 usually outperforms estimator 1 when the Gelbrich distance
is smaller than DU , the Gelbrich distance to uncorrelation of
(µ, Σ). On the other hand, when the Gelbrich distance is larger
than DU , then the advantage of using estimator 2 degrades
and using estimator 1 becomes a reasonable option since
it provides similar performance with a reduced number of
parameters. The obtained results are displayed in the following
figures.

In Fig. 2 and Fig. 3, the blue markers represent the RMSE
obtained by the two estimators for each pair (µS , S). The red
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Fig. 3. Comparison RMSE obtained by the estimators for the pairs
(µS, S) that are at Gelbrich distance no larger than DU .

line indicates when the two RMSE are equal, i.e., it permits
to highlight the delimitation. From Fig. 2, when the Gelbrich
distance of (µS , S) to the nominal pair (µΣ,Σ) is greater than
the minimum distance to uncorrelation, we can notice that
the RMSE of both estimators are similar and no consistent
reduction on the RMSE is observed. In Fig. 3, when the
Gelbrich distance is no larger than the minimum distance to
uncorrelation, the estimator 2 usually has a smaller RMSE
than the estimator 1. Summing up, deciding if incorporating
a given covariate in an estimator if α < DU seems, from our
simulation experience, an adequate criterion.

VI. CONCLUSION AND PERSPECTIVES

This paper has introduced novel insights into the Wasser-
stein/Gelbrich distance and its ambiguity sets, offering per-
spective on analyzing correlations between scalar random
variables to allow for robust decision making. Through closed
expressions, it determines the minimum Gelbrich perturbation
needed to reach uncorrelation between two random scalar
variables. Numerical simulations validate these concepts, high-
lighting their relevance in the realm of estimation and control.
This work not only enhances our understanding of this distance
metric but also underscores its practical value across various
fields, e.g., data analysis [9], robust estimation and sensor
fusion [10], [11]. Current work focuses on extending the
results for new estimation and control applications.
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