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Pooling properties within the Graph Neural network framework

Graph Neural Networks (GNNs) are inspired from CNNs and aim at transferring the performances observed on images to graphs. In a GNN, convolution and pooling are the main components in the network and these operations are employed in an alternating fashion between each other if a pooling method is used. However, this simple definition of GNN has some issues and their impacts can lead to low prediction performances. The two main issues are identified as over-squashing and over-smoothing. Recent works on these issues only focuses on the graph convolution operator, neglecting the role of pooling operator.

This paper aims to investigate the impact of pooling on over-squashing and over-smoothing. Our findings demonstrate that, under certain properties, pooling can reduced over-squashing and prevent over-smoothing. The conditions imposed on pooling to achieve these results are not so restrictive and encompass the majority of methods such as Top-k methods, EdgePool or MIS strategies. Finally, we empirically validate our results.

Introduction

Graph Neural Networks (GNNs) ( [START_REF] Scarselli | The graph neural network model[END_REF]) take their inspiration from CNNs ( [START_REF] Yann A Lecun | Efficient backprop[END_REF]) and aim at transferring the performances observed on images to graphs. The backbone of CNNs and GNNs both rely on convolution and pooling operations. However, CNNs are designed for images which are embedded on a 2D or 3D oriented space and have a fixed structure. When working with graphs, one has to integrate several particularities. First, the number of nodes may vary between graphs. Second, the order of nodes for a given graph is generally arbitrary defined. A same graph can be represented by all the permutations of its node order, making complicate the comparison of two graphs. Third, unlike images, the structure of the graph is not regular and is defined by the neighborhood relationship between nodes. Therefore, the definition of GNNs must handle these problems to be effective on downstream tasks, and convolution and pooling operations must be adapted for graphs.

Similarly to convolutions in CNNs, first proposed graph convolution operators aim to learn node representations by defining a linear combination between 1 the representations of a given node and the representations of neighborhood nodes [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. This convolution scheme is a particular case of a Message Passing Neural Network (MPNN) [START_REF] Gilmer | Neural message passing for quantum chemistry[END_REF]. Following this, the new node representation is computed using an activation function, generally non linear to enhance the learning ability of the model. To compute a graph level representation, node representations of a graph are resumed into one single vector, using different strategies to keep all necessary information for the prediction tasks. This last step is generally denoted as the pooling operator, still inspired by CNNs.

However, this simple definition of GNN has some issues and their impacts can lead to low prediction performances. The two main issues are identified as over-squashing and over-smoothing.

Over-smoothing occurs when the number of layers, e.g. the depth, in a GNN increases. By iteratively combining neighbors node features together, all nodes representation in a graph are computed using the same information, hence leading to non discriminant node representations, and thus to a loss of information. We refer the reader to [START_REF] Rusch | A survey on oversmoothing in graph neural networks[END_REF] for a survey on this issue.

Over-squashing is characterized by the fact that GNNs are almost unable to transfer information between distant nodes, hence limiting the learning possibilities of the model. This lack of communication between two nodes can be characterized by the length of their shortest paths, by commute (access) time ( [START_REF] Di | On over-squashing in message passing neural networks: The impact of width, depth, and topology[END_REF]), or by high negative curvature edges between them ( [START_REF] Topping | Understanding over-squashing and bottlenecks on graphs via curvature[END_REF]).

Graph pooling operators mainly consists in computing a new graph with a reduced number of nodes, while keeping as much as information as possible. The purpose of this operation is threefold : i) reduce the graph to one node so as the initial permutation of nodes has no influence in the learning process, ii) compute a hierarchy of graphs to catch relevant information and iii) enhance the receptive field of convolution operations. Unlike pooling in CNNs, this operation must be able to manage different graph sizes, nodes permutations and variations in local topologies. Graph pooling operators can generally be defined using the Select, Reduce and Connect scheme (SRC) [START_REF] Grattarola | Understanding pooling in graph neural networks[END_REF]. These three operations respectively allows the definition of the set of nodes for the next level, how the new node features are computed and finally the structure of the new graph through the definition of edges on the new set of nodes.

In this paper, first, a study from a signal point of view on the need for subsampling and these limits is provided (Section 2). In Section 3, a decimation scheme is introduced to analyse the impact of restricting pooling as a partition of the initial graph on over-smoothing and over-squashing (Section 4). A complementary study is given in Section 5 for methods satisfying one of the conditions of the decimation scheme.

On the need for subsampling

The results bellow are mainly based on [START_REF] Anis | Towards a sampling theorem for signals on arbitrary graphs[END_REF]. We consider a simple, connected, undirected and weighted graph G and denote by L its normalized Laplacian. The matrix L being symmetric positive semi-definite, we have L = U ΛU T where U is the matrix of eigenvectors and Λ = diag(λ 1 , . . . , λ N ) with 0 = λ 1 , λ 2 , . . . , λ N ≤ 2. Given a signal f on G, its Graph Fourier Transform (GFT) is defined as f = U T f . A w-band limited signal on a graph is defined to have 0 GFT coefficients for frequencies above w, i.e. its spectral support is limited to [0, w]. The space of all w bandlimited signals is know as the Paley-Wiener space and is denoted P W w (G). Let us denote by {u 1 , . . . , u N } the columns of U . We trivially have

P W w (G) = span({u 1 , . . . , u i }) with λ i ≤ w.
Let us note that if w < λ 2 we have P W w (G) = Ru 1 which corresponds to the set of constant signals on the graph. Definition 1. A subset of nodes S ⊂ V is a uniqueness set for the space P W w (G), if for any two signals from P W w (G), the fact that they coincide on S implies that they coincide on V, i.e.:

∀f, g ∈ P W w (G), f (S) = g(S) ⇒ f = g
Let us note that for w < λ 2 , any subset of V is a uniqueness subset of P W w (G). Indeed, for constant signals any sub-sampling even of a single vertex fully determines the signal on the whole graph.

Lemma 1. S is a uniqueness set for a signal in P W w (G) iff P W w (G)∩L 2 (S c ) = {0}, where L 2 (S c
) is the space of all graph signals that are zero everywhere except possibly on the subset of nodes S c i.e.:

∀ϕ ∈ L 2 (S c ), ϕ(S) = 0 Proof. See [1].
Definition 2. S is an allowed down-sampling for a signal f on G, if it exists w such that f ∈ P W w (G) and S is a uniqueness set for P W w (G).

Let us consider the low pass filter g n which cuts off (set to zeros) the n highest eigenvalues of L. The filtered version of f , denoted f n is equal to f n = U g n (Λ)U T f . We have the following proposition: Proposition 1. For any signal f and for any uniqueness set S of a set P W w (G), it exists a filtered version f n of f such that S is an allowed down-sampling for f n .

Proof. Let us consider n = N -dim(P W w (G)). We have by definition of g n ,

f n ∈ span(u 1 , . . . , u dim(P Ww(G)) ), hence f n ∈ P W w (G).
The above result shows that for any uniqueness set S and any signal f , a sufficient low pass filtering of f "forces" the set S to become an allowed downsampling for the filtered version f n of f . Intuitively, f n contains a sufficient amount of redundant information to be described by the reduced set of vertices S. At the extreme, using n = N -1, any subset S ⊂ V is an allowed downsampling. It corresponds to the case where f has been filtered up to a constant signal. In this case, any sub-sampling of it is sufficient to describe the whole vector.

Sizes of receptive fields

Poolings operations define implicitly a hierarchy among vertices. Given a vertex v surviving at layer l we denote by RW l (v) the Reduction Window of v at level l, i.e. the set of vertices merged to v between levels l -1 and l. Let us note that we have v ∈ RW l (v). Say, an other way, RW l (v) denotes the child defined at level l -1 of v defined at level l. Given u ∈ RW l (v), we inversely say that v is the parent of u and denote this relation by p l (u) = v, where p l : V l-1 → V l encodes the parent relationship.

We additionally suppose that the sequence of reduced graphs G 0 , . . . , G l is constrained by the reduction windows using the following equation:

∀l, ∀(u, v) ∈ V l , d l-1 (RW l (v), RW l (u)) ≤ 1 ⇔ u ∈ N l (v) (1) 
Where d l-1 is the distance defined within G l-1 . Stated in words, two adjacent reduction windows induce two adjacent vertices. The transitive closure of the hierarchy relationships defined by the reduction window defines the receptive field. The receptive field of v at level l RF l (v) corresponds to the set of vertices defined at the base level graph which are merged onto v at level l. More formally, the receptive field at level l is defined recursively :

Definition 3. Let G l , . . . , G 1 = (V 1 , E 1
) denote a sequence of reduced graphs.

The receptive fields at level l are defined for any vertex v ∈ V l as:

RF l (v) = u∈RW l (v) RF l-1 (u) with RF 1 (u) = RW 1 (u)
Equation 1 can be extended to receptive fields:

Proposition 2. Let G l , . . . , G 1 = (V 1 , E 1 ) denote a sequence of reduced graphs: ∀l, ∀(u, v) ∈ V l , d 0 (RF l (v), RF l (u)) ≤ 1 ⇔ u ∈ N l (v)
Proof. The property is true for l = 1 since at this level receptive fields are equal to reduction windows. Let us suppose it true up to level l-1, and let us consider two vertices u and v such that d(RF l (v), RF l (u)) ≤ 1. We obtain:

d 0    v ′ ∈RW l (v) RF l-1 (v ′ ), u ′ ∈RW l (u) RF l-1 (u ′ )    ≤ 1 Hence, it must exists u ′ ∈ RW l (u) and v ′ ∈ RW l (v) such that d 0 (RF l-1 (v ′ ), RF l-1 (u ′ )) ≤ 1.
We thus get by our recurrence hypothesis: u ′ ∈ N l-1 (v ′ ). We thus obtain:

d l-1 (RW l (v), RW l (u)) ≤ d l-1 (u ′ , v ′ ) = 1 •x • α 1 $ % • α 2 • α 3 $ % • α 4 • α 5 • α 6 •x ′ RF l-1 (w 1 ) RF l-1 (w 4 )
Figure 1: Illustration of Corollary 1 with q = 4.

and thus u ∈ N l (v). Conversely, if u ∈ N l (v), we have d l-1 (RW l (v), RW l (u)) ≤ 1. So it must exists (u ′ , v ′ ) ∈ RW l (u) × RW l (v) such that d l-1 (u ′ , v ′ ) ≤ 1. If u ′ = v ′ , then d 0 (RF l (u), RF l (v)) = 0. Otherwise, u ′ ∈ N l-1 (v ′ )
. By iterating this process we can get two sequences u 0 = u, . . . , u l ∈ V 0 and v 0 = v, . . . , v l ∈ V 0 such that u l ∈ N 0 (v l ) and u is an ancestor of u l while v is an ancestor of v l . We have thus u l ∈ RF l (u) and

v l ∈ RF l (v) with d 0 (u l , v l ) ≤ 1.
Hence the expected result.

The above proposition provides the following interesting corollary:

Corollary 1. Let G l , . . . , G 1 = (V 1 , E 1
) denote a sequence of reduced graphs, if all reduction windows (at any level) are connected, then receptive fields are also connected.

Proof. The proof is trivial at level 1, since at this level, receptive fields are equal to reduction windows. Let us suppose it true up to level l -1. We have for any

vertex v ∈ V l : RF l (v) = u∈RW l (v) RF l-1 (u)
Given any pair of vertex x, x ′ in RF l (v), let us consider w and w ′ in RW l (v) such that x ∈ RF l-1 (w) and x ′ ∈ RF l-1 (w ′ ). If w = w ′ , we have nothing left to demonstrate since RF l-1 (w) is connected by hypothesis. Otherwise, since RW l (v) is connected, it exists a path w 1 = w, . . . , w q = w ′ connecting w and w ′ in RW l (v). We have by definition of a path:

w i-1 ∈ N l-1 (w i ) for any i in {2, . . . , q}. Hence, using proposition 2, d 0 (RF l-1 (w i-1 ), RF l-1 (w i )) ≤ 1, for any i ∈ {2, . . . , q}. We can thus identify a set of vertices α 1 , . . . , α 2q-2 in V 0 such that α 1 ∈ RF l-1 (w 1 ), α 2q-2 ∈ RF l-1 (w q ), {α 2i-2 , α 2i-1 } ⊂ RF l-1 (w i ) for i ∈ {2, . . . , q -1} and d 0 (α i-1 , α i ) ≤ 1,
for any i ∈ {2, . . . , q} (Figure 1). Since all RF l-1 (w i ) are connected, it exists a path x, α 1 , . . . , α 2q-2 x ′ connecting x and x ′ in RF l (v). This last set is thus connected.

If the set of reduction windows defined at any level l defines a partition of G l-1 , the set of receptive fields defined at any level l defines a partition of G 0 .

Moreover, if RW l (w) = {v 1 , . . . , v n }, then {RF l-1 (v 1 ), . . . , RF l-1 (v n )} forms a partition of RF l (w).
We proposed in [START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF][START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF] different strategies to define a graph hierarchy. Reduction windows produced by these strategies satisfy the following equations at any layer l and for any vertex w ∈ V l :

RW l (w) = {w} or RW l (w) = {w, v 1 , . . . , v n } with ∀i ∈ {1, . . . , n} d G l-1 (w, v i ) = 1 (2)
where d G l-1 (., .) is the distance within the graph G l-1 defined at layer l -1.

Let us first note that this restrictions on reduction windows induces connected receptive fields (Corollary 1). We may additionally note that equation 2 is satisfied by the methods [START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF][START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF] but also by all methods based on a maximal matching [START_REF] Diehl | Edge contraction pooling for graph neural networks[END_REF][START_REF] Diehl | Towards graph pooling by edge contraction[END_REF][START_REF] Landolfi | Revisiting edge pooling in graph neural networks[END_REF]. However dense methods based on clustering [START_REF] Ying | Hierarchical graph representation learning with differentiable pooling[END_REF][START_REF] Filippo | Mincut pooling in graph neural networks[END_REF][START_REF] Yuan | Structpool: Structured graph pooling via conditional random fields[END_REF] algorithms generally do not satisfy these conditions. Finally, Top-k methods satisfy only the first condition (RW l (w) = {w}). It corresponds to a special case which is considered in Section 5.

Proposition 3. Using a decimation scheme satisfying equation 2 we have for any vertex w surviving at level l in the hierarchy:

∀(u, v) ∈ RF l (w) 2 d G0 (u, v) ≤ 2 * 3 l -1
Proof. For l = 1, since any non surviving vertex is connected to a surviving one, all paths do not exceed 2.

Let us suppose the property true up to layer l -1 and let us consider a vertex w surviving up to level l. If RW l (w) = {w} the proof is trivial. Otherwise, RW l (w) = {w, v 1 , . . . , v n }. Using equation 2, {v1, . . . , v n } are adjacent to w. Let us consider two vertices u and v and two indexes r and s such that u ∈ RF l-1 (v r ) and v ∈ RF l-1 (v s ). Since v r and v s are both connected to w, their receptive fields are adjacents to the one of w. It exists thus a path P uv = P vr P w P vs connecting u and v such that P t ⊂ RF l-1 (t), t = v r , v s , w (Figure 2). We have thus:

d G0 (u, v) ≤ |P uv | ≤ t∈{vr,w,vz} |P t | + 2 ≤ 3(2 * 3 l-1 -1) + 2 = 2 * 3 l -1
The two other cases (v r or v s equal to w or both u and v belong to RF l-1 (w)) imply respectively 2 or 1 subpaths. They thus also satisfy the inequality.

Pooling operations

In the following, we suppose that we do not discard information between levels. More precisely, at any level a vertex either survives or is attached to an unique surviving neighbor.

Let us consider the simple following pooling function:

h l = pool l (h l-1 ) = S l h l-1 (3) v r w v s G l-1 G 0 RF l-1 (w) RF l-1 (v r ) RF l-1 (v s ) u v
Figure 2: Connection between receptive fields in the base level graph. Note the two edges between RF l-1 (v r ) and RF l-1 (w) and between RF l-1 (w) and RF l-1 (v s ).

Iterating the previous equation up to level 0 lead to:

h q = q l=1 S l h 0 = not Σ q h 0
where Σ q denotes the product q l=1 S l ∈ R nq×n , where n q is the number of vertices of G q and n the number of vertices of G 0 . Proposition 4. Using previous notations, if we denote by σ q i,j the entry (i, j) of Σ q , we have:

σ q i,j = s q i,p q-1 (j) q-1 k=1 s k p k (j),p k-1 (j)
where s k m,n is the (m, n) entry of S k , and p k (j) is the parent of j at level k. By convention p 0 (j) = j.

Let us note that s q i,p q-1 (j) ̸ = 0 iff p q-1 (j) is merged with i at level q and we have in this case p q (j) = i. So the previous equation may be rewritten:

σ q i,j = 0 If p q (j) ̸ = i q k=1 s k p k (j),p k-1 (j)
oherwize Proof. Let us first note the asymmetry between i and j in Proposition 4. By hypothesis, i survives at level q while j is just one vertex of G 0 which may have been contracted at any level between level 0 and level q.

Let us consider the case q = 2. We have:

σ 2 i,j = (S 2 S 1 ) i,j = n k=1 s 2 i,k s 1 k,j
By hypothesis, the vertex j either survives or is merged with a single survivor. In any case, there is a single k (the parent (p 1 (j)) of j) such that s 1 k,j ̸ = 0. We thus have:

σ 2 i,j = s 2 i,p 1 (j) s 1 p 1 (j),j = s 2 i,p 1 (j) s 1 p 1 (j),p 0 (j)
Let us note that σ 2 i,j ̸ = 0, only if s 2 i,p 1 (j) ̸ = 0 and hence if p 1 (j) ∈ RW 2 (i). Let us suppose the property true up to level q -1, we have:

σ q i,j = nq-1 k=1 s q i,k σ q-1 k,j
By recurrence hypothesis, σ q-1 k,j ̸ = 0, only if s q-1 k,p q-2 (j) ̸ = 0 which implies that p q-2 (j) ∈ RW q-1 (k) and hence that k = p q-1 (j). We have thus: σ q i,j = s q i,p q-1 (j) σ q-1 p q-1 (j),j = s q i,p q-1 (j) s q-1 p q-1 (j),p q-2 (j)

q-2 k=1 s k p k (j),p k-1 (j)
which provides the expected equation, namely:

σ q i,j = s q i,p q-1 (j) q-1 k=1 s k p k (j),p k-1 (j)
Moreover, σ q i,j ̸ = 0 only if s q i,p q-1 (j) ̸ = 0.

Let us note that we have h q = Σ q h 0 . So, let us introduce u q = Σ q 1 n , where 1 n ∈ R n denotes the vector of ones. u q , encodes for each vertex surviving at level q, the sum of the weighs of the vertices defined at level 0 which contribute to its value. Proposition 5. If S q is line stochastic for any layer q then: ∀q u q = 1 nq Proof. Matrix Σ q is line stochastic as a product of line stochastic matrices. Moreover, we have, u 0 = 1 n since each vertex represents itself in the base level graph. The result follows.

Note that, the same demonstration than Proposition 5, can state that if the rows of S q sum to γ for any q, then we have u q = γ q 1 nq . We observe then either a drastic decrease (γ < 1)) or an explosion (γ > 1) of the features of the reduced graphs.

Over smoothing

As mentioned in Proposition 4, σ q i,j ̸ = 0, only if p q (j) = i i.e. j ∈ RF q (i). Hence:

h q = Σ q h 0 ⇒ h q i = nq j=1 σ q i,j h 0 j = j∈RF q (i) σ q i,j h 0 j (4) 
Each entry h q i is thus a weighted mean (Proposition 5) of the vertices defined at the base level and belonging to the receptive field of i. Since the set of receptive fields forms a partition of the initial vertex set, having two vertices at level q with a same value would imply that two different linear combinations of two sets of different values result in a same value. This possibility is quite reduced.

Over squashing

Using previous notations, we denote by h (q,α) i the component α of the feature vector of i defined at level q. We also consider a vertex j whose sequence of parents up to level q is defined by p 0 (j) = j, p 1 (j), . . . , p q (j). We finally consider the layer m ≤ q where a parent of j merges with i (so p m (j) = i). Since i survives up to layer q, we have p 0 (i) = p 1 (i) = . . . = p q (i) = i (Figure 4).

If we suppose Σ q independent of h 0 , we obtain from equation 4:

∂h (q,α) i ∂h (0,β) j = σ q i,j δ α,β = s q i,p q-1 (j) q-1 k=1 s k p k (j),p k-1 (j) δ α,β
where δ is the dirac function.

Since p m (j) = . . . = p q (j) = i we obtain:

∂h (q,α) i ∂h (0,β) j = q-1 k=m+1 s q i,i m k=1 s k p k (j),p k-1 (j) δ α,β
Note that for k < m, j ̸ ∈ RF k (i), hence σ k i,j = 0 and

∂h (k,α) i ∂h (0,β) j = 0.
As an exercise, let us suppose that s k ww = 1 for any vertex w and any layer k. Let us also denote by r the layer where j dies. We get:

∂h (q,α) i ∂h (0,β) j = m k=r+1 s k p k (j),p k-1 (j) δ α,β
In this case, only merge operations induce a decrease of the gradient and the derivative

∂h (k,α) i ∂h (0,β) j
remains constant from layer m up to layer q.

The different behaviors of ∂h (q,α) i ∂h (0,β) j according to both scenarios (s k ww = 1 and s k ww < 1) is provided in Figure 5.

Let us now bound the level m where i and j merge. Using the same notation, m is the first level such that j ∈ RF m (i). So, if the decimation satisfies the hypothesis defined by equation 2, we have (Proposition 3): 3: Let consider 1000 graphs with 100 nodes and a density of 20% generating like in [START_REF] Erdős | On random graphs[END_REF]. The curves shows the mean Dirichlet energy according to the size of K-hop. dense, edgepool, mides, mivs and mivs topk respectively denote an architecture only composed of DiffPool [START_REF] Ying | Hierarchical graph representation learning with differentiable pooling[END_REF], EdgePool [START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool [START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF], MIVSPool [START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF] and Top-k where the selection of nodes are conditionned by a Maximal Independent Vertex Set and the connection of surviving nodes is the same as MIVSPool. Note that any learnable parameters is replaced by random values. The minimal number of layers required to "connect" any two vertices is thus a log of the graph diameter. For example, at least 2 layers are required to group two vertices whose distance is equal to 17.

d G0 (i, j) ≤ 2 * 3 m -1 ⇒ m ≥ log 3 d G0 (i, j) + 1 2 (5 
y j = p 0 (j) y p 1 (j) y p m-1 (j)
In order to obtain a lower bound for m, we should make additional hypothesis. Before this, let us consider two vertices x and y surviving up to level r and let us consider two paths such that:

|P r xy | = d Gr (x, y) and |P r-1 xy | = d Gr-1 (x, y)
Let us now consider the path Q r-1 xy formed from P r-1 xy by contracting all the edges concerned with the transformation of

G p-1 onto G p present in P r-1 xy . Q r-1
xy is a sequence of adjacent surviving vertices at level r and is thus a valid path of G r . Moreover, Q r-1 xy is trivially shorter than P r-1 xy . We have thus:

d Gr-1 (x, y) = |P r-1 xy | ≥ |Q r-1 xy | ≥ |P r xy | = d Gr (x, y)
The above equation, only stress a trivial result, namely the fact that contractions shrink distances. Let us go one step further by supposing the existence of a constant γ > 1 such that for any level p and any couple of surviving vertices (x, y) we have:

d Gp-1 (x, y) ≥ γd Gp (x, y)
We hence suppose a small positive multiplicative margin. In this case we have:

d Gp (x, y) ≤ 1 γ d Gp-1 (x, y) ≤ 1 γ p d G0 (x, y)
Returning to i and j, let us additionally suppose that j survives up to level m -1 where it is merged with i. We have thus p 0 (j) = . . . = p m-1 (j) = j and p m (j) = . . . = p q (j) = i. Since i and j merge at level m, it means that they are neighbors at level m -1 (equation 2). We thus have:

d Gm-1 (i, j) = 1 ≤ 1 γ m-1 d G0 (i, j) ⇒ γ m-1 ≤ d G0 (i, j)
We thus obtain:

m ≤ log(d G0 (i, j)) log(γ) + 1 (6) 
One may note the similarities between equations 5 and 6 which provide respectively a lower and an upper bound for m both according to log(d G0 (i, j)).

We can thus assume that any two vertices are connected within our network at a layer roughly proportional to the log of the distance between these vertices. This is important since it means that contrary to usual graph neural networks without poolings, which require a linear number of layers according to the distance between the two vertices to be connected, a GNN based on a decimation scheme fulfilling equation 2 connects them much faster. All the problematic, connected to the attenuation of the influence of u on v along a linear number of layers is thus strongly reduced. 6: Let consider a linear graph with features (1,0) and (0,1) at the extreme nodes. Others nodes features are equal to (0,0). In the figure, we study the average number of layers needed to intersect the two features of the extreme nodes according to the diameter of the graph. edge, mides and mivs respectively denote an architecture only composed of EdgePool [START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool [START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF] and MIVSPool [START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF]. Note that any learnable parameters is replaced by random values.

On Top-k methods and Graph Shift Operators

Top-k methods perform a selection of vertices among the graph before reconnecting it. Such a selection procedure may be modeled at layer l by a matrix S ∈ R n l+1 ×n l where each row has a single positive entry. Columns may contain either a single entry (of a surviving vertex) or be filled with 0 (the non surviving vertex is discarded).

Definition 4. A matrix O is called a Graph Shift Operator (GSO) for a graph G = (V, E) iff: ∀(i, j) ∈ V 2 , i ̸ = j and (i, j) ̸ ∈ E ⇒ o i,j = 0
Graph Shift operators [START_REF] Dasoulas | Learning parametrised graph shift operators[END_REF] are taken are a generalization of adjacency matrices and are used to generalize different kind of convolutions. Proposition 6. Given a graph G, a GSO O ∈ R n×n , and a projection matrix S ∈ R n ′ ×n with n ′ < n, then the product matrix SO satisfies:

∀(i, j) ∈ V ′ × V, k i ̸ = j and (k i , j) ̸ ∈ E ⇒ so i,j = 0 Where V ′ is the reduced set of vertices with |V ′ | = n ′ and k i ∈ V , is the unique son of i ∈ V ′ .
Proof. Since S has a single non null value per line, multiplying O per S is equivalent to select the lines of O corresponding to the non null column entries of S and to multiply them by the corresponding entry. In other terms we have:

so i,j = s i,ki o ki,j = s i o ki,j
where s i denotes the value of the only positive entry on line i and k i is the index selected at line i. The proof follows from the fact that O is a GSO. Proposition 6, indicates that SO, is not a GSO since it performs a shift and a selection. Consequently the matrix SO is not squared. However, the main property of a GSO is preserved.

Let us consider a generic form of GSO, denoted as the Parametrised Graph Shift Operator (PGSO), defined by the following expression [START_REF] Dasoulas | Learning parametrised graph shift operators[END_REF]:

γ(A, S) = m 1 D e1 a + m 2 D e2 a A a D e3 a + m 3 I
where A a = A + aI, D a = diag(A a 1) is the degree matrix of A a and S = (m 1 , m 2 , m 3 , e 1 , e 2 , e 3 , a) is our set of parameters.

We have:

Sγ(A, S) = m 1 SD e1 a + m 2 SD e2 a A a D e3 a + m 3 S
Let us note that that SD e1 a just multiplies the non null entry of each line i of S by (d e1 a ) ki . The main properties of our projection (a single non null entry on each line) is thus preserved and SD e1 a may be considered as a modified projection. So that we can write:

Sγ(A, S) = S 1 + S 2 AD e3 a
where S 1 = S(m 1 D e1 a +am 2 D e2+e3 a +m 3 ) and S 2 = m 2 SD e2 a are two projections. Considering the equation h ′ = Sγ(A, S)h we obtain by dropping the sub index 'a':

h ′ i = s i   (m 1 d e1 ki + am 2 d e2+e3 ki + m 3 )h ki + m 2 d e2 ki j∈N k i a ki,j d e3 j h j  
where (d i ) stands for the entries of D a and (a i,j ) for the ones of A. Let us recall that s i denotes s i,ki the only positive entry of line i.

Using projections matrices S 1 and S 2 we get the simpler formula:

h ′ i = s 1 i h ki + s 2 i j∈N k i a ki,j d e3 j h j (7) 
The main difference between equations 3 and 7 is that the pooling step defined in equation 3 requires that each non surviving vertex is attached to a unique survivor while a non surviving vertex in equation 7 shares its value with all surviving vertices adjacent to it. In terms of matrices, it means that the matrix S l , used in equation 3 has a single positive entry per column while if we denote by S top the matrix implicitly defined by equation 7, so that h ′ = S top h, each column of S top corresponding to a non surviving vertex has one positive entry per surviving vertex adjacent to the non surviving one.

Some examples

Let us consider the simplest PGSO defined by γ(A, S) = I + A. It corresponds to S = (m 1 , m 2 , m 3 , e 1 , e 2 , e 3 , a) = (0, 1, 1, 0, 0, 0, 0). We then have S 1 = S and S 2 = S. We thus obtain:

h ′ i = s i   h ki + j∈N k i a kij h j   (8) 
where k i denotes the only positive entry of S l+1 in row i and N ki denotes the neighborhood of k i at layer l. Equation 8, has two major normalisation problems:

1. A non surviving vertex j transfers its values to all its surviving neighbors. Hence, non surviving vertices with a high degree will be over-represented compared to surviving ones or non surviving ones with a smaller degree.

2. The sum in equation 8 is proportional to |N ki |. Hence surviving vertices with a large degree will be over weighted according to the other surviving vertices. Large neighborhood may also hide the value h l ki of the surviving vertex at layer l.

In order to overcome the two previous drawbacks, we may consider the following PGSO defined by S = (0, 1, 1, 0, -1, -1, 0) which provides the following update equation:

h ′ = S(I + D -1 AD -1 )h
In this case, we obtain:

h ′ i = s i   h ki + 1 d ki j∈N k i a kij d j h j  
The main drawback of the last equation is that the contributions of non surviving vertices is normalized by their degree and not by their number of surviving neighbors (to which they contribute). To correct this point we first note that (SA) ij = s iki a kij so that:

((SA) T 1) j = n l+1 i=1 s iki a kij = i∈V l+1 |ki∈Nj s iki
So, ((SA) T 1) j is the sum of the weighs (or the scores) of the surviving vertices adjacent to each vertex j. Let us consider the diagonal matrix D surv = diag((SA) T 1). In order to incorporate D surv we need to mix pooling and convolution steps by considering the following update equation:

h l+1 = S I + D -1 A(D surv ) -1 h l
We then get:

h l+1 i = s iki   h l ki + 1 d ki j∈N k i a kij d surv j h l j   Note that s ik i d surv j
may be interpreted as the relative importance of the surviving vertex k i among the neighbors of j. We have thus a strategy of "winner takes all".

Effect on main convolutions

Let us consider the PGSO of GCN [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] defined by γ(A, S) = D

-1 2 1 A 1 D -1 2 1 . It corresponds to S = (m 1 , m 2 , m 3 , e 1 , e 2 , e 3 , a) = (0, 1, 0, 0, -1 2 , -1 2 , 1). We then have S 1 = SD -1 1 and S 2 = SD -1 2 
1 . We thus obtain:

h ′ i = s i d -1 ki h ki + s i d -1 2 ki j∈N k i a ki,j d -1 2 j h j (9) 
where k i denotes the only positive entry of S l+1 in row i and N ki denotes the neighborhood of k i at layer l.

Let us consider the PGSO of GIN [START_REF] Xu | How powerful are graph neural networks?[END_REF] defined by γ(A, S) = A + (1 + ϵ)I. It corresponds to S = (m 1 , m 2 , m 3 , e 1 , e 2 , e 3 , a) = (0, 1, 0, 0, 0, 0, 1 + ϵ). We then have S 1 = (1 + ϵ)S and S 2 = S. We thus obtain:

h ′ i = (1 + ϵ)s i h ki + s i j∈N k i
a ki,j h j [START_REF] Grattarola | Understanding pooling in graph neural networks[END_REF] where k i denotes the only positive entry of S l+1 in row i and N ki denotes the neighborhood of k i at layer l.

Let us consider the PGSO of DGCNN [START_REF] Zhang | An endto-end deep learning architecture for graph classification[END_REF] defined by γ(A, S) = D -1 1 A 1 . It corresponds to S = (m 1 , m 2 , m 3 , e 1 , e 2 , e 3 , a) = (0, 1, 0, 0, -1, 0, 1). We then have S 1 and S 2 both equal to SD -1 1 . We thus obtain:

h ′ i = s i d -1 ki h ki + s i d -1 ki j∈N k i a ki,j h j ( 11 
)
where k i denotes the only positive entry of S l+1 in row i and N ki denotes the neighborhood of k i at layer l.

Convolution S γ(A, S) GCN (0, 1, 0, 0, -1 2 , -1 2 , 1) D -1 2 1 A 1 D -1 2 1 GIN (0, 1, 0, 0, 0, 0, 1 + ϵ) A + (1 + ϵ)I DGCNN (0, 1, 0, 0, -1, 0, 1) D -1 1 A 1
Table 1: Summary of the convolution formulas Let note that PGSO can't define all graph convolutions. For example, GAT methods [START_REF] Velickovic | Graph attention networks[END_REF][START_REF] Brody | How attentive are graph attention networks?[END_REF] can't be define without additional assumptions or operators.

Let us iterate

Let's assume that the matrix A has a non-zero diagonal and let us consider the matrix S top = Sγ(A, S). Let note that, using Proposition 6 S top satisfies the main properties of a GSO while being a non squared matrix. Let us now consider the two following iteration equations:

h ′ = S top h A ′ = S top A(S top ) T ( 12 
)
Where A is the adjacency matrix with positive elements on the diagonal. Let us simply denote by s i,j the entries of the matrix S top (hence dropping the top index). Then we have:

a ′ ij = n k,l=1
a k,l s ik s jl

If A and S top are non negative, we get the trivial result:

a ′ i,j ̸ = 0 iff ∃(k, l) ∈ {1, . . . , n} 2 |    (k, l) ∈ E (a kl ̸ = 0) s ik ̸ = 0 s jl ̸ = 0 (13) 
This general equation, hides some particular cases. In particular, a vertex shared by two surviving vertices induces an edge between them:

∃k ∈ {1, . . . , N } | s ik ̸ = 0 and s j,k ̸ = 0 ⇒ a ′ i,j ̸ = 0

The above equation is simply due to the fact that a kk is always not null. Moreover, we have for any reduced vertex i:

a ′ i,i ≥ a ki,ki s i,ki s i,ki > 0
Let us now introduce reduction windows within the Top-k framework.

Definition 5. Let G = (A, h) denote a graph and G ′ = (A ′ , h ′ ) its reduced version using equations 12 with S top ∈ R n ′ ×n . The reduction window of a surviving vertex i ∈ {1, . . . , n ′ } is defined by:

RW (i) = {k ∈ {1, . . . , n} | s ik > 0}
Note that reduction windows defined with the classical pooling framework may be defined using the same equation than in Definition 5. The main difference within the Top-k framework is that we loss the insurance that each column of S top contains a single positive entry. Consequently, a non surviving vertex may belong to different reduction windows and the set of reduction window may not form a partition of {1, . . . , n}.

Remark 1. Using Proposition 6 we have for any surviving vertex i:

RW (i) ⊂ N ki ∪ {k i }
where N ki denotes the neighborhood of the vertex k i corresponding to i in the initial graph.

Let us note that our reduction windows fulfill equation 2. Receptive fields are still defined according to Definition 3. Let us note, however, that within the topk framework, since reduction windows may overlap, receptive fields associated to these reduction windows also overlap and thus do not define a partition. Proposition 7. Let us consider A l the adjacency matrix obtained by l iterations of equation 12 and for any vertex i surviving at level l, the set RF l (i) corresponding to the transitive closure of the hierarchical relationship defined by the reduction window. Then we have:

a l ij ̸ = 0 ⇔ ∃u ∈ RF l (i), ∃v ∈ RF l (j) | a uv ̸ = 0
Or in other terms, the receptive fields of two adjacent vertices at level l intersect (case u = v) or are adjacent at the base level.

Proof. Implication : For l = 1, the proof is provided by equation 13.

Let us suppose the property true at level l -1 and let us consider i, j defined at level l such that a l ij ̸ = 0. Using equation 13:

∃k ∈ RW l (i), ∃l ∈ RW l (j) a l-1 kl ̸ = 0
Using our recurrence hypothesis, it exists u ∈ RF l-1 (k) and v ∈ RF l-1 (v) such that a uv ̸ = 0. Moreover:

RF l (i) = ∪ w∈RW l (i) RF l-1 (w) and RF l (j) = ∪ w∈RW l (j) RF l-1 (w)
Hence u ∈ RF l-1 (k) ⊂ RF l (i) and in the same way v ∈ RF l (j) which concludes the proof.

Reciprocal: Since u ∈ RF l (i), it exists a sequence i l = i, i l-1 , . . . , i 0 = u of children of i from i down to u. In the same way, we have a sequence j l = j, j l-1 , . . . , j 0 = v. Note that, a vertex may have several father. However, the set of child of a vertex is defined without ambiguity by Definition 5.

By definition of i 1 and j 1 , we have u ∈ RW (i 1 ) and v ∈ RW (j 1 ). So we have s i1,u > 0, s j1,v > 0 and a u,v ̸ = 0(by hypothesis). Hence a 1 i1,j1 ̸ = 0. If we suppose the property true up to level l -1, we have a l-1 i l-1 ,j l-1 ̸ = 0, with i l-1 ∈ RW (i l ) and j l-1 ∈ RW (j l ). Hence, s i l ,i l-1 > 0, s j l ,j l-1 > 0 and a i l-1 ,j l-1 ̸ = 0. We have thus a i l ,j l = a i,j ̸ = 0. Remark 2. We know, thanks to remark 1, that our reduction windows fulfill equation 2. Moreover, thanks to Proposition 7, we know that adjacent vertices at level l have adjacent receptive fields. We have thus all the required properties to apply Proposition 3. Namely, for any vertex w surviving at level l in the hierarchy:

∀(u, v) ∈ RF l (w) 2 d G0 (u, v) ≤ 2 * 3 l -1
Corollary 2. Given two distinct vertices i and j surviving at level l, if i and j are not adjacent then their receptive fields have an empty intersection and are not adjacent.

Proof. Using Proposition 7, we have:

a ij = 0 ⇒ ∀(u, v) ∈ RF l (i) × RF l (j) a u,v = 0
In particular, if it exists u ∈ RF l (i) ∩ RF l (j), we should have a u,u = 0 which is forbidden by hypothesis. Hence RF l (i) ∩ RF l (j) = ∅ Corollary 2, implies that an over-smoothing phenomenon is unlucky unless the base graph is filled with constant values, or we get a complete graph at some steps of the decimation process. 7: Let consider 1000 graphs with 100 nodes and a density of 20% generating like in [START_REF] Erdős | On random graphs[END_REF]. The curves shows the mean Dirichlet energy according to the size of K-hop. gcn denotes an architecture only composed of GCN [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. gcn+pool denotes an architecture alternating GCN [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] and a pooling method. pool can be a DiffPool [START_REF] Ying | Hierarchical graph representation learning with differentiable pooling[END_REF], EdgePool [START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool [START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF], MIVSPool [START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF] or a Top-k like in Figure 3. Note that any learnable parameters is replaced by random values. ) and (0,1) at the extreme nodes. Others nodes features are equal to (0,0). In the figure, we study the average number of layers needed to intersect the two features of the extreme nodes according to the diameter of the graph. gcn denotes an architecture only composed of GCN [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. gcn+pool denotes an architecture alternating GCN [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] and a pooling method. pool can be an EdgePool [START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool [START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF] or MIVSPool [START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF]. Note that any learnable parameters is replaced by random values.

Conclusion

In Section 2, we show that a sufficient low pass filtering of any signal "forces" any uniqueness set to become an allowed down-sampling. Nevertheless, for a constant signal, any sub-sampling is an allowed sub-sampling. Hence this signal point of view neglects the structure of the graph while a pooling operation must preserve both the signal content and the structural information. In Section 4, we prove that, using the pooling scheme defined in Section 3, the layer at which two distant vertices can be merged is upper bounded by a log of their distance. The access time between the features of two nodes is thus reduced in comparison with the one of graph convolution which is linear. This implies that over-squashing is less present using pooling layers. Furthermore, if each vertex from the initial graph belongs to only one receptive field in the reduced graph, then vertices in the reduced graph forms a partition of the vertices in the initial graph, applying just pooling layers like define in Definition 3 prevent to have over-smoothing. Finally, in Section 5, the case of an alternation of graph convolution and a Top-k method is studied. Under certain conditions on the selection of surviving vertices and on the construction of the reduced graph, we prove that the oversquashing and over-smoothing effects are reduced by pooling operations.
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  Figure3: Let consider 1000 graphs with 100 nodes and a density of 20% generating like in[START_REF] Erdős | On random graphs[END_REF]. The curves shows the mean Dirichlet energy according to the size of K-hop. dense, edgepool, mides, mivs and mivs topk respectively denote an architecture only composed of DiffPool[START_REF] Ying | Hierarchical graph representation learning with differentiable pooling[END_REF], EdgePool[START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool[START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF], MIVSPool[START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF] and Top-k where the selection of nodes are conditionned by a Maximal Independent Vertex Set and the connection of surviving nodes is the same as MIVSPool. Note that any learnable parameters is replaced by random values.
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 415 Figure 4: Sequences of parents of nodes u and v.
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  Figure6: Let consider a linear graph with features (1,0) and (0,1) at the extreme nodes. Others nodes features are equal to (0,0). In the figure, we study the average number of layers needed to intersect the two features of the extreme nodes according to the diameter of the graph. edge, mides and mivs respectively denote an architecture only composed of EdgePool[START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool[START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF] and MIVSPool[START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF]. Note that any learnable parameters is replaced by random values.
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  Figure7: Let consider 1000 graphs with 100 nodes and a density of 20% generating like in[START_REF] Erdős | On random graphs[END_REF]. The curves shows the mean Dirichlet energy according to the size of K-hop. gcn denotes an architecture only composed of GCN[START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. gcn+pool denotes an architecture alternating GCN[START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] and a pooling method. pool can be a DiffPool[START_REF] Ying | Hierarchical graph representation learning with differentiable pooling[END_REF], EdgePool[START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool[START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF], MIVSPool[START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF] or a Top-k like in Figure3. Note that any learnable parameters is replaced by random values.
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 8 Figure8: Let consider a linear graph with features (1,0) and (0,1) at the extreme nodes. Others nodes features are equal to (0,0). In the figure, we study the average number of layers needed to intersect the two features of the extreme nodes according to the diameter of the graph. gcn denotes an architecture only composed of GCN[START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. gcn+pool denotes an architecture alternating GCN[START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] and a pooling method. pool can be an EdgePool[START_REF] Diehl | Towards graph pooling by edge contraction[END_REF], MIDESPool[START_REF] Stanovic | Maximal independent sets for pooling in graph neural networks[END_REF] or MIVSPool[START_REF] Stanovic | Maximal Independent Vertex Set applied to Graph Pooling[END_REF]. Note that any learnable parameters is replaced by random values.