
HAL Id: hal-04378838
https://hal.science/hal-04378838

Submitted on 3 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolution of semi-kantian preferences in two-player
assortative interactions with complete and incomplete

information and plasticity
Ingela Alger, Laurent Lehmann

To cite this version:
Ingela Alger, Laurent Lehmann. Evolution of semi-kantian preferences in two-player assortative inter-
actions with complete and incomplete information and plasticity. Dynamic Games and Applications,
2023, 13, pp.1288-1319. �10.1007/s13235-023-00521-y�. �hal-04378838�

https://hal.science/hal-04378838
https://hal.archives-ouvertes.fr


Dynamic Games and Applications (2023) 13:1288–1319
https://doi.org/10.1007/s13235-023-00521-y

Evolution of Semi-Kantian Preferences in Two-Player
Assortative Interactions with Complete and Incomplete
Information and Plasticity

Ingela Alger1,2 · Laurent Lehmann3

Accepted: 17 July 2023 / Published online: 28 August 2023
© The Author(s) 2023

Abstract
We model the evolution of preferences guiding behavior in pairwise interactions in group-
structured populations. The model uses long-term evolution theory to examine different
interaction scenarios, including conditional preference expression upon recognition of the
partner’s type. We apply the model to the evolution of semi-Kantian preferences at the fitness
level, which combine self-interest and a Kantian interest evaluating own behavior in terms
of consequences for own fitness if the partner also adopted this behavior. We seek the con-
vergence stable and uninvadable value of the Kantian coefficient, i.e., the weight attached
to the Kantian interest, a quantitative trait varying between zero and one. We consider three
scenarios: (a) incomplete information; (b) complete information and incomplete plasticity;
and (c) complete information and complete plasticity, where individuals not only recognize
the type of their interaction partner (complete information), but also conditionally express the
Kantian coefficient upon it (complete plasticity). For (a), the Kantian coefficient generally
evolves to equal the coefficient of neutral relatedness between interacting individuals; for
(b), it evolves to a value that depends on demographic and interaction assumptions, while for
(c) there are generally multiple uninvadable types, including the type whereby an individual
is a pure Kantian when interacting with individuals of the same type and applies the Kantian
coefficient that is uninvadable under complete information with zero relatedness when inter-
acting with a different typed individual. Overall, our model connects several concepts for
analysing the evolution of behavior rules for strategic interactions that have been emphasized
in different and sometimes isolated studies.

This article is part of the topical collection “Evolutionary Games and Applications” edited by Christian
Hilbe, Maria Kleshnina and Kateřina Staňková.
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1 Introduction

This paper is about formalizing natural selection on rules guiding individual behavior in
strategic interactions, a central question in evolutionary game theory [28, 70, 71]. By behavior
we mean a “strategy”, i.e., “a specification of what an individual will do in any situation
in which it may find itself” [70]. In the original evolutionary game theory models, each
individual is programmed to play a certain strategy regardless of the strategies used by others
in the population. One way to think about this is that the strategy is innate, thus a genetically
determined trait. This view led to a vast theoretical literature analysing the genetic evolution
of strategies under all sorts of biological scenarios as is illustrated by the studies on the
evolution of fighting, cooperation, and life-histories in plants and animals (e.g., the books
by [22, 45, 70, 73, 97]). Here, it is the population genetic process alone that determines the
“evolutionarily stable strategy” since strategies are inherited from parent to offspring and
selected among alternatives by way of differential survival and reproduction.

The view that strategies are innate is restrictive, however, as it rules out situations where
individuals have capacities to change their own strategy when interacting with their environ-
ment. Such processes have been incorporated into evolutionary game theory through several
alternative notions, such as the concepts of “culturally stable” and “developmentally stable”
strategies [28, 70].Here, the behavior of an individual is the outcomeof someupdating rule(s),
typically imitative or experiential, for strategy selection during the individual’s lifespan. In the
memorable example detailed by [28], pigs in skinner boxes equilibrate on developmentally
stable strategies by action reinforcement in producer-scrounger games, and a large literature
has evaluated culturally stable strategies under different sorts of transmission rules (e.g., [20,
23]). This in turn raises the question of what should be the evolutionarily stable rule for
individual strategy selection in strategic interactions? While this question was raised early in
the history of evolutionary game theory [52, 70], perhaps more controversy than conclusions
were initially reached (e.g., [90]), and it is only more recently that this question has gained
some renewed theoretical attention in evolutionary biology (e.g., [13, 30, 31, 73]).

In the meantime, however, economists and mathematical game theorists also produced
insights about how various individual choice and transmission rules induce change in strate-
gies in populations (e.g., the books by [42, 57, 88, 89, 91, 100, 102]). One obstinate result in
this literature is that updating rules of strategies–whether imitative or experiential–relying on
payoff tend to converge to Nash equilibria [27, 42, 57]. Hence, in behavioral equilibrium, at
the culturally stable or developmentally stable state, it is as if individuals strive to maximize
the payoff function at hand and thus as if they are rational decision makers, in the sense that
among a set of options they choose the one they prefer, given the others’ strategies [69]. The
question of what should be the evolutionarily stable rule for individual strategy selection can
thus here be phrased as: if the evolving trait is the payoff function to be maximized, which
payoff function is evolutionarily stable? This is the question that the literature on preference
evolution for strategic interactions addresses (e.g., [1, 2, 5–7, 29, 47, 54, 55, 79, 99]). Because
information plays a central role in strategic interactions [43], the formalizations of prefer-
ence evolution have covered a variety of informational scenarios (e.g., [29, 79, 99]; see [4,
9] for surveys). Focusing on the evolution of preferences gives hope to improve predictions
about equilibrium behavior because payoff-based choice rules can otherwise come in endless
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mechanistic forms—some more biologically and cognitively inspired than others [87, 92]
but none empirically fully elucidated (e.g., [59]).

The goal of this paper is to contribute to the literature on the evolution of rules guiding
individual behavior in two ways and is thus divided in two parts. In the first part, we con-
nect a number of concepts and results to analyze the long-term evolution (sensu [33, 34])
of behavioral mechanisms for equilibrium action in group-structured populations. This part
can thus be read as a methodological review. In the second part, we push forward within
this framework the evolutionary analysis of the class of preferences involving a mix between
self-interest and an interest in evaluating own behavior in the light of the consequences for
own payoff if others adopted this behavior. This is the class of semi-Kantian preferences,
which, in the words of [17, p. 191], can be seen as hybrid preferences combining the cat-
egorical imperative of Nash with that of Kant. [15] shows that the evolutionarily stable
strategy in interactions between siblings could be interpreted as if individuals had such pref-
erences, an interpretation that should hold more generally when interactions occur between
related individuals. Semi-Kantian preferences have then indeed been shown to be evolu-
tionarily stable and uninvadable under various transmission rules when population structure
results from limited genetic or cultural mixing among interacting individuals, when inter-
acting individuals cannot observe each other’s preferences [7, 8, 11]. However, so far the
evolutionary convergence towards semi-Kantian preferences has not been ascertained, and
their evolution has not been analyzed under different informational assumptions. Our goal
is to analyse convergence stability and uninvadability of semi-Kantian preferences in three
different informational scenarios: (a) incomplete information; (b) complete information and
incomplete plasticity (interacting individuals can observe each other’s preferences, but an
individual’s preferences do not depend on the other’s preferences); and (c) complete infor-
mation and complete plasticity (interacting individuals can observe each other’s preferences,
and an individual’s preferences can depend on the other’s preferences). It will be seen that
the different informational and plasticity assumptions lead to quite different evolutionary
outcomes, and that we are not always able to reach general conclusions about convergence
stability.

Our aim is not to obtain themost general conclusions about the open questions we address,
but rather to illustrate how demographic and informational features jointly contribute to the
understanding of the long-term evolution of preferences in structured populations. As such,
we consider only pairwise interactions and restrict attention to the parametric class of semi-
Kantian preferences and the evolution of the Kantian coefficient, a quantitative trait varying
between zero and one, which represents the weight attached to the Kantian interest.

2 Evolutionary Invasion Analysis of Behavioral Mechanisms

2.1 Biological Assumptions for Pairwise Interactions

We consider a population of asexually reproducing individuals that are demographically
homogeneous (no effective age, stage or sex structure). The population occupies a habitat
with an infinite and constant number of groups (or demes, or spatial subdivisions), each of
which is occupied by exactly two individuals and so the population is of constant size. Each
individual is characterized by a type belonging to a type space� that affects its phenotype—
the collection of any relevant morphological, physiological or behavioral measurable feature
of the individual. We consider a demographic process where the population is censused at
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discrete time steps, between which the following events occur in cyclic order. (a) In each
group, the pair of individuals engage in an interaction. Some process (learning, exchange of
information, etc) leads to a pair of equilibrium strategies being expressed. The equilibrium
strategy pair, which may depend on the individuals’ types as well as the types present in
the population at large, determines some outcome (for example, the material payoff of each
individual). (b) Each individual in each group produces a large number of juveniles according
to the outcome of the pairwise interaction and eventually dies subject to some death process,1

whichmay also depend on the outcome of the pairwise interaction. (c) Juveniles remain in the
natal group with some fixed probability. With complementary probability m > 0, assumed
to be nonzero, they migrate out of their natal group and survive dispersal with a certain
probability that may depend on the outcome of the interaction between the juvenile’s parent
and its neighbor. (d) In each group, the open reproductive spots vacated by deceased adults
are randomly filled up by competing juveniles, who then become adults.

2.2 Invasion and Individual Fitness

We adopt a standard invasion analysis framework and consider a population that is monomor-
phic for some resident type θ ∈ � in which a mutant type τ ∈ � arises (e.g., [14, 24, 35, 37,
38, 74, 80, 95]). It then follows from applications of invasion analysis to our demographic
process assumptions of Sect. 2.1 (see Box 1) that any mutation τ ∈ �, which is introduced
in a single individual in a monomorphic population with the resident type θ ∈ �, eventually
goes extinct with probability one if and only if the invasion fitness (the geometric growth
ratio) of the mutant type, denoted W (τ, θ), satisfies

W (τ, θ) ≤ 1. (1)

Here, the “1” can be interpreted as the growth ratio of a resident type in a monomorphic
resident population, which, owing to the fact that the population is of constant size can, on
average, only replace itself (i.e., W (θ, θ) = 1 for all θ ∈ �).

Invasion fitness can be represented as the individual fitness of a randomly sampled mutant
τ descending from the individual in which the mutation initially appeared, averaged over the
cases where the mutant interacts with another member of the same lineage and those where
it interacts with an individual from a different lineage (who is thus of the resident type θ ):

W (τ, θ) = [1 − r(τ, θ)] w̃1(τ, θ) + r(τ, θ) w̃2(τ, θ). (2)

Here, w̃i (τ, θ) is the individual fitness of a mutant when there are i ∈ {1, 2} mutants in its
group and the population is otherwise monomorphic for θ , and r(τ, θ) is the pairwise relat-
edness between a τ mutant and its group neighbor (see Box 1 for a derivation of Eq. (2)).
Pairwise relatedness is the probability that, conditional on an individual being of type τ , the
group neighbor belongs to the same ancestral lineage and is thus also of type τ , whereby both
individuals are identical-by-descent [68]; note that since migration is assumed nonzero, we
have r(τ, θ) < 1. Whether relatedness r(τ, θ) depends on both the mutant and the resident
type, only on the resident type, or neither, depends on demographic and interaction assump-
tions. For instance, relatedness is independent of the types for family-structured populations,
in which case it is determined only by the pedigree relatedness, e.g. r = 1/2 for full-siblings
[as implied by themodel of [75], which also entails that Eq. (2) applies to sexual reproduction
in family-structured populations in the absence of inbreeding].

1 While we allow for individuals surviving from one demographic time point to the next, the survival proba-
bility is assumed independent of age, so that there is no effective age structure in the population.
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WhenW (τ, θ) is differentiable (which is not always the case), a resident type θ∗ is locally
convergence stable if and only if the first two following conditions hold, while it is locally
uninvadable if the first and the third conditions hold [25, 32, 44, 93]:

S(θ∗) = ∂W (τ, θ)

∂τ

∣
∣
∣
∣
τ=θ=θ∗

= 0 (3)

J (θ∗) = dS(τ )

dτ

∣
∣
∣
∣
τ=θ=θ∗

< 0 (4)

H(θ∗) = ∂2W (τ, θ)

∂τ 2

∣
∣
∣
∣
τ=θ=θ∗

< 0. (5)

Here, S(θ), J (θ), and H(θ), stand, respectively, for the selection gradient, the selection
Jacobian, and the selectionHessian, evaluated at the resident type θ .A type satisfying S(θ∗) =
0 will be called a singular type (or a singularity).2 There is a non-trivial relationship between
the static conditions (3–5) obtained from invasion fitness and dynamic stability. Namely, for
mutants with small effects on the phenotype, i.e. the difference |θ − τ | is small, a singular
type θ∗ satisfying conditions (4–5) is a (i) local attractor of the evolutionary dynamics under
gradual evolution and (ii) resistant to invasion by small deviations.3

2.3 Behavioral Equilibrium

In applications of evolutionary game theory, an individual’s type is often taken to be its
strategy to be applied in the interaction at hand. Yet many applications require to decouple
types from strategies. In order to do this and obtain a full description of how individual fitness
depends on own type and neighbor’s type—adependence that inEq. (2)was captured through
the mappings w̃1 : �2 → R+ and w̃2 : �2 → R+, without reference to the strategies used
by the individuals — we begin by defining individual fitness as a function of the strategies
used, and then we introduce notation and assumptions for how the equilibrium strategies
depend on the types.

Letting X denote the set of strategies that each individual has access to when interact-
ing with its neighbor, the individual fitness function w : X 3 → R+ is defined such that
w(xi , x j , y) gives the expected number of descendants (including the surviving self) pro-
duced over one demographic time period by an adult individual i expressing strategy xi when
matched to a group neighbor j expressing strategy x j , when individuals in the population at
large all use strategy y. Note that any individual fitness function is subject to the demographic

2 When invasion fitness is differentiable, the quantities S(θ), H(θ), and J (θ) in fact allow for a complete
classification of the singularities of the evolutionary dynamics [44]. Thus, when H(θ∗) > 0 and J (θ∗) < 0,
a singular type θ∗ is an evolutionary branching point; namely, an attractor of the evolutionary dynamics
that subsequently splits the population into distinct morphs leading to the coexistence of different types in
a protected polymorphism. When H(θ∗) < 0 and J (θ∗) > 0 we have a so-called garden of eden state of
the evolutionary dynamics, an uninvadable trait value that is unattainable by gradual evolution. Finally, if
H(θ∗) > 0 and J (θ∗) > 0 then the singular type θ∗ is an invadable repellor.
3 This follows from the fact that under the full evolutionary dynamic process of quantitative traits, the selection
gradient S(θ)describes the direction of selection on small trait deviations regardless of population genetic states
and demographic structures ([86], 84, p. 206 [82]). This entails that any mutant invading the population when
rare will eventually substitute the resident and recurrent mutations will drive the trait towards the singularity
within its neighborhood when condition (3) is satisfied. This “invasion implies substitution” result was first
noted in a special case by [48] and called “a gift from god” [51]. See also [36] for a different line of argument
reaching the same conclusions.



Dynamic Games and Applications (2023) 13:1288–1319 1293

consistency relation w(y, y, y) = 1 for all y ∈ X and an example thereof is provided in
Box 2.

Turning now to the equilibrium strategies, in a population with a mutant type τ and a
resident type θ �= τ , each group either has zero, one, or two mutants. For groups with two
residents (resp. two mutants), we denote by y∗

s (θ) (resp. x∗
s (τ, θ)) an equilibrium strategy for

each individual, where the subscript “s” refers to same type (note that we rule out equilibria
in which two identical individuals use different strategies). For mixed groups, with one
resident and onemutant, let x∗

d (τ, θ) denote themutant’s equilibrium strategy and y∗
d (θ, τ ) the

resident’s equilibrium strategy,where the subscript “d” stands for different types. Importantly,
throughout we assume that for any type pair (θ, τ ) ∈ �2 with θ �= τ , there exist unique
equilibrium strategies y∗

s (θ), x∗
s (τ, θ), and (x∗

d (τ, θ), y∗
d (θ, τ )). In a population with amutant

τ = θ interactions can occur between same and different lineage members having the same
type. For this case, we assume that all individuals in all pairs use the same strategy y∗

s (θ) =
x∗
s (θ, θ) since they have the same type. This implies that the mappings w̃1 and w̃2 used in

Eq. (2) are well defined,4 as follows:

w̃1(τ, θ) =
{

w
(

x∗
d (τ, θ), y∗

d (θ, τ ), y∗
s (θ)

)

if τ �= θ

w(x∗
s (θ, θ), x∗

s (θ, θ), y∗
s (θ)) if τ = θ,

(6)

and
w̃2(τ, θ) = w(x∗

s (τ, θ), x∗
s (τ, θ), y∗

s (θ)). (7)

How do the equilibrium strategies arise? In the evolutionary game theory literature, a vari-
ety of processes, or mechanisms, of interdependent strategy expression have been examined,
including reactive strategies, behavior response rules, learning rules, or developmental rules
(e.g., [1, 12, 30, 62, 70, 72, 73, 94]). In each case, a dynamical system drives strategy expres-
sion over time, and under some conditions these behavioral dynamics reach an equilibrium.
One way to formalize these mechanisms is to posit that the equilibrium strategies solve a
fixed-point problem. Thus, for mixed groups, let there be twomappings, Md : �2×X 2 → R

for the mutant type and Rd : � × X 2 → R for the resident type, which capture the process
at hand, and which are such that an equilibrium pair of strategies satisfies the fixed-point
system of equations:

{

Rd(θ, y∗
d , x

∗
d ) = 0

Md(τ, θ, x∗
d , y

∗
d ) = 0.

(8)

The mechanism Md is parametrized by both the mutant and the resident type, while Rd is
parametrized only by the resident type. This is so because when individuals interact their
strategy may depend on (i) their own type and strategy, (ii) the strategy of their interaction
partner, and (iii) on strategies in the population at large, which depends only on the resident
type when the mutant is rare (see also Eq. 10 below). Solving for x∗

d and y∗
d produces the

dependence of each strategy on both types, i.e., x∗
d = x∗

d (τ, θ) and y∗
d = y∗

d (θ, τ ).
For the equilibrium strategy used in mutant–mutant interactions, let there be a mapping

Ms : �2 × X → R which describes the process whereby a mutant interacts with another
mutant as a function of the partner’s strategy. The strategy in equilibrium is then assumed to
satisfy the fixed-point equation

Ms(τ, θ, x∗
s ) = 0. (9)

4 Invasion fitness Eq. (2) must be defined for all τ ∈ � including τ = θ . In such a monomorphic population,
all individuals use strategy y∗

s (θ) = x∗
s (θ, θ) and thus the demographic consistency relationW (θ, θ) = 1 will

be verified since w(x∗
s (θ, θ), x∗

s (θ, θ), y∗
s (θ)) = w(y∗

s (θ), y∗
s (θ), y∗

s (θ)) = 1 for all θ ∈ �.
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The behavioral mechanism Ms is parametrized by both the mutant and the resident type,
because the strategy used in the population at large (which depends on the resident type) may
affect the strategy used in a mutant–mutant pair. Hence, the solution of Eq. (9) implicitly
defines the equilibrium strategy as a function of both τ and θ , so that we can write x∗

s (τ, θ).
Finally, for the equilibrium strategy in resident-resident interactions, the equilibrium strategy
y∗
s (θ) is assumed to solve the fixed-point equation

Rs(θ, y∗
s ) = Ms(θ, θ, y∗

s ) = 0, (10)

where Rs : � ×X → R is the behavioral mechanism characterizing the (same) equilibrium
strategy of each individual in a resident pair. By contrast to the equilibrium strategy between
twomutants, which depends both on themutant and the resident type, the equilibrium strategy
between two residents depends only on the resident type.

2.4 Nash Equilibrium and Utility Function

Many formalizations of the behavioral fixed points (8–10) consist in assuming that strategies
equilibrate by being guided by some payoff function and adopting assumptions such that the
dynamics lead to a Nash equilibrium according to this payoff function. In such models, the
mappings Rs, Rd, Ms, and Md can be thought of as describing the best response functions
according to the payoff function. In equilibrium, it is thus as if individuals maximize this
payoff function, given the strategy used by the opponent. One class of such models takes
the payoff function to be a utility function, which represents an individual’s preferences.5

In our setting, given some resident utility function determined by θ and some mutant utility
function determined by τ , the strategy y∗

s (θ) (resp. x∗
s (τ, θ)) would be the strategy in X

that maximizes the utility of a resident (resp. that of a mutant), given that the resident (resp.
mutant)withwhom it interacts also uses strategy y∗

s (θ) (resp. x∗
s (τ, θ)). Likewise, the strategy

y∗
d (θ, τ ) would be the strategy in X that maximizes the utility of the resident, given that the

mutant with whom it interacts uses strategy x∗
d (τ, θ), while the strategy x∗

d (τ, θ)would be the
strategy in X maximizing the mutant’s utility, given that the resident with whom it interacts
uses strategy y∗

d (θ, τ ).
We endorse this approach and rely on results showing that among the set of all continuous

utility functions, a utility function representing semi-Kantian preferences emerges as being
particularly viable from an evolutionary perspective [7, 11]. For some individual who uses
strategy x when it neighbor uses strategy y, and given that strategy y∗ is played at large in
the population, this utility function is defined as

uκ (x, y | y∗) = (1 − κ) w(x, y, y∗) + κ w(x, x, y∗), (11)

where w is the individual fitness function defined above and κ ∈ [0, 1]. The first is the
individual’s realized fitness, given the strategies used. The second term is the fitness that
the individual would realize if—hypothetically—the opponent used the same strategy (x)

5 An individual’s utility function is indeed simply a representation of its preferences. For any pair of strategies
x and y, an individual’s preferences over available strategies tell whether the individual prefers x , y, or is
indifferent between the two. Under certain conditions, such a preference ordering can be fully described by
a function that associates a real number to each strategy, namely the utility function (see, e.g., [18, 69]). An
individual is assumed to choose a strategy with the highest possible value of the function, since this is the
strategy it prefers. Utility maximization is not to be taken literally: it is simply a mathematical tool used to
describe behavior that amounts to choosing the preferred item from the strategy set. A pair of strategies then
constitutes a Nash equilibrium if each individual uses a strategy which, given the other individual’s strategy,
is the one it prefers.
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instead of strategy y; since the individual thereby evaluates what would happen if others
were to follow the same course of action as itself, the second term can be interpreted as
capturing a form of the first formulation of Kant’s categorical imperative: “act as if the
maxims of your action were to become through your will a universal law of nature” [60].
These preferences were dubbedHomo moralis [7], yet they apply regardless of the organism
under consideration in our life-cycle assumptions of Sect. 2.1. We will call the parameter
κ the Kantian coefficient and our goal is to investigate its evolution under three different
scenarios: (a) incomplete information, (b) complete information with incomplete plasticity,
and (c) complete information with complete plasticity. Each of these scenarios, together with
the utility function (11), defines a specific set of behavioral mechanisms (8–10), detailed in
the next section.

3 Evolution of the Kantian Coefficient

For simplicity, we restrict attention to settings where w is twice continuously differentiable
and the utility function (11) is strictly concave in its first argument for any θ ∈ [0, 1]. We
further take the strategy space X to be an open and convex subset of R. These assumptions
together imply that any equilibrium strategy must satisfy first-order conditions, and this
facilitates the analysis. To rule out trivial settings in which an individual’s strategy has no
impact on the opponent’s fitness, we also assume that ∂w(x, y, z)/∂ y �= 0 for all (x, y, z) ∈
X3. We further assume that the sign of this effect is independent of the strategies used,
and by convention, we let ∂w(x, y, z)/∂ y > 0 for all (x, y, z) ∈ X3, meaning that an
increase in the strategy of an individual’s partner enhances the individual’s fitness.6 Finally,
we assume that ∂2w(x, y, z)/∂ y∂x has the same sign for all (x, y, z) ∈ X3, and we will say
that the strategies are strategic complements if ∂2w(x, y, z)/∂ y∂x > 0, strategic substitutes
if ∂2w(x, y, z)/∂ y∂x < 0, and strategically neutral if ∂2w(x, y, z)/∂ y∂x = 0.

3.1 Incomplete Information

3.1.1 Behavioral Equilibrium

Under incomplete information, an individual’s type is the value of their Kantian coefficient
taking a value in the interval [0, 1], and an individual cannot observe the type of its interaction
partner. Still, the individual can have information about the matching distribution in the
pairwise interaction, i.e., the probability that the partner belongs to the same lineage. One-
shot interactions between perfect strangers are examples of this kind of interaction, as are
interactions between family members when the only available information is their degree of
kinship.We assume that individuals hold the belief that the probability of beingmatched with
an individual from the same lineage is given by r(τ, θ), which is a correct belief in the sense
that a randomly drawnmutant in the lineage started by the initial mutant, faces the probability
r(τ, θ) of being matched with another mutant. Given these assumptions, an individual can
condition its strategy only on the strategy that it expects its partner to use, given the belief on
the matching distribution. Since any individual uses the same strategy whether the neighbor
has the same or a different type, we simplify the notation by setting x∗

s = x∗
d = x∗ and

6 This entails no loss of generality, and simply depends on how one defines the strategy set. For example, if
the interaction at hand is a public goods game, then let x and y denote the contributions to the public good. If
the interaction at hand is a common pool resource game, then let x and y denote the inverse of contributions
to extracting resources.
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y∗
s = y∗

d = y∗, where x∗ is the equilibrium strategy of mutants and y∗ that of residents. A
strategy pair (x∗, y∗) is a (Bayesian) Nash equilibrium if (a) y∗ is a preferred strategy for a
resident, given that other residents use strategy y∗; and (b) x∗ is a preferred strategy for a
mutant, given that residents use y∗ and the other mutants use x∗, and given that the mutant
applies the belief that the probability of being matched with another mutant is

r(τ, θ) = r̃(x∗(τ, θ), y∗(θ)), (12)

where on the right-hand side relatedness is expressed in terms of the equilibrium strategies of
mutant and resident individuals. Formally r̃ : X 2 → [0, 1] so that r̃(x, y) is the relatedness
of a mutant towards a random groupmember whenmutants play strategy x and residents play
strategy y [a concrete example thereof is obtained by setting x∗

s = x∗
d = x∗ and y∗

s = y∗
d = y∗

into the right-hand side of Eq. (B-j) of Box 2]. Thus, (x∗, y∗) solves the fixed point system
{

y∗ ∈ argmaxy∈X uθ (y, y∗ | y∗)
x∗ ∈ argmaxx∈X [1 − r̃(x∗, y∗)]uτ (x, y∗ | y∗) + r̃(x∗, y∗)uτ (x, x∗ | y∗) ,

(13)

which is fully in line with the model in [11, Eqs. 1 and 5] and where the utility functions
uθ and uτ are defined in Eq. (11).7 The behavioral fixed point (13) defines the behav-
ioral mechanisms (8–10), which here satisfy Md(τ, θ, x∗, y∗) = Ms(τ, θ, x∗) = 0 and
Rd(θ, y∗, x∗) = Rs(θ, y∗) = 0, since an individual’s strategy choice cannot be conditioned
on the interactant’s type.

Under our mathematical assumptions, the (assumed unique) equilibrium pair of strategies
satisfies the necessary first-order conditions for the maximization problems in Eq. (13):

⎧

⎨

⎩

∂uθ (y,y∗|y∗)
∂ y

∣
∣
∣
y=y∗ = 0

[1 − r̃(x∗, y∗)] ∂uτ (x,y∗|y∗)
∂x

∣
∣
∣
x=x∗ + r̃(x∗, y∗) ∂uτ (x,x∗|y∗)

∂x

∣
∣
∣
x=x∗ = 0.

(14)

Using Eq. (11), these equations become
⎧

⎨

⎩

[

(1 − θ)
∂w(y,y∗,y∗)

∂ y + θ
∂w(y,y,y∗)

∂ y

]

y=y∗ =
[

∂w(y,y∗,y∗)
∂ y + θ

∂w(y∗,y,y∗)
∂ y

]

y=y∗ = 0
[

(1 − τ)
(

[1 − r̃(x∗, y∗)] ∂w(x,y∗,y∗)
∂x + r̃(x∗, y∗) ∂w(x,x∗,y∗)

∂x

)

+ τ
∂w(x,x,y∗)

∂x

]

x=x∗ = 0,

(15)

where the second equality of the first line shows that the marginal change in utility can be
expressed as the sum of the effect of own behavior on own fitness and the fitness of the
partner weighted by the Kantian coefficient θ . The necessary second-order conditions for
(x∗(τ, θ), y∗(θ)) defined by (14) to be maxima rather than minima are:

⎧

⎪⎨

⎪⎩

∂2uθ (y,y∗|y∗)2
∂ y2

∣
∣
∣
∣
y=y∗

≤ 0

[1 − r̃(x∗, y∗)] ∂2uτ (x,y∗|y∗)
∂x2

∣
∣
∣
x=x∗ + r̃(x∗, y∗) ∂2uτ (x,x∗|y∗)

∂x2

∣
∣
∣
x=x∗ ≤ 0.

(16)

These inequalities hold strictly by virtue of the assumption that uθ is strictly concave in its
first argument. Hence:

7 Note that our model is different from the one in [7], where a resident faces a positive probability of being
matched with a mutant. In our model, the mutant trait appears initially in one single individual, and uninvad-
ability obtains if the lineage created by this initial mutant goes extinct in the population (while invadability
obtains if the lineage size created by this initial mutant becomes infinite and thus reaches positive frequency
in the infinitely large population). During the time the mutant lineage is around in the population there can
thus only be a finite number of mutants, and hence residents face a zero probability of being matched with a
mutant in this infinitely large population. See Box 1 or [11] for a formal explanation.
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K (θ) = ∂2uθ (y, y∗ | y∗)
∂ y2

∣
∣
∣
∣
y=y∗

= (1 − θ)
∂2w(y, y∗, y∗)

∂ y2
+ θ

∂2w(y, y, y∗)
∂ y2

∣
∣
∣
∣
y=y∗

< 0.

(17)
This inequality can in turn be used to evaluate how the mutant’s equilibrium strategy would
change if the mutant trait value changed. To see this, by applying the implicit function
theorem, one obtains by totally differentiating the second line of Eq. (15) with respect to τ

and solving the resulting linear equation for ∂x∗(τ, θ)/∂τ :

∂x∗(τ, θ)

∂τ

∣
∣
∣
∣
τ=θ

= −
∂w(x∗,y,y∗)

∂ y

K (θ) + r(θ, θ)(1 − θ)
∂2w(x,y,y∗)

∂x∂ y

∣
∣
∣
∣
∣
∣x=y=y∗
x∗=y∗

. (18)

This (local) mutant behavioral perturbation, which will be seen to play a central role in the
evolutionary analysis, is always positive, i.e., ∂x∗(τ, θ)/∂τ |τ=θ > 0 (see Appendix A for a
proof). The intuition is that by making the individual attach a greater value to the effect that
the strategy would have on self if it was also adopted by the other individual, an increase in
τ makes the individual internalize the positive externality (∂w(x, y, y∗)/∂ y) that the other’s
strategy has on self.

3.1.2 Evolutionary Equilibrium

Turning now to the analysis of selection on the Kantian coefficient, invasion fitness writes

W (τ, θ) = [1 − r(τ, θ)]w
(

x∗(τ, θ), y∗(θ), y∗(θ)
) + r(τ, θ)w(x∗(τ, θ), x∗(τ, θ), y∗(θ)),

(19)
which is differentiable (since individual fitness is differentiable so will be r(τ, θ), see Box
1). Then, substituting Eq. (19) into S(θ) = ∂W (τ, θ)/∂τ |τ=θ , the selection gradient is

S(θ) = ∂x∗(τ, θ)

∂τ

[
∂w(x, y∗, y∗)

∂x
+ r(θ, θ)

∂w(x∗, x, y∗)
∂x

]

τ=θ
x=x∗=y∗=y∗(θ)

, (20)

because the termmultiplying ∂r(τ, θ)/∂τ is w(x∗(τ, θ), x∗(τ, θ), y∗(θ))|τ=θ − w(x∗(τ, θ),

y∗(θ), y∗(θ))|τ=θ = 0. Selection on the Kantian coefficient thus depends on the
(local) mutant behavioral perturbation weighted by the inclusive fitness effect at the
strategy level, i.e. the sum of the direct effect, ∂w(x, y∗, y∗)/∂x , and the indirect
effect, ∂w(x∗, x, y∗)/∂x , on fitness weighted by neutral relatedness. Moreover, since
∂w(x, y∗, y∗)/∂x = −θ∂w(y∗, y, y∗)/∂ y at τ = θ and x∗ = y∗ (see Eq. 15), we obtain
that

S(θ) = [r(θ, θ) − θ ]∂x
∗(τ, θ)

∂τ

∂w(x∗, y, y∗)
∂ y

∣
∣
∣
∣ τ=θ
y=x∗=y∗=y∗(θ)

. (21)

Since (by assumption) ∂w(x, y, y∗)/∂ y �= 0 for all (x, y, y∗) ∈ X3, which also implies that
∂x∗(τ, θ)/∂τ �= 0 (see Eq. 18), this selection gradient shows that the unique singular trait
value is

θ∗ = r(θ∗, θ∗). (22)

But is θ∗ convergence stable and uninvadable?
Let us first consider convergence stability, by determining whether the Jacobian

J (θ∗) = dS(θ)

dθ

∣
∣
∣
∣
θ=r(θ∗,θ∗)

= −
(

1 − dr(θ, θ)

dθ

) [
∂x∗(τ, θ)

∂τ

∂w(x∗, y, y∗)
∂ y

]

τ=θ=θ∗
x∗=y=y∗=y∗(θ)

(23)
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is strictly negative. Since the term in the square brackets is strictly positive, we immediately
obtain that θ∗ = r(θ∗, θ∗) is convergence stable if and only if dr(θ, θ)/ dθ < 1.

What about local uninvadability? To ascertain this, we examine whether the Hessian is
strictly negative. Given that ∂w(x, y∗, y∗)/∂x = −θ∂w(y∗, x, y∗)/∂x when τ = θ (as
noted already above), we obtain:

H(θ∗) = ∂2W (τ, θ)

∂τ 2

∣
∣
∣
∣
τ=θ

=
[(

∂x∗(τ, θ)

∂τ

)2

K
(

r(θ∗, θ∗)
) + 2

∂r(τ, θ)

∂τ

∂x∗(τ, θ)

∂τ

∂w(x∗, y, y∗)
∂ y

]

τ=θ=θ∗
x∗=y=y∗=y∗(θ)

. (24)

Since K (r(θ∗, θ∗)) < 0, the first term is strictly negative. Hence, a sufficient condition
for θ∗ = r(θ∗, θ∗) to be (locally) uninvadable is that the local perturbation of relatedness,
∂r(τ, θ)/∂τ , be nil. The relatedness perturbation can be different from zero, however (for
example, see Eq. (B-j) for the expression of r(θ, τ ) for a Moran process), and its sign
typically depends on demographic and interaction assumptions in non-trivialways.Moreover,
it does not involve second-order derivatives of individual fitness [78], and thus does not vary
systematically according to the strategic substitutability or complementarity of the strategies.
Hence, in settings where behavior affects relatedness ∂r(τ, θ)/∂τ �= 0, it is challenging to
identify general conditions that would guarantee that J (θ∗) < 0 and H(θ∗) < 0. Yet, it is
known that in certain settings (summarized below) both dr(θ, θ)/ dθ and ∂r(τ, θ)/∂τ are
negligible. We refer to this as weak trait effects on relatedness. We can then summarize
sufficient conditions for the Kantian coefficient to be evolutionarily stable as follows, where

T = −
∂x∗(τ,θ)

∂τ
K (r(θ∗, θ∗))

2 ∂w(x∗,y,y∗)
∂ y

. (25)

Result 1 When interactions take place under incomplete information, the Kantian coefficient
equal to the neutral relatedness, θ∗ = r(θ∗, θ∗), is the unique singular trait value. It is
both an evolutionary attractor (convergence stable) and locally uninvadable if trait effects on
relatedness are sufficiently weak. More precisely, θ∗ = r(θ∗, θ∗) is convergence stable if
and only if dr(θ, θ)/ dθ < 1 and it is locally uninvadable if and only if ∂r(τ, θ)/∂τ < T
evaluated at θ = θ∗.

While the condition for uninvadability is consistent with the results of [11],8 our analysis
reinforces those results by identifying a sufficient condition for the Kantian coefficient equal
to neutral relatedness to be also convergence stable. When these conditions are satisfied,

8 This may not be immediately apparent, for the results in [11] (see Propositions 1 and 2) state as a necessary
and sufficient condition for a utility function to be uninvadable, that the equilibrium strategy in a popula-
tion where all individuals have this utility function be an uninvadable strategy (i.e., uninvadable in a setting
where the set of traits is the set of strategies, a setting that [11] call strategy evolution). One can check that
the condition for θ∗ = r(θ∗, θ∗) to be uninvadable in our setting, i.e., H(θ∗) < 0 (see Eq. 24), coincides
with the condition for the equilibrium strategy y∗(θ∗) to be an uninvadable strategy under strategy evolu-
tion. This is so because owing to Eq. (12), ∂r(τ, θ)/∂τ = (∂ r̃(x, y∗)/∂x)(∂x∗(τ, θ)/∂τ), whereby Eq. (24)

becomes H(θ∗) = (

∂x∗(τ, θ)/∂τ
)2 [

K
(

r(θ∗, θ∗)
) + 2(∂ r̃(x, y∗)/∂x)(∂w(x∗, y, y∗)/∂ y)

]

at τ = θ ; and
under strategy evolution the invasion fitness of mutant type x in a monomorphic resident population y is

W (x, y) = [

1 − r̃(x, y)
]

w(x, y, y) + r̃(x, y) w(x, x, y) and ∂2W (x, y)/∂x2
∣
∣
∣
x=y

corresponds to the term

in square brackets in H(θ∗).
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individuals in a population at the evolutionary equilibrium will thus behave according to
Hamilton’s (marginal) rule at the strategy level, i.e., their behavioral equilibrium y∗ satisfies

[
∂w(y, y∗, y∗)

∂ y
+ r̃(y∗, y∗) ∂w(y∗, y, y∗)

∂ y

]

y=y∗
= 0, (26)

where the value of relatedness may depend endogenously on the strategy.
Interestingly, many biological scenarios do exhibit weak, or even nil, trait effects on relat-

edness whereby r̃(y∗, y∗) = r̃ is independent of y∗ in Eq. (26).9 First, in family-structured
populations, which cover a large class of interactions (e.g., parent-offspring interactions,
interactions between sibling or cousins, etc...), relatedness is independent of the types
(dr(θ, θ)/ dθ = ∂r(τ, θ)/∂τ = 0). Second, relatedness is also independent of the types
in spatially-structured populations when selection is weak in the sense that the strategies in
the interaction affect fitness only marginally (see, e.g., [11]). Such independence can extend
to cases where effects are not so marginal because when the migration probability is exoge-
nous, both dr(θ, θ)/dθ and ∂r(τ, θ)/∂τ tend to be negligible for several games [78, 98].
Finally, for certain demographic processes, like the Moran process when behavior affects
only reproduction, one has dr(θ, θ)/ dθ = 0 and ∂r(τ, θ)/∂τ = 0 [78], but, as implied
by Eq. (B-j) of Box 2, the relatedness perturbation is nonzero in the Moran process when
behavior affects survival.

3.2 Complete Information with Incomplete Plasticity

3.2.1 Behavioral Equilibrium

Under complete information individuals have information about the type of their interaction
partner, which is here again taken to be the partner’s Kantian coefficient taking values in the
interval [0, 1]. However, an individual’s own utility function cannot be conditioned on that
information: this is what we mean by incomplete plasticity. Because individuals can observe
the type composition of their group, whenever the mutant type differs from the resident type,
the distinction between a mutant’s equilibrium strategies x∗

d and x∗
s , as well as between a

resident’s equilibrium strategies y∗
d and y∗

s , is relevant, as per the behavioral mechanisms (8–
10). Hence, the equilibrium strategy y∗

s used by each resident in an interaction with another
resident satisfies

y∗
s ∈ argmax

y∈X uθ

(

y, y∗
s | y∗

s

)

, (27)

the equilibrium strategy x∗
s used by eachmutant in an interactionwith anothermutant satisfies

x∗
s ∈ argmax

x∈X uτ

(

x, x∗
s | y∗

s

)

, (28)

and the equilibrium pair of strategies (x∗
d , y

∗
d ) used by a mutant and a resident, respectively,

in a mutant-resident interaction solves the fixed point system
{

y∗
d ∈ argmaxy∈X uθ

(

y, x∗
d | y∗

s

)

x∗
d ∈ argmaxx∈X uτ

(

x, y∗
d | y∗

s

)

.
(29)

The fixed point Eqs. (27–29) define the behavioral mechanisms (8–10) under complete infor-
mation with incomplete plasticity. Note that if τ = θ in Eq. (29), then x∗

d (θ, θ) = y∗
d (θ, θ)

owing to the strict concavity of u in its first argument, which implies that to each strategy

9 Such independencewas originally assumed in evolutionary game theorymodels with assortative interactions
[56, 70] and later used in preference evolution models [7].
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played by the opponent there exists a unique best response. Hence, if τ = θ ,

x∗
d (θ, θ) = y∗

d (θ, θ) = x∗
s (θ) = y∗

s (θ). (30)

As in the incomplete information scenario, in the evolutionary analysis we use the expres-
sions that capture how the equilibrium strategies are modified by marginal changes in the
mutant trait and the resident trait. To obtain these behavioral perturbations, we first write the
necessary first-order conditions for (x∗

d , y
∗
d ) to be a Nash equilibrium:

⎧

⎪⎨

⎪⎩

∂uθ (y,x∗
d |y∗

s )
∂ y

∣
∣
∣
y=y∗

d

=
[

(1 − θ)
∂w(y,x∗

d ,y∗
s )

∂ y + θ
∂w(y,y,y∗

s )

∂ y

]

y=y∗
d

= 0

∂uτ (x,y∗
d |y∗

s )
∂x

∣
∣
∣
x=x∗

d

=
[

(1 − τ)
∂w(x,y∗

d ,y∗
s )

∂x + τ
∂w(x,x,y∗

s )

∂x

]

x=x∗
d

= 0.
(31)

Therein, the monomorphic resident behavioral equilibrium y∗
s solves

∂uθ

(

y, y∗
s | y∗

s

)

∂ y

∣
∣
∣
∣
∣
y=y∗

s

=
[

(1 − θ)
∂w(y, y∗

s , y
∗
s )

∂ y
+ θ

∂w(y, y, y∗
s )

∂ y

]

y=y∗
s

=
[

∂w(y, y∗
s , y

∗
s )

∂ y
+ θ

∂w(y∗
s , y, y

∗
s )

∂ y

]

y=y∗
s

= 0, (32)

where the second equality shows that the marginal change in utility in the resident population
can, as under incomplete information, be expressed as the sum of the effect of own behavior
on own fitness and the fitness of the partner weighted by the Kantian coefficient θ . Since uθ

is strictly concave in its first argument, the second-order partial derivative of uθ , evaluated at
y∗
s (θ) = y∗

d (θ, θ), is strictly negative:

K̃ (θ) = ∂2uθ

(

y, y∗
s | y∗

s

)

∂ y2

∣
∣
∣
∣
∣
y=y∗

s =y∗
d (θ,θ)

=
[

(1 − θ)
∂2w(y, y∗

s , y
∗
s )

∂ y2
+ θ

∂2w(y, y, y∗
s )

∂ y2

]

y=y∗
s =y∗

d (θ,θ)

< 0. (33)

The system of equations in Eq. (31) together implicitly define x∗
d and y∗

d as functions of τ

and θ . Applying the implicit function theorem, we obtain the following expressions for the
behavioral perturbation of the equilibrium strategy of a mutant and of a resident with respect
to the mutant trait value, evaluated locally at τ = θ :

∂x∗
d (τ, θ)

∂τ

∣
∣
∣
∣
τ=θ

= −
∂w(y∗

d ,y,y∗
d )

∂ y K̃ (θ)
(

K̃ (θ) + (1 − θ)
∂2w(x,y,y∗

d )

∂x∂ y

) (

K̃ (θ) − (1 − θ)
∂2w(x,y,y∗

d )

∂x∂ y

)

∣
∣
∣
∣
∣
∣
∣
x=y=y∗

d=y∗
d (θ,θ)

(34)

∂ y∗
d (θ, τ )

∂τ

∣
∣
∣
∣
τ=θ

= (1 − θ)
∂w(y∗

d ,y,y∗
d )

∂ y
∂2w(x,y,y∗

d )

∂x∂ y
(

K̃ (θ) + (1 − θ)
∂2w(x,y,y∗

d )

∂x∂ y

) (

K̃ (θ) − (1 − θ)
∂2w(x,y,y∗

d )

∂x∂ y

)

∣
∣
∣
∣
∣
∣
∣
x=y=y∗

d=y∗
d (θ,θ)

.(35)

In the evolutionary analysis, it is the ratio of the resident’s to the mutant’s behavioral pertur-
bation that will matter:

ρ(θ) =
∂ y∗

d (θ,τ )

∂τ

∂x∗
d (τ,θ)

∂τ

∣
∣
∣
∣
∣

τ=θ

. (36)
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This is well defined, since the assumption ∂w(y∗
d , y, y

∗
d )/∂ y �= 0 implies ∂x∗

d (τ, θ)/∂τ �= 0,
whichmeans that the equilibrium strategy of mutants always changes as a result of a marginal
change in the mutant trait value. Because ρ(θ) measures the extent to which an individual’s
neighbor’s strategy varies with own strategy variation, we follow previous terminology and
refer to ρ(θ) as the response coefficient [2]. Inserting Eqs. (34) and (35) into Eq. (36), we
obtain

ρ(θ) = − (1 − θ)
∂2w(x,y,y∗

d )

∂x∂ y

K̃ (θ)

∣
∣
∣
∣
∣
∣
x=y=y∗

d=y∗
d (θ,θ)

, (37)

implying that the response coefficient has the same sign as ∂2w(x, y, y∗
d )/∂x∂ y, and this

will play a role in the analysis of selection on the Kantian coefficient, to which we now turn.

3.2.2 Evolutionary Equilibrium

To begin, note that Eq. (30) implies that we can write invasion fitness (2) as follows:

W (τ, θ) = [1 − r(τ, θ)]w
(

x∗
d (τ, θ), y∗

d (θ, τ ), y∗
d (θ, θ)

)

+r(τ, θ)w(x∗
d (τ, τ ), x∗

d (τ, τ ), y∗
d (θ, θ)), (38)

which is differentiable. Substituting this into the selectiongradient S(θ) = ∂W (τ, θ)/∂τ |τ=θ ,
and simplifying yields (since the term multiplying ∂r(τ, θ)/∂τ is
w(x∗

d (τ, τ ), x∗
d (τ, τ ), y∗

d (θ, θ))
∣
∣
τ=θ

− w
(

x∗
d (τ, θ), y∗

d (θ, τ ), y∗
d (θ, θ)

)∣
∣
τ=θ

= 0):

S(θ) =
[(

∂x∗
d (τ, θ)

∂τ
+ r(θ, θ)

∂ y∗
d (θ, τ )

∂τ

)
∂w(x, y∗

d , y
∗
d )

∂x

+
(

r(θ, θ)
∂x∗

d (τ, θ)

∂τ
+ ∂ y∗

d (θ, τ )

∂τ

)
∂w(x∗

d , y, y
∗
d )

∂ y

]

τ=θ
x=y=x∗

d=y∗
d

y∗
d=y∗

d (θ,θ)

. (39)

FromEq. (32),we canwrite (1−θ)∂w(y, x∗
d , y

∗
d )/∂ y+θ∂w(y, x∗

d , y
∗
d )/∂ y+θ∂w(x∗

d , y, y
∗
d )/

∂ y = 0 at τ = θ where x = y = y∗
s = x∗

d = y∗
d . Therefore, we can replace

∂w(x, y∗
d , y

∗
d )/∂x = ∂w(y, y∗

d , y
∗
d )/∂ y by −θ∂w(x∗

d , y, y
∗
d )/∂ y in Eq. (39), to obtain

S(θ) = ∂x∗
d (τ, θ)

∂τ

∂w(y∗
d , y, y

∗
d )

∂ y

(

[r(θ, θ) − θ ] + [1 − θr(θ, θ)] ρ(θ)

)∣
∣
∣
∣ τ=θ
y=y∗

d=y∗
d (θ,θ)

.

(40)
Comparing Eq. (40) to the selection gradient under incomplete information (see Eq. 21), we
see that if the response coefficient is nil, i.e., if ρ(θ) = 0, the two selection gradients are
identical, and θ = r(θ, θ) is then the unique singularity. This is not surprising since under
incomplete information changes in the mutant trait value has no effect on the resident’s
equilibrium strategy. We further observe that when θ = 1, then ρ(θ) = 0; using Eq. (34) in
Eq. (40), the selection gradient at θ = 1 is thus

S(1) = (1 − r(1, 1))

K̃ (1)

(

∂2w(y∗
d , y, y

∗
d )

∂ y2

)2
∣
∣
∣
∣
∣
∣
y=y∗

d=y∗
d (θ,θ)

. (41)

Since K̃ (1) < 0 and r(θ, θ) < 1 for all θ ∈ [0, 1], we obtain S(1) < 0, which implies that
θ = 1 is always counter-selected, and can neither be convergence stable nor uninvadable.
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By contrast, nothing allows to rule out that θ = 0 could be convergence stable and/or
uninvadable. More generally, since ∂w(x∗

d , y, y
∗
d )/∂ y �= 0 (by assumption), Eq. (40) implies

that S(θ) = 0 if and only if

θ = r(θ, θ) + [1 − θr(θ, θ)]ρ(θ). (42)

Let θ̃ denote a solution to this equation. Since r(θ, θ) < 1 for all θ ∈ [0, 1], so that 1 −
θr(θ, θ) > 0 for any θ ∈ [0, 1], it follows immediately from Eq. (42) that θ̃ = r(θ̃) if
ρ(θ̃) = 0, θ̃ > r(θ̃ ) if ρ(θ̃) > 0, and θ̃ < r(θ̃) if ρ(θ̃) < 0. Recalling that the sign of ρ(θ)

depends on the sign of ∂2w(x, y, y∗
d )/∂x∂ y (see Eq. (37)), and that we restrict the Kantian

coefficient to take values between 0 and 1, the following result obtains.

Result 2 Let θ∗ denote a singularity for the Kantian coefficient under complete information
and incomplete plasticity, and θ̃ denote a solution to Eq. (42). Then:

(i) θ∗ = 0 if θ̃ ≤ 0, which requires w to be such that strategies are strategic substitutes or
strategically neutral;

(ii) θ∗ = θ̃ if θ̃ ∈ (0, 1), in which case θ∗ = [r(θ∗, θ∗) + ρ(θ∗)]/[1 + ρ(θ∗)r(θ∗, θ∗)].
In particular, θ∗ = r(θ∗, θ∗) if w is such that strategies are strategically neutral, while
θ∗ < r(θ∗, θ∗) (resp. θ∗ > r(θ∗, θ∗)) if w is such that strategies are strategic substitutes
(resp. complements), and θ∗ = ρ(θ∗) if r(θ∗, θ∗) = 0.

By contrast to the incomplete information settingwhere theKantian coefficientmust coincide
with the coefficient of relatedness, here it can be either larger or smaller and the behavioral
equilibrium y∗ in a population at an evolutionary equilibrium θ∗ now satisfies

[
∂w(y, y∗, y∗)

∂ y
+

(
r̃(y∗, y∗) + ρ(θ∗)
1 + ρ(θ∗)r̃(y∗, y∗)

)
∂w(y∗, y, y∗)

∂ y

]

y=y∗
= 0, (43)

where relatedness will be independent of the strategies (and types) under weak trait effects
on relatedness. Whether the Kantian coefficient exceeds or falls short of relatedness depends
on whether the fitness function exhibits, respectively, strategic complementarity or substi-
tutability. The reason that strategic complementarity raises the Kantian coefficient above
the value of relatedness stems from the fact that a mutation consisting in an increase in the
Kantian coefficient then induces a positive correlated response in the strategy expression
by its neighbor, implying that the marginal benefit of the Kantian coefficient is larger than
under strategic neutrality (compare Eqs. 21–40). By contrast, under strategic substitutability,
a mutation consisting in an increase in the Kantian coefficient has a negative impact on its
neighbor’s equilibrium strategy, implying that the marginal benefit of the Kantian coefficient
is smaller than under strategic neutrality.

Result 2 further shows that a singular Kantian coefficient can in principle take any value in
the range [0, 1) depending on demographic and behavioral parameters. Interestingly, Eq. (42)
along with Eq. (36) is identical to the corresponding equation in the model of [6] (see their
Eq. (29)), wherein they examine the class of other-regarding utility functions whereby an
individual may attach some evolving weight α ∈ (−1, 1) to the interactant’s individual
fitness. Hence, Theorem 1 of this previous work also establishes that whether the exact value
of the evolving weight α exceeds or falls short of relatedness depends on whether the fitness
function exhibits strategic substitutability, complementarity, or neutrality.10

10 Because the behavioral perturbations of other-regarding utility functions, and thus ρ(θ), typically differ
from the ones with the partially Kantian utility function, a singular α will typically differ from the singular
Kantian coefficient, however.
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Fig. 1 Each curve shows, for the Moran process analyzed in Box 2 with individual fitness (B-i), the singular
Kantian coefficient θ∗ under complete information and incomplete plasticity, for the linear quadratric fecundity
function (44), as a function of parameter b in that function for a = 0.1 and c = 1. Each of the four lines
corresponds to a different value of the “backward migration probability”, which depends on the exogenously
given migration probability m (see Eq. (B-l) and the description following it). Starting from the top, the first
line, where the Kantian coefficient remains essentially constant at θ∗ = 0.98 is for mb = 0.01 whereby
r = (1 − mb)/(1 + mb) ≈ 0.98; the second line is for mb = 0.2 whereby r = (1 − mb)/(1 + mb) ≈ 0.66;
the third line for mb = 0.4 whereby r = (1 − mb)/(1 + mb) ≈ 0.42; and the last line, where the Kantian
coefficient varies over the range [0, 0.6], is for mb = 0.6 whereby r = (1 − mb)/(1 + mb) = 0.25. By
computing the Jacobian (A-10) and the Hessian (A-12) coefficients at these values we checked that all these
singular Kantian coefficients are indeed both convergence stable and uninvadable

We now examine whether a Kantian coefficient θ∗ of Result 2 is convergence stable and
uninvadable. Due to the complexity of the expressions for the Jacobian J (θ∗) and the Hessian
H(θ∗) coefficients at θ∗ solving S(θ∗) = 0, presented in Appendix B, we were unable to
reach generic answers to these questions, and further assumptions may be needed to reach
more definite results. However, we verify that convergence stability and uninvadability can
obtain, by resorting to an illustrating example. Consider a Moran demographic process (i.e.
individual fitness takes the form of Eq. (B-i)) with constant death rateμ and juvenile survival
probability s, and that individual face a pairwise interaction such that their expected fecundity
(number of offspring produced at stage (b) of the life cycle of Sect. 2.1) is linear-quadratic
in the two players’ actions:

f (x, y) = 1 + ax − bxy − cx2 (44)

for parameters a, b, c ∈ R. Then, substituting Eq. (44) into individual fitness (B-i), we can
evaluate the selection gradient (40), the Jacobian (A-10) and the Hessian (A-12) coefficients.
Even for this simple example, Eq. (42) is a quartic function that cannot be solved explicitly
and so we analyse the selection gradient numerically. Figure 1 displays how for fixed but
different values of the backward migration rate mb (Eq. B-l), θ∗ varies when b is varied.
Figure 1 shows that by depending on b, the Kantian coefficient takes a value above or below
that of relatedness.

3.3 Complete Information and Plasticity

3.3.1 Behavioral Equilibrium

The defining assumption of our complete information with complete plasticity scenario is
that individuals can not only observe the type of the interaction partner but also condition
their preferences on it. Hence, the preferences applied in the interaction become state-specific
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on the interaction. Specifically, we assume that the type θ = (θd, θs) of an individual is a
two-dimensional quantitative trait (θ ∈ [0, 1]2) such that θs parametrizes an individual’s
preference (still given by Eq. (11)) when individuals in a pair have the same type and θd
parametrizes an individual’s preference when individuals in a pair have different types.

In terms of the equilibrium strategies, consider some resident type θ = (θd, θs) and
some mutant type τ = (τd, τs) that is different from θ (either because θd �= τd, or because
θs �= τs, or because both θd �= τd and θs �= τs). Then, a resident individual applies the
Kantian coefficient θs when interacting with another resident, in which case they both play
the equilibrium strategy y∗

s , satisfying

y∗
s ∈ argmax

y∈X uθs

(

y, y∗
s | y∗

s

)

. (45)

The solution thereof defines the equilibrium strategy as a function of only θs and we write
y∗
s (θs) when this dependence needs to be made explicit. In mutant–mutant interactions both

individuals apply the Kantian coefficient τs and they both use the equilibrium strategy x∗
s ,

satisfying
x∗
s ∈ argmax

x∈X uτs

(

x, x∗
s | y∗

s

)

. (46)

This defines the equilibrium strategy as a function of both τs and θs (since y∗
s depends on

θs), which we write x∗
s (τs, θs). Finally, in mutant-resident pairs where τ �= θ , the mutant

applies the Kantian coefficient τd while the resident applies the Kantian coefficient θd, and
the Nash equilibrium strategies x∗

d and y∗
d are best responses to each other according to these

preferences:
{

y∗
d ∈ argmaxy∈X uθd

(

y, x∗
d | y∗

s

)

x∗
d ∈ argmaxx∈X uτd

(

x, y∗
d | y∗

s

)

,
(47)

which leads to the dependence of both equilibrium strategies on τd, θd, and θs and we write
x∗
d (τd, θd, θs) and y∗

d (θd, τd, θs). In mutant-resident pairs with the same type, which occurs if
individuals fromdifferent lineage interact but are of the same type τ = θ , then each individual
in the pair applies the Kantian coefficient θs and therefore expresses strategy y∗

s (θs).

3.3.2 Evolutionary Equilibrium

The fixed point Eqs. (45–47) define the behavioral mechanisms (8–10) under complete infor-
mation with complete plasticity and it follows that the invasion fitness can be written as

W (τ, θ) = [1 − r(τ, θ)]Wd(τd, θd, θs) + r(τ, θ)Ws(τs, θs), (48)

where

Wd(τd, θd, θs) =
{

w(x∗
d (τd, θd, θs), y

∗
d (θd, τd, θs), y

∗
s (θs)) if (τd, τs) �= (θd, θs)

w(y∗
s (θs), y

∗
s (θs), y

∗
s (θs)) = 1 if (τd, τs) = (θd, θs),

(49)

and
Ws(τs, θs) = w(x∗

s (τs, θs), x
∗
s (τs, θs), y

∗
s (θs)). (50)

Each component of the mutant trait τ = (τd, τs) thus affects invasion fitness differently.
The first trait component, τd, only affects the part of invasion fitness Wd emanating from the
interaction of amutant with a resident. Invasion fitness is not differentiable in trait component
τd because, as emphasized by Eq. (49), there is generally a discrete jump in the equilibrium
strategies at τd = θd, from (x∗

d , y
∗
d ) to (y∗

s , y
∗
s ) since as long as τ �= θ , individuals in mutant-

resident pairs play the equilibrium (x∗
d , y

∗
d ), while at τ = θ the pair plays (y∗

s , y
∗
s ) [see the
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example below for an illustration]. The second trait component, τs, not only affects the part
of invasion fitness Ws emanating from the interaction of a mutant with another mutant, but
also Wd, since if τd = θd the resident applies the value θd when interacting with a mutant if
τs �= θs but instead the value θs if τs = θs. The invasion fitness (48) is thus not differentiable
in the mutant type (τd, τs). Moreover, as will be shown and explained in detail in an example
below, there is typically an infinite number of uninvadable types θ ∈ [0, 1]2. In spite of these
challenges, we have identified two simple sufficient conditions for a type to be uninvadable
(but we were unable to conclude on convergence stability).

To state our result, for any θd, τd, θs ∈ [0, 1] define
{

ỹ(θd, τd, θs) ∈ argmaxy∈X uθd

(

y, x̃(τd, θd, θs) | y∗
s (θs)

)

x̃(τd, θd, θs) ∈ argmaxx∈X uτd

(

x, ỹ(θd, τd, θs) | y∗
s (θs)

) (51)

and
W̃ (τd, θd, θs) = w(x̃(τd, θd, θs), ỹ(θd, τd, θs), y

∗
s (θs)). (52)

Result 3 A sufficient condition for Wd(τd, θd, θs) ≤ 1 for all τd ∈ [0, 1] and Ws(τs, θs) ≤ 1
for all τs ∈ [0, 1] (and thus W (τ, θ) ≤ 1 for all τ = (τd, τs) ∈ [0, 1]2) is that θ = (θd, θs) =
(θ∗

d , 1), where θ∗
d ∈ [0, 1] is such that W̃ (θ∗

d , θ∗
d , 1) ≥ W̃ (τd, θ

∗
d , 1) for all τd ∈ [0, 1].

For a formal proof of this result, see Appendix C. To understand this result, note first that
θs = 1 guarantees that a mutant cannot achieve a higher fitness when interacting with another
mutant, than a resident does when interacting with another resident. This value of the Kantian
coefficient indeed implies that both individuals in the interaction act as “social planners”:
they choose that strategy which, when chosen by both individuals, maximizes their fitness.
Second, note that for τd �= θd, the system of Eq. (51) is mathematically equivalent to the
system of equations that characterizes the equilibrium strategies between a resident and a
mutant (see (47)), and W̃ (τd, θd, θs) is equivalent to Wd(τd, θd, θs).11 Hence, the value θ∗

d
defined in the result is such that if residents apply θd = θ∗

d when interacting with mutants,
the residents get a higher fitness than the mutants do in mutant-resident interactions, for any
value of τd �= θd. Thus, (θs, θd) = (θ∗

d , 1) is a “safe bet” as an uninvadable point.
However, and as mentioned before, there are typically many other uninvadable types. To

see why, it is useful to draw a parallel between the function W̃ , defined in Eq. (52), and the
fitness of a mutant under the complete information and incomplete plasticity scenario when
relatedness is equal to zero, defined in Eq. (38). These are mathematically equivalent, except
that in Eq. (52) individuals in the resident population play strategy y∗

s (θs), where θs may
differ from θd. This parallel allows us to realize that the same arguments as for the derivation
of Result 2 can be applied here, to conclude that a relevant candidate value for θ∗

d is the one
satisfying θ∗

d = max{0, ρ̃(θ∗
d )} where

ρ̃(θd) =
∂ ỹ(θd,τd,1)

∂τd

∂ x̃(τd,θd,1)
∂τd

∣
∣
∣
∣
∣

τd=θd

. (53)

From (differentiable) fitness W̃ (τd, θd, θs) and following the same arguments as those leading
up to Result 2, we know that an uninvadable type satisfying θ∗

d = ρ̃(θ∗
d ) cannot be equal to

one, i.e., θ∗
d < 1. Based on the same argument as used in the previous paragraph, we have

Wd(τd, θ
∗
d , 1) ≤ W̃ (θ∗

d , θ∗
d , 1) < W̃ (1, 1, 1) = 1. The inequality W̃ (θ∗

d , θ∗
d , 1) < W̃ (1, 1, 1)

11 Note that the definition of the function W̃ allows us to evaluate Wd under the hypothesis that the resident
would apply the Kantian coefficient θd even when interacting with another individual with the same type. This
is useful for the proof of the result, and for the argument developed in the next paragraph.
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follows from the fact that θs = 1 implies that both individuals in the interaction act as “social
planners” and thus maximize their fitness, and hence interaction partners with θ∗

d < 1 do not
act as social planners, thereby choosing a strategy that does not maximise their fitness (see
also Appendix C).

We can thus conclude that θd = θ∗
d implies that Wd(τ, θ) < 1 for any τd �= θ∗

d . Hence,
we can further conclude that θ = (θd, θs) = (θ∗

d , 1) implies that W (τ, θ) < 1 for any
τ �= θ . It is this discrete jump between the invasion fitness of any mutant τ �= θ and the
residents’ fitness that opens the door for the multiplicity of uninvadable types. For example,
(θd, θs) = (θ∗

d − ε, 1) for some sufficiently small ε > 0 would also be uninvadable: with
this resident type, a mutant can achieve a higher fitness than a resident in a mutant-resident
interaction, but one can always find ε small enough so that this advantage would be too small
to overcome the difference 1− Wd(τd, θ

∗
d − ε, 1). Likewise, (θs, θd) = (1− ε, θ∗

d ) for some
sufficiently small ε > 0 would also be uninvadable: with this resident type, mutants can
achieve a higher fitness when interacting with each other than when two residents interact,
but one can always find ε small enough so that this advantage would be too small to overcome
the difference 1− Wd(τd, θ

∗
d , 1− ε). Note that this example further shows that θs = 1 is not

necessary for θ to be uninvadable.
In order to illustrate Result 3, we work out an example assuming a constant relatedness of

1/2 and an individual fitness function of the form w(xi , x−i , y) = f (xi , x−i )/ f (y, y), with
fecundity f (xi , x−i ) = 1+ axi − bxi x−i − cx2i given by the linear-quadratic function (44).
This model could be thought of as interactions between siblings in a family-structured semel-
parous population. Given these assumptions, the invasion fitness (48) is

W (τ, θ) = 1

2
Wd(τd, θd, θs) + 1

2
Ws(τs, θs), (54)

with

Wd(τd, θd, θs) =
{

f (x∗
d (τd,θd),y∗

d (θd,τd))

f (y∗
s (θs),y∗

s (θs))
if (τd, τs) �= (θd, θs)

1 if (τd, τs) = (θd, θs),
(55)

and

Ws(τs, θs) = f (x∗
s (τs), x

∗
s (τs))

f (y∗
s (θs), y

∗
s (θs))

. (56)

In force of Eq. (45), the (Nash) equilibrium strategy for a resident pair is

y∗
s (θs) = a

2c + b + bθs
, (57)

while in force of Eq. (47), the strategies for a mutant-resident pair are

x∗
d (τd, θd) = a [2c − b(1 − 2θd − τd)]

4c2 + 4bc(θd + τd) − b2(1 − θd − τd + 3θdτd)

y∗
d (θd, τd) = a [2c − b(1 − 2θd − τd)]

4c2 + 4bc(θd + τd) − b2(1 − θd − τd + 3θdτd)
, (58)

and in force of Eq. (46), the equilibrium strategy for a mutant pair is

x∗
s (τs) = a

2c + b + bτs
. (59)

For this model, we can also write for any τd, θd ∈ [0, 1] that
W̃ (τd, θd, 1) = f (x∗

d (τd, θd), y
∗
d (θd, τd))

f (y∗
s (1), y

∗
s (1))

, (60)

and the candidate uninvadable Kantian coefficient thus satisfies
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Fig. 2 Pairwise invasibility plots. Panel A displays the difference W̃ (τd, θd, 1) − W̃ (θd, θd, 1) for all com-
binations of θd (x-axis) and τd (y-axis) values (and thus holding θs = 1 fixed), for the parameter values
a = 0.1, b = −0.5 and c = 1 of the linear quadratic game (44) (W̃ (τd, θd, 1) is thus defined by (60)). The
difference is zero on the diagonal, since τd = θd. The black region depicts all the combinations (θd, τd)
such that the difference is negative, while the white region outside the diagonal depicts all the combinations
(θd, τd) such that the difference is positive. The candidate given by Eq. (62) is θ∗

d ≈ 0.22, which the graph
shows is uninvadable. Panel B displays the difference W (τ, θ) − W (θ, θ) determined by Eqs. (54–59) of a
mutant τ = (τd, 1) in a resident θ = (θd, 1) population for all combinations of resident θd (x-axis) and
mutant τd (y-axis) trait values (and thus holding θs = 1 and τs = 1 fixed) for the parameter values a = 0.1
b = −0.5 and c = 1 of the linear quadratic game (44). On the diagonal, the difference equals zero (and
invasion fitness equals one) since τd = θd. The black region depicts all combinations (θd, τd) such that the
difference is negative, i.e., W (τ, θ) < 1, so that the mutant τd cannot invade, while the white region outside
the diagonal depicts all combinations (θd, τd) such that the difference is positive, W (τ, θ) > 1, so that the
mutant can invade. The graph thus shows that all values of (θd, 1) with θd below approximately 0.6 are unin-
vadable. There is thus a multiplicity of uninvadable types, which necessarily contains that of Panel A. Note
that resident values above approximately θd ≈ 0.9 are invadable by any mutation τd < θd, while resident
values between approximatively 0.6 and 0.9 are invadable by mutants with τd = θd − δ for δ > 0 large
enough. C displays W (τ, θ) − W (θ, θ) determined by Eqs. (54–59) for a mutant τ = (τd, τs) in a resident
θ = (θd, θs) population for all combinations of resident θs (x-axis) and mutant τs (y-axis) trait values holding
τd = θd = ρ̃(θd) fixed and given by Eq. (61) under the parameter values a = 0.1 b = −0.5 and c = 1 of
the linear quadratic game (44). As for Panel B, the black region depicts all combinations (θs, τs) such that the
difference is negative, i.e., W (τ, θ) < 1, so that the mutant τs cannot invade, while the white region outside
the diagonal depicts all combinations (θs, τs) such that the difference is positive, W (τ, θ) > 1, so that the
mutant can invade. The graph thus shows that all values of (θs, ρ̃(θ∗

d )) with θs above approximately 0.5 are
uninvadable

θ∗
d = ρ̃(θ∗

d ) =
∂ y∗

d (θd,τd))

∂τd

∂x∗
d (τd,θd)

∂τd

∣
∣
∣
∣
∣
∣
τd=θ∗

d

= − b(1 − θ∗
d )

2(c + bθ∗
d )

, (61)

which has a relevant root in the interval [0, 1] when b < 0 (which implies that the strategies
are strategic complements), given by

θ∗
d = b − 2c + √

4c2 − 4bc − 7b2

4b
. (62)

It is straightforward to check, for instance by computing ∂2W̃ (τd, θd, 1)/∂τ 2d at τd = θd = θ∗
d ,

that there is a range of parameter values where this Kantian coefficient is uninvadable and
this is illustrated in panel A of Fig. 2.

This example illustrates the two features of Result 3 discussed in general terms above.
First, as long as τ �= θ , individuals in mutant-resident pairs play the equilibrium (58), while
at τ = θ , they play Eq. (57). This makes the strategies discontinuous at τd = θd, which in
turn implies that invasion fitness is not differentiable. Despite this discontinuity embedded
in fitness Wd(τd, θd, θs) (Eq. 55), Result 3 shows that we can use the function W̃ (τd, θd, 1)
to straightforwardly calculate θd = θ∗

d = max{0, ρ̃(θ∗
d )}, and then use the Hessian to check
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that (θs, θd) = (1, θ∗
d ) is indeed uninvadable. This is illustrated in panel A of Fig. 2. Second,

there are multiple uninvadable types; this is illustrated in panels B and C of Fig. 2.
Our formalization of preference evolution under complete information and plasticity

makes it difficult to reach any specific conclusion about long-term evolution for two reasons.
First, because invasion fitness is not differentiable, a different toolkit than the usual multidi-
mensional convergence stability criterion is needed to characterize the attractor points of the
evolutionary dynamic [65]. Second, the multiplicity of uninvadable equilibria compounded
with the non-differentiability makes the focus on monomorphic population questionable and
a treatment with polymorphic populations appears required. It would thus be relevant to
analyze a fully dynamical model of preference evolution with mutation and selection under
complete information and plasticity to reach more definite results and also to determine
whether the equilibrium θ = (θ∗

d , 1) identified in Result 3 plays a special role, for instance
whether it is a stochastically stable trait value (sensu [41]).

4 Discussion

By investigating the evolution of semi-Kantian preferences under different informational
and behavioral plasticity assumptions in group-structured populations, we have extended the
evolutionary viability analysis of this class of preferences. While we restricted attention to
pairwise interactions, and preferences characterized by a single evolving quantitative trait,
the Kantian coefficient, our model weaves together different threads of the literature and
shows how long-term evolution concepts can be used to analyze preferences under gradual
evolution. We obtained three main results on the convergence stability and uninvadability of
the value of the Kantian coefficient.

First, when interacting individuals have no information about each other’s Kantian coeffi-
cient and mutants hold beliefs about the probability of being matched with another randomly
sampled mutant from the same lineage, we confirm that an uninvadable Kantian coefficient
must equal the coefficient of relatedness [7, 11]. But instead of considering the set of possible
utility functions to be the set of all continuous functions as done in this previous work, we
focused on the more restricted setting where utility functions are parametrized by a single
quantitative trait. This allowed us to cover not only uninvadability in a complementary and
less abstract way, but also to cover convergence stability. InResult 1, we show that theKantian
coefficient equal to the coefficient of relatedness is both convergence stable and uninvadable
when trait effects on relatedness are sufficientlyweak. Thus,we characterize conditionswhere
gradual evolution drives preferences to induce individuals to behave according to Hamilton’s
(marginal) rule at the strategy level. One relevant avenue for future research for preference
evolution under incomplete information is to consider more realistic demographic scenarios
of class structured population (e.g., by sex, age, or stage).

Second, when interacting individuals can observe each other’s type, but each individual
has the same preferences regardless of the other’s type, we showed that an uninvadable value
of the Kantian coefficient can exceed, fall short of, or equal the coefficient of relatedness.
Moreover, we showed that the sign of the discrepancy is determined by whether an individ-
ual’s equilibrium strategy is correlated positively, negatively, or not at all with the opponent’s
equilibrium strategy. This response coefficient in turn depends on the specifics of the individ-
ual fitness function so that the Kantian coefficient will depend on life-history parameters such
as survival, migration, etc. [recall the example of the fitness function (B-i)]. Gradual evolution
thus now drives preferences to induce individuals to behave according to a context-specific
Kantian coefficient, which combines both the relatedness and the response coefficients. This
result is fully in line with previous models under complete information and incomplete plas-
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ticity, which have all considered other parametric classes of preferences than the one we
examined (e.g. [1, 16, 19, 54, 55, 81] for models without relatedness, and [2, 3, 5, 6] for
models with relatedness). The dependence of an uninvadable value of the Kantian coefficient
on the response coefficient stems from the commitment to a particular behavioral response
that an individual’s preferences induces. By being observable, a mutant’s preference type can
thus induce a resident to adopt a different strategy than the one adopted in an interaction with
another resident, an effect that is absent under incomplete information. Although we estab-
lished necessary conditions for a Kantian coefficient value to be uninvadable and illustrated
uninvadablility and convergence stability under a linear quadratic game (Fig. 1), we did not
succeed in identifying simple general sufficient conditions, neither for uninvadability nor for
convergence stability. In particular, we cannot rule out evolutionary branching points, which
obtain when a singular Kantian coefficient value is convergence stable but not uninvadable
(recall footnote 2, and see [44] for a general discussion and [73] for typical evolutionary game
theory applications). An avenue for future research on preference evolution under complete
information is thus to analyze conditions leading to adaptive polymorphism in preferences.12

Finally, we considered the case of complete information with complete plasticity where
individuals can both observe the opponent’s type and also condition its preferences on it.
This is akin to a green-beard or secret handshake mechanism [46, 49, 83], but at the pref-
erence level rather than at the strategy level as in most previous work. Since an individual’s
Kantian coefficient may depend on the type of the interaction partner, a type is now a two-
dimensional quantitative trait. Compared to the complete information incomplete plasticity
scenario, individuals are thus no longer committed to respond according to one and the same
Kantian coefficient. Residents are therefore less exploitable by mutants and individuals can
be regarded as implementing multiple selves [66] since their preferences and motivations are
context-dependent.Aswe showed, this implies that residents can be pureKantianswhen inter-
actingwith each other, and still be uninvadable: they can prevent entry bymutants by using the
Kantian coefficient equal to the response coefficient when interacting with individuals with
a different type than theirs. In such a population, when interacting with each other residents
then use the strategy which yields the highest possible individual fitness. In other words, they
use the strategy that yields an efficient outcome. This is reminiscent of a result by [29], who
showed that a class of “coordination” preferences, which results in efficient strategy profiles,
are stable. It is also reminiscent of results obtained by [99] in a model where the search
and matching of interacting partners is endogenous but costless: the authors demonstrate the
evolutionary stability of a preference for interacting with an individual with the same type
as self-combined with play of an efficient strategy profiles. We were, however, not able to
characterize convergence stability nor the Kantian coefficient when individuals interact with
others with a type different from their own type. Ascertaining this in the non-differentiable
setting of complete information with complete plasticity is thus left for future work.

We derived these three results assuming existence of a unique behavioral equilibrium in the
resident population and when mutant-resident (or mutant-mutant) interactions occur. Given
that it is common that interactions produce a multiplicity of (Nash) equilibria, an important

12 To see that polymorphism is likely under preference evolution consider Proposition 1 of [54], which
establishes conditions for the evolutionary viability of pessimism or optimism for a particular individ-
ual fitness function. Using our notation, these preferences entail the utility function uθi (xi , x−i | y∗) =
w(xi , x−i , y

∗) + θi xi , where θi is the evolving quantitative trait that can be taken to describe optimism when
θi > 0 and pessimism when θi < 0. It is straightforward to check that the singularity in Proposition 1 of [54]
is both convergence stable and uninvadable, as it should under the measure dynamics they consider (e.g.,[26]).
However, it is also straightforward to find parameter values of the fitness function they use 54, Eq. 8 such
that the singularity is convergence stable and invadable, and thus conducive to an adaptive polymorphism in
dispositions, e.g., the coexistence of optimists and pessimists.
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avenue for future research will be to examine the robustness of our results in settings with
multiple equilibria. Several questionswill need to be addressed. First, one can imagine several
alternative formalizations of the interaction between individuals when multiple equilibria are
possible. For instance, one could assume that different pairs of individuals in the resident
population play different equilibria; such a model would likely require tools from the liter-
ature on class-structured populations (since an average individual may then play different
equilibria and thus be in different contexts or states, the defining feature of class structured
populations e.g., [14]). An alternative would be to assume that the same equilibrium is played
in all resident-resident interactions; our formalization should then apply to each equilibrium
separately (with implications for possibly different relatedness coefficients depending on the
equilibrium being played). The same modeling choices will arise when there exist multiple
equilibria in mutant-resident pairs. Second, the definitions of uninvadability and convergence
stability may need to be adapted. In particular, for uninvadability, would a preference type be
deemed uninvadable only if it is uninvadable for all possible formalizations of interactions in
the presence of multiple equilibria? A similar question arises for convergence stability. For
existing attempts to address some of these questions, see [7, 8, 10, 11, 29, 79, 99].

Our three results show within the same model how different information and behavioral
flexibility assumptions lead to different values of the Kantian coefficient, and thus to differ-
ent equilibrium strategies. By contrast to strategy evolution models, which predict behavioral
patterns for stationary environments, preference evolution models allow to make predictions
about behavioral change in a new environment, and can be tested, using either field data or
experimental data. A key prediction of our model is that equilibrium behavior at evolutionary
equilibrium should be in accordance with Hamilton’s marginal rule expressed at the strategy
level only if evolution operated on interactions under incomplete information (recall equation
(26)), and that if observed deviations from this rule resulted from interactions taking place
under complete information, the deviation from Hamilton’s marginal rule should depend on
the specifics of the interaction at hand (recall Eq. 43). In some experiments under incomplete
information, humans do appear to conform to behave according to Hamilton’s (marginal)
rule at the strategy level ([67]).

Economic games can further be used to discriminate between different preferences in
controlled laboratory experiments. For example[21, 40], use dictator games to estimate indi-
viduals’ preference parameters assuming other-regarding preferences. More recent studies in
this literature have been inspired by results in the evolutionary theory of preferences to design
economic games that further allow the researchers to discriminate between other-regarding
and semi-Kantian preferences [76], and to estimate the importance of Kantian concerns rela-
tive to other-regarding concerns [96]. The latter study indicates that many individuals appear
to be driven by a combination of self-interest, semi-Kantian concerns, and other-regard. This
finding is in line with evolutionary arguments showing that it is important to distinguish
between preferences expressed in terms of fitness consequences and preferences expressed
in terms of payoff consequences [11, 63]. The qualitative nature of evolved preferences at the
material payoff level indeed differ from that at the fitness level, and this difference depends
on demographic properties under genetic evolution and transmission rules under cultural
evolution [11]. Payoff and fitness incentives tend to agree in panmictic and family-structured
populations, but tend to disagree in spatially structured populations owing to the presence of
local competition between individuals. Future research could adopt a similar approach to the
one we develop here, by analyzing evolution of preferences expressed at the level of material
payoffs under a variety of informational assumptions.

In this paper we have sought to bring together modeling tools from evolutionary biology
and from economics in order to investigate the evolution of preferences that guide behavior
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in strategic interactions. We hope that our formalization has illustrated some of the nuances,
intricacies, and richness of research endeavours that seek to analyse more completely the
evolutionary dynamics of behavioral mechanisms, and that it will inspire future studies into
the many open theoretical and empirical research questions.
Box 1. Invasion fitness as eigenvalue. The invasion fitness of a type is its geometric growth ratio when rare in a
resident population [35, 37, 38, 74]. When the resident population is monomorphic for θ , the invasion fitnessW (τ, θ)

of mutant τ under our demographic assumptions (section (2.1)) is obtained as the leading eigenvalue of the matrix

A(τ, θ) =
(

a11(τ, θ) a12(τ, θ)

a21(τ, θ) a22(τ, θ)

)

, (B-a)

where ai j stands for the expected number of groups with i ∈ {1, 2} mutants that over one demographic time period
descend (either through local change or through migration) from a focal group with i ∈ {1, 2} mutants, when the
population is otherwise monomorphic for θ . Matrix A(τ, θ) is assumed to be regular (irreducible and aperiodic, 58,
p. 123). It then follows from standard results on multitype branching processes that the lineage of a single τ mutant
goes extinct with probability one if, and only if, W (τ, θ) ≤ 1, otherwise the lineage spreads into the population
when rare and becomes infinitely large [53, 61]. By definition of invasion fitness, W (τ, θ)u(τ, θ) = A(τ, θ)u(τ, θ),
where u(τ, θ) = (u1(τ, θ), u2(τ, θ)) is the only non-negative right eigenvector of A(τ, θ), where, by normalization,
u1(τ, θ) + u2(τ, θ) = 1. The eigenvector u(τ, θ) can be interpreted as the quasi-stationary distribution of mutant
group types as it is invariant to multiplication by A(τ, θ), whereby ui (τ, θ) is the frequency of groups with i ∈
{1, 2} mutants among groups with at least one mutant. Following previous developments [78], we can left multiply
W (τ, θ)u(τ, θ) = A(τ, θ)u(τ, θ) by the vector (1, 2). Rearranging terms, this produces

W (τ, θ) = [1 − r(τ, θ)] w̃1(τ, θ) + r(τ, θ)w̃2(τ, θ), (B-b)

where

w̃1(τ, θ) = a11(τ, θ) + 2a21(τ, θ) (B-c)

w̃2(τ, θ) = a12(τ, θ)/2 + a22(τ, θ) (B-d)

r(τ, θ) = 2u2(τ, θ)

u1(τ, θ) + 2u2(τ, θ)
. (B-e)

Here, w̃i (τ, θ) is the expected total number of individuals produced (including the surviving self) by a single τ

individual over one demographic time step when there are j ∈ {1, 2} τ individuals in its group and the population is
otherwise monomorphic for θ ; and r(τ, θ) is the probability that, for any given descendant of the initial mutant, the
neighbor of that mutant is also a mutant. An explicit example of these invasion fitness components is given in Box 2.
Eq (B-b) is a recipient-centered representation of the mutant’s geometric growth ratio since it is expressed as the
average of the expected fitness of a type τ individual, who is necessarily the recipient of the traits of others. An actor-
centered representation of the growth ratio, which focuses on the consequence on others of an individual expressing
the mutant instead of the resident trait value can also be obtained [50, 85]. Such an actor-centered representation
of invasion fitness can be reached by rearranging the components of eq. (B-b) [64]. Indeed, owing to the fact that
w̃2(θ, θ) = 1, we have the equality

W (τ, θ) = 1 − c(τ, θ) + r(τ, θ)b(τ, θ), (B-f)

where

−c(τ, θ) = 1

1 + r(τ, θ)
(w̃1(τ, θ) − w̃2(θ, θ)) + r(τ, θ)

1 + r(τ, θ)
(w̃2(τ, θ) − w̃1(θ, τ ))

b(τ, θ) = 1

1 + r(τ, θ)
(w̃1(θ, τ ) − w̃2(θ, θ)) + r(τ, θ)

1 + r(τ, θ)
(w̃2(τ, θ) − w̃1(τ, θ)) .

Here,−c(τ, θ) is the average effect (sensu [39]) on the number of mutant gene copies produced by a single individual
when expressing a copy of the mutant instead of the resident allele. The average thus being over the two possible
contexts in which an individual expressing τ instead of θ can be: interacting with a neighbor that carries or not the
mutant. The actor-centered perspective of eq. (B-f) is then born out from the fact that b(τ, θ) is the average effect on
the expected number of offspring produced by an individual’s neighbor. which stemming from the actor switching to
expressing a copy of the mutant instead of the resident allele.
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Box 2. Moran process example. We illustrate the invasion fitness components described in Box 1 by considering a
process where exactly one individual dies in each group during a demographic time step (i.e., an instance of a Moran
process, [77]). For this case, the entries of matrix (B-a) are

a11 = 1 − b1 − d1 + e1, a21 = b1, a12 = d2 + e2, a22 = 1 − b2 − d2, (B-g)

with bi and di standing, respectively, for the probability that there is a mutant descendant and mutant death, and ei is the
expected number of succesful emigrant mutants, in a group with i mutants. These variables are given by

bk (τ, θ) = (2 − k)μk (θ)

kμk (τ ) + (2 − k)μk (θ)

[
(1 − m)k fk (τ )

(1 − m) [k fk (τ ) + (2 − k) fk (θ)] + m2 f0(θ)s0(θ)

]

(B-h)

dk (τ, θ) =
[

1 − (2 − k)μk (θ)

kμk (τ ) + (2 − k)μk (θ)

] [

1 − (1 − m)k fk (τ )

(1 − m) [k fk (τ ) + (2 − k) fk (θ)] + m2 f0(θ)s0(θ)

]

ek (τ, θ) = 1

2

mk fk (τ )sk (τ )

(1 − m) f0(θ) + m f0(θ)s0(θ)

where fk (θ ′),μk (θ
′), sk (θ ′) are, respectively, the fecundity, death-factor, juveniles’ survival probability duringmigration,

of a single type θ ′ ∈ {τ, θ} adult individual when there are exactly k mutants in its group (see [63, 78] for more details on
the derivation and the case where there are more than 2 individuals per group). On setting f1(τ ) = f (x∗

d , y∗
d ), f2(τ ) =

f (x∗
s , x∗

s ), f0(θ) = f (y∗
s , y∗

s ), f1(θ) = f (y∗
d , x∗

d ), μ1(τ ) = μ(x∗
d , y∗

d ), μ2(τ ) = μ(x∗
s , x∗

s ), μ0(θ) = μ(y∗
s , y∗

s ),
μ1(θ) = μ(y∗

d , x∗
d ), s1(τ ) = s(x∗

d , y∗
d ), s2(τ ) = s(x∗

s , x∗
s ), and s0(θ) = s(y∗

s , y∗
s ), where x refers to mutant and y

to resident strategies [recall eqs. (6)–(7)] and f : X 2 → R+, μ : X 2 → R+, and μ : X 2 → R+, then algebraic
rearrangements show that the fitness function w : X 3 → R+ in eqs. (6)–(7) for the Moran process is defined as

w(xi , x−i , y) =1 − μ(xi , x−i )

μ(xi , x−i ) + μ(x−i , xi )
(B-i)

+ 1

2

[

(1 − m) f (xi , x−i )

(1 − m)
[

f (xi , x−i , y) + f (x−i , xi )
] + m f (y, y)s(y, y)

+ m f (xi , x−i )s(xi , x−i )

(1 − m) f (y, y) + m f (y, y)s(y, y)

]

(see Box 1 of [63] for a biological interpretation of each term).
Even for thisMoran process, the expression for relatedness eq. (B-e) is complicated, but its computation can be alleviated
by using an invasion fitness proxy. An invasion fitness proxy is by definition any fitness measure P(τ, θ) that is sign
equivalent to W (τ, θ) such that the evolutionary invasion analysis can be carried out from this measure (i.e. P(τ, θ) ≤
1 ⇐⇒ W (τ, θ) ≤ 1). An invasion fitness proxy for W (τ, θ) can be obtained by keeping the functional form eq. (B-b),
but relatedness, instead of being given by the complicated expression eq. (B-e), is given by

r(τ, θ) = 2b1(τ, θ)

2b1(τ, θ) + d2(τ, θ)
, (B-j)

which can be readily evaluated using eq. (B-h). Conceptually, this simplification obtains by substituting ui → ti in
eq. (B-b), where ti is the sojourn time with i ∈ {1, 2} mutants of the mutant lineage in a single group where t1 = 1/d1
and t2 = b1/(d1d2) (see [63, 78] for more details). Substituting eq. (B-h) into eq. (B-j) and using the expression for the
vital rates in terms of strategies and assuming, for simplicity that fecundity f is independent of the types, one can then
check that relatedness can be written as

r(τ, θ) = (1 − m)μ(y∗
d (θ, τ ), x∗

d (τ, θ))

(1 − m)μ(y∗
d (θ, τ ), x∗

d (τ, θ)) + m
[

μ(x∗
d (τ, θ), y∗

d (θ, τ )) + μ(y∗
d (θ, τ ), x∗

d (τ, θ))
]

s(y∗
s (θ), y∗

s (θ))
, (B-k)

where we made explicit all functional dependencies. Further, in a monomorphic population relatedness boils down to

r(θ, θ) = 1 − mb(θ)

1 + mb(θ)
= 1 − m

1 − m
[

1 − 2s(y∗
s (θ), y∗

s (θ))
] , (B-l)

wheremb(θ) = ms(y∗(θ), y∗(θ)/[1−m+ms(y∗(θ), y∗(θ)] is the backward migration probability, i.e., the probability
that an individual randomly sampled in a patch is of philopatric origin. Eq. (B-l) displays two generic features about
relatedness. First, it is a monotonic decreasing function of dispersal and of juvenile survival. Second, relatedness can
depend endogeneously on the interactions, because the spatial structure is an outcome of survival and reproduction,
which are themselves functions of interactions between individuals. If survival s(y∗

s (θ), y∗
s (θ)) were independent of

strategies, then neutral relatedness would be independent of the types and reduce to r = (1 − m)/(1 − m(1 − 2s), as it
should [78], for parameters m ∈ (0, 1] and s ∈ [0, 1].
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Appendix A Behavioral Perturbation Under Incomplete Information

Wehere show that the behavioral perturbation (18) is alwayspositive, i.e., ∂x∗(τ, θ)/∂τ |τ=θ >

0.We proceed in two steps. First, we evaluate the perturbation of a mutant’s reaction function
and show that this is positive. Second, we show that this latter perturbation is sign equivalent
to ∂x∗(τ, θ)/∂τ |τ=θ .

For the first step recall from Eq. (13) that a specific mutant’s expected utility is

U (x | x∗, y∗) = [1 − r̃(x∗, y∗)]uτ

(

x, y∗ | y∗) + r̃(x∗, y∗)uτ

(

x, x∗ | y∗) , (A-1)

where the notation | x∗, y∗ emphasises that we are here holding the strategies of the other
mutant and resident individuals as given. A mutant’s best response to (x∗, y∗) is implicitly
defined by the necessary first-order condition:

∂U (x | x∗, y∗)
∂x

= [1 − r̃(x∗, y∗)]∂uτ (x, y∗ | y∗)
∂x

+ r̃(x∗, y∗) ∂uτ (x, x∗ | y∗)
∂x

= 0,

(A-2)

which, using Eq. (11), is written

[1 − r̃(x∗, y∗)](1 − τ)
∂w (x, y∗, y∗)

∂x
+ [1 − r̃(x∗, y∗)]τ ∂w (x, x, y∗)

∂x

+r̃(x∗, y∗)(1 − τ)
∂w (x, x∗, y∗)

∂x
+ r̃(x∗, y∗)τ ∂w (x, x, y∗)

∂x
= 0. (A-3)

This equation implicitly defines the specific mutant’s optimal strategy x(τ, x∗, y∗) as a func-
tion of τ , x∗, and y∗ (which depends on θ ). In other words, it defines this mutant’s reaction

http://creativecommons.org/licenses/by/4.0/
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function, which specifies its utility-maximizing strategy for each (x∗, y∗) (e.g., 43, p. 14).
We use an index i to denote the partial derivative with respect to the i-th argument of the
individual fitness function to rewrite Eq. (A-3) as follows:

[1 − r̃(x∗, y∗)](1 − τ)w1
(

x, y∗, y∗) + [1 − r̃(x∗, y∗)]τ [w1
(

x, x, y∗) + w2
(

x, x, y∗)]
+r̃(x∗, y∗)(1 − τ)w1

(

x, x∗, y∗) + r̃(x∗, y∗)τ [w1
(

x, x, y∗) + w2
(

x, x, y∗)] = 0,

(A-4)

which simplifies to

(1 − τ)
[[1 − r̃(x∗, y∗)]w1

(

x, y∗, y∗) + r̃(x∗, y∗)w1
(

x, x∗, y∗)]

+ τ [w1
(

x, x, y∗) + w2
(

x, x, y∗)] = 0. (A-5)

Applying the implicit function theorem holding (x∗, y∗) fixed, we obtain:
∂x(τ, x∗, y∗)

∂τ

= −−[1 − r̃(x∗, y∗)]w1 (x, y∗, y∗) − r̃(x∗, y∗)w1 (x, x∗, y∗) + w1 (x, x, y∗) + w2 (x, x, y∗)
(1 − τ)A + τ B

,

(A-6)

where

A = [1 − r̃(x∗, y∗)]w11
(

x, y∗, y∗) + r̃(x∗, y∗)w11
(

x, x∗, y∗)

B = w11
(

x, x, y∗) + 2w12
(

x, x, y∗) + w22
(

x, x, y∗) . (A-7)

Strict concavity of uτ for all τ ∈ [0, 1] implies that A < 0 and B < 0 and so the denominator
of Eq. (A-6) is strictly negative. At equilibrium, and locally at τ = θ , we have x = x∗ = y∗,
implying that the numerator reduces to w2(x, x, y∗), which is strictly positive. Hence, the
perturbation ∂x(τ, x∗, y∗)/∂τ |τ=θ , which measures this mutant’s (infinitesimal) change in
its reaction function x(τ, x∗, y∗(θ))when the value of itsKantian coefficient is infinitesimally
increased at τ = θ , is strictly positive.

We turn now to the second step to show why the result derived in the first step implies that
the mutant equilibrium strategy x∗ must increase as a result of an (infinitesimal) increase in
the value of τ for all mutants. First, note that such an increase in τ has no effect on the resident
strategy (see Eq. 13), implying that we can indeed hold y∗ fixed, as we did above. Hence, for a
given τ and y∗, the equilibrium strategy x∗(τ, θ) is a fixed point of themutant’s best-response
function (see the second line ofEq. 13) and this is a point on the curve described by the reaction
function x(τ, x∗, y∗) for any given (τ, y∗). Because ∂x(τ, x∗, y∗)/∂τ |τ=θ describes how the
response function of one mutant is slightly displaced by the introduction of a small mutant
deviation at τ = θ , and because we proved above that any such deviation is positive for any
strategy x∗ played by other mutants, the equilibrium strategy x∗(τ, θ) must locally vary with
the same sign as the reaction function varies, i.e, ∂x∗(τ, θ)/∂τ |τ=θ ∝ ∂x(τ, x∗, y∗)/∂τ |τ=θ .

Appendix B Jacobian and Hessian Under Complete Information with
Incomplete Plasticity

Differentiating Eq. (40) with respect to θ and evaluating at θ∗ satisfying S(θ∗) = 0 yields

J (θ∗) = ∂w(y∗
d , y, y∗

d )

∂ y

[

(r(θ∗, θ∗) − θ∗)
∂2x∗

d (τ, θ)

∂τ 2
+ (1 − θ∗)(1 + r(θ∗, θ∗))

∂x∗
d (τ, θ)

∂τ∂θ
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+(1 − θ∗r(θ∗, θ∗))
∂2x∗

d (τ, θ)

∂θ2
+

[

1 − r(θ∗, θ∗)2 − (1 − θ∗2) dr(θ,θ)
dθ

]

r(θ∗, θ∗) − θ∗
∂x∗

d (τ, θ)

∂θ

⎤

⎦

τ=θ=θ∗

.(A-8)

Using Eq. (40) at S(θ∗) = 0 and using Eq. (36) we can express the singular trait value
implicitly as

θ∗ = r(θ∗) + ρ(θ∗)
1 + r(θ∗, θ∗)ρ(θ)∗

, (A-9)

which, on substituting into Eq. (A-8), using ρ(θ) = (

∂x∗
d (τ, θ)/∂θ

)

/
(

∂x∗
d (τ, θ)/∂τ

)

and
simplifying produces

J (θ∗) = −∂w(x∗
d , y, y

∗
d )

∂ y

[ (

1 − r(θ∗, θ∗)2
)

1 + r(θ∗, θ∗)ρ(θ∗)
(

ρ(θ∗)
∂2x∗

d (τ, θ)

∂τ 2
− (1 − ρ(θ∗))

∂2x∗
d (τ, θ)

∂τ∂θ
− ∂2x∗

d (τ, θ)

∂θ2

)

+
(

(1 + r(θ∗, θ∗)ρ(θ∗))2 − dr(θ)
dθ (1 − ρ(θ∗)2)

)

1 + r(θ∗, θ∗)ρ(θ∗)
∂x∗

d (τ, θ)

∂τ

⎤

⎦

τ=θ=θ∗

.(A-10)

The second-order behavioral perturbations ∂2x∗
d (τ, θ)/∂τ 2, ∂2x∗

d (τ, θ)/(∂τ∂θ), ∂2x∗
d (τ, θ)/

∂θ2 appearing in this Jacobian can be computed by using implicit differentiation in Eq. (31).
The resulting expressions are complicated and lengthy and we were unable to infer some
general information from these expressions, although they can be handled easily with a
symbolic manipulation system such as Mathematica [101]. A Mathematica notebook with
all algebraic computations of the paper is available on request.

Now using invasion fitness (38) to evaluate H(θ) = ∂2W (τ, θ)/∂τ 2
∣
∣
τ=θ

, we find that

H(θ) = ∂2x∗
d (τ, θ)

∂τ 2

(
∂w(y, y∗

d , y∗
d )

∂ y
+ r(θ, θ)

∂w(y∗
d , y, y∗

d )

∂ y

)

+2r(θθ)
∂2x∗

d (τ, θ)

∂τ∂θ

(
∂w(y, y∗

d , y∗
d )

∂ y
+ ∂w(y∗

d , y, y∗
d )

∂ y

)

+ ∂2x∗
d (τ, θ)

∂θ2

(

r(θ, θ)
∂w(y, y∗

d , y∗
d )

∂ y
+ ∂w(y∗

d , y, y∗
d )

∂ y

)

+ ∂2w(x, y∗
d , y∗

d )

∂x2

[

r(θ, θ)

(
∂x∗

d (τ, θ)

∂τ

)2

+ 2r(θ, θ)
∂x∗

d (τ, θ)

∂θ

∂x∗
d (τ, θ)

∂τ

+
(

∂x∗
d (τ, θ)

∂θ

)2
]

+ 2
∂2w(x, y, y∗

d )

∂x∂ y

[

r(θ, θ)

(
∂x∗

d (τ, θ)

∂τ

)2

+[1 + r(θ, θ)] ∂x
∗
d (τ, θ)

∂θ

∂x∗
d (τ, θ)

∂τ
+ r(θ, θ)

(
∂x∗

d (τ, θ)

∂θ

)2
]

+ ∂2w(x∗
d , y, y∗

d )

∂ y2

[(
∂x∗

d (τ, θ)

∂τ

)2

+ 2r(θ, θ)
∂x∗

d (τ, θ)

∂θ

∂x∗
d (τ, θ)

∂τ
+ r(θ, θ)

(
∂x∗

d (τ, θ)

∂θ

)2
]

+2
∂r(τ, θ)

∂τ

(
∂x∗

d (τ, θ)

∂τ

∂w(y∗
d , y, y∗

d )

∂ y
+ ∂x∗

d (τ, θ)

∂θ

∂w(x, y∗
d , y∗

d )

∂x

)

. (A-11)
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Substituting into this expression ∂w(x, y∗
s , y

∗
s )/∂x = −θ∂w(x, y, y∗

s )/∂ y and Eq. (A-9)
yields

H(θ∗) = − ∂w(x∗
d , y, y∗

d )

∂ y
⎡

⎢
⎢
⎣

(1 − r(θ∗, θ∗)) (1 + r(θ∗, θ∗))
(

ρ(θ∗) ∂2x∗
d (τ,θ)

∂τ 2
− r(θ∗,θ∗)(1−ρ(θ∗))

1+r(θ∗,θ∗)

∂2x∗
d (τ,θ)

∂τ∂θ
− ∂2x∗

d (τ,θ)

∂θ2

)

1 + r(θ∗, θ∗)ρ(θ∗)

−2 ∂r(τ,θ)
∂τ

(1 − ρ(θ∗)2) ∂x∗
d (τ,θ)

∂τ

1 + r(θ∗, θ∗)ρ

]

τ=θ=θ∗

+
(

∂2w(x, y∗
d , y∗

d )

∂x2
[

1 + ρ(θ∗)r(θ∗, θ∗)(ρ(θ∗) + 2)
]

2
∂2w(x, y, y∗

d )

∂x∂ y

[

ρ + r(θ∗, θ∗)
(

1 + ρ(θ∗) + ρ(θ∗)2
)]

+ ∂2w(x∗
d , y, y∗

d )

∂ y2

[

ρ(θ∗)2 + r(θ∗, θ∗)(1 + 2ρ(θ∗))
]
) (

∂x∗
d (τ, θ)

∂τ

)2

. (A-12)

A key distinction between the Jacobian J (θ∗) and the Hessian H(θ∗) is that the sign of
the Jacobian does not depend directly on fitness derivatives, while the Hessian does. Both
expressions remain complicated and we did not manage to obtain general information from
them. Hence, they need to be evaluated on a case by case basis.

Appendix C Proof of Result 3

We first examine mutant–mutant interactions (the term in Eq. (50)) and then turn to mutant-
resident interactions (the term in Eq. (49)).

Consider some resident type θ = (θd, θs) ∈ [0, 1]2. For any such type, residents obtain
individual fitness w(y∗

s , y
∗
s , y

∗
s ) = 1. Visual inspection of the expression in (50) suffices

to conclude that, for any value of the resident θs, the most threatening value τs of any
mutant type τ = (τd, τs) against the resident is the one that maximizes Ws(τs, θs), i.e.,
such that the equilibrium strategy used in a mutant–mutant interaction, x∗

s (τs, θs), solves
maxx∈X w(x, x, y∗

s ). Given differentiability of w and X = R, the strategy x∗
s (τs, θs) of the

most threatening mutant must thus satisfy the following first-order condition:
[

∂w(x, x, y∗
s )

∂x

]

x=x∗
s (τs,θs)

= 0. (A-13)

Since from Eq. (46), x∗
s (τs, θs) must satisfy the following first-order condition for utility

maximization by a mutant,
[

(1 − τs)
∂w(x, x∗

s (τs, θs), y
∗
s )

∂x
+ τs

∂w(x, x, y∗
s )

∂x

]

x=x∗
s (τs,θs)

= 0, (A-14)

our assumption that ∂w(x,y,z)
∂ y �= 0 for all (x, y, z) ∈ X 3 implies that τs = 1 is the unique value

of τs ∈ [0, 1] which induces mutants to use the strategy that maximizes w(x, x, y∗
s ). Hence,

we can conclude that for any resident type θ , the most threatening mutant type has τs = 1.
Note further that the argument developed above implies that θs = 1 implies Ws(τs, θs) = 1
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if τs = 1 and Ws(τs, θs) < 1 if τs < 1. Hence, θs = 1 is sufficient for Ws(τs, θs) ≤ 1 for any
τs ∈ [0, 1].

We turn now to the term in Eq. (49), which measures the individual fitness of a mutant
in an interaction with a resident. Suppose that the resident type is θ = (θd, θs) = (θ∗

d , 1),
where θ∗

d is defined in the statement of the result. By definition of θ∗
d , W̃ (θ∗

d , θ∗
d , 1) =

w(ỹ(θ∗
d , θ∗

d , 1), ỹ(θ∗
d , θ∗

d , 1), y∗
s (1)) ≥ w(x̃(τd, θ∗

d , 1), ỹ(θ∗
d , τd, 1), y∗

s (1)) for all τd �= θ∗
d .

Since w(y, y, y∗
s (1)) is strictly concave in y (owing to our assumption that the utility

function is strictly concave in its first argument), which achieves its maximum for y sat-
isfying (A-13), it follows that the value of κ ∈ [0, 1] that would maximize the function
w(ỹ(κ, κ, 1), ỹ(κ, κ, 1), y∗

s (1)) is κ = 1. Together with the preceding inequality, we can thus
conclude that w(x̃(τd, θ∗

d , 1), ỹ(θ∗
d , τd, 1), y∗

s (1)) ≤ w(x̃(θ∗
d , θ∗

d , 1), ỹ(θ∗
d , θ∗

d , 1), y∗
s (1)) ≤

w(x̃(1, 1, 1), ỹ(1, 1, 1), y∗
s (1)) = 1. In other words, for any τd �= θ∗

d , Wd(τd, θ
∗
d , 1) ≤ 1.

The preceding conclusions, namely that Ws(τs, 1) ≤ 1 and Wd(τd, θ
∗
d , 1) ≤ 1, imply that

whatever is the value of relatedness r(τ, θ), if the resident type is (θd, θs) = (θ∗
d , 1), then

W (τ, θ) ≤ 1 for any τ �= θ . ��
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