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Bifurcations organise the dynamics of many natural
and engineered systems. They induce qualitative
and quantitative changes to a system’s dynamics,
which can have catastrophic consequences if
ignored during design. In this paper, we propose
a general computational method to control the local
bifurcations of dynamical systems by optimizing
design parameters. We define an objective functional
that enforces the appearance of local bifurcation
points at targeted locations or even encourages
their disappearance. The methodology is an efficient
alternative to bifurcation tracking techniques capable
of handling many design parameters (> 102). The
method is demonstrated on a Duffing oscillator
featuring a hardening cubic nonlinearity and an
autonomous van der Pol-Duffing oscillator coupled
to a nonlinear tuned vibration absorber. The finite
element model of a clamped-free Euler-Bernoulli
beam, coupled with a reduced-order modelling
technique, is also used to show the extension to the
shape optimization of more complicated structures.
Results demonstrate that several local bifurcations of
various types can be handled simultaneously by the
bifurcation control framework, with both parameter
and state target values.
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1. Introduction
Bifurcation phenomena are ubiquitous in natural and engineered systems. They play a key role
in organising qualitative and quantitative changes to a system’s dynamics, defining regions of
multi-stability, or transitions from quiescent responses to oscillatory behaviours. For example,
in biology, bifurcations underpin fundamental cellular processes like cell differentiation and
spiking behaviours [1–3]; in chemical engineering, they serve as a powerful tool to identify the
optimal operating conditions of chemical reactors [4]; in laser physics, they can be exploited
to operate bi-stable lasers, which find applications as optical flip-flop memory apparatuses [5],
or to produce pulsed beams via passive Q-switching [6,7]. In mechanics, the multi-stability
induced by the presence of bifurcations has been exploited for mass detection [8,9], energy
harvesting [10,11], shape morphing [12], and energy transfer [13]. The resonances of lightly
damped nonlinear systems are also found near saddle-node bifurcations [14–16]. If unaccounted
for, bifurcations can lead to undesirable transitions to quantitatively different regimes of motion,
resulting in high stresses that can degrade components’ life or even jeopardize the overall
structure integrity [17–19].

In this paper, we propose a general computational methodology to control, through multi-
parametric optimization, the local bifurcations of engineered systems, moving them at desired
locations in parameter space or even removing them if necessary. The method is inspired by the
work of Szep et al [20] where an optimization problem was formulated to estimate normal form
model parameters of a gene model based on bifurcation diagrams. Here, we repurpose this work
to the context of bifurcation control and generalise it to handle multiple types of bifurcations
simultaneously. We develop a wider range of optimisation objectives that are more sophisticated
than bifurcation parameter values at the bifurcation points and demonstrate the methodology can
handle a relatively large number of design variables (> 102).

Numerical continuation is a popular approach for conducting bifurcation analysis [21]. It is a
predictor-corrector method that follows paths of equilibria or periodic solutions in, typically, a
codimension-1 parameter space. Bifurcations along the solution curves can be detected, and their
evolution can, in turn, be followed when a second parameter is permitted to vary (codimension-
2) [22]. Bifurcation tracking methods have recently gained popularity within the mechanical
vibration community as they enable the identification of stability boundaries and safe operating
conditions [23–26]. Bifurcation tracking is arguably the simplest form of bifurcation optimisation
in one design parameter. The first general methodology to optimise bifurcations was proposed
by Doedel in [27,28] where the location of a fold bifurcation was controlled using a series of
single-parameter continuations finding the extrema of the objective function with respect to one
parameter at a time. This approach becomes tedious when a large number of parameters are
considered and it necessitates repeating the procedure for each bifurcation point encountered on
the solution branch. This introduces two notable challenges. Firstly, bifurcation tracking analyses
are computationally more demanding compared to conventional nonlinear analyses, although
some of the added computational burden could be alleviated by tracking bifurcation points
in parallel. Secondly, several bifurcation curves may be disconnected from one another under
variation of a design parameter [25]. This renders approaches based on bifurcation tracking less
efficient. Overall, bifurcation tracking appears most suitable when one considers the control of a
single bifurcation with respect to a single design variable. The methodology proposed here differs
in that it only requires continuation with respect to the parameter(s) used to define the desired
bifurcation location and does not require any continuation in all the other design parameters.
Thus, it is well adapted for controlling all local bifurcations occurring in a specific bifurcation
parameter interval with respect to a large number of design variables.
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More recently, Boullé et al [29] formulated a shape optimization problem constrained by an
augmented system of equations, similar to the one used for tracking fold bifurcations and branch
points in [23,30], to control the location of a single branch point. This approach was extended
to Hopf bifurcations [31] and successfully applied to a wide range of problems, including the
complex Ginzburg-Landau and Navier-Stokes equations and a hyperelastic beam. The approach
proposed here does not rely on bifurcation-defining constraints being verified at each iteration of
the optimizer, giving more freedom to explore the design space.

Besides directly controlling bifurcations, numerous contributions investigated the optimization
of nonlinear mechanical systems to obtain desired nonlinear behaviours. Pedersen [32] used
topology optimization to mitigate the appearance of internal resonances in plates made of two
materials. The methodology was able to handle several internal resonances simultaneously by
expressing the objective function with a bound formulation, i.e. by maximizing the lowest
of all combinations of frequencies leading to internal resonance. Dou et al [33] coupled the
incremental harmonic balance method (HBM) and the method of moving asymptotes to optimize
the non-uniform width of a clamped-clamped beam with constant thickness to minimize the
amplitude of both primary and super-harmonic resonances. In [34], they successfully optimized
coefficients defined with normal forms by employing the method of moving asymptotes by
varying the element-wise thickness of both a clamped-clamped beam and a T-shaped structure.
Later, they employed nonlinear normal modes computed with the HBM to optimize the
hardening/softening behaviour of planar frame structures by varying the in-plane element-wise
thickness of the constitutive elements [35]. The methodology developed in [34] was applied to
the design of micro-electromechanical systems in [36]. More recently, Detroux et al [37] optimized
the form of the nonlinearity to tailor the frequency-amplitude dependence of the resonances of
nonlinear mechanical systems and suppress modal interactions and impose mode isochronicity
with a 2-degree of freedom model. Grenat et al [38] implemented a recursive algorithm to compute
the extrema of bifurcation curves in multi-parameter space for the design of a nonlinear tuned
vibration absorber (NLTVA). Denimal et al [39,40] used topology optimization on under-platform
dampers to reduce the amplitude at the resonance of a bladed disk. While all these methods
are undoubtedly useful, they do not directly address bifurcations or only very specific types of
bifurcations.

The paper is structured as follows. The optimization problem and the computational method
for enforcing codimension-1 bifurcation points to appear at targeted locations are formulated in
Section 2. The standard methods used to compute the solution curves and carry out bifurcation
analysis are presented in Section 3. The method chosen in this paper are well-adapted for the
mechanical applications considered here. However, the optimisation methodology is very general
and other methods can be used. The capabilities of the proposed bifurcation control framework
are demonstrated in Section 4 using three examples of increasing complexity, namely a forced
Duffing oscillator, an autonomous van der Pol-Duffing (vdPD) oscillator coupled to a NLTVA [41],
and the finite element model of a clamped-free Euler-Bernoulli beam with a nonlinear mechanism
attached at its free end. The main conclusions are drawn in Section 5.

2. Formulation of the optimization problem
The aim of the proposed method is to determine a set of design parameters allowing a number
of local bifurcation points to appear at targeted locations in the bifurcation diagram. The method
relies on a series codimension-1 continuation analyses with respect to the bifurcation parameter
in order to evaluate an objective functional whose purpose is to minimize the distance between
the local bifurcations detected on the computed solution branch and a number of optimization
targets. The objective functional is formulated in such a way that multiple local bifurcations of
different types can be controlled simultaneously. This is achieved by systematically comparing all
bifurcations of a specific type across all targets of the same type.
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The optimization problem takes the general form

minimize
θθθ

fo

subject to bli ≤ θi ≤ bui ∀i∈ J1, pK,
(2.1)

where fo is the objective function to be minimized, θθθ ∈Rp is the vector of design (or decision)
variables, e.g. the structural parameters of a mechanical system. The only constraints considered
hereafter are box constraints defined with vectors bl and bu to ensure that the design parameters
assume feasible values, e.g. positive mass. Any component bli or bui can be set to infinity if the
parameter is only restricted to R+∗ or R−∗.

The proposed objective function is formulated as

fo(T ,P) = |T − P|Ψ(θθθ)

︸ ︷︷ ︸
Bifurcation measure

+
1

|T |
∑
τ∈T

∏
π(θθθ)∈P

∣∣∣∣π(θθθ)− τ

τ

∣∣∣∣1/|P|

︸ ︷︷ ︸
Error measure

, (2.2)

where T represents the set of target bifurcations and P is the set of bifurcations predicted by the
model at each step of the optimisation solver. The notation |T | simply represents the number of
elements in the set T .

The cost function comprises two types of terms that are hereafter referred to as the bifurcation
measure and the error measure. They are further detailed in Sections 2(b) and 2(c), respectively. The
computation of those terms for particular design parameters θθθ relies on a single one-parameter
continuation presented in Section 2(a).

(a) One-parameter continuation
At a fundamental level, numerical continuation is a method to trace out the solution manifold of
a parameterised zero problem

R(q,µµµ,θθθ) = 0, (2.3)

where q ∈Rn is the solution vector andµµµ is the vector of bifurcation parameters. A wide range of
responses can be captured by such a zero problem (equilibria, periodic responses, quasi-periodic
responses, etc.). While the design parameters θθθ could be considered as bifurcation parameters,
they are here kept separate from µµµ to emphasise the fact that no continuation is performed
with respect to the design parameters. Furthermore, in this study, the bifurcation parameters are
limited to a single parameter µ, and the solution manifold is a one-dimensional curve. For the
mechanical systems considered in Section 4, a typical choice of parameter is the applied excitation
frequency, which gives the so-called forced (or frequency) response curves (FRC).

A bifurcation occurs at a specific point along the solution curve when the Jacobian of Eq. (2.3)
becomes singular. Bifurcation points are usually detected by monitoring the sign of a scalar test
function, hereafter denoted by g, whose zero indicates a bifurcation of a specific type. There are
several ways to define such functions. In the present work, the approach based on minimally-
extended systems is used (see Section 3). Although bifurcations are detected through changes in
the parameter µ, they also depend on the design variables θθθ.

(b) Bifurcation measure
The bifurcation measure term incites the optimizer to explore regions of the optimization
parameter space where the system exhibits multiple bifurcations of a given type. It circumvents
the use of constraints that can be difficult to enforce during the optimization iterations, especially
when the constraints are complicated functions, such as the Moore-Spence and Griewank and
Riedden systems used in [29,31], that are computationally expensive to evaluate. With the present
approach, the presence of bifurcations is not imposed but rather encouraged in a weak sense. This
also facilitates the treatment of cases where bifurcations vanish during the optimization iterations.
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The bifurcation measure is made of two terms. The first, |T − P|, serves as a penalization
term when too few or too many bifurcations are detected and ensures the bifurcation measure
disappears when the number of detected bifurcations exactly matches the number of targets. The
second term, Ψ(θθθ), ought to tend to zero as the number of bifurcations increases and, for numerical
reasons, be bounded between 0 and 1. Thus, it is desirable to formulate Ψ(θθθ) using the scalar test
function g defined in Section 3(b) as it changes sign every time a bifurcation occurs and is specific
to a given bifurcation type. Therefore, the proposed, normalised bifurcation measure is:

G(θθθ) = |g(θθθ)|
max
R=0

|g(θθθ)| . (2.4)

In order to account for bifurcations occurring over a given bifurcation parameter interval, function
G(θθθ) is integrated over the whole solution curve to define the global bifurcation measure. Since
this integral depends on the path of the curve, defined by R = 0, it is also normalized:

Ψ(θθθ) =

∫
R=0

G(θθθ)ds∫
R=0

ds

. (2.5)

The bifurcation measure can be used independently of the error measure, i.e. without the need
for imposing target locations. This can be used to penalise the appearance or presence of certain
bifurcation types. For instance, in Section 4(b), it is used to completely suppress the presence of
all local bifurcations of periodic orbits.

(c) Error measure
Controlling the location of bifurcation points requires the evaluation of an error term to quantify
how far detected bifurcations lie from the target locations. This constitutes a challenging task,
especially when large variations of the structural parameters are allowed, as the number of
bifurcations detected in the considered parameter range may change and even equal zero.

This issue is here circumvented by using a combination of geometric and arithmetic means
as introduced in [20]. It allows one to consider all possible combinations of targets and detected
bifurcations, with the added benefit of mitigating the risk of two bifurcations being matched to
the same target as the term goes to zero only when all targets are matched with at least one
bifurcation. The error measure in Eq. (2.2), can be broken down into two types of contributions
as:

error measure =
1

|T |
∑
τ∈T

 ∏
π(θθθ)∈P

∣∣∣∣πµ(θθθ)− τµ
τµ

∣∣∣∣1/|P|
+

∏
π(θθθ)∈P

∣∣∣∣πα(θθθ)− τα
τα

∣∣∣∣1/|P|
 , (2.6)

where the subscripts µ and α denote the terms associated with the bifurcation parameter and
the response amplitude, respectively. Here, the term response amplitude refers to a measure of the
system states which, depending on the application, can be considered as the infinity norm, the L2

norm, etc.

(d) Extension to multiple bifurcation types
The above objective function handles only a single type of bifurcations. However, it is common
for a nonlinear forced response curve to exhibit several types of bifurcations in a given parameter
range. Such a scenario can be handled with the present methodology by treating it as a regularized
multi-objective optimization problem via the weighted sum method [42]. The optimization
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problem for multiple bifurcation types can thus be formulated as:

minimize
θθθ

αBP fo(TBP ,PBP ) + αF fo(TF ,PF ) + αPDfo(TPD,PPD) + αNSfo(TNS ,PNS)

subject to bli ≤ θi ≤ bui ∀i∈ J1, pK
(2.7)

where fo is given by Eq. (2.2) and the subscripts BP , F , PD and NS denote branch points,
fold, period doubling and Neimark-Sacker bifurcations, respectively. The extension of the cost
function (2.7) to other types of bifurcations, such as bifurcations of equilibria (see Section 4(b))
and bifurcations of higher co-dimension (which would require to consider more bifurcation
parameters), is straightforward.

(e) Optimization algorithm
The proposed objective function is piece-wise continuous and non-convex. For this reason, we
resort to gradient-free optimization algorithms. More specifically, this study was carried out
using the Julia implementation of the NLopt nonlinear optimization package [43] since it offers
numerous subroutines to choose from with support for bound constraints. Two gradient-free
algorithms, namely COBYLA (Constrained Optimization BY Linear Approximation) [44,45] and
Nelder-Mead [46–48] were employed. The latter was used for the computations in section 4(a)
and was replaced by the COBYLA algorithm for the optimization of the beam model of section
4(c) as it was found to exhibit superior performances in higher dimensions.

3. Nonlinear analysis

(a) Computation of the nonlinear forced response curves
A wide range of methods and software tools have been developed to compute nonlinear
responses, study their stability and identify the presence of bifurcations [49–51]. For instance,
time-domain methods such as the orthogonal collocation [49–52] or shooting methods [21] are
popular methods to determine periodic responses. A powerful alternative considered here is
the HBM [24,53–56]. Formulated in the frequency domain, the HBM is known to outperform
time domain techniques when solving large-scale systems with strong nonlinearities [57] and has
been employed in numerous fields of engineering and the applied sciences, including electrical
engineering [58,59], aeroelasticity [60,61], fluid dynamics [62], chemical engineering [63] and
biology [64].

The equation of motion of a wide range of n degrees-of-freedom mechanical models can be
written as

Mq̈(t) + Cq̇(t) + Kq(t) + fnl(q, q̇, t) = fex(t), (3.1)

where M, C, K are respectively the mass, damping and stiffness matrices and q(t) is the vector
of unknown displacements. Nonlinear forces and external periodic forcing are described by
vectors fnl and fex, respectively. We emphasize that the HBM can be applied to mathematical
models expressed as first-order systems of equations, and the general optimization framework
is independent of the method used to discretize periodic solutions. Other methods, such as
orthogonal collocation, may be more suitable for problems stemming from other physics or with
non-smooth nonlinearities. The only requirement for the continuation algorithm is that the set of
equations be formulated as a zero problem (cf. Sect. 2(a)).

The HBM consists in expanding periodic solutions q(t) of equation (3.1) as a truncated Fourier
series of order H as

q =R

( ∞∑
k=0

q̃ke
ikΩt

)
≈R

(
H∑

k=0

q̃ke
ikΩt

)
, (3.2)

where q̃ contains the coefficients of the one-sided Fourier transform. In this paper, the response
frequency, Ω, coincides with the excitation frequency and corresponds to the bifurcation
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𝐪 𝐪 t , ሶ𝐪(t)
IFFT

𝐟nl(𝐪, ሶ𝐪, t)ሚ𝐟nl
FFT

Frequency domain Time domain

Figure 1: Alternating frequency/time procedure using the fast Fourier transform and its inverse.

parameter. The displacements, velocities and accelerations may be expressed as

q =R ([T ⊗ In] q̃) , (3.3)

q̇ =R ([TΩ∇⊗ In] q̃) , (3.4)

q̈ =R
([

TΩ2∇2 ⊗ In
]

q̃
)
, (3.5)

where ⊗ is the Kronecker product, In the identity matrix of size n× n, T the vector of orthogonal
exponential functions and ∇ the complex frequency domain differential operator

∇= diag(0, i, 2i, . . . , Hi). (3.6)

Similarly, the nonlinear forces and external forcing are written as

fnl =R

(
H∑

k=0

f̃nl,ke
ikΩt

)
, (3.7)

fex =R

(
H∑

k=0

f̃ex,ke
ikΩt

)
. (3.8)

These expressions can be inserted into Eq. (3.1), and the time variable is eliminated by a Galerkin
projection on the Fourier basis T. This yields a residual R consisting of a set of n(H + 1) nonlinear
algebraic equations:

R(q̃, Ω) = Z(Ω)q̃ + f̃nl(q̃)− f̃ex = 0, (3.9)

where f̃nl and f̃ex contain the Fourier coefficients of the nonlinear forces and external forcing,
respectively, and Z(Ω) is the frequency domain dynamic stiffness matrix:

Z(Ω) =Ω2∇2 ⊗ M +Ω∇⊗ C + IH+1 ⊗ K. (3.10)

To evaluate the nonlinear forces in the frequency domain, we resort to taking advantage of the
existence of a closed-form expression of those forces in the time domain through the use of the
alternating frequency/time procedure (AFT) as introduced in [65] and illustrated in Fig. 1. Note
that the complex-valued residual is not necessarily holomorphic. It should therefore be converted
to real and imaginary parts before calls to the solver.

The evolution of the solution with respect to a parameter (here, the excitation frequency)
is followed by means of an arc-length continuation algorithm in conjunction with a tangent
predictor. An extended residual Rex is constructed by appending a constraint equation to account
for the additional unknown and solved using a Newton-like solver. A thorough description of
such a continuation method is omitted here for brevity. The interested reader may refer to [21] for
additional details.

(b) Bifurcation analysis
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(i) Local stability analysis

The first step to detecting bifurcations consists in assessing the stability of the computed solutions
during numerical continuation (Sect. 3(a)). This can be achieved with either the Floquet theory
[66] or Hill’s method [67–69]. Hill’s method is employed here as it is particularly well suited
to solutions computed with the HBM [67,70]. The main underlying idea is to introduce a
perturbation of the form:

q0(t) = q(t) + p(t)eΛt. (3.11)

were q(t) is a periodic solution of Eq. (3.1). This expression may be expanded as Fourier series
with the Fourier basis T used in the HBM formulation and introduced into the equations of
motion. Eliminating the time variable with a Galerkin procedure and performing a first-order
Taylor expansion on the nonlinear terms yields a quadratic eigenvalue problem:[

Λ2M̃ + ΛC̃ + ∂q̃R
]

p̃ = 0, (3.12)

with

M̃ = I2H+1 ⊗ M, (3.13)

C̃ = ∇̂ ⊗ 2M + I2H+1 ⊗ C, (3.14)

where ∂q̃R corresponds to the Jacobian of the HBM residual (3.9), which can be efficiently
retrieved at each iteration of the continuation solver without additional computations, and ∇̂
is the real-valued differential operator in the frequency domain. The above equation can either be
solved directly or linearized in order to alleviate the computational burden [71]:[

C̃ ∂q̃R
−In(2H+1) 0

]
+ λ

[
M̃ 0
0 In(2H+1)

]
= 0. (3.15)

Solving this eigenvalue problem yields 2n(2H + 1) eigenvalues and eigenvectors. Their accuracy
depends on the truncation order of the Fourier series — with higher orders being more accurate.
Out of the complete set of solutions, 4nH are redundant due to the multiple harmonics used in the
HBM approximation. An eigenvalue sorting algorithm is used to retain only the 2n eigenvalues
with the smallest imaginary part. Monitoring the real part of all retained eigenvalues allows one
to determine whether the solution is stable (all real parts are negative) or unstable (at least one
real part is strictly positive).

(ii) Bifurcation detection

The bifurcation involved in the loss of stability of a periodic solution can be identified by studying
the trajectory of the real parts crossing the imaginary axis. Figure 2 summarizes the three possible
scenarii.

However, instead of monitoring the real part of the eigenvalues, it is common to define a scalar
test function, g, that is equal to zero at specific bifurcation points. In this paper, this is achieved
using a matrix bordering technique. The value of the test function can be evaluated by solving the
following system: [

A b
d† 0

](
w
g

)
=

(
0
1

)
, (3.16)

were b and d are chosen so that the system is nonsingular and † represents the hermitian
transpose. The matrix A takes different values depending on the type of bifurcation to detect.
For fold bifurcations, A = ∂q̃R is used. For branch points:

A =

[
∂q̃R ∂ΩR

zT

]
, (3.17)

where z is the tangent predictor used during the continuation analysis. Neimark-Sacker and
period-doubling bifurcations are both detected using A = 2V ⊙ I where V = Diag(λ) is the
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Stable                                       Unstable

(a)

Stable                                       Unstable

(b)

Stable                                       Unstable

(c)

Figure 2: Bifurcation scenarii depending on the trajectory of the Floquet exponents. Fold
bifurcation and branch point (a), period doubling bifurcation (b) and Neimark-Sacker bifurcation
(c).

diagonal matrix gathering the eigenvalues of Eq. (3.15) and ⊙ is the bialternate matrix product
[72]. Both bifurcation types can then be distinguished based on the imaginary part of the
eigenvalues whose real part becomes positive.

4. Application of the proposed methodology
The capabilities of the proposed optimization framework are now illustrated in three examples.
The first is a Duffing oscillator, which serves to show that different target types can be imposed
and that bifurcations of different types can be handled simultaneously. The second example is
a self-excited system comprised of a van der Pol oscillator and an NLTVA, and shows how the
bifurcation measure (Section 2(b)) can be exploited to remove all local bifurcations of periodic
orbits. Lastly, the methodology is applied to the finite element model of a cantilever beam with
stiffness nonlinearity at its tip, which comprises > 102 design parameters.

(a) Duffing oscillator
The equation of motion of the Duffing oscillator is

mq̈ + cq̇ + kq + knlq
3 = fex (4.1)

where the initial parameter values for the mass, damping, linear and nonlinear stiffnesses are m=

1, c= 0.1, k= 1, and knl = 0.5, respectively. The external excitation is given by fex = 3 cos(Ωt).
Five harmonics and the mean value are considered in the analysis and the displacements and
nonlinear forces are sampled with Ns = 28 points in the AFT procedure. Figure 3a shows that the
system exhibits a hardening behaviour, as is expected since the nonlinear coefficient knl is strictly
positive. Eight bifurcations are present on the main solution branch — six are fold bifurcations
( ) associated, from low to high frequencies, to the 5:1 and 3:1 superharmonic resonances and to
the primary resonance. The other two bifurcations are branch points ( ) associated with the 2:1
superharmonic resonance [73].

The various capabilities of the optimization framework are illustrated by setting targets on
bifurcation frequencies, bifurcation amplitudes and both bifurcation frequencies and amplitudes
simultaneously. The optimization parameters considered are θθθ= (m, c, k, knl)

T and only fex is
kept fixed. Note that, for the Duffing oscillator, the number of independent model parameters can
be reduced to two through rescaling. Here, the original four parameters are retained to show the
good behaviour of the methodology in the presence of multiple optimum solutions arising from
the over-parameterisation of the problem, which is a common occurrence in practice. The Nelder-
Mead algorithm of the Julia implementation of the NLopt package is used. No stopping criterion
other than the maximum number of iterations, set to 200, is defined. The optimization parameters
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are allowed to take values within the interval [bli,∞[ where bli, i∈ J1, 4K are the components of
vector bl = (0.01, 0.01, 0.01, 0.01)T .

Starting from the initial configuration, a first optimization run is carried out to enforce the
appearance of two fold bifurcations at angular frequencies Ω = 1.59 rad/s and Ω = 3 rad/s,
respectively. Figure 3a shows the location of the detected bifurcations with respect to the
target frequencies for the initial parameter configuration. Figure 3b shows the nonlinear FRC
of the oscillator with optimized parameters values m= 1.85, c= 0.17, k= 1.77 and knl = 0.54.
The value of the objective function is fo = 2.0 · 10−4. The computation of the dimensionless
parameters ε= knlf

2
ex/k

3 and δ= c/2
√
k reveals that the system with optimized parameters is

significantly less nonlinear (ε= 0.9) than the initial system (ε= 4.5) and a little bit more damped
(δ= 6.3 · 10−2 compared to δ= 5.0 · 10−2). One can see that the nonlinear FRC exhibits only two
fold bifurcations, corresponding to the number of targets. Although superharmonic resonances
are still visible, they no longer exhibit fold bifurcations which is consistent with the change
in dimensionless parameters and suppress multi-stability and the risk of amplitude jumps.
Furthermore, the angular frequencies at which the folds appear show excellent agreement with
the imposed targets. This is associated with a shift of the resonance of the underlying linear
system towards the lower frequencies and a reduction of approximately 13% of the resonance
amplitude. Note that the amplitude reduction at resonance is expected when the interval between
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(a) Initial system
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(b) Optimized system (frequency)
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(c) Initial system
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(d) Optimized system (amplitude)

Figure 3: Optimization of the structural parameters of the Duffing oscillator with respect to the
frequencies (a, b) and amplitudes (c, d) at which fold bifurcations appear. Before optimization
(a, c) and after optimization (b, d). Solid and dashed blue lines represent stable and unstable
responses. Fold bifurcations and branch points are denoted by red ( ) and orange ( ) circle
markers, respectively. Dashed black lines represent optimization targets.
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(a) (b)

Figure 4: Evolution of the objective function with the number of iterations with the frequency of
two folds as targets (a) leading to Fig. 3b and the amplitude of two folds as target (b) leading to
Fig. 3d.

two successive fold bifurcations decreases because of the frequency-amplitude dependence of
the nonlinear modes. We have not identified any particular challenges when choosing targets
resulting in an increase in oscillation amplitude.

A similar optimization may be carried out by imposing two fold bifurcations at targeted
amplitudes equal to q̃1 = 1.5 and q̃1 = 5, respectively. Again, the FRC of the optimized system
(m= 1.29, c= 0.18, k= 1.60 and knl = 0.61), shown in Fig. 3d, only exhibits two fold bifurcations
appearing at the targeted amplitudes of the first harmonic, corresponding to a reduction of 26%
of the resonance amplitude compared to the initial system (Fig. 3c). Besides, contrary to the
optimization with targeted frequencies, the optimized parameters do not lead to a significant
shift of the resonance frequency of the linear underlying system.

Figure 4 depicts the evolution of the objective function with the number of iterations of the
optimization algorithm when the frequencies (Fig. 4a) and amplitudes (Fig. 4b) of two fold
bifurcations are defined as targets. It appears that the objective function exhibits an overall
rapid, although not monotonic, decrease with the number of iterations and bifurcations are
matched quite accurately after a few iterations with the objective function reaching values
smaller than 0.1. Note that the objective function assumes larger values when the bifurcations
are matched quite accurately but their number exceeds the targets (cf. the FRCs shown in
Fig. 4a). The oscillations cease in both cases after approximately 100 iterations of the optimization
algorithm with the converged solutions showing only marginal improvement. The optimization
with 4 variables required approximately 5 minutes of computational time on a standard laptop
(i7-12700H @ 2.7 GHz, 16 Gb RAM) running Linux and Julia 1.8.

Using Eq. (2.7), the proposed optimization framework can also handle several types of
bifurcation points simultaneously. Figure 5 shows the results of an optimization carried out
with targets imposed on four fold bifurcations (Ω = 3.50 rad/s, Ω = 2.00 rad/s, Ω = 0.56 rad/s,
Ω = 0.54 rad/s) and two branch points (Ω = 0.87 rad/s, Ω = 0.80 rad/s). One can see that the
optimization leads to a smaller interval between two consecutive branch points while retaining a
good match between predicted fold bifurcations and targets.

Figure 5 also illustrates the important observation that there is, in general, no complete
freedom regarding the simultaneous optimization of multiple bifurcations. Indeed, the location
of bifurcations is governed by physical phenomena, such as (super-/sub-harmonic) resonances or
modal interactions, which occur at specific locations when particular ratios between the excitation
frequency and the response’s fundamental and higher-harmonic frequencies are realised. For
instance, in the present example, it is not possible to obtain large variations of the frequencies
at which the branch points occur while having active targets on other fold bifurcations since the
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(b)

Figure 5: Optimization of the structural parameters of the Duffing oscillator with respect to
the frequencies at which fold bifurcations and branch points appear. Before optimization (a),
after optimization (b). Solid and dashed blue lines represent the stable and unstable responses,
respectively. Fold bifurcations and branch points are denoted by red ( ) and orange ( ) circle
markers, respectively. Dashed coloured lines represent optimization targets.
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Figure 6: Optimization of the structural parameters of the Duffing oscillator with respect to
the frequencies and amplitudes at which fold bifurcations appear. Before optimization (a), after
optimization (b). Solid and dashed blue lines represent the stable and unstable responses,
respectively. Fold bifurcations and branch points are denoted by red ( ) and orange ( ) circle
markers, respectively. Dashed black lines represent optimization targets.

former are associated with even-order superharmonic resonances and the latter with odd-order
superharmonic resonances. In this case, the optimisation algorithm finds a compromise between
the different bifurcation targets.

Figure 6 shows that the proposed methodology can also simultaneously handle frequency
and amplitude targets. An optimization was run with two pairs of frequency-amplitude
targets to enforce fold bifurcations at (Ω,1 q̃1) = (2, 1.5) and (Ω, q̃1) = (3, 4.5), respectively. After
optimization, the parameter values obtained are m= 1.33, c= 0.22, k= 2.06 and knl = 0.63. Once
again, the optimized parameters lead to a significantly less nonlinear (ε= 0.65) and more damped
(δ= 7.7 · 10−2) oscillator in order to reduce the number of bifurcations and the amplitude of the
upper fold. The results show that only two bifurcations are visible on the bifurcation diagram of
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the Duffing oscillator and that a very good agreement with the targets is achieved. The remaining
error in the bottom fold re-emphasises the observation made in Fig. 5 that there is no complete
freedom in setting the parameter and amplitude values for the two fold simultaneously.

(b) Autonomous van der Pol-Duffing oscillator coupled to a NLTVA

(i) Model description

The autonomous van der Pol oscillator is a well-known system exhibiting self-excited oscillations.
It captures the dynamics of many systems in engineering and the applied sciences, such as aircraft
wings [74], vehicle wheels [75], machine tools [76], and living cells [77,78]. A stable equilibrium
point loses its stability through a Hopf bifurcation, leading to the appearance of limit cycle
oscillations (LCO). The Hopf bifurcation can be either subcritical or supercritical, depending on
the parameters. The former is dangerous, as stable limit cycles coexist with the stable equilibrium
point. Various authors have attached nonlinear energy sinks, linear tuned vibration absorbers or
NLTVA to delay the occurrence of the Hopf bifurcation, enforce the supercriticality of the Hopf
bifurcation and reduce the amplitude of the LCOs. In the following, we use the mechanical system
studied in [41], i.e. a van der Pol-Duffing oscillator coupled to a NLTVA with cubic nonlinearity.
The equations of motion are

m1q̈1 + c1

(
q21 − 1

)
q̇1 + kq1 + knl1q

3
1 + c2 (q̇1 − q̇2) + k2 (q1 − q2) + knl2 (q1 − q2)

3 = 0,

m2q̈2 + c2 (q̇2 − q̇1) + k2 (q2 − q1) + knl2 (q2 − q1)
3 = 0,

(4.2)

where subscripts 1 and 2 denote quantities related to the vdPD oscillator and the NLTVA,
respectively. For practical reasons, the mass ratio ϵ=m2/m1 = 0.05 is kept fixed [41]. The
mechanical properties of the vdPD oscillator are chosen as m1 = 1, k1 = 1 and knl1 = 0.03k1. The
optimization parameters considered hereafter are the linear and nonlinear stiffness coefficients
as well as the damping coefficient of the NLTVA, denoted respectively by k2, knl2 and c2
(θθθ = (k2, knl2, c2)

T ) and initially set at k02 = 4.625 · 10−2, k0nl2 = 6.8 · 10−4 and c02 = 1.15 · 10−2.
The continuation parameter is c1 as in [41]. To apply continuation to this system, the procedure

detailed in Section 3 must be modified to account for the autonomous nature of the system.
To do so, a phase constraint q̇1(t= 0) = 0 is added to the HBM residual equation (3.9). More
details on the computation of LCOs with the HBM can be found in [79]. At each iteration of
the optimizer, the Hopf bifurcation is located through linear stability analysis. The value of c1
at which the Hopf bifurcation occurs, as well as the imaginary parts of the eigenvalues with
positive real parts, are used as initial guess for the continuation algorithm. A small value of the
Fourier coefficient corresponding to the first harmonic is used as the initial LCO amplitude. In
the following, computations are carried out using 13 harmonics and 210 samples in the AFT
procedure.

(ii) Optimization of the NLTVA to suppress the fold-induced subcriticality

As illustrated in Fig. 7, the bifurcation diagram of the initial system described in Sect. 4(b)(i)
exhibits a supercritical Hopf bifurcation at approximately c1 = 0.183. The amplitude of the LCO
increases with c1 until the curve exhibits a first fold bifurcation ( ), which causes the LCO to lose
its stability and jump from an RMS amplitude equal to 0.27 to an amplitude equal to 1.0. More
importantly, the second fold bifurcation occurs for a value of c1 that is lower than that of the
Hopf bifurcation (c1 = 0.175). This results in the creation of a bi-stable region where a relatively
high amplitude LCO coexists with the equilibrium point, which is often considered a dangerous
situation in many engineering applications.

In order to try to suppress or mitigate this phenomenon, we optimize the NLTVA to
remove any bifurcation appearing past the Hopf point on the bifurcation diagram. To this end,
the targetted bifurcation measure is set to zero, i.e. |T |= 0, for all local bifurcation types of
periodic orbits (folds, Neimark-Sacker, period doubling and branch points). No error measure
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Figure 7: Bifurcation diagram of the van der Pol-Duffing oscillator coupled to the initial (purple)
and optimized (blue) NLTVA. Solid and dashed lines indicate stable and unstable responses,
respectively. Fold bifurcations are represented by red circle markers ( ) and the Hopf bifurcation
target is shown in dashed black line.

is considered for these bifurcations. To preserve the location of the Hopf bifurcation with respect
to the bifurcation parameter, a simplified error measure is used:

error measure =

∣∣∣∣∣∣c
Hopf
1,π − c

Hopf
1,τ

c
Hopf
1,τ

,

∣∣∣∣∣∣ (4.3)

where c
Hopf
1,τ = 0.183 is the targeted Hopf location and c

Hopf
1,π is the predicted location based on

model parameters. No bifurcation measure is considered for the Hopf bifurcation since a unique
Hopf bifurcation point is expected regardless of the chosen structural parameters.

Both a lower bound bl = (0.5k02, 0.1k
0
nl2, 0.8c

0
2)

T and upper bound bu = (1.5k02, 10k
0
nl2, 1.2c

0
2)

T

are defined for the structural parameters. The initial guess for the optimization corresponds to the
mechanical properties θθθ0 = (k02, k

0
nl2, c

0
2)

T given in Sect. 4(b)(i). The purpose of this example is to
demonstrate that our methodology can be used to efficiently eliminate any local bifurcation of
periodic orbit occurring within a specified parameter interval. Since no explicit target is defined
for such bifurcations, the objective functional essentially behaves as a step function and is constant
so long as the Hopf-parameter target is matched. Thus, the solution presented is but one within
a family of possibilities, the size of which can be restrained by introducing additional design
constraints.

The bifurcation diagram of the optimized system (k2 = 4.65 · 10−2, knl2 = 6.8 · 10−5 and
c2 = 1.27 · 10−2), plotted in blue in Fig. 7, shows that LCOs arise from a supercritical Hopf
bifurcation at the same value of c1 = 0.183 as the initial system. The fold-induced subcritical
behaviour is effectively suppressed as no local bifurcation of periodic orbit appear on the diagram.
Furthermore, although the LCO amplitude before the first fold bifurcation of the initial system is
slightly higher, the amplitude of the stable branch is significantly smaller past that point.

(c) Euler-Bernoulli beam with cubic nonlinearity

(i) Model description

The mechanical system considered in this section is a planar cantilever beam featuring a nonlinear
attachment consisting of a cubic spring located at its free end (Fig. 8). The geometrical and
mechanical properties (Table 1) are taken from the benchmark system studied in [15,80,81]. The
initial model has a length L= 0.7 m, a height and a width of 0.014 m. The beam is discretized with
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Ne = 59 Euler-Bernoulli beam elements with two degrees of freedom per node, i.e. one translation
and one rotation. The cubic spring is attached to the translational degree of freedom. An external
periodic forcing F = 90 sin(Ωt) is applied at 0.21 m from the clamped end.

To reduce the computational effort, a reduced-order model is constructed using the Craig-
Bampton method. The translational degree of freedom connecting with the cubic spring at the
beam tip is kept as master degrees of freedom and 5 fixed-interface modes are kept in the
reduction basis. A constant modal damping matrix is defined such that the damping ratio of
the first linear mode is equal to 1% and that of all subsequent modes is equal to 5%.

F

0.21 m 

0.70 m 

Figure 8: Schematic representation of the Euler-Bernoulli beam.

Table 1: Reference geometrical and mechanical properties of the considered beam [80].

Length (m) Width (m) Height (m)
0.7 0.014 0.014
Young’s modulus (N/m2) Density (kg/m3) Nonlinear coeff. (N/m3)
2.05 · 1011 7800 6.0 · 109

(ii) Shape optimization

The structural parameters considered for the optimization are θθθ= (L, wT
e , hT

e , knl)
T where we

and he denote the vectors containing the width and height, w(i)
e and h

(i)
e , i∈ J1, NeK, of all

the elements. The total number of optimization variables is 2Ne + 2= 120. We assume that any
modification of the total length L of the beam is evenly distributed over all elements. New FE
and reduced-order models are generated at each iteration of the optimization algorithm and the
error on the eigenfrequencies of the reduced and full-order models is monitored to ensure the
convergence and accuracy of the results. Lower and upper parameter bounds are defined so that
the length of the beam is allowed to vary between 0.4 m and 1.0 m, the element-wise width and
height can exhibit variations as large as 40% of the reference values and the nonlinear coefficient
is bounded between 6.0 · 108 and 6.0 · 1010 N/m3.

A preliminary reference computation is carried out with the parameters of Table 1. The
nonlinear forced response (see Fig. 9a) is computed around the primary resonance corresponding
to the first linear mode whose frequency is f1 = 23.3 Hz. To account for changes in the
eigenfrequencies of the underlying linear system due to the updated geometry and ensure that
the whole resonance peak is computed, the continuation interval is expressed as a function of
the first eigenfrequency ω1 of the underlying linear system, i.e. [ω1, 4ω1]. Note that the very
same procedure could be applied to other modes. Besides, the continuation procedure is initiated
at Ω = 4ω1, i.e. far from resonance where the response amplitude is small to avoid potential
convergence issues of the initial guess.

It is well known that this beam system possesses an isolated branch of solutions that merges
with the main branch for sufficiently high excitation amplitudes [15]. Such a scenario, illustrated
in Figure 9a, can be extremely detrimental to the structural integrity of the system as the
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Figure 9: Forced response curve of the beam with initial (a) and optimized (b) geometries
for F = 90 sin(Ωt). Solid and dashed lines indicate stable and unstable responses, respectively.
Fold and Neimark-Sacker bifurcations are denoted by red circle ( ) and green triangle markers
( ), respectively. Dashed black lines represent the optimization targets. The FRC of the initial
geometry with unmerged isola is shown in light grey (a) for F = 80 sin(Ωt).

maximum resonance frequency and amplitude can be significantly underestimated (here, by
almost 50%). In the following, we run the optimization procedure to mitigate the frequency
increase induced by the merged isola by defining two frequency targets for fold bifurcations
at Ω = 47.7 Hz and Ω = 71.6 Hz. As can be seen in Figure 9b, the FRC of the optimized beam
exhibits four folds ( ), two of which are at the targeted locations. This number of folds exceeds
the number of targets, which could be due either to the use of a local optimization algorithm or to
inherent limitations in the modifications of the structure of the resonance. Interestingly, the shape
of the resonance is altered (see the unstable region near the bottom fold). This indicates that the
optimized design induced a shift of the forcing level at which the isola merges with the main
solution branch.

The FRC in Fig. 9b also exhibits four NS bifurcations ( ) — two more than in Fig. 9a. The
two new NS bifurcations occur outside the resonance peak at approximately Ω = 75 Hz and Ω =

83 Hz. Their appearance was made possible because NS bifurcations were not accounted for in
the objective function. To eliminate these bifurcations, two additional target parameter values
for NS bifurcations are set to Ω = 48.3 Hz and Ω = 54.5 Hz, i.e. values corresponding to the NS
bifurcations located on the upper part of the FRC after the first optimization run. Since the number
of detected NS bifurcations exceeds the number of targets, the bifurcation measure of the objective
function pushes the optimization algorithm towards designs that only exhibit two NS bifurcations
on the FRC. Although it is not possible to explicitly choose which bifurcation will be eliminated,
as all prediction/target pairs of a given bifurcation type are considered, the elimination of the two
NS bifurcations located on the lower part of the FRC is more likely for they are further from the
targets. Figure 10 effectively shows that the FRC of the optimized system exhibits only two folds
and two NS bifurcations, as intended.

A small error (≈ 2 Hz) on the location of the lower fold bifurcation (near Ω = 45 Hz) can be
observed. Similarly, the NS bifurcations do not perfectly match their target values. The reason
for this discrepancy is similar to that for the branch points on the Duffing oscillator. Here, the
two NS bifurcations cannot be arbitrarily moved in parameter space because they are associated
with the 3:1 modal interaction that exists between the first and second bending modes of the
beam [15,82,83]. It is therefore quite difficult to obtain significant changes in their locations when
considering only the first resonance and constraining its corresponding fold bifurcations.
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Figure 10: Forced response curve of the beam with initial geometry (a) and geometry optimized
for Neimark-Sacker bifurcations (b). Solid and dashed lines indicate stable and unstable
responses, respectively. Fold and Neimark-Sacker bifurcations are denoted by red circle ( ) and
green triangle ( ) markers, respectively. Dashed red and green lines represent target locations for
fold and Neimark-Sacker bifurcations, respectively.
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Figure 11: Geometry of the optimized beam. Side view (a) and top view (b). The outline of the
reference geometry is displayed in red.
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Following this example, it appears desirable to systematically consider all potential types of
bifurcations in the objective function and exploit the bifurcation measure to avoid introducing
additional unwanted bifurcations (as in Section 4(b)). However, this usually comes at an
increased computational cost. Indeed, in the present beam example, accurate detection of the
NS bifurcations requires the use of at least H = 15 harmonics in the stability analysis whereas
only H = 5 harmonics are necessary to reliably detect the fold bifurcations. On this example,
the computational time for 120 optimization variables with 5 harmonics for 200 iterations was
approximately 2 h. The optimization of NS bifurcations required significantly more harmonics
(23) to reach convergence on all continuation runs which led to a computational time of
approximately 20 h.

The optimal design associated with this optimization is shown in Fig. 11. One can see that the
optimized beam is longer than the reference configuration, which is coherent with the shift of
the resonance towards lower frequencies (Fig. 10). The height of all elements is slightly reduced
except for that of the 11th, 46th, 47th, 58th and 59th which is slightly increased. The top view of the
beam reveals a more complex geometry. All the elements of the optimized beam are slightly wider
than those of the reference configuration, with a few (elements 9, 35, 47, 50 53 58 and 59) showing
a noticeable increase in width. Overall, most elements have the same width and length. Although
this is most likely associated to the fact that the initial guess has uniform width and height, there
is no clear explanation as to why this occurs as the local increases in width/height cannot be
easily linked to a specific mechanical property that would offer leverage on bifurcation location.
The obtained geometry is also likely to be a local optimum and other, potentially qualitatively
different, designs could be obtained if a more extensive search of the design space was conducted
with, for instance, a global optimization algorithm. The manufacturing of such a design can be
achieved using, for instance, additive manufacturing methods. A similar approach was taken to
make NLTVAs [84,85].

5. Conclusion
Bifurcations lead to significant changes in a system’s dynamics, which can be exploited
(switching, energy harvesting, etc.) to improve a system’s performance, or result in degraded
life and even catastrophic failures if unaccounted for. In this paper, a computational method to
optimize the presence and location of local bifurcations in the response of a dynamical system was
proposed and successfully demonstrated on three mechanical systems, including a finite element
model with more than one hundred design parameters. The particularity of the objective function
is to include a bifurcation error term, which promotes the right number and the right types
of bifurcations. The objective function also includes an error measure to minimise the distance
between the bifurcations and their desired location in terms of the state and bifurcation parameter
spaces. The method was shown to simultaneously tackle multiple bifurcations of different types,
including fold, branch points and Neimark-Sacker.

The proposed approach is also extremely general and a priori applicable to a wide range of
problems in engineering and the applied sciences. Given the mechanical applications considered
here, the harmonic balance method was used to discretise periodic solutions, the arclength
continuation method was exploited to follow their evolution in the codimension-one parameter
space, and Hill’s stability analysis method with bordering techniques was exploited to detect and
classify bifurcations along the solution curve. However, the proposed method does not rely on the
use of these methods, and others could be considered if deemed more suitable for the application
at hand.
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