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Abstract—Introducing the Scalable Anomaly Detection with
UC2B framework, this paper addresses the critical task of
identifying unusual patterns in data, crucial for effective cyber
threat defense. By leveraging ensemble learning methods and
the parallel processing capabilities of the Unite and Conquer
approach, the framework demonstrates its proficiency in han-
dling large datasets. It strives to offer computational efficiency,
scalability, and high accuracy in real-world applications. Notably,
this paper places special emphasis on the diversity of components
and acknowledges their substantial influence on the overall
framework functionality. It encompasses features such as fault
tolerance, adaptability to various architectures, and efficient load
balancing. Experimental validation on the Ruche Cluster within
the realm of cybersecurity provides valuable insights into its
potential in detecting anomalies.

Index Terms—Anomaly Detection, Linear Algebra, Unite and
Conquer Approach, Machine Learning, High performance com-
puting, Ensemble learning, UC2B, Cybersecurity.

I. INTRODUCTION

Anomaly detection, a critical aspect of data analysis, has
gained significant prominence in various domains due to
its potential to identify patterns or behaviors that deviate
significantly from normal or expected observations. It finds
applications in a variety of domains, helping to identify
unusual behaviors or events that may indicate potential issues
or opportunities [8].

For instance, in the financial domain, anomaly detection
plays a crucial role in detecting fraud and suspicious financial
activities [5]. By identifying unusual transactions, atypical
spending patterns, or fraudulent behaviors, anomaly detection
enhances the security and protection of financial assets. Simi-
larly, in the manufacturing industry, anomaly detection is lever-
aged to monitor production processes and identify failures or
unexpected variations, enhancing product quality, optimizing
operations, and minimizing downtime [22]. Moreover, in the
healthcare domain, anomaly detection aids in the detection
of unusual symptoms in patients, the identification of rare
or emerging diseases, and the analysis of medical images for
accurate diagnosis and timely interventions [25].

In the realm of cybersecurity, anomaly detection serves as a
vital tool for safeguarding computer systems against malicious
attacks. By detecting abnormal behaviors on networks, data
breaches, hacking activities, and intrusion attempts, anomaly

detection plays a crucial role in threat detection and prevention
[23]. It enables security professionals to identify and respond
to real-time attacks, enhancing system security and minimizing
the impact of cyber threats.

Advancements in anomaly detection, driven by the availabil-
ity of large-scale datasets and sophisticated machine learning
algorithms like unsupervised learning, deep learning, and en-
semble methods, have brought about significant improvements.
These improvements pertain to anomaly detection performance
in the realm of cybersecurity. However, the increasing com-
plexity and size of modern datasets necessitate substantial
computation power to efficiently process and analyze the
data [13]. Deep learning models, for example, require high-
performance GPUs or specialized hardware accelerators for
training and fine-tuning. On the other hand, real-time anomaly
detection necessitates rapid analysis of incoming data streams,
relying on the processing speed and scalability of modern
hardware. Therefore, to fully harness the potential of these ad-
vanced techniques and effectively detect anomalies in complex
data, organizations must invest in powerful computational re-
sources capable of handling the intensive processing demands
of modern anomaly detection methods.

To tackle these challenges head-on, we have developed
the UC2B framework, in a previous work, an acronym for
Unite and Conquer with Bagging and Boosting. This approach
employs a collaborative training approach for co-methods
that mutually enhance their performance through sequential
iterations. This process involves co-methods boosting one
another within the same iteration. Each co-method undergoes
training on multiple parallel bags. After this iteration, a global
boost occurs by reintroducing misclassified instances (FP/FN)
into the bags, leading to improved detection in the subsequent
iteration. This dual boosting strategy yielded an impressive
detection rate of up to 99% in the field of cybersecurity,
notably on the UNSW-NB15 benchmark dataset. However,
these experiments have highlighted scalability concerns. The
framework faced challenges in handling the computational
demands of large-scale datasets, resulting in inefficiencies
related to memory usage and computational complexity, par-
ticularly as parallelism was confined to within the co-methods.
Additionally, the duration of model training exceeded one
week, making its practical application in real-world scenarios



nearly unfeasible.
In terms of contributions, this work leverages the insights

of the UC2B framework, introducing the ’Scalable Anomaly
Detection with UC2B’ framework, referred to as ’Parallel
UC2B’. This has been validated on the Ruche Cluster and
has demonstrated promising results. This paves the way for
its seamless integration into an existing cybersecurity threat
detection and remediation platform. This effort specifically
emphasizes cybersecurity and capitalizes on the UNSW-NB15
dataset [20]. The integration of the parallel UC2B framework
aims to advance methods and address abnormal behaviors.
Benchmark evaluations are pivotal for performance assess-
ment.

These contributions collectively strengthen the field of
anomaly detection and extend its applicability across various
domains. They encompass:

• Introduction of a refined configuration featuring multi-
level parallelism, a fusion of bagging and boosting,
augmented by a restarting strategy inspired by the unite
and conquer method for anomaly detection.

• Integration a rich diversity of components, encompassing
a wide range of ML models. This diversity extends to
features such as inherent load balancing, distributed com-
putation capabilities, and a fault-tolerant implementation
strategy.

• The augmentation of parallel co-methods, alongside the
inclusion of parallel bags of variable sizes, has signifi-
cantly bolstered the framework’s capacity. This empowers
the system to proficiently process extensive databases
while maintaining high efficacy across a broad spectrum
of anomaly detection applications.

• Implementation of a parallel framework designed to har-
ness the performance capabilities of high-performance
computing architectures, including execution time and
scalability.

• Rigorous validation of the framework’s efficacy through
a series of experiments executed on Ruche Cluster.

• Specialized focus on the application of the framework
within the cybersecurity domain, leveraging the widely
recognized UNSW-NB15 dataset for evaluation.

II. SOFTWARE ARCHITECTURES OF PARALLEL UC2B

In many scientific disciplines, data generation now surpasses
computational capacities. The effective processing of this
massive volume of data relies on the integration of modeling,
analysis, and high-performance computing techniques [24].
This interplay presents various scientific and technological
challenges. However, these challenges, prevalent across di-
verse application domains, share a common foundation in
applied mathematics (including linear algebra and statistics)
and artificial intelligence, encompassing machine learning
methods, as well as high-performance computing techniques.

In the realm of cybersecurity, security breaches are evolving
to become more subtle and sophisticated, resulting in extended
investigation times for alerts and a heightened need for dis-
cernment between authentic and false alarms. Expertise and

the time invested therein are paramount within a Security
Operations Center (SOC). For example, swiftly discerning
the validity of ’false alerts’ can prove pivotal in a security
framework [15].

This undertaking seeks to contribute to the resolution of
these challenges, exemplified through practical applications of
data analysis in securing information systems within organi-
zations, such as advanced technology enterprises.

As outlined in the state-of-the-art section, the application
of the Unite and Conquer approach to Ensemble Learning
methods, called UCEL, is another anomaly detection technique
proposed by Diop et al. in [9], [10]. In this paper, we propose
an extension of UCEL which improves its performance. To
distinguish this extension from UCEL, we call it UC2B for
Unite and Conquer with Bagging-Boosting. The presence of
several levels of boosting as well as that of multi-level intrinsic
parallelism in UC2B partly explain its better performance rel-
ative to UCEL. Other characteristics such as the heterogeneity
of its components, its fault tolerance as well as its potential
for load balancing make UC2B a technique very well suited
to recent parallel and/or distributed architectures.

A. Unite and Conquer Approach

”Unite and Conquer” embodies a problem-solving paradigm
that intricately orchestrates the collaboration of multiple it-
erative methods, or co-methods, to collectively address a
given problem. Primarily applied within the realm of linear
algebra, it proves exceptionally valuable in resolving expan-
sive, sparsely populated linear systems, along with eigenvalue
predicaments [12]. By aggregating intermediate outcomes
from each co-method, this strategy expedites the convergence
of the overall method, hastening the realization of a solution.
Central to its efficacy is the strategic restarting approach,
playing a pivotal role in providing a better starting point for
each new cycle of the co-methods. This iterative refinement
ensures that subsequent cycles are better poised for success,
ultimately enhancing the overall convergence of the approach.
Co-methods exchange their intermediate calculated solutions
to discern the most effective restarting condition for each
cycle, culminating in swifter global convergence.

This approach holds several advantages. Its intrinsic at-
tributes, including multi-level parallelism, robust fault toler-
ance, adaptability to component heterogeneity, asynchronous
communication capabilities, and inherent load balancing po-
tential, render it eminently suitable for deployment in cutting-
edge computational architectures. The ”Unite and Conquer”
approach optimally leverages these features, enabling the
judicious allocation of computational resources, leading to
heightened efficiency and the realization of parallel processing
benefits. This not only accelerates the resolution of complex
problems but also maximizes the utilization of available re-
sources.

The Unite and Conquer algorithm can be expressed in a
mathematical form as the following. Let P be the large linear
algebra problem to be solved, L1, L2, ..., Ll be a set of iterative
methods that can solve P, Iki the the initial condition (with



k = 0) and restarting condition (with k > 0) of Li, and θ be
the threshold value. Let f be a function defining the restarting
strategy according to the intermediary results (Sk

1 , ..., S
k
ℓ ) with

Sk
i the approximated solution obtained by Li at the end of i-

th iteration/cycle. An algorithm of Unite and Conquer can be
defined as follows:

Algorithm 1 Unite and Conquer Algorithm
Initialize Choose a starting matrix [I01 , . . . , I

0
ℓ ], let k = 0.

For i = 1 to ℓ do in parallel
Compute Sk

i by applying Li to P with initial conditionIki .
If Sk

i is sufficiently accurate, STOP all ℓ process and
return Sk

i as the solution of P .
Share Sk

i information with all other processes j
(j = 1, . . . , ℓ and j ̸= i).

Update and Restart [Ik+1
1 , . . . , Ik+1

l ]=f(Sk
1 , . . . , S

k
l ) and

increment k.

At its essence, this approach is characterized by its simple
yet versatile conceptual framework. It can be applied to a
range of iterative methods, as illustrated in this paper through a
practical example. Here, we explore the integration of various
boosting techniques within the specific context of bagging
methodologies, showcasing a second level of parallelism. This
simultaneous approach enhances the model’s adaptability and
performance across diverse datasets and scenarios.

B. Parallel UC2B Insights

The proposed parallel UC2B framework is designed to
enhance the accuracy and efficiency of anomaly detection,
specifically addressing the challenges within the ’UC2B’
framework. This is achieved by integrating the Unite and Con-
quer problem-solving approach with Bagging and Boosting
techniques, and introducing multi-level parallelism. The aim
is to improve the accuracy and speed of anomaly identification.
The proposed approach operates through an iterative process,
promoting collaboration among parallel co-methods (Machine
learning models). Over multiple training cycles, the perfor-
mance of these co-methods is refined, leading to a convergence
state where substantial and stable performance improvements
are observed. Notably, each co-method undergoes parallel
training alongside its counterparts, with exposure to multiple
parallel bags of the training set, highlighting a multi-level
parallelism approach.

Subsequently, the performance of these co-methods is rig-
orously evaluated using a validation set. Individually, the base
methods play a critical role by sharing their misclassified
data (False Positives and False Negatives) with other co-
methods. Following the boosting principle, when a co-method
misclassifies a sample from the validation set, adjustments are
made to the weight assigned to that sample based on the co-
method’s performance metric at that specific iteration. This
process increases the likelihood of selecting the sample to
construct the subsequent cycles’ training data, thus driving
the iterative process forward. As a result, bags of the original

training data size are generated from this boosted training
dataset and subsequently utilized in the next cycle. This
intricate process enables each co-method to gain valuable
insights from their peers about critical data samples that pose
challenges for accurate classification. This collective effort
ultimately leads to the refinement and advancement of the
models.

Fig. 1. Parallel ”UC2B” Architecture.

Parallel UC2B exhibits improvements over both UC2B and
UCEL. UC2B achieved a detection accuracy of 99%, but its
very long training time makes its real-world application almost
impossible. On the other hand, UCEL achieved an accuracy
ranging from 93% to 98% depending on the databases contain-
ing different types of internal attacks, along with its lengthy
training time.

The goal of parallel UC2B is to be versatile, addressing a
wide spectrum of attacks, whether internal or external, as well
as anomalies, all while maintaining a reasonable execution
time for practical deployment. In tackling the challenge of
detecting sophisticated threats and anomalies, we seek to
leverage insights from each co-method on a dataset statistically
identical in each iteration. Given that the Unite and Conquer
approach learns the underlying global structure of data, this is
why we provide the entire dataset to all methods in parallel.
Each co-method then creates duplicates of itself and segments
the dataset into multiple bags, training each copy of the
co-method on a bag, see figure 1. This approach ensures
that each co-method learns from the entirety of the dataset
and collaborates synchronously with the other co-methods by
sharing their outputs. In contrast, in UCEL, the dataset is
divided into bags, with each bag exclusively assigned to a
single co-method, limiting the number of bags. In parallel
UC2B, the number of bags is independent of the co-methods,
affording us the flexibility to have ”n” bags for each method.

Unite and Conquer, as an approach, accommodates both
synchronized and asynchronous communications. In this study,



our emphasis is placed on synchronous communications
among co-methods as well as within the bags housed within
these co-methods.

The collaborative mechanism among co-methods is
grounded in bootstrapping, a method that entails diversified
data treatment through the integration of bagging and boosting
techniques. This integrated approach effectively balances the
mitigation of bias and the management of variance. Specifi-
cally, bagging helps alleviate overfitting, while boosting coun-
teracts underfitting. The training process integrates feedback
from all co-methods, encompassing performance metrics and
instances of false positives/negatives.

Furthermore, the inherent parallelism in the design allows
for the utilization of computational resources. The indepen-
dence between the number of bags and co-methods, unlike in
UCEL, not only enhances computational efficiency but also
enables scalability in handling larger datasets. It’s noteworthy
that the number of co-methods employed has a negligible
impact on training duration, given the concurrent operation of
the co-methods and efficient resource utilization. This aspect
stands out as a distinct advantage in comparison to UC2B
approach.

Within ’parallel UC2B’, thread parallelism employs a dual-
layered strategy, leveraging simultaneous thread execution for
concurrent task handling. SIMD operations enhance computa-
tional speed by processing data batches in parallel. Efficient
data transfer optimizes performance by utilizing duplicates
to work on specific data subsets, reducing the need for
frequent memory access. Collaborative data sharing among co-
methods is crucial for handling misclassified data, with thread
parallelism and SIMD operations driving this iterative pro-
cess. Finally, efficient data Input/Output (I/O) ensures timely
information exchange, supporting the boosting mechanism and
leading to significant performance gains.

C. Algorithm and Implementation of Parallel UC2B

In the realm of machine learning, data analysis methods
vary based on the available information, whether it’s labeled,
unlabeled, or imbalanced. In corporate environments, the ma-
jority of activities are routine, resulting in datasets skewed
towards normal behavior. This abundance of normal data poses
challenges for anomaly detection.

Traditional supervised and unsupervised methods may
struggle with limited abnormal examples. Unsupervised tech-
niques, while adept at handling imbalanced data, often focus
solely on identifying deviations without delving into the un-
derlying causes. Conversely, supervised methods excel when
provided with balanced and labeled datasets, but this isn’t
always feasible in real-world scenarios.

To address these complexities, our anomaly detection frame-
work strategically combines eight distinct methods: supervised
(Logistic Regression and Multi-Layer Perceptron) LR and
MLP, unsupervised (k-Nearest Neighbor and Elliptic Enve-
lope) KNN and EE, and semi-supervised (Quadratic Discrim-
inant Analysis, Linear Discriminant Analysis, Light GBM,
and Extra Trees Classifier) QDA, LDA, LGBM and ETC.

This comprehensive approach leverages the unique strengths
of each method to create a robust anomaly detection system.
LR and MLP make informed decisions based on labeled data,
while k-NN and EE excel at identifying outliers without the
need for labels. The QDA, LDA, LGBM, and ETC models add
interpretability and effectively utilize both labeled and unla-
beled data, showcasing their adaptability to semi-supervised
learning scenarios. By integrating these diverse co-methods,
our framework adeptly navigates the intricacies of unbalanced
and unlabeled datasets, ultimately enhancing accuracy and
reliability in real-world applications.

The ensemble of machine learning models, including super-
vised, unsupervised, and semi-supervised approaches, enables
adaptability to diverse data scenarios, making it highly effec-
tive in detecting anomalies. Moreover, it addresses the chal-
lenges posed by unbalanced and unlabeled datasets, ensuring
accurate and reliable results.

Our proposed approach initiates with a meticulous pre-
processing of the dataset. This involves a series of crucial
steps, including data cleaning, feature selection, as well as
scaling and normalization procedures. Furthermore, from this
refined dataset, distinct sets for training, validation, and testing
are meticulously curated. The core tenet of our methodol-
ogy involves integrating the principles of the ”Unite and
Conquer” paradigm into machine learning methods. This en-
tails establishing meaningful correspondences between this
paradigm and the intricate landscape of machine learning (co-
methods). Here, the system matrix aligns with the original
training dataset, while the subspace is meticulously con-
structed through Bootstrap sampling. The co-methods are LR,
MLP, KNN, EE, QDA, LDA, LGBM and ETC each contribut-
ing its unique strengths to our anomaly detection framework.
The inaugural phase involves simultaneous training of co-
methods across multiple parallel bags. These co-methods
are subsequently assessed using a validation set, employing
accuracy as the metric. The outcomes of each co-method
are amalgamated to forge a robust weighted voting classifier.
This composite classifier is meticulously benchmarked against
the individual co-methods performance and the predefined
detection threshold. In contrast to the fixed iterations seen in
Boosting ensemble methods, UC2B’s iterations persist until
the desired precision is achieved. It employs a combination
process, replicated multiple times and connected sequentially
to form a serial Boosted scheme. In cases where the estab-
lished detection threshold is not met, a revival boosting step
is implemented, focusing on the previous training data. In-
stances of false positives/negatives (FP/FN) are systematically
gathered and then reintegrated into the dataset with enhanced
weights. The training data for the next iteration of a co-method
is carefully crafted by combining its most accurate training
bag from previous iterations with the most widely recognized
FP/FN instances. This iterative process continues until the
predetermined threshold or specified number of iterations is
satisfactorily achieved. Upon reaching the desired level of
accuracy, the process concludes smoothly.

The algorithm can be defined as follow:



Algorithm 2 Parallel UC2B
1 Input:
2 Data set D.
3 Number of bags I .
4 Number of all process iterations n.
5 Number of learners M .
6 for i← 1 to n do:
7 for j ← 1 to M do in parallel:
8 for k ← 1 to I do in parallel:
9 Bk ← Bags Bootstrap sample from D with

replacement.
10 yk ← Vector label issued Lj training on the

bags Bk.
11 Predictions[j] ← Prediction using yk.
12 Sync and Share the results with all other processes.
13 Check for desired accuracy; if met, stop all process n.

Restart by Updating the input data with adjusted sample
weights and proceed to the next iteration.

14 Output:
15 Obtain the boosted predictions after the desired iterations.

In parallel UC2B Implementation, the framework embraces
multi-level parallelism within the co-methods, encompass-
ing both data parallelism and model parallelism. Each co-
method undergoes concurrent training and generates copies
corresponding to the chosen number of bags. Communication
between co-methods and bags can be synchronous or asyn-
chronous, effectively combining coarse-grain inter co-methods
and fine-grain intra co-method parallelism. This approach also
allows for the use of different co-methods, leveraging special-
ized hardware processors for optimized performance. While
the article primarily emphasizes synchronous implementation,
it acknowledges potential time loss due to synchronization.
The algorithm’s fault-tolerant nature ensures uninterrupted
functionality even if one co-method is absent. Within this
setup, co-methods (SNs) operate as computing servers, con-
currently processing the dataset, further dividing it into bags
and creating corresponding copies, introducing multi-level
parallelism. The controller (CN) manages co-method and bags
synchronization, evaluates their results, and selects the best
outcomes from each bag for subsequent algorithmic cycles.
This configuration, with its multi-level parallelism and coor-
dinated decision-making, significantly bolsters the efficiency
and accuracy of anomaly detection.

D. Integrating Parallel UC2B with SOAR Capabilities

A Security Orchestration, Automation, and Response
(SOAR) platform is a comprehensive cybersecurity solution
that integrates and streamlines the management of security
alerts and incidents within an organization [26]. It combines
four crucial elements: detection, orchestration, automation, and
response (see Figure 2). Detection involves the monitoring
of various data sources, including logs, network traffic, and
security alerts, to identify potential security incidents. Orches-
tration refers to the coordination and execution of various
security processes, ensuring they work together seamlessly.

Automation automates routine and repetitive tasks, allowing
for quicker incident handling and reducing the burden on
human analysts. Response involves the implementation of
predefined actions and workflows in response to security
incidents, enabling a swift and consistent reaction to threats.
One of the distinctive features of our SOAR platform is its
automatic remediation capability. SOAR platforms not only
enhance the efficiency of security operations but also enable
better decision-making by providing analysts with relevant
information and context. They play a pivotal role in strength-
ening a company’s overall cybersecurity posture by enabling
a proactive approach to identifying and mitigating potential
threats.

Fig. 2. Elements of Security Orchestration, Automation and Response

The surge in security breaches, both in frequency and
sophistication, has significantly complicated the task of dis-
cerning genuine alerts from false positives, straining the
resources of Security Operation Centers (SOCs). Currently,
SOCs grapple with a deluge of alerts, with the majority turning
out to be false alarms. This underscores the pressing need for
more efficient detection and response mechanisms. Thus, the
focus of this initiative lies in validating the effectiveness of
the parallel UC2B approach and seamlessly integrating it into
an existing SOAR platform. The ultimate aim is to elevate
the system’s detection capabilities, leading to higher accuracy
rates and swifter responses to security incidents. This endeavor
is a meaningful step towards bolstering cybersecurity defenses
in light of the constantly changing threat landscape.

III. EXPERIMENTS AND THEIR ANALYSIS

In this section, we will present the outcomes of our work
conducted on Ruche Cluster. The evaluation of our approach
was performed based on their respective architectures. Specif-
ically, we implemented our algorithm on foor and eight nodes,
corresponding to the number of parallel co-methods used, with



each node configured with 10 tasks considering the number
of bags employed. To establish the connection between both
hardware architectures and our implementation settings, we
will begin by describing the hardware architecture of Ruche.
Following that, we will provide an in-depth exploration of the
obtained results.

A. Ruche Cluster: Single Node Specifications
The Ruche cluster, located at the Moulon mesocentre [2],

is equipped with an Intel Xeon Gold 6230 CPU, based on the
x86 Cascade Lake architecture. Each node boasts a total of
40 cores, distributed across 2 CPUs, with 20 cores per CPU.
The processor operates at a base frequency of 2.10 GHz. In
terms of cache, each core has 32 KB for instructions and 32
KB for data in L1, 1 MB in L2, and a shared L3 cache of up
to 27.5 MB. Additionally, Ruche supports SIMD extensions
up to AVX-512. It is comprised of a total of 216 nodes.

B. Results and Insights
In the following section, we present the results of our ex-

periments, where we have chosen accuracy as the performance
metric, given its appropriateness. Accuracy is a metric com-
monly used in classification tasks to measure the proportion
of correctly classified instances out of the total instances in a
dataset. It provides an indication of the model’s effectiveness
in making correct predictions across all classes and is a
valuable measure for evaluating the overall performance of
a classification algorithm.

The experiments have two primary objectives. Firstly, they
aim to enhance the model’s validation, which previously
achieved an accuracy of 98% in a prior work. This im-
provement is pursued by increasing the number of parallel
co-methods used and introducing variations. Secondly, the
experiments seek to deliver a comprehensive demonstration
of the model’s performance capabilities.

The first experiment involves collaborating four parallel co-
methods across four nodes, where each co-method is trained
on ten parallel bags in turn.

Fig. 3. Accuracies of parallel UC2B and 4 co-methods across the iterations

In Figure 3, we can discern the accuracy scores for various
models over four iterations. Notably, in the initial iteration, LR

achieves an accuracy of approximately 88.34%, while MLP
attains around 86.69%. On the other hand, the kNN model
demonstrates a significantly higher accuracy of about 94.49%.
Moreover, ETC excels with an accuracy of approximately
97.58%. Remarkably, the ensemble model parallel UC2B
consistently surpasses individual models, boasting an accuracy
of approximately 97.88% in the first iteration and stabilizing
at 98% from the second iteration onward. This prompts the
question of whether the enhanced performance of UC2B over
the ensemble will persist with the inclusion of more methods,
or if it may encounter limitations.

This experiment involves collaborating six parallel co-
methods across six nodes, where each co-method is trained
on ten parallel bags in turn.

Fig. 4. Accuracies of parallel UC2B and 6 co-methods across the iterations

Figure 4 illustrates the results with six co-methods, pro-
viding insights into the performance of various models across
four iterations. The LR model exhibits a modest improvement,
advancing from 88.33% to 88.49% in accuracy over the
iterations, while the MLP shows slight fluctuations within the
range of 86.27% to 86.92%. The kNN model maintains a
steady accuracy of about 94.40% throughout. Both LDA and
QDA consistently maintain accuracies of 93.52% and 32.09%
respectively. The ETC starts impressively at 97.77% and sus-
tains a high accuracy of over 97.8% in subsequent iterations.
Notably, parallel UC2B outperforms individual models with
an accuracy of 98.2% in the first iteration, further improving
to 98.5% in subsequent iterations, underscoring the potency
of ensemble models in enhancing predictive accuracy.

This experiment involves collaborating eight parallel co-
methods across eight nodes, where each co-method is trained
on ten parallel bags in turn.



Fig. 5. Accuracies of parallel UC2B and 8 co-methods across the iterations

The graph 5 illustrates the performance evolution of eight
distinct machine learning models across four iterations of UC
process. These models encompass a diverse range of tech-
niques, from LR to more complex ensemble methods. Among
them, LDA demonstrates remarkably high accuracy, stabilizing
at around 93.7%. Notably, LGBM and ETC exhibit outstand-
ing performance, achieving accuracies of approximately 98.1-
98.2% and 96.7-96.9% respectively. In contrast, QDA consis-
tently struggles with a low accuracy of about 32.1%. However,
the standout performer is the parallel UC2B model, which
showcases an exceptional accuracy range of 98.4-99.4%. This
model achieves this high accuracy by intelligently combining
the strengths of all the co-methods and strategically reeval-
uating instances with false positives/negatives over multiple
iterations. This approach demonstrates remarkable learning
capability, continuously improving its performance with each
iteration. It outperforms all other models, underscoring its
exceptional effectiveness in the given task. These results offer
valuable insights into the relative strengths and weaknesses of
each model in this specific context.

Fig. 6. Train and test accuracies of parallel UC2B using 8 co-methods.

The figure vividly demonstrates the convergence of parallel
UC2B accuracy through four iterative processes of UC. The
x-axis represents the number of times the training process
was reiterated with restarted conditions, involving the rein-
troduction of FP/FN. On the y-axis, accuracy is graphically
portrayed, quantifying the proportion of correctly classified
instances. The training accuracy signifies how adeptly the
models adapt to the training data in each iteration. Simultane-
ously, the testing accuracy elucidates the models proficiency
in generalizing to new, unseen data. Initially, both training
and testing accuracies are commendably high at approximately
98% and 98.2% respectively, indicating a robust initial perfor-
mance. Subsequently, with each iteration of unite and conquer,
a discernible upward trend is observed in both training and
testing accuracies, indicating a consistent process of learning
and refinement. By the fourth iteration, a steady convergence
emerges, with both training and testing accuracies stabilizing
around 99%. This compellingly suggests that the models have
not only effectively absorbed knowledge from the data but
have also consistently maintained a high level of accuracy.

The following graph serves to highlight that these ex-
periments were conducted to assess the performance of the
ensemble approach parallel UC2B using different and varying
sets of co-methods. This allowed for a comprehensive analysis
of their impact on the results.

Fig. 7. Improving accuracy of parallel UC2B by adding co-methods

This figure, 7, demonstrates the impact of the number of
co-methods on the improvement of parallel UC2B’s accuracy
across iterations. Beginning with four co-methods, parallel
UC2B achieves an accuracy of 97.88% in the first iteration,
steadily maintaining this level in subsequent iterations. When
six co-methods are incorporated, a noticeable enhancement
is observed, with the accuracy rising to 98.2% in the first
iteration and further increasing to 98.5% in subsequent itera-
tions. This trend continues as eight co-methods are utilized,
leading to a substantial boost in accuracy. In the third and



fourth iterations, the model achieves an impressive accuracy
of 99.4%. This highlights a positive correlation between the
number of co-methods integrated and the accuracy enhance-
ment of parallel UC2B, underlining the effectiveness of this
ensemble approach in leveraging diverse models for improved
predictive performance.

To assess the performance of parallel UC2B, we executed
the implementation on the Ruche Cluster employing 8 nodes.
The algorithm’s parallelism is expressed using the Python
language along with the mpi4py library. Performance is as-
sessed in terms of the execution time observed with increasing
dataset sizes. This metric stands as a fundamental gauge of
performance scalability [1], demonstrating how execution time
evolves with increasing data.

Fig. 8. Scaling performance of parallel UC2B with varying data sizes

The graph 8 illustrates the scaling performance of parallel
UC2B in response to different data sizes. It showcases a
positive correlation between execution time and database size,
highlighting the benefits of the parallel UC2B approach. It’s
important to note that this analysis is based on a specific
configuration employing 8 parallel co-methods distributed
across 8 nodes. While a clear upward trend is observed,
signifying that execution time increases with larger datasets,
it’s crucial to acknowledge that this increase occurs at a
gradually diminishing rate. This suggests that the efficiency
of parallelization may have a more pronounced impact for
smaller datasets. These insights underscore the critical role
of considering data size in the implementation of paralleliza-
tion to optimize the performance of the UC2B framework.
However, conducting a more extensive analysis to evaluate
the framework’s performance with even larger databases is a
potential avenue for future research.

Given that augmenting the number of co-methods hasn’t
affected the efficiency of parallel UC2B, but has instead
enhanced its accuracy. Moreover, increasing the database size
without altering the available resources hasn’t exhibited any
scalability concerns. We intend to assess its performance in
relation to execution time concerning both the augmentation
of co-methods and the resources employed.

Fig. 9. Correlation between co-method count and execution time

The presented figure 9 unveils a notable trend, as the number
of co-methods increases, there is a noticeable surge in execu-
tion time. This observation sheds light on potential limitations
within the parallel processing framework. It is crucial to
note that within a set of co-methods, there exists inherent
variability in processing speeds, resulting in wait times at
synchronization points. This phenomenon is amplified with
a higher number of co-methods. Furthermore, communication
between these co-methods scales linearly with their quantity,
further contributing to extended execution times. Therefore,
while it might be anticipated that an increase in co-methods
would lead to enhanced efficiency, factors such as resource
contention and management overhead play a substantial role
in system performance. This emphasizes the need for care-
ful evaluation and precise adjustment of parallel processing
configurations to optimize resource utilization and minimize
execution times. Ultimately, these findings underscore the need
for a balanced consideration between accuracy improvement
and temporal efficiency. They underscore that augmenting the
number of co-methods may not always be advisable, as it is
imperative to ensure that the gains in accuracy achieved do
not disproportionately extend execution times.

These experiments have improved the validation of the
parallel UC2B framework in detecting threats, which main-
tains good accuracy with a diverse and large number of
machine learning models. Notably, with only 4 iterations of
UC, symbolizing the re-injection of FP/FN into the training
set for initiating new cycles, each model undergoes separate
training bags over 10 iterations. Data scalability has also
shown good performance. However, the significant increase
in execution time, even with increased resources, could pose a
limitation to this approach. This calls for further investigation
and underscores the importance of adopting asynchronous
communications between co-methods, as exemplified by the
implementation of the asynchronous version of parallel UC2B
without synchronization points, with larger datasets in future
endeavors. Besides, this work contributes to the advancement
of prior efforts, notably improving execution time. In compar-
ison to UCEL, it achieves a noteworthy enhancement in the
detection rate, elevating it from 97% on unseen data to 99%.



IV. RELATED WORK

The state-of-the-art in anomaly detection within the field
of cybersecurity has been advancing rapidly in recent years.
Numerous studies and approaches have been proposed to
address the challenge of detecting unusual and potentially
harmful behavior in computer systems and networks. Some
machine learning-based techniques applied to anomaly de-
tection, including Bagging (which involves training multiple
models on different data subsets and combining their predic-
tions) and Boosting methods (that improve a model’s accuracy
by emphasizing misclassified examples [6]), run alongside
spectral calculations [18] that involve analyzing eigenvalue and
eigenvector values.

More recently, Diop et al. applied the Unite and Conquer
approach [12] used in linear algebra to ensemble learning. The
resulting technique, called UCEL, iteratively boosts a set of
methods that work like bagging, and iterations of this boosting
continue until the desired accuracy is achieved [9], [10]. This
extended method shows improved performance.

Moreover, there have been significant efforts in evaluating
these methods and comparing their performance on various
data sets, including the widely recognized UNSW-NB15 data
set [20]. The UNSW-NB15 data set, with its large number
of simulated network traffic instances, is commonly used for
evaluating the performance of anomaly detection algorithms
in a realistic setting. It contains a wide range of attack types
and is characterized by its high volume and high dimension-
ality, making it a challenging data set for anomaly detection
algorithms.

In addition to the previously mentioned Bagging and Boost-
ing methods and spectral calculations, other notable methods
include Variational Autoencoders (VAE), which learn a prob-
abilistic representation of normal data and identify anoma-
lies based on the reconstruction probability [4]. Generative
Adversarial Networks (GAN) have been applied to anomaly
detection, where a generator reproduces normal data and a
discriminator distinguishes between real and generated data
[3]. Hidden Markov Models (HMM) have been employed
for anomaly detection, extending the one-class support vector
machine (SVM), by leveraging latent dependency structures
[14]. The approach achieves superior anomaly detection per-
formance compared to traditional one-class SVM, as demon-
strated through empirical evaluations on diverse datasets in
computational biology and computational sustainability do-
mains. Recurrent Neural Networks (RNN), such as LSTM,
have been effective in capturing sequential dependencies for
anomaly detection in time series data [19]. These methods,
along with preprocessing techniques for feature selection and
data normalization, have contributed to the advancement of
anomaly detection in cybersecurity.

As the application of anomaly detection techniques expands
beyond the cybersecurity domain, researchers are actively ex-
ploring their adaptability to various specific application fields.
This progression is exemplified by recent studies proposing
innovative approaches to address real-time monitoring chal-

lenges in complex systems.
To solve the problem of real-time monitoring of the signals

produced by the accelerators, a fault detection method is
proposed in [16]. This method, based on data from the beam
position monitoring system, can identify anomalies in SLAC’s
radio frequency (RF) stations and detect more events while
reducing false positives compared to diagnostics of existing
RF stations.

Moreover, the method CoAD proposed in [17], trains
anomaly detection models on unlabeled data, based on the
expectation that anomalous behavior in one sub-system will
produce coincident anomalies in downstream sub-systems.

Furthermore, The lack of structured parallel implementa-
tion in anomaly detection poses a significant challenge for
the field [13]. Anomaly detection algorithms often involve
complex computations and deal with large datasets, making
them computationally demanding. While parallel computing
has the potential to accelerate these tasks by distributing the
workload across multiple processing units, achieving efficient
parallel implementations is not straightforward [7], [21]. Many
anomaly detection methods are not inherently parallelizable
due to their sequential nature and data dependencies, requiring
substantial modifications for parallel processing. Load imbal-
ance among processing units, caused by the irregularity of
anomaly occurrence in data, further complicates the paral-
lelization process. Additionally, the absence of standardized
parallel frameworks tailored explicitly for anomaly detection
hinders progress [11]. To address these issues, focused re-
search, collaboration between anomaly detection and parallel
computing experts, and the development of specialized parallel
frameworks are essential to unlock the benefits of parallel
computing in advancing anomaly detection capabilities.

In this paper, we have introduced the Scalable Anomaly
Detection with UC2B framework, which harnesses computa-
tional resources for scalable anomaly detection in cybersecu-
rity. We delved into the feedback garnered from experiments
conducted on Ruche Cluster, affirming the effectiveness of
the framework. While this scalable framework is versatile and
applicable across various domains, our core focus remains on
the detection of diverse cybersecurity threats, placing special
emphasis on analyzing the UNSW-NB15 dataset. Notably, by
incorporating the parallel UC2B extension, we have introduced
a layer of multi-level parallelism to the UC2B framework,
significantly enhancing its processing efficiency. Through this
work, we aim to propel the evolution of anomaly detection
methods, bolster the defense against emerging cyber threats,
and proficiently address abnormal behaviors.

V. CONCLUSION & PERSPECTIVES

In this endeavor, the aim is to seamlessly integrate parallel
UC2B into an operational SOAR platform, enhancing its
practical utility in cybersecurity. This integration strengthens
the platform’s ability to identify anomalies and security threats,
marking a significant advancement in network security. The
paper focuses on improving the detection rate of parallel



UC2B by introducing collaborative co-methods and evaluating
their impact on execution time and scalability.

The process begins with continuous data collection from
diverse network sources, followed by preprocessing step.
Trained classifiers within each co-method actively monitor
network activities, identifying deviations from established
norms. Upon detecting anomalies, alerts prompt thorough
investigations by analysts, who prioritize and address them
while meticulously documenting their actions. The integrated
system adapts to evolving threats through ongoing assessment
and refinement, solidifying its pivotal role in network secu-
rity. Additionally, it showcases robust multi-level parallelism
attributes, such as fault tolerance, adaptability to diverse archi-
tectures, and proficient load balancing capabilities, confirming
its suitability for real-world applications in cybersecurity.

Our investigation on the Ruche cluster involved intricate
experimentation, assessing both model and data parallelism
for various machine learning co-methods. The evaluation con-
centrated on LR, MLP, KNN, EE, QDA, LDA, LGBM, and
ETC models within the parallelization framework, identifying
parallel UC2B as a robust and accurate approach. The study
highlights the model’s efficiency and scalability with consis-
tent execution times across larger datasets. A comparison with
UC2B and UCEL highlights the efficiency gained through
modern supercomputers and advanced parallelization.

Looking ahead, our focus centers on enhancing the parallel
UC2B framework with asynchronous communication capabil-
ities to reduce execution time and enhance accuracy. We also
aim to incorporate potent neural network-based co-methods to
further heighten the detection rate. This upgrade will be put to
the test on extensive datasets and a larger number of computing
nodes. Our overarching objective remains the development of
a versatile framework for efficient anomaly detection across
diverse application domains and datasets of varying sizes.
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