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Abstract
The exponential growth in the use of smartphones means that users must constantly be
concerned about the security and privacy of mobile data because the loss of a mobile device
could compromise personal information. To address this issue, continuous authentication
systems have been proposed, in which users are monitored transparently after initial access
to the smartphone. In this study, the authors address the problem of user authentication by
considering human activities as behavioural biometric information. The authors convert
the behavioural biometric data (considered as time series) into a 2D colour image. This
transformation process keeps all the characteristics of the behavioural signal. Time series
does not receive any filtering operation with this transformation, and the method is
reversible. This signal‐to‐image transformation allows us to use the 2D convolutional
networks to build efficient deep feature vectors. This allows them to compare these feature
vectors to the reference template vectors to compute the performance metric. The authors
evaluate the performance of the authentication system in terms of Equal Error Rate on a
benchmark University of Californy, Irvine Human Activity Recognition dataset, and they
show the efficiency of the approach.
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1 | INTRODUCTION

With the increasing use of smartphones to store personal and
sensitive information, such as bank account details, personal
IDs, passwords, and credit card information, people remain
constantly connected, and their mobile devices are at risk of
security and privacy breaches by malicious actors [1–3]. Tradi-
tional forms of protection such as passcodes, PINs, patterns,
facial recognition, and fingerprint scans are all vulnerable to
various forms of attack, including smudge attacks, side‐channel
attacks, and shoulder‐surfing attacks [1, 3, 4].
The development of Information and Communication

Technologies, as well as improvements in ambient intelligent
technologies, such as sensors and smartphones, have led to the
growth of smart environments [4, 5]. By using sensors, staff

can save resources by recording and monitoring users or
automatically reporting any unusual behaviour [4, 6, 7]. For
instance, in payment systems, to ensure strong customer
authentication, it is necessary to implement adequate security
features1 based on authentication factors such as knowledge,
possession, inherent, or biometric factors [8]. Knowledge
factors are based on information that the user knows, such as a
password, PIN, or shared secret. Possession factors rely on an
object that the user possesses, like a smart card, USB key,
smartphone, or security token. Inherent or biometric factors
are directly related to the user and are useful in reducing the
risk of unauthorised parties discovering, disclosing, and using
elements such as algorithm specifications, key length, and in-
formation entropy [9]. When Multi‐Factor Authentication is
requested, using Seamless biometrics, as behavioural, improves
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properly cited.

© 2023 The Authors. IET Biometrics published by John Wiley & Sons Ltd.

1
http://data.europa.eu/eli/reg_del/2018/389/oj.

222 - IET Biome. 2023;12:222–234. wileyonlinelibrary.com/journal/bme2

https://doi.org/10.1049/bme2.12115
https://orcid.org/0000-0002-6258-6073
mailto:brice.wandji@fime.com
https://orcid.org/0000-0002-6258-6073
http://creativecommons.org/licenses/by/4.0/
http://data.europa.eu/eli/reg_del/2018/389/oj
https://ietresearch.onlinelibrary.wiley.com/journal/20474946
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fbme2.12115&domain=pdf&date_stamp=2023-07-26


the security without decreasing the User Experience (UX).
Increasing the performance of such biometrics is a high need
of current industrials [3].
User authentication for logical access control, such as

browsing the Internet on a laptop, is now commonly done
using biometrics [3, 9, 10]. Experts employ various biometric
methods, such as fingerprint, retina, and voice recognition, to
design recognition systems using artificial intelligence tech-
niques like machine learning and deep learning. Each approach
has its own pros and cons, with fingerprint recognition being
well‐established and available in commercial products. How-
ever, these systems require input readers, such as sensors,
which can vary in cost on the market [11]. Moreover, some of
these biometric modalities usage are not frictionless for the
subject as they have to do an additional action to authenticate.
Behavioural biometrics involves measuring a user's behav-

ioural tendencies, which can include gait, human activity, voice
recognition, signature verification, keystroke dynamics, mouse
dynamics, and Graphical User Interface usage analysis [12].
According to Bailey et al., behavioural biometrics has not been
as widely adopted as physiological biometrics due to the vari-
ability of the human body and mind [12]. It is worth noting that
analysing user activities does not require additional hardware.
Human activity can be one solution to enhance the security

of password authentication without adding any disruptive
handling for users. Industries are looking for more security
without impacting too much UX. Considered as a frictionless
solution, human activity is a powerful solution to increase trust
during user authentication without adding charge to the user
like keystroke dynamic as a behavioural modality.
Behavioural biometrics identification/authentication

methods have lower performance compared to morphological
modalities [12]. This survey aims to introduce an alternative
approach using deep learning for behavioural biometrics
described by time series.
The contributions of the proposed paper are numerous.

The proposed research uses an image‐based architecture (for a
chosen behavioural biometric modality: gait analysis). A deep
learning process for user authentication based on human ac-
tivity is proposed. We consider only one behavioural bio-
metrics modality, which refers to the following physical
activities including laying, sitting, standing, walking, walking
downstairs, and walking upstairs, all of them being acquired
by a smartphone. We tested many architectures for identifica-
tion/authentication purposes. Generated deep features are
fused through different strategies. The obtained performance
on a dataset used by the research community outperforms
results from the state of the art.
The paper is organised as follows. Section 2 contains

related works on authentication systems from human activity.
Section 3 presents the proposed method and the different
tested deep learning models with the specifications and the
impact of different parameters on our evaluation system.
Section 4 draws the experimental protocol. Section 5 details the
experiments on benchmark datasets and the results we ob-
tained. Section 6 gives the conclusions of this work and some
perspectives.

2 | RELATED WORK

Biometrics have been widely proposed as a means of contin-
uous user authentication in various studies [1, 15, 16, 36, 37].
In the field of continuous authentication, inertial data is used to
determine the motion, orientation, and position of a device in
the surrounding environment. Methods that use this type of
data for nonintrusive authentication employ user behavioural
features such as gait, touch screen operations, hand gestures,
keyboard patterns, speech, or signature movements to generate
behavioural features [1].
Zheng et al. [38] were pioneers in collecting a large dataset

for continuous authentication and using a one‐class distance‐
based classifier. They employed inertial data from the de-
vice's accelerometer and gyroscope along with touchscreen,
acceleration, pressure, touch area size, and time frame infor-
mation between interactions to develop user profiles of how
each person held their smartphone when entering their PIN
number, to identify either the genuine owner or an impostor,
with an Equal Error Rate (EER) of up to 3.6%.
Trojahn et al. [39] also applied deep learning techniques

using hand movement to authenticate smartphone users based
on data collected during repeated password entry. Researchers
classified users using different models such as the multilayer
perceptron [40], Bayesian Net classifiers [41], and Naïve Bayes
[42].
An effective procedure for normalising signals from

smartphone accelerometers is proposed in Ref. [43] by De
Marsico et al. The authors show that normalisation has a
positive effect on matching data from the same device, in the
context of gait recognition.
Table 1 lists the aims of human activity. Human activity can

be used for different goals (identification, authentication, and
soft biometrics) in different cases (continuous or static) [4, 44].
When using hand movement as a biometric solution, some
systems rely on reference data, such as typing style, for veri-
fication of new samples. For identification and authentication,
a reference is a specific user's typing style, while for soft bio-
metrics, a reference is a group of users' typing style, such as
male, female, or left/right‐handed. This reference data is used
to match or verify the identity of the user from a sample [45].
We position ourselves on the biometric verification of in-
dividuals based on human activity data.

TABLE 1 Human activity aims.

HAR tasks

Basic activity recognition

Daily activity recognition

Unusual event recognition

Biometric subject identification

Prediction of energy expenditures

Biometric subject verification/authentication*

*That the manuscript is positioned on the Biometric verification/authentication of
subjects in the context of human activity objectives.
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Table 2 lists the state of the art on user identification and
verification from human activity data. We list for each paper
the method, the accuracy score, the EER value, and human
activities considered for the processing. The related work in
Table 2 focusses on activity recognition, and less work focusses
on user authentication with fairly high EER values. Our goal is
to verify a user based on the activities they have performed. We
seek to authenticate a user based on their activities, which
corresponds to an activity‐based user verification approach.
Therefore, our approach focuses on behavioral biometric
verification of individuals using human activity data. We detail
the proposed approach in the next section in order to enhance
performance on user authentication with human activity data.

3 | PROPOSED ARCHITECTURE

In Figure 1, we describe the proposed user authentication
system based on the analysis of human activity as an extension
of the work in Ref. [3]. It is composed of three different steps
namely (A) data collection (signal‐to‐image transformation),
(B) deep features extraction, and (C) verification process by
scoring algorithms. We detail the following steps.

3.1 | Data collection: signal‐to‐image
transformation

Time series analysis in the frequency domain plays an essential
role in signal processing. The same is true for image analysis in
the frequency domain, which plays a key role in computer vision
and was even part of the standard pipeline in the early days of
deep learning [46]. In this study, we use a function that helps us
transform behavioural biometric signals, which can be consid-
ered as time series, into an image, that is, we convert a signal (user
activity attempt) vector v of size 1 �m, into a matrix M of size
n� n such thatm = n� (n − 1)/2. If the number of features in
the dataset does not meet this condition, we recommend using
zero padding or discarding some data after preprocessing.
Such transformation is performed by using the squareform

()2 function in MatLab. One of the properties of the square-
form() function is to convert a vector into a matrix and vice
versa. Conversely, the squareform of matrix M is a vector v.
The squareform() function is bijective, and this function has
never been used for a transformation of human activity data.
For instance, consider the University of Californy, Irvine

Human Activity Recognition (UCI‐HAR) dataset3, which in-
cludes human activity information for 30 individuals. Each
individual's data is represented by a raw vector of m = 561
features, which is then used to construct an image matrix of
size 34 � 34, where n = 34. The matrix is displayed with false
colours representing distance values.

We finally have a 2D image in Red, Green, and Blue (RGB)
format. Figure 2 shows the step‐by‐step instructions to verify
individual identities through our framework starting from the
signal (computing the time series signal into a colour image).
The transformation is performed on each attempt of each user
for each human activity.

3.2 | Deep features extraction

Deep learning algorithms have been used in the last decade in
several fields and are becoming more and more widespread
[47, 48]. One advantage of using such approaches relies in its
capabilities to provide relevant features at deeper layers, which
can be used as feature vectors by any dissimilarity measure. In
this work, we generate deep features vectors by transfer learning
from four different deep networks, namely ResNet‐101, Shuf-
fleNet, GoogleNet, and DarkNet‐53. In the literature, these
models were firstly pre‐trained on the ImageNet dataset4, and
they are the most recent successful deep learning architectures
for image classification [49] and can be used for an authenti-
cation context since authentication can be considered as a result
of a binary classification problem (genuine or impostor).
Table 3 summarises the architecture and the optimisation

hyper‐parameters for the four trial deep networks, where the
network depth is defined as the largest number of sequential
convolutional or fully connected layers on a path from the
input layer to the output layer. As input, networks take RGB
images format describing a human activity. These convolu-
tional networks are used to build an output feature vector (by
extraction at the last layer of the convolutional network), which
is then compared to the reference/test model.

3.3 | Matching algorithms

Deep architectures, as previously explained, generate feature
vectors that can be used as reference/test templates. We need a
matching algorithm to compare them and make the verification
decision. Many distance metrics can be used to compute a dis-
tance score [9] between a reference (xs) and a sample (xt) such as

� The Minkowski distance

d ¼
Xn

j¼1

jxsj − x0tjj ð1Þ

� The Euclidean distance

d2 ¼ ðxs − xtÞðxs − xtÞ
0 ð2Þ

� The Cosine distance

d ¼ 1 −
xsx0tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

xsx0s
��

xtx0t
q � ð3Þ

2
https://fr.mathworks.com/help/stats/squareform.html.
3
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using
+Smartphones.

4
https://image‐net.org.
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TABLE 2 Overview of user activity identification and authentication in the state of the art.

Paper Approach Method Activity
Input
source Accuracy EER

[13] Action recognition DTW Gait Smartphone [83.00%–93.00%] [0.09%–0.10%]

[14] Gender recognition SVC, RF, AdaBoost, k‐
NN

Looking and avoid the camera in
motion

Video [68.10%–82.50%] ‐

[15] Continuous user authentication Ten different classifier Walking, sitting Mobile
devices

‐ 07.50%

[16] Learning human identity from
motion patterns

Dense clockwork RNN Walking Smartphone 93.02% 18.17%

[17] User identification SVM Pose estimation GUI 74.35% ‐

[18] Identifying users from gait pattern Correlation coefficients Walking Smartphone [72%–88%] 7%

[19] Gait identification using
accelerometer

SVM Walking Mobile
phone

92.7% ‐

[20] Gait recognition, analysis of
approaches

SVM Walking Cell phone ‐ 33.30%

[21] Pace independent mobile gait
biometrics

Nearest neighbour Walking Mobile ‐ 7.22%

[22] Comparison study to classify
human activities

SVM, MLP, RF, Naive
Bayes

Sleeping, eating, walking, falling,
talking on the phone

Image 86.0% ‐

[23] Hybrid deep learning for activity
and action recognition

GMM, KF, gated
recurrent unit

Walking, jogging, running, boxing,
hand‐waving, hand‐clapping

Video 96.3% ‐

[24] Infer high‐level rules for
noninvasive ambient that help
to anticipate abnormal
activities

RF Abnormal activities: Agitation,
alteration, screams, verbal
aggression, physical aggression
and inappropriate behaviour

Ambient
sensors

98.0% ‐

[25] Active learning to recognise
human activity using
Smartwatch

RF, extra trees, Naive
Bayes, Logistic
Regression, SVM

Running, walking, standing, sitting,
lying down

Smartwatch 93.3% ‐

[26] Recognising human activity using
smartphone sensors

Quadratic, k‐NN, ANN,
SVM

Walking upstairs, downstair Smartphone 84.4% ‐

[27] Activity recognition CNN Standing, sitting, laying, walking,
walking downstairs, walking
upstairs

Smartphone 99.30% ‐

[28] Activity recognition Spatial attention‐aided
CNN

Standing, sitting, laying, walking,
walking downstairs, walking
upstairs

Smartphone 99.45% ‐

[29] Action recognition Nearest Neighbour
Classifier & SVM

Bend, Jack, jump, pjump, run, side,
skip walk, wave

Virtual
camera
(6)

[90.50%–95.70%] ‐

[30] User identification I‐vector Gait Mobile
devices

[67.5%–85.0%] [06.80%–
08.90%]

[31] Multi‐view action recognition Gaussian
process + Histogram
intersection kernel

Appearance of dynamic systems
captured from different
viewpoints

Sony AIBO
robot
dogs (6)

79.00% ‐

[32] Action recognition GP‐based & k‐NN Golf swing (back, front, side),
kicking (front, side), riding
horse, run, skateboarding, swing
bench, swing (side), and walk

Virtual
camera

[86.90%–88.50%] ‐

[33] User verification HMM 25 users, 500 signatures Samsung
galaxy
note

‐ 06.20%

[34] User verification Histogram similarity and
cycle length

Gait Mobile
devices

‐ [05.00%–
09.00%]

(Continues)
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Once we obtain a matching score, we decide if the user is
authenticated by a simple thresholding approach (accept when
the score is upper a given threshold).

Algorithm 1 Scores computation

Input Output data, distance, N, M INTRA,
INTER
Scores_computation data, distance, N, M
Initialise counters cptra = 1 cpter = 1
Compute intraclass and interclass scores
i = = j = i = = l1 N l1 N 2 M
INTRA(cptra) = pdist([data(M*(i-1)+1,:);
data(M*(l-1)+j,:)], distance)
cptra = cptra + 1
INTER(cpter) = pdist([data(M*(i-1)+1,:);
data(M*(l-1)+j,:)], distance)
cpter = cpter + 1
Return INTRA, INTER

Algorithm 1 describes the procedure for computing
INTRA scores for similarity and INTER scores for dissimi-
larity. These scores are used to compute the False Match Rate
(FMR), False Non‐Match Rate (FNMR), and EER scores later
on.

4 | EXPERIMENTAL PROTOCOL

We draw in this part the experimental protocol we follow in
this work. We detail the used biometric dataset and the per-
formance metrics.

4.1 | Database

We use in this work the UCI‐HAR database [26] which was
collected with data from 30 people aged between 19 and
48 years. Each person performed six physical activities such as
sitting, standing, laying walking, walking upstairs, and
walking downstairs. The data were collected from a Samsung
Galaxy S II mobile phone handset by using the accelerometer
and gyroscope (3‐axial raw signals with tAcc-XYZ and tGyro-
XYZ) sensors at a frequency of 50 Hz. The collection was
obtained with the smartphone located at the user's waist. All
steps of data collection were recorded, and the data was
manually labelled. UCI‐HAR contains 10,299 samples.
Table 4 presents the activities, the abbreviation of each

activity, the proportion of activity samples, and their de-
scriptions. For each signal of each activity, the signal‐to‐image
transformation (as mentioned in Section 3) is applied to obtain
a 2D colour image. To the best of our knowledge, such
transformation with the squareform() function applied to the

TAB LE 2 (Continued)

Paper Approach Method Activity
Input
source Accuracy EER

[35] User verification Manhattan distance Hand movement Keyboard [89.00%–94.00%] [06.00%–
11.00%]

Abbreviations: AIBO, Artificial Intelligence Robot and Companion; ANN, Artificial Neural Network; CNN, Convolution Neural Network; DTW, Dynamic Time Warping; EER, Equal
Error Rate; GMM, Gaussian Mixture Model; GUI, Graphical User Interface; HMM, Hidden Markov Model; KF, Kalman Filter; RF, Random Forest; RNN, Recurrent Neural Network;
SVC, Support Vector Classifier; SVM, Support Vector Machine.

F I GURE 1 Architecture of the authentication system.
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F I GURE 2 Examples of the obtained results when the signal‐to‐image transformation is applied.

TABLE 3 Architectures and optimisations hyper‐parameters for the deep learning approaches.

Models #Layers Depth Image input size Activate Normalise Algorithm Loss #Epochs #Batch Learning rate

ResNet‐101 347 101 imresize (I, [224 224]) ReLU Batch SGDM Cross‐entropy 300 10 0.001

ShuffleNet 172 50 imresize (I, [224 224]) ReLU Batch SGDM Cross‐entropy 300 10 0.001

GoogleNet 144 22 imresize (I, [224 224]) ReLU Batch SGDM Cross‐entropy 300 10 0.001

DarkNet‐53 184 53 imresize (I, [256 256]) ReLU Batch SGDM Cross‐entropy 300 10 0.001

Abbreviation: SGDM, Stochastic Gradient Descent with Momentum.

TABLE 4 Activities, sample number of each activity, and their descriptions on UCI‐HAR dataset [26].

Activity Abbreviation No. of samples

Sample percent
of each human
activity (%) Description

Laying lyx 1722 16.72 Subject sleeps or lies down on a bed

Sitting six 1544 14.99 Subject sits on a chair either working or resting

Standing stx 1406 13.65 Subject stands and talks to someone

Walking wlx 1777 17.25 Subject goes down multiple flights

Walking downstair wdn 1906 18.51 Subject goes down multiple flights

Walking upstairs wup 1944 18.88 Subject goes up multiple flights

Abbreviation: UCI‐HAR, University of Californy, Irvine Human Activity Recognition.

WANDJI PIUGIE ET AL. - 227
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UCI‐HAR dataset does not exist in the literature up to now.
Among the transformed samples of each user, 70% out of
100% samples (attempts per subject) are used for the training
set and the remaining 30% for the testing set.

4.2 | Pretrained models

As previously mentioned, the used pretrained models for
comparison of the different architectures are the following
networks: ResNet‐101, ShuffleNet, GoogleNet, and DarkNet‐
53. It is not the purpose of this paper to provide theoretical
information on how each of these architectures work; more
details on each of them can be found in Ref. [3].

4.3 | Performance metrics

The authentication/verification stage involves acquiring and
processing raw data to create a biometric template, which is
then compared to reference templates in the dataset. A
matching algorithm is used to determine the similarity between
the biometric sample and existing reference templates. Scores
are calculated based on features extracted from deep networks,
and three distance metrics described in Subsection 3.3 are
applied to evaluate the degree of similarity between the activ-
ities of each user.
Two important error rates are used to assess the perfor-

mance of a biometric authentication system according to
ISO19795 [50]: (1) FMR and (2) FNMR.

1) The FMR is the proportion of a specified set of completed
nonmated comparison trials that result in a comparison
decision of match,

2) The FNMR is the proportion of completed mated com-
parison trials that result in a comparison decision of
nonmatch.

The EER is obtained when the biometric decision
threshold is set to have the FMR value equal to the FNMR one
as depicted in Figure 3. It can be seen as a compromise be-
tween usability and security. The goal of a matching algorithm
is to minimise this value. The lower the value of EER, the
better the performance of the authentication system is. This
error rate is the most commonly used in the literature to
evaluate the performance of biometric systems. In this work,
we evaluate the performance of the proposed architecture in
terms of EER. Experiments have been realised on an Intel
Core i5‐9600K Central Processing Unit 3.70 GHz computer
equipped with 16.00 GB of RAM with MatLab.

5 | RESULTS AND DISCUSSION

In this section, we present the experimental results we ob-
tained. We tried to structure them by addressing some ques-
tions concerning the performance of the proposed method on

such behavioural biometric datasets. Note that we considered
70% of user samples (attempts per subject) for the learning
phase and 30% for the testing one.

5.1 | Which performance can we expect on a
larger dataset ?

First, we consider all the six activity sub‐datasets defined as the
UCI‐HAR dataset (Fusion of features). Table 5 draws the
obtained results for the user verification task, considering the
three distances.
We visually inspected our four deep networks by per-

forming a feature projection through the T‐SNE (t‐Distributed
Stochastic Neighbor Embedding) function as shown in
Figure 4 for each architecture. We observe that the deep fea-
tures projection form a nearly distant cluster in ShuffleNet
(EER = 11.57%) than DarkNet‐53 (EER = 11.72%), ResNet‐
101 (EER = 12.48%) and GoogleNet (EER = 13.52%). This
result is correlated with the fact that ShuffleNet performs
better than other networks in terms of the EER value.

F I GURE 3 Relationship between FMR, FNMR and EER. EER, Equal
Error Rate; FMR, False Match Rate; FNMR, False Non‐Match Rate.
Source: [3].

TABLE 5 EER value on the HAR dataset for the three tested
distances.

Models EERmananthan (%) EEReuclidean (%) EERcosine (%)

ResNet‐101 22.69 17.71 12.48

ShuffleNet 14.77 14.63 11.57

GoogleNet 14.88 14.56 13.52

DarkNet‐53 17.46 14.31 11.72

Note: The bold values in Table 5 show that, whatever the deep architecture, the distance
that minimizes the EER value is the cosine distance. This allows us to consider only the
cosine distance in the remainder of this work.
Abbreviation: EER, Equal Error Rate.
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5.2 | How well can we perform on each
activity separately?

In this section, we consider each activity separately as shown
in Table 4 to generate six sub‐datasets among others laying
(1722 samples for the 30 subjects), sitting (1544 samples for
the 30 subjects), standing (1406 samples for the 30 subjects),
walking (1777 samples for the 30 subjects), walking downstairs
(1906 samples for the 30 subjects), and walking upstairs (1944
samples for the 30 subjects). We illustrate the four architec-
tures (namely ResNet‐101, ShuffleNet, GoogleNet, and
DarkNet‐53), and we draw the model on each sub‐datasets
separately.
This is illustrated by block 1 in Figure 5. The best model

among the four deep networks for each activity in terms of the
EER value are standing (GoogleNet = 13.52%), sitting (Goo-
gleNet = 15.15%), laying (GoogleNet = 07.78%), walking
(ShuffleNet = 07.02%), walking downstairs (ShuffleNet =
08.14%), and walking upstairs (GoogleNet= 06.88%). Here, we
try to verify one user among the 30 users based on their activities
separately.
We note that we do not have the same performance from

one activity to another. So, using 70% of samples (attempts
per subject) for the generation of the reference template does
not provide exceptional results (with an EER value between
06.88% and 19.65%) as shown in block 1 in Figure 5.
Obviously, if we had more samples per subject (or by
combining activities), we could expect to obtain a better
performance.

5.3 | What performance can be achieved if
the user performs more than one activity?

In this part, it is assumed that a person achieved more than one
activity to authenticate himself/herself. We merge by summing
the legitimate and impostor scores considering the number of
samples (activity attempt) per user (Fusion of scores). Table 6
shows the obtained results if we used all the six activities (i.e.
simulating a user achieving six activities to be authenticated).
ShuffleNet comes out as the best method with an EER score of
03.58% as presented in Table 6. ShuffleNet is ahead of ResNet‐
101 (03.63%), GoogleNet (03.76%) and DarkNet‐53 (03.70%).
To complete these results, we studied the obtained per-

formance versus the number of activities (laying, sitting,
standing, walking, walking downstairs, and walking upstairs)
achieved by a user in a multi‐instance context. Figure 5 high-
lights the EER value obtained for each case.

� If we use two activities, we obtain an EER value between
[04.20% – 12.98%] illustrated by block 2 in Figure 5.

� If we have three activities, we have an EER value between
[03.94% – 08.55%] represented in block 3.

� If we use four activities, we have an EER value around
[03.85% – 05.71%] depicted by block 4.

� If we use five activities, we have an EER value around
[03.72% – 04.54%] shown by block 5.

� If we use six activities (laying + sitting + standing +
walking + walking downstairs + walking upstairs), we get
an EER value around [03.58% – 03.76%] depicted by block

F I GURE 4 Visual inspection of deep features projection from (a) ResNet‐101, (b) ShuffleNet, (c) DarkNet‐53, and (d) GoogleNet.
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5. This shows that we can decrease easily the EER value for
this kind of authentication.

We find that the value of EER obtained by fusion of the
scores of each activity decreases for all architectures. It also

appears from this work that the more information we have, the
better the performance can be, and this is not surprising. With
a more extensive database, we could expect to get better results
(i.e. with an EER value very close to 0%) by increasing the
number of samples per user [3].

5.4 | Discussion

Due to their ability to perform sensitive operations like mobile
banking, communication, and personal data storage, smart-
phones have become a crucial part of daily life. This has led to
a greater need for secure authentication methods to protect
critical information from unauthorised access [1].
The purpose of this work is to analyse several information

from user activity in order to authenticate himself/herself. A

F I GURE 5 EER rate on deep architectures for the multi‐instance biometric system. In block 1, we have (stx), (six), (lyx), (wlx), (wdn), and (wup) activities.
In block 2, we have the fusion of inter and intra class score from {(stx)+(six)} to {(wdn)+(wup)} activities, respectively. In block 3, we have {(stx)+(six)+(lyx)}
to {(wlx)+(wdn)+(wup)}. In block 4, {(stx)+(six)+(lyx)+(wlx)} to {(lyx)+(wlx)+(wdn)+(wup)}, in Block 5, {(stx)+(six)+(lyx)+(wlx)+(wdn)} to {(six)+(lyx)
+(wlx)+(wdn)+(wup)} and, in Block 6, {(stx)+(six)+(lyx)+(wlx)+(wdn)+(wup)}. EER, Equal Error Rate.

TABLE 6 Performance evaluation on the multi‐instance biometric
system by fusion of features and scores level on the UCI‐HAR dataset.

Models (EERcosine) Fusion of features (%) Fusion of scores (%)

ResNet‐101 12.48 3.63

ShuffleNet 11.57 3.58

GoogleNet 13.52 3.76

DarkNet‐53 11.72 3.70

Abbreviation: UCI‐HAR, University of Californy, Irvine Human Activity Recognition.

230 - WANDJI PIUGIE ET AL.

 20474946, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/bm

e2.12115 by C
ochrane France, W

iley O
nline L

ibrary on [27/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



comparative analysis of the four architectures on the UCI‐HAR
dataset allows us to identify the best performance for a
continuous authentication. From Table 5, it is provided by the
ShuffleNet architecture with an EER value equal to 11.57%.
Figure 6 shows a visual inspection of features (raw vs. deep
features) projection for ShuffleNet. It shows clearly the good
separability of the deep features. Multi‐instance systems intend
to capture samples of two or more different instances of the
same biometric characteristics. Table 6 shows that for an
authentication performed on human activity, the best verifica-
tion scores are obtained on the fusion of scores (EER =
03.58%) as opposed to the fusion of features (EER = 11.57%)
on ShuffleNet among the four different deep neural network
architectures.
In the literature, several works notably [51–58] shown in

Table 2 and others in Table 7 have been carried out only on the
recognition of activities (where the target is standing, sitting,
laying, walking, walking downstairs, and walking upstairs) from
the UCI‐HAR dataset. The used methods are respectively Deep
CNN‐LSTM with Self‐Attention (accuracy = 93.11%), linear
Support Vector Classifier (accuracy = 96.50%), LSTM‐CNN
(accuracy = 95.78%), Support Vector Machine (accu-
racy = 97.12%), Lego‐CNN (accuracy = 96.90%), LSTM (ac-
curacy = 97.40%), and Convolution Neural Network
(accuracy = 96.40%). Among these works, there are several
studies that convert the 1D time‐series into a 2D image repre-
sentation and then apply 2D image‐based feature extraction
technique [27–29]. These transformations are not reversible,
and the related works are typically based on activity or action
recognition. However, this work focusses on activity‐based user
verification.

We can compare our results with research works that has
been performed on the UCI‐HAR dataset in Table 8. Mek-
ruksavanich et al. [1] in 2021 work on deep learning ap-
proaches for continuous authentication based on activity
patterns using mobile sensing. They had obtained for each
distinct activity an EER score 5.10% with the Deep-
ConvLSTM network. By merging the legitimate and impostor
scores of each activity, we obtain an EER score of 03.58% with
the ShuffleNet network. This means that during a verification
scheme, the more activities a user performs, the better it can be
authenticated by our framework. To the best of our knowledge,
in the literature, there is no work addressing fusion of scores
on the basis of the UCI‐HAR dataset.

6 | CONCLUSION AND PERSPECTIVES

This survey is based on a new method for user authentication
by analysing human activities in this study. We tested various
deep learning classifiers (ResNet‐101, ShuffleNet, GoogleNet,
and DarkNet‐53) on the UCI‐HAR benchmark dataset for
authentication applications. The results showed that using a
combination of motion sensor data resulted in the lowest EER
for binary classification.
The aim of this study was to determine the effectiveness

of deep learning architectures in authenticating smartphone
users based on their physical activity patterns measured by the
accelerometer, gyroscope, and magnetometer sensors on their
smartphones. We demonstrated that our new framework
outperforms current state‐of‐the‐art methods in terms of
EER for continuous smartphone authentication utilising

F I GURE 6 t‐SNE projection of (a) raw features and (b) deep features extracted from the top‐performing method (ShuffleNet). The x‐axis corresponds to
dimension 1, while the y‐axis corresponds to dimension 2.
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TABLE 7 Comparison with other published works (target = activities).

Dataset
Author/s
(ref) Years Classifiers Accuracy EER

UCI‐HAR (target = activities) Sanchez et al.
[27]

2022 CNN 99.30% ‐

UCI‐HAR (target = activities) Sarkar et al.
[28]

2022 Spatial attention‐aided CNN 99.45% ‐

CMU mocap (target = actions) Junejo et al.
[29]

2008 Nearest Neighbour Classifier & SVM [90.50%–
95.70%]

‐

Naturalistic McGill University gait dataset and Osaka
University gait dataset

Zhong et al.
[30]

2014 I‐vector [67.5%–
85.0%]

[06.80%–
08.90%]

IXMAS (target = actions) Korner et al.
[31]

2013 Gaussian process + Histogram
intersection kernel

79.00% ‐

UCF sports (target = actions) Chuan et al.
[32]

2015 GP‐based & k‐NN [86.90%–
88.50%]

‐

Abbreviations: CMU, Cumulative Match Curve; CNN, Convolution Neural Network; EER, Equal Error Rate; SVM, Support Vector Machine; UCF, University of Central Florida;
UCI‐HAR, University of Californy, Irvine Human Activity Recognition.

TABLE 8 Comparison with other published works on user activity (target = users).

Dataset Author/s (ref) Years Classifiers Accuracy EER (%)

UCI‐HAR (target = users) This paper 2022 ShuffleNet ‐ 03.57

UCI‐HAR (target = users) Mekruksavanich et al. [1] 2021 DeepConvLSTM ‐ 5.10

Touch gestures data Patel et al. [15] 2016 Ten classifiers ‐ 07.50

WISDM Zhang et al. [16] 2019 Dense clockwork RNN ‐ 18.17

Gait signal data Mantyjarvi et al. [18] 2005 Correlation coefficients ‐ 7

Biometric gait data Muaazz et al. [20] 2013 SVM ‐ 33.30

Mobile gait data Zhong et al. [21] 2015 Nearest neighbour ‐ 07.22

Abbreviations: EER, Equal Error Rate; RNN, Recurrent Neural Network; SVM, Support Vector Machine; UCI‐HAR, University of Californy, Irvine Human Activity Recognition;
WISDM, Wireless Sensor Data Mining.

various sensor data. The main contribution of this paper is to
answer how well deep learning approaches could verify indi-
vidual identities by using smartphone sensing data from 30
users. Since in the state of the art, results are given for the
activity classification,and our second contribution is the use of
another signal‐to‐image transformation (a bijective trans-
formation) of the input data, which leads to improved
authentication results.
For future research, we plan to study how to improve the

security of biometric continuous authentication systems linked
to human activities by creating innovative Presentation Attack
Instruments for laboratory evaluations and synthetically
generated Human Activities Databases. We intend to consider
the quality assessment of human activities with deep learning
architectures in order to enhance the authentication results.
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