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This work dates from January 2016 as a result of my remarks related to physics made during my high studies. I try in this work to explain the cause behind the inability of Newtonian mechanics to describe correctly many phenomena where the studied object rotates at a very high linear speed. I proved that, in this case, the velocity field is not equiprojective and that the famous formula for changing the reference frame is not correct. I made an application to the case of the GPS system satellites, then I presented a new method for studying a rotating system velocity without needing the conventional steps of changing reference frames. I finished my work by demonstrating the formulas of the main differential operators and I presented them with all the related steps and calculations by using the elementary surfaces. I am eager to discuss the results of this work further with physics and mathematics specialists, and I hope that my formulas will help to simplify the study of many difficult physics phenomena.

Introduction

Even nowadays, there are many electromagnetic phenomena where we will always make mistakes by using the normal mathematical tools in their study. They are in general all the phenomena where the studied object rotates at a high linear speed, especially when its speed exceeds three quarters of the light speed. [START_REF] Savickas | Relations between Newtonian Mechanics, general relativity, and quantum mechanics[END_REF][START_REF] Salesi | Non-newtonian mechanics[END_REF][START_REF] Whitaker | Newton's laws, Euler's laws, and the speed of light[END_REF] Because in this case the study mistake becomes very coarse and impossible to neglect. Furthermore, the scientists are obliged to use the relativity of time as a difficult explanation or statistical physics as a solution to the contradictions found by the conventional change of reference frames. This problematic is described as a historical crisis of Newtonian classical mechanics. [START_REF] Roux | Introduction à la physique statistique et la physique quantique[END_REF] I proved first in the part A of my thesis that in this case the velocity field is not equiprojective and that the famous conventional steps for changing the reference frame are not correct. I presented also a method for studying rotating systems velocity without needing the normal change of reference frames that requires the perpendicularity of a rotating vector and its derivative. [START_REF] Chobotov | Orbital mechanics[END_REF][START_REF] Ardler | 82.45 How the scalar and vector products are derived[END_REF][START_REF] Genta | Dynamics of rotating systems[END_REF] I presented also an application to the case of the GPS system satellites that avoids the relativity of time [8 9,10]. I finished my work by demonstrating geometrically, in the part B, the formulas of the three important differential operators: Gradient (nabla), Divergence and Curl that can be found different in other works. [START_REF] Hyman | Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids[END_REF][START_REF] Kosmann-Schwarzbach | Divergence operators and odd Poisson brackets[END_REF][START_REF] Zubair | Differential electromagnetic equations in fractional space[END_REF] I presented those differential operators with all the related steps and calculations by using the elementary surfaces. However, the results found will make the convinced readers change their vector and matrix calculations especially with the famous navier-stokes equations. [START_REF] Grünbaum | The algebra of differential operators associated to a weight matrix[END_REF][START_REF] Constantin | Navier-stokes equations[END_REF][START_REF] Temam | Navier-Stokes equations: theory and numerical analysis[END_REF] I remind the readers that this work is a revision of personal previous work made since January 2016 entitled "mémoire en physiques". [START_REF] Akram | Mémoire en Physiques[END_REF] Part A: Rotations of Newtonian mechanics:

Introduction:

We know that: ( ) . However, in physics, the infinitesimal variation dx is never null when we study the movement in a physics phenomenon except at rest. Consequently, we shouldn't use f' the derivative of the function f. We should use instead which is the differential divided by the infinitesimal variation. Let's consider the circle of radius r=1 in the figure 1, where b is the length of the circular arc and a is the circular arc chord and dφ is the circular arc infinitesimal angle. Consequently b= dφ and S is the area of the circular segment that is the area of the surface between a and b, where ( ( )).

Remarks:

And we consider that h=sin(dφ) and c=cos(dφ) and c+e=1.

Remark 1:

If dφ is small enough, then

( ) ( ) (1) 
and in this case S≈0 therefore a and b become combined which means a≈b. Also, in this case, h≈ dφ therefore by using Pythagoras' theorem we conclude that: consequently: and thus e disappears and cos(dφ)=c≈1. We conclude that:

( ) ( ) (2 
) and we remark that in this case ( ) ( ) consequently, trigonometric identities are unusable when sin(dφ)≈ dφ. By Al-Kashi's theorem we prove also that a≈0 which implies that dφ≈0. And this is remarked also with:

( ) and this is absurd since dφ exists during the study of the rotation in a physics phenomenon where we should have normally cos(dφ) < 1. We conclude that the approximation with sin(dφ)≈dφ is unusable. If we use sin(dφ)≈ dφ and ( ) √ (3) by using Pythagoras' theorem in the trigonometric circle, then in this case: √ √ Hence: √

Consequently: √ √

We conclude that: √ ( )

And thus:

We proved that if we use sin(dφ)≈ dφ and ( ) √ , then this implies that which is a contradiction. Hence, the use of this approximation is false and can cause errors in the study of the rotation in a phenomenon.

Remark 2:

Now let's use the limit of ( ) when dφ tends to zero.

We have consequently when dφ is small enough: ( ) .

(4) Consequently, by using Pythagoras' theorem in the trigonometric circle:

( ) √ . (5) 
In this case S≠0 even if we notice that a tends to dφ (a≈ dφ) when we use Al-Kashi's theorem in the triangle of the figure 1. S≠0 because a equals approximately dφ but b equals exactly dφ and the formula ( ( ))prevents us to consider that a=b.

This approximation is correct and causes no contradictions. Consequently, we can use it without risking any errors.

All the trigonometric identities are usable in this case since ( ) ( ) and since the triangles of the trigonometric circle in figure 1 stay all valid. Remark 3:

( ) ( ( )) ( ) ( ) (6) 
consequently trigonometric identities are not usable for . We conclude that we should fix dφ as the smallest detectable variation in the phenomenon studied rotation which depends on the detection technology in order to avoid mathematical contradictions.

The fixed dφ will respect the formulas: ( ) and ( ) √ .

However, in this case we should use dt as the variable.

During the rotation in Newtonian mechanics, we have a fixed infinitesimal variation which defines the fixed change dφ that happens in different changing durations Δt. For example, in a polar coordinate system (ρ,φ,z=0), we will have:

⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗ ( ) (7) 
where: and dt=Δt is the variable duration of each dφ. You will find in this document an example of this method application that deals with the case of GPS systems.

Important:

These approximations imply that:

( ( ) ( )) consequently: ( ) ( )
And thus: ( ) and: ( )

Remark 4:
In order to simplify the results, we will consider that ( ) and ( )

We can also deduce by using these approximations that:

∫ ( ) √ ( ( ) ( )) ( ( ) ( )) (14) 
and:

∫ ( ) ( ( ) ( )) √ ( ( ) ( )) (15) 
by integrating ( ) and ( ) calculated above.

These two integrals are only approximate sums since dφ is fixed as dφ>0. However Riemann's definition of integrals requires that dφ tends exactly to zero. However, we can also check from above that: We can prove easily that:

∫ ( ) ( ) ( ) and: ∫ ( ) ( ) ( ) ∫ 
( ) ( ) ( ) (16) 
and:

( ) ( ) ( ) (17) 
Consequently:

( ) ( ) ( ) ( ) ( ) (18) 
and: ( )

( ) ( ) ( ) ( ) (19) 
And also:

( ( ) ) ( ( ) ) (20) and: ( ( ) ) ( ( ) 
) .

(21)

Conclusion 1:

Let's consider that ⃗ ( ) is a rotating vector that belongs to the plane of its rotation φ. Hence:

⃗ ⃗ ( ) ⃗ ⃗ ( ) ⃗ ⃗ ( ) ‖ ⃗ ( )‖ ( ( ( ) ( ) ) √ ( ( ) ( ) )+ ⃗ ( ) √ ⃗ ( ) (22) 
Consequently:

⃗ ⃗ ( ) ⃗ ( ) ‖ ⃗ ( )‖ (23) 
because dφ exists during the study.

Where:

‖ ⃗ ⃗ ( ) ‖ ‖ ⃗ ( )‖ and: ( ⃗ ⃗ ( ) ⃗ ( )) ^ ( ) (24) 

Results and applications:

Result 1:

When using the approximations: ( ) and ( ) √ , if ⃗ ( )is a rotating vector that belongs to the plane of its rotation φ, then

⃗ ⃗ ( )
is not orthogonal to ⃗ ( ).

Consequently, the famous method of reference frames change becomes false and unusable in Newtonian mechanics. Furthermore, the velocity field becomes not equiprojective for solid mechanics.

Result 2:

In cylindrical coordinates (ρ,φ,z):

⃗⃗⃗⃗ ( ) ⃗⃗⃗ ( ) √ ⃗⃗⃗⃗ ( ) (25) 
and:

⃗⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗ ( ) √ ⃗⃗⃗ ( ) (26) 
Important example:

We will study the case of The GPS system satellites by proving the real time at a given satellite. We will need no time dilation in this proof. Let's consider that the speed V of the satellite is constant V=k 1 , By using the correct approximations above:

⃗⃗⃗⃗⃗⃗⃗ ( ) ( ) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ( ) ( ) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ( ) √ ( ) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ (27) 
Where M stands for the position of the satellite that has a circular orbit of angle φ.

Since the speed vector given to the satellite is tangent to the circle of the wanted trajectory, we should have:

( ) ( ) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ( ) ( ) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗ (28) 
Hence:

( ) ( ) (29) 
Consequently:

( ) ( ( )* ( ) (30) 
Where: h is the initial altitude of the satellite.

The linear speed V of the GPS satellite is the constant speed that equals the initial speed given to the satellite in order to start orbiting.

Consequently: ⃗ ( ) √ ( ) ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ (31) 
And thus:

√ ( ) ( ( √ ), (32) 
We should remark that: ρ(t) increases in the beginning of the GPS satellite lifetime with a very slight change thanks to the initial launching power from earth. φ=0 at the point where the satellite started orbiting after being launched. φ is always increasing and exceeds 2π, consequently φ is always positive and . dφ is the constant smallest variation of the satellite angle that we can detect, and dt is the time needed for that variation. Since we consider in our study that dφ is constant and dt is the variable, we conclude that:

√ ( ) (33) 
and thus dt depends on the satellite rotation angle φ.

application:

The real time ΔT needed by the satellite to make the first lap around the earth after it is launched is: 

∑ ( √ ( *, √ ∑ ( ( )+ ( 

A new method to avoid the conventional method of changing reference frames:

We will present a new method to avoid the famous method of changing reference frames that needs the perpendicularity between a rotating vector and its derivative. When a given reference frame with orthonormal direct axes is making any revolution, this revolution can be decomposed to three simple revolutions, and each one of these simple revolutions is around one of the three axes. However each axis changes only by two simple revolutions that are the simple revolutions around the two other axes and not by the revolution around itself. Consequently, let's consider that α is the angle of the simple revolution around the axis , β is the angle of the simple revolution around the axis , and ɣ is the angle of the simple revolution around the axis ⃗ where ( ⃗ )are the three orthonormal direct axes of the reference frame that makes any given revolution. This revolution is composed of the three simple revolutions of angles: α, β and ɣ. Let's study each one of the three axes independently from each other. The simple revolution doesn't influence its axis but the two others. Hence each axis is influenced by two simple revolutions and thus we can use a spherical coordinates system to study each axis.

We will calculate , and ⃗ which are the derivatives of , and ⃗ in an absolute fixed reference frame ( ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ). This method is useful in order to avoid the difficult projections of , and ⃗ in the absolute fixed reference frame. Furthermore, the three derivatives will be calculated without making any change of reference frames. However, the functions α(t), β(t) and ɣ(t) of the three simple revolutions must be well known before making this study.

Step 1: The study of the vector :

Let's consider that ⃗⃗⃗ , ⃗⃗⃗⃗ and ⃗ ⃗⃗⃗⃗ where: ⃗⃗⃗ , ⃗⃗⃗⃗ and ⃗⃗⃗⃗ are the vectors of a spherical coordinates system. We conclude that: ɣ=θ and α has no effects on . However, we should find the relation between φ and both β and ɣ.

Fig.2 :

The circle of rotation β and the ellipse of rotation φ.

An important advice:

The result of this vector study should preferably be used with the formula: ∫ ⃗⃗⃗⃗ during the energetic study of a system, then simplifications can be made in order to find the correct expression of the kinetic energy variation .

Part B: Differential operators:

The differential operators gradient (nabla), divergence, curl and Laplacian provide information about about a field of scalars or vectors situated immediately in front of the studied point M according to the orientations of the axes of the used coordinates system. Let's prove the formulas of each differential operator geometrically by using the three coordinates systems in an Euclidean space where the field lines are considered continuous vector functions.

The operator gradient (nabla):

Let's consider a function of locations points:

. Where E is the Euclidean space and the function f is differentiable and thus continuous.

Consequently:

( ) makes a scalar field.

In each of the three coordinates system, the operator gradient has this form: ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ .

The Cartesian coordinates System (x,y,z):

( ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ) ( ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ) ( ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ ) ⃗⃗⃗⃗⃗⃗ (58) 
Consequently:

⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ (59) 
The cylindrical coordinates system (ρ,φ,z):

( 

And thus:

⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ( ) ⃗⃗⃗⃗ (73) 
Clarifications:

⃗⃗⃗⃗⃗⃗ is an infinitesimal displacement that depends on the used coordinates system. The studied function f must be expressed according to the coordinates system of the used reference frame, then we use the coordinates of M in the final expression. ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ characterizes the variation of f in the space for a given displacement ⃗⃗⃗⃗⃗⃗ . df changes depending on M the studied point of the space, because to each point M corresponds a value f(M), and also, ⃗⃗⃗⃗⃗⃗ is immediately in front of the studied point M according to the orientations of the axes of the used coordinates system . Consequently, ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ is a vector field that depends on the value f(M) at the location of the point M and also on the coordinates system being used. ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ‖ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ‖ ‖ ⃗⃗⃗⃗⃗⃗ ‖ ( ) consequently ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ is located at a rotation angle from ⃗⃗⃗⃗⃗⃗ in the anticlockwise orientation. The level surfaces are the space surfaces where f stays constant. And ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ is perpendicular to its level surfaces.

2.The flow and the operator divergence:

The elementary flow is: ⃗ is a scalar field where: is a vector field dS and dτ are consecutively the elementary surface and volume of the used coordinates system. ⃗ is the unit normal vector to dS. For a closed surface we orientate ⃗ towards outside the surface. Also, dS and dτ change from a coordinates system to an other. Consequently, depends on the coordinates system being used. 

We finally conclude that:

The cylindrical coordinates system (ρ,φ,z):

In the cylindrical coordinates system: ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗ where M is a point of the space. In the figure 3, the elementary volume is: . (88) Also:

(89) and ( ) In the figure 3, we prove by using circular sectors that: (91) And:

( ) (92) 
Hence: ⃗⃗⃗⃗

and:

⃗⃗⃗⃗ ⃗⃗⃗⃗ ( ) (94) 
where:

Consequently:

( ( )) (96) 
because: ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ .

And also: ⃗⃗⃗⃗

and:

⃗⃗⃗⃗ ⃗⃗⃗⃗ (98) 
where:

Consequently:

(100) because: ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ .

And also:

⃗⃗⃗⃗ ( ) (101) 
and:

⃗⃗⃗⃗ ⃗⃗⃗⃗ ( ) (102) 
where:

Consequently:

( ) ( ) (104) because: ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗ . Hence: ( ( ) ( ) ) (105) 
We finally conclude that:

( ) ( ) (106) 
The spherical coordinates(r,θ,φ):

In the spherical coordinates: ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ and ⃗⃗⃗ is always in the plane of the rotation θ. And the elementary volume is: In the figure 5, the vector that is the radius of the circular arc made by dφ is always in the plane of ⃗⃗⃗⃗ . And by using circular sectors:

( ) . ( 107 
)
( ) . ( 108 
)
Fig. 6 : The elementary surfaces dS 3 and dS 4 .

In the figure 6:

( ) ( ) (109) 
and: And it is a vector field that respects the following Stokes' theorem:

( ) ( ) (110) 
⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ Where: dS 12 , is the elementary surface in the plane ( ⃗⃗⃗ ⃗⃗⃗ ),dS 13 is the elementary surface in the plane ( ⃗⃗⃗ ⃗⃗⃗ )and dS 23 is the elementary surface in the plane ( ⃗⃗⃗ ⃗⃗⃗ ), and Also: dC 1 ,dC 2 and dC 3 are respectively their closed boundaries of the corresponding elementary surfaces in the reference frame planes. These boundaries are outlines oriented anticlockwise when we are observing the surfaces from the inside (center) of the reference frame.

We prove that: Where: d ij is the elementary length of the elementary surface sides. And A ij is the field vector of that coincides with d ij . The boundaries are drawn by starting from the studied point M(x,y,z). Consequently, the sides of the elementary surfaces have elementary sides d ij in common.

⃗⃗⃗⃗⃗⃗
The Cartesian coordinates System (x,y,z): In the figure 8 We conclude finally that: ⃗⃗⃗⃗⃗⃗

The cylindrical coordinates system (ρ,φ,z): In the figure 9: (162) and:

(163) and: ( ) (164) And: (165) And also:

(166)

Figure 1 .

 1 Figure 1. The trigonometric circle of radius r=1.

  ( ) and ∫ ( ) are left as a challenge to the readers!!! Remark 5:

Figure 3 .

 3 Figure 3. The elementary volume dτ and the elementary surfaces dS 1 and dS 2 .

Figure 4 .

 4 Figure 4. The elementary similar surfaces dS 3 , dS 4 , and the elementary similar surfaces dS 5 and dS 6 .

Figure 5 .

 5 Figure 5. The six elementary surfaces forming an infinitesimal volume. And the elementary similar surfaces dS 1 and dS 2 .

Figure 7 .

 7 Figure 7. The elementary surfaces dS 5 and dS 6 .

Figure 8 .

 8 Figure 8. The boundaries dC 1 , dC 2 and dC 3 of the cartesian coordinates.

Figure 9 .

 9 Figure 9. The boundaries dC 1 , dC 2 and dC 3 of the cylindrical coordinates.

  

  

  ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ )don't change by the variation of r but only θ and φ. ⃗⃗⃗ and ⃗⃗⃗⃗ are always in the rotation plane θ. since ⃗⃗⃗⃗ is always perpendicular to the plane of the rotation θ. Consequently, ⃗⃗⃗⃗ doesn't change by the variation of θ.In order to find:⃗⃗⃗⃗ , ⃗⃗⃗⃗ and ⃗⃗⃗⃗⃗ , we should make the projections of ⃗⃗⃗ , ⃗⃗⃗⃗ and ⃗⃗⃗⃗ in the suitable cylindrical coordinates (ρ,φ,z) with the same plane of rotation φ that contains always ⃗⃗⃗ and the same vector ⃗⃗⃗⃗ of the spherical coordinates. ⃗⃗⃗⃗ is the same in the two coordinates systems.

	Result 3: and also: ⃗⃗⃗⃗			√		( ) ⃗⃗⃗	√	( ) ⃗⃗⃗⃗	⃗⃗⃗⃗
	In spherical coordinates(r,θ,φ): (47)	
	⃗⃗⃗		⃗⃗⃗⃗		⃗⃗⃗⃗ and: ⃗⃗⃗⃗	⃗⃗⃗⃗	⃗⃗⃗⃗ and: ⃗⃗⃗⃗	⃗⃗⃗⃗⃗	⃗⃗⃗⃗⃗
	since ( Also:	⃗⃗⃗⃗		⃗⃗⃗ √		⃗⃗⃗⃗	(38)
	and:	⃗⃗⃗⃗		⃗⃗⃗⃗ √		⃗⃗⃗	(39)
	since: And also:					
	Hence: ⃗⃗⃗		( ) ⃗⃗⃗	( ) ⃗ and: ⃗⃗⃗⃗	( ) ⃗⃗⃗	( ) ⃗
	and: ⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ where: Also:	⃗⃗⃗⃗	( )	⃗⃗⃗⃗	( ) (	⃗⃗⃗ √	⃗⃗⃗⃗ ) (40)
	And:	⃗⃗⃗⃗	( )	⃗⃗⃗⃗	( ) (	⃗⃗⃗ √	⃗⃗⃗⃗ )	(41)
	with: ⃗⃗⃗	( ) ⃗⃗⃗		( ) ⃗⃗⃗⃗
	and thus:					
	⃗⃗⃗⃗				( )	⃗⃗⃗		( ) ⃗⃗⃗⃗	( ) √	⃗⃗⃗⃗
	(42)							
	and:	⃗⃗⃗⃗			( ) ⃗⃗⃗		( )	( ) √	⃗⃗⃗⃗	(43)
	and:	⃗⃗⃗⃗⃗		( ) √		⃗⃗⃗	( ) √	⃗⃗⃗⃗	⃗⃗⃗⃗
	(44)							
	5. Conclusion 2:			
		⃗⃗⃗		(			( ) ) ⃗⃗⃗ (	√	( ), ⃗⃗⃗⃗
					√			( ) ⃗⃗⃗⃗
									(45)
	Where: and: ⃗⃗⃗⃗	⌊ ⌋(the floor of ) ( √		( )+ ⃗⃗⃗ (	(35) ( ) ) ⃗⃗⃗⃗	34)
	and √			√	( ) ⃗⃗⃗⃗		(	)	(36)
	and					.			(37) (46)

⃗⃗⃗⃗⃗ ⃗ ⃗ ⃗ consequently:

  The Cartesian coordinates System (x,y,z): We remark that: dτ=dx.dy.dz and dS 1 =dS 2 =dx.dy and dS 3 =dS 4 =dy.dz and dS 5 =dS 6 =dx.dz.

	And also:		⃗⃗⃗⃗	(74)
	and:	⃗⃗⃗⃗	⃗⃗⃗⃗	(75)
	where:			(76)
	Consequently:		(77)
	because: ⃗⃗⃗⃗	⃗⃗⃗⃗	⃗ .	
	And also:		⃗⃗⃗⃗	(78)
	and:	⃗⃗⃗⃗	⃗⃗⃗⃗	(79)
	where:			(80)
	Consequently:		(81)
	because: ⃗⃗⃗⃗	⃗⃗⃗⃗	.	
	And also:		⃗⃗⃗⃗	(82)
	and:	⃗⃗⃗⃗	⃗⃗⃗⃗	(83)
	where:			(84)
	Consequently:		(85)
	because: ⃗⃗⃗⃗	⃗⃗⃗⃗	.	
	And thus:		(	)

  of the elementary surfaces have elementary sides d ij in common.

	and also:						(151)
	and:						(152)
	with:		and:	and:			(153)
	because the sides And thus:	( (	) )	( (	) )
			(	)	(	)
	(154)					
	Consequently:			⃗⃗⃗⃗⃗⃗		(155)
	where: dS 23 =dy.dz					(156)
	And:			⃗⃗⃗⃗⃗⃗			(157)
	where: dS 13 =dx.dz					(158)
	And also:			⃗⃗⃗⃗⃗⃗	⃗	(159)
	where: dS 12 =dx.dy					(160)
		: dS 23 =dy.dz				(140)
	and: dS 13 =dx.dz					(141)
	and dS 12 =dx.dy					(142)
	And:	⃗⃗⃗⃗⃗⃗	⃗⃗⃗ ⃗⃗⃗⃗⃗⃗	⃗⃗⃗ ⃗⃗⃗⃗⃗⃗		⃗⃗⃗ ⃗⃗⃗⃗⃗⃗	⃗⃗⃗
	(143)					
	Consequently:				
	(144)					
	By following the same method we prove that:		
	(145)					
	And:					
	(146)					
	Where:						(147)
	and:						(148)
	and also:						(149)
	and:						(150)

The figure 2 shows that the intersection of the rotation β plane and the rotation φ plane is the axis ⃗⃗⃗⃗⃗ of a Cartesian coordinates system. And the orthogonal projection of the circle made by the rotation β inside the plane of ⃗⃗⃗⃗ is an ellipse made by the rotation φ. We consider that O is the center of the ellipse whereas φ is the angle between ⃗⃗⃗⃗ and ⃗⃗⃗⃗⃗ . ⃗⃗⃗⃗⃗ is perpendicular to the plane of the rotation φ which is the plane of ⃗⃗⃗⃗ that is the plane of the two Cartesian vectors ⃗⃗⃗⃗⃗ and ⃗⃗⃗⃗⃗ . ⃗⃗⃗⃗⃗ is in the plane of the rotation β which is the plane of and ⃗⃗⃗⃗⃗ is perpendicular to the axis ⃗⃗⃗⃗⃗ . We can prove that:

( )and ( ) ( ) (48) ⃗⃗⃗⃗⃗ is in the plane of ⃗⃗⃗⃗ with:

And the equation of the ellipse is: where a= (the half of the ellipse major axis), and b= (the half of the ellipse minor axis). Consequently: a=1 and b= sin(θ) And also: ( )and: ( ) Therefore, the ellipse equation becomes:

( ) (51) and this equation doesn't change even if: and: . Since we know exactly the functions β(t) and ɣ(t), we can deduce easily the function φ(t) in order to be able to calculate dφ(t), especially that: and:

and also: and also: .

However we can only use this formula when and .

But we notice that if and ɣ stays fixed, then always φ=β and thus we can study easily by using cylindrical coordinates system. Finally, by using the formula of ⃗⃗⃗ , we conclude that:

Hence:

where: φ 1 (t)=φ(t) in step 1.

Step 2: The study of the vector :

By following the same method, let's consider that ⃗⃗⃗⃗ , ⃗⃗⃗ and ⃗ ⃗⃗⃗⃗ where: ⃗⃗⃗ , ⃗⃗⃗⃗ and ⃗⃗⃗⃗ are the vectors of an other spherical coordinates system. We conclude that: α=θ and β has no effects on . However, we should find the relation between φ and both α and ɣ. And Let's consider that: φ 2 (t)=φ(t) in step 2.

=

The ellipse equation gives:

Consequently, we can deduce easily the function φ 2 (t). And thus by using the formula of ⃗⃗⃗ again, we conclude that:

Step 3: The study of the vector ⃗ :

By following the same method, let's consider that ⃗⃗⃗⃗ , ⃗⃗⃗⃗ and ⃗ ⃗⃗⃗ where: ⃗⃗⃗ , ⃗⃗⃗⃗ and ⃗⃗⃗⃗ are the vectors of an other spherical coordinates system. We conclude that: β=θ and ɣ has no effects on ⃗ . However, we should find the relation between φ and both α and β. And Let's consider that: φ 3 (t)=φ(t) in step 3.

The ellipse equation gives:

Consequently, we can deduce easily the function φ 3 (t). And thus by using the formula of ⃗⃗⃗ again, we conclude that:

In the figure 7, we flatten the surface dS 5 consequently we get a trapezoid shape that has the following height h 1 :

Hence:

We make the same with the surface dS 6 and we get a trapezoid shape that has the following height

And:

We have:

and:

where:

Consequently:

And also:

and:

because: ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗ where:

Consequently:

(123) Let's consider that:

And also: ( )

We conclude that:

For: and : Let's consider that:

Consequently:

(130) because: ⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ and:

We conclude that:

And thus:

We finally conclude that:

By using the demonstrated approximations:

) And:

) And Also:

) And:

In order to calculate the divergence of in a point of the space M(x,y,z), we should replace by the data of in the expression of the chosen reference frame coordinates system. Then, we integrate the final expression by using the coordinates of the studied part of the space if the integration is possible.

The six vectors ⃗⃗⃗ that are normal to the elementary surfaces are oriented towards outside. Consequently, for a uniform field , when , the field vectors that are in the studied part of the space, in the orientation of the used reference frame axes, have the same orientations of the vectors ⃗⃗⃗ . And thus the field is divergent in the studied part of the space and . In the case when , the field vectors in the studied part of the space have orientations opposite to the vectors ⃗⃗⃗ orientations. Consequently the field is convergent in the studied part of the space and .

In the case when , and the field exists in the studied part of the space, this means that every field vector has its opposite across each elementary surface. In this case , otherwise the field is tangent to all the elementary surfaces and thus it is a rotational field.

The operator curl:

In an orthonormed direct reference frame of axes ( ⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗ ), we can define the operator curl as: 

⃗⃗⃗⃗⃗⃗

Consequently:

Where:

And:

Where:

And also:

Where:

Hence:

And:

And also:

We conclude finally that:

The spherical coordinates(r,θ,φ): In the figure 10:

Consequently, by considering that:

We find that:

We remind that the calculations from before gave:

And:

Also:

And also:

We have: 

) And also:

Where:

Where:

And also:

Where:

We conclude that:

And: ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗

And also: ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗

We conclude finally that:

),

Clarifications:

During the study, we should replace by the field coordinates in the curl formulas demonstrated above. Then, we integrate according to the studied part of the space when the integration is possible. The operator curl informs about a part of the vicinity of a studied point. This part is the part of the space in front of the studied point in the orientation of the coordinates system being used.

If a coordinate of the curl is positive, then the vector field located at the studied point vicinity that is perpendicular to that coordinate axis is a vortex field. The vortex is anticlockwise around the positive coordinate axis. If that coordinate is negative then the vortex will be oriented clockwise.

If that coordinate is null whereas the field exists, then the field will be uniform in the part of the studied point vicinity concerned by the null coordinate.

The operator Laplacian:

Let's consider a function of locations points:

. Where E is the Euclidean space and the function f is differentiable and thus continuous. The Laplacian of f is:

( ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ). The Cartesian coordinates System (x,y,z): ⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗ and:

Where: is a vector field.

Consequently:

The cylindrical coordinates system (ρ,φ,z):

Where: is a vector field.

Consequently:

The spherical coordinates(r,θ,φ):

and:

Where: is a vector field. Consequently:

(

We remind that:

And:

And Also:

And:

Clarifications:

During the study, we should replace by the studied function f in the Laplacian formulas demonstrated above. Then, we integrate according to the studied part of the space when the integration is possible. If Δf=0 then f behaves uniformly in the location that is immediately in front of the studied point M. If Δf>0 then a local minimum of f exists in the location that is immediately in front of the studied point M. If Δf<0 then a local maximum of f exists in the location that is immediately in front of the studied point M. When we are studying the Laplacian of a function f, the gradient vectors cross diagonally the volume made by the elementary surfaces of the divergence.

Remark:

The results found should make the convinced readers change their vector and matrix calculations especially with the famous navier-stokes equations.