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Sanitization is an effective approach for ensuring data security through scrubbing invalid but sensitive data
pages, with the cost of impacts on storage performance due to moving out valid pages from the sanitization-
required wordline, which is a logical read/write unit and consists of multiple pages in high-density SSDs.
To minimize the impacts on I/O latency and data security, this paper proposes a polling-based scheduling
approach for data sanitization in high-density SSDs. Our method polls a specific SSD channel for completing
data sanitization at the block granularity, meanwhile other channels can still service I/O requests. Furthermore,
our method assigns a low priority to the blocks that are more likely to have future adjacent page invalidations
inside sanitization-required wordlines, while selecting the sanitization block, to minimize the negative impacts
of moving valid pages. Through a series of emulation experiments on several disk traces of real-world
applications, we show that our proposal can decrease the negative effects of data sanitization in terms of the
risk-performance index, which is a united time metric of I/O responsiveness and the unsafe time interval, by
16.34% on average, compared to related sanitization methods.

CCS Concepts: • Computer systems organization→ Embedded software.

Additional Key Words and Phrases: High-density SSDs, I/O Latency, Data Security, Sanitization, Polling,
Scheduling.

1 INTRODUCTION
Solid-state drives (SSDs) have replaced traditional hard-disk drives (HDDs), as the mainstream
storage devices for resource-constrained environments such as embedded systems, due to their
advantages of high performance and low power consumption [1–3]. To further enhance I/O
performance, modern SSD products incorporate and leverage channel-level parallelism in the
hardware [4]. Each channel is composed of many blocks, and each block consists of several pages.
Read and Write operations take place at the page-level granularity, whereas Erase happens at
the block-level granularity [5]. Specially, high-density SSDs offer a competitive per-byte price
advantage compared to conventional hard disk drives and have thus become mainstream in the
storage market [6]. For example, a modern Trinary-Level Cell (TLC) can store up to 3-bits of
information per cell [7] and this paper uses it as the default high-density SSD device. As shown in
Figure 1 (a), all TLC cells belonging to a wordline (WL) can store up to three bits per cell, which
are defined as Lower Significant Bit (LSB), Central Significant Bit (CSB) and Most Significant Bit
(MSB). The same type bits of all TLC cells in the wordline make up an SSD page. In other words,
each TLC wordline corresponds to 3-type pages on the flash, including an LSB page, a CSB page,
and an MSB page.
Due to the features of out-of-place update and erase-before-program in SSDs, data pages of the

deleted files and obsolete data pages after updating are merely marked as invalidated, which means
their contents remain in the flash memory. Such invalid data can be recovered through digital
forensics unless their relevant block has been erased [8]. According to the UK Data Protection Act
2018, however, the deletion of information must be formal, implying that the contents should not be
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Fig. 1. Data sanitization in TLC SSDs, caused by an update request. (a) The organization of a TLC SSD block,
consisting of multiple wordlines, and each wordline includes three pages. (b) The process of programming
and page-level scrubbing in the wordline (assuming the CSB page is sanitized, and each page holds only
one-bit data). (c) The process of wordline-level scrubbing.

recoverable in any way [9, 10]. Securely removing obsolete data pages (so-called invalid pages) from
SSDs becomes critical for protecting owners’ privacy. For example, embedded systems are being
deployed in a wide range of application scenarios, including the control of safety-critical systems
and data collection in hostile environments [11, 12]. That is to say, SSD devices deployed in such
systems are likely to be more vulnerable to both open environmental operations and intentional
attacks due to their embedded nature [12, 13].

To address this security issue, the scrubbing-based technique was proposed to efficiently fulfill the
sanitization of invalid data inside SSDs [8, 14]. Specifically, scrubbing any one page will introduce
serious disturbances to adjacent valid pages in the same WL of high-density SSDs [14, 15]. In
other words, during the process of scrubbing-based sanitization, it requires raising the sanitization
voltage(𝑉𝑡ℎ) to all flash cells in the same WL and causes some states to change, thus rendering it
unfeasible to discern the initial data with the reference voltage. In the example shown in Figure 1 (b),
after sanitizing the CSB page, the reference voltage of𝑉𝑡ℎ1 cannot confirm whether the valid data of
MSB and LSB should be 10 or 00, and the reference voltage of𝑉𝑡ℎ2 fails to confirm whther the valid
data of MSB and LSB should be 01 or 11. To eliminate scrubbing disturbances in high-density SSDs,
the WL-level sanitization approach involves coping out the valid data pages (refer to as page moves)
and then scrubbing the whole WL, as shown in Figure 1 (c). However, such operations affect I/O
processing and the lifetime of SSDs due to the additional reads and writes caused by scrubbing [15].
Immediate sanitization (ISan) [8, 16] and delayed sanitization (e.g., periodical sanitization, PSan) [17]
are two typical sanitization schemes. ISan intermittently carries out sanitization operations on the
obsolete data pages as soon as they have been invalidated. Conversely, PSan performs sanitization
in a periodical manner, and the time frame for sanitization is commonly determined by the data
owners according to their assessment of system confidentiality [18]. Since PSan collects many
pieces of deleted data and securely deletes them simultaneously, it can avoid considerable page
moves in a round of sanitization [17].

On the other side, Dwell Time is a critical security success indicator in the domain of information
security, which is defined as “the time from the point a threat successfully enters your environment to
when the threat is completely remediated [19]”. We have defined a similar measure of unsafe time
interval (UTI) in our context, as the time interval between data invalidation (i.e., the threat of data
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breach enters) and the completion of sanitization (i.e., the threat of data breach can be remediated),
to represent the leakage risk of invalid data. A small value of UTI means less risk of data leakage in
SSD devices. This suggests that ISan can ensure the shortest values of UTI, while PSan can provide
better I/O responsiveness.

It is true that SSD vendors often prioritize I/O performance over ensuring a small value of UTI,
while users may expect a better guarantee of data security. To address the issue of balancing I/O
performance and data security in high-density SSDs, this paper proposes polling-based sanitization
scheduling. In summary, this paper makes the following three contributions:

- We propose a generic polling-based sanitization scheduling method for high-density SSDs, named
PollSan. Our method requires a polling cycle to work on a specific SSD channel, for completing
data sanitization tasks at the block granularity. It can noticeably decrease the negative impacts
of data sanitization on integrated metrics, including I/O responsiveness and data security when
running user applications.

- We build an artificial neural network-based model to estimate the number of future adjacent page
invalidations on SSD blocks. This model helps us to delay sanitization on the block if its pages
inside sanitization-required wordlines (referred as adjacent pages) are likely to be invalidated
with a high probability in the future, for achieving the goal of minimizing sanitization overhead.
Our model analyzes the factors of write count, invalidation count, and the data source feature
(i.e., flushed by normal writes, wear leveling or garbage collection) with respect to the given
block. After that, it forecasts the number of future adjacent page invalidations inside sanitization-
required wordlines of the block. Furthermore, we consider both time and space constraints on
the SSD channel to decide the number of sanitization blocks in the current polling cycle.

- We conduct comprehensive evaluation tests by replaying the selected I/O traces from real-world
applications on a simulated SSD device. Our measurements indicate that the proposed approach
effectively mitigates the negative effects of data sanitization on the metric of unifying I/O
responsiveness and UTI by 16.34% on average, compared to existing sanitization schemes for
high-density SSDs.

The rest of the paper is organized as follows: Section 2 depicts the background and motivation.
The approach of polling sanitization is presented in Section 3. Section 4 describes the evaluation
experiments and relevant discussions. Section 5 presents the related work of sanitization. At last,
the paper is concluded in Section 6.

2 BACKGROUND ANDMOTIVATION
2.1 Flash-based SSD Preliminaries
Flash memory is organized as two-dimensional arrays of floating-gate transistors. A number of cells
electrically connected to a WL (with multiple pages in high-density flash memory) and multiple
WLs form a block. Specifically, flash-based SSDs usually consist of one or more planes, and each
plane contains several blocks. A block is a basic unit for erasing, and is composed of many pages
that are the basic units of write/read operations.

SSD devices have a special write feature of out-of-place update, indicating that any updated page
cannot be directly overwritten on the original page until its residing block has been erased. In
other words, SSDs require invalidating the original data page, and flushing the updated data to
another free page, for completing an update request. On the other hand, the main firmware layer
of SSDs is the flash translation layer (FTL), which takes charge of garbage collection (GC) and
wear leveling [20]. In particular, the GC module periodically reclaims the space of invalid pages
in the block to free up flash memory for new data by erasing the SSD block. The wear leveling
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module manages the limited endurance of the flash memory by ensuring uniform program-erase
distribution on all the blocks, to extend the lifetime of SSD devices.

2.2 Sanitization in SSDs
In conventional hard disk drives (HDDs), obsolete data can be overwritten directly, or securely
deleted through commands for ATA and SCSI protocols. However, SSDs exhibit certain unique
challenges for the secure deletion of obsolete data, due to their special characteristics of out-of-
place update and erase-before-program [10]. The invalid data pages of SSDs still hold the obsolete
data, which directly leads to a risk of data leakage, and this risk exists until their blocks have
been erased via GC operations. To meet the requirement of secure deletion of obsolete data for
SSD devices, many advanced methods have been proposed, such as encryption with ephemeral
key-based [17, 21, 22], physical erase-based [23, 24], and scrubbing-based methods [8, 14, 15, 26].
The primary concept behind ephemeral key-based methods is to eliminate unused encryption

keys for sensitive data encryption to guarantee that the sensitive data can never be retrieved [17,
21, 22]. If the secure data becomes outdated, it will be securely deleted along with its corresponding
small-sized key. This process ensures that the encrypted secure data is rendered irrecoverable.
Nevertheless, attackers may still attempt to decipher the outdated secure data before initiating the
actual erase operation on the target block containing the sensitive data [27].

The erase-based methods erase the block that has invalid sensitive data by proactively triggering
GC or the self-defined erase operations once the data pages have been invalidated [23, 24]. The
main drawback of erasure-based methods is the use of flash blocks as the basic secure deletion unit.
This leads to significant live data migration overhead, which in turn results in poor I/O performance
and short flash memory lifespan.

To alleviate the overhead caused by the erased-based method, Wei et al [8] proposed a technique
of scrubbing a page with all zeros, which supports secure deletion at the page level. This technique
was later improved by other researchers [14, 15, 25]. The basic idea of page-level sanitization is
to create an all-zero page with an overwrite operation, thus making it is impossible to retrieve
the original data of invalid pages. More exactly, the scrubbing technique increases the voltage of
the flash cell in the wordline for mixing the different states, to fulfill page-level data sanitization.
However, implementing such a technique in high-density SSDs is challenging, as it may damage
other data pages in the same wordline. To address this issue, it requires migrating valid pages in
the scrubbed WL, causing considerable performance penalties. As the example previously shown
in Figure 1 (c), each WL in the TLC NAND flash memory consists of three pages. If one of the
three pages needs to be sanitized, the remaining valid pages will be moved to other WL (s) before
scrubbing the WL, indicating two additional read operations and two additional write operations.

2.3 Artificial Neural Networks
Artificial Neural Networks (ANNs) are a widely used model in machine learning. It is inspired by
biological neural networks and consist of many neurons and connections between them. Each
connection has a weight that is used to calculate the output of each neuron. ANN represents a
promising modeling technique, especially for datasets having non-linear relationships. It can learn
rules from input-output pairs and use these rules to predict outputs for new inputs, making them
perform well in various tasks [28, 29].

Because ANNs can work effectively in the offline mode, they have been widely applied in various
aspects of SSD optimization, including SSD storage management, garbage collection, and designing
error correction codes [30–32]. It is worth mentioning that when employing ANNs to optimize
SSD performance, they are typically trained offline, since online training requires a significant
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amount of computational resources, which can negatively impact the overall performance of the
SSD device.

2.4 Motivation
Securely deleting electronic data once they are not actually needed is important for both individuals
and organizations. Regulations related to data protection, such as the EU General Data Protection
Regulation (GDPR) [33] and the Health Insurance Portability and Accountability Act (HIPAA) [34],
require consistent procedures for data protection [35]. More importantly, securely deleting invalid
data in SSD devices is bound to incur costs, and WL-level scrubbing is an effective data sanitization
method for SSDs when comparing to conventional ephemeral key-based and physical erase-based
deletion methods. Therefore, the negative impacts of data sanitization in high-density solid-state
drives become more obvious, due to the compacted structure of flash cells. As discussed in Section 1,
ISan [8] can ensure the shortest values of UTI because it performs sanitization immediately after
data becomes invalid. Meanwhile, PSan [17] can guarantee the best I/O performance because it
generates fewer adjacent page interference and leads to fewer page migrations.
In order to further quantify the strength and limitations of conventional WL-level sanitization

schemes, we carried out an experimental study by employing ISan and PSan to complete data
sanitization on high-density TLC SSDs. Section 4.1 describes the details of the experimental platform
and benchmarks. Figure 2 shows the experimental results of two conventional sanitization policies
after running three selected benchmarks.
Figure 2 (a) shows that PSan can noticeably reduce the I/O latency, compared to ISan. High-

density SSDs commonly have multiple pages in each wordline, and sanitizing a data page with ISan
always deduces one or more migrations of adjacent pages, which damages I/O responsiveness. On
the other side, PSan can minimize the number of page moves in the sanitization, since adjacent pages
might be invalidated within a sanitization round. Thus, it can contribute to better I/O performance.
Figure 2 (b) presents the results of UTI. As seen, ISan performs extremely well on the measure of
UTI because it carries out instant data sanitization when the data become invalid. Meanhwile, PSan
has large UTI values, indicating weak guarantees of data security, this is because it sanitizes the
invalid data pages with a peridical manner.
In summary, the security of data and I/O responsiveness are two crucial indicators for user

applications, and it is not expected to completely sacrifice either aspect [35, 36]. Such observations
motivate us to propose a novel generic sanitization scheme, to further minimize the impacts on I/O
latency and data security of high-density SSDs, where each wordline of the SSD block consists of
multiple pages.
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3 POLLING-BASED SANITIZATION SCHEDULING
3.1 Architectural Overview
We propose a scheme of polling-based sanitization scheduling, called PollSan, which requires a
polling cycle1 towork on a specific SSD channel, for completing data sanitization at block granularity.
Figure 3 shows the architectural overview of PollSan, that works at the Flash Translation Layer
(FTL) of SSDs. As seen, our proposed method of polling-based sanitization mainly addresses two
issues: ①how to rate the priorities of sanitization blocks (cf. Section 3.2), and ②how to decide the
quantity of block sanitization on the channel in the current polling cycle (cf. Section 3.3).
To be specific, in the polling cycle, PollSan preferentially performs sanitization on the blocks

if their adjacent pages are not likely to be invalided in the future, by resorting to the outputs of
our proposed pre-trained ANN model. Consequently, it has time to accumulate more adjacent
page invalidations, to eventually reduce the number of page moves after all sanitization processes.
Note that we collected a large amount of data as the dataset after running various workloads of
real-world applications. Subsequently, we trained the ANN model on the dataset to predict future
adjacent page invalidations. We emphasize that the ANN model was trained offline by considering
SSDs commonly have limited computation and memory resources. In other words, we generated an
index table after multi-round training, and embedded it into the PollSanmodule in the FTL fireware.
Figure 4 illustrates an example of our proposed sanitization approach, polling at SSD channels.

Note that we support sanitizing multiple blocks in each polling cycle, see Section 3.3. As seen in
Figure 4 (a), both Page B in Block 0 and Page F in Block 1 were updated and thus require sanitization
in the polling cycle on CH0 at 𝑇0, and PollSan selects Block 1 as the sanitization target block. This is
because our prediction model suggests that Block 1 may not have any adjacent page invalidations
(𝑁1 = 0) in the future, whereas Block 0 probably has two adjacent page invalidations (𝑁0 = 2). As
discussed, delaying sanitization on the blocks having future adjacent page invalidations, contributes
to the reduction of moving valid data pages.
After completing data sanitization of the current SSD channel, the PollSan scheme will move

on to the next channel for data sanitization. Figure 4 (b) demonstrates the sanitization selection
1A polling cycle indicates one time slot in which a specific SSD channel has been polled for data sanitization in our context,
and the length of each slot may be different.
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on CH1 at the polling cycle of 𝑇1, which is similar to the case on CH0 at the polling cycle of 𝑇0.
PollSan will choose Block 0 on CH1 for sanitization because the predictive model indicates that it
will generate fewer adjacent page invalidations (𝑁0 = 1) in the future. The noticeable information is
thatWL0 of Block 1 on CH0 was sanitized at𝑇0, while the data pages ofWL0 of Block 0 on the same
channel are all invalidated at 𝑇1. Then, we can sanitize the wordline of WL0 of Block 0 without any
page moves in the next polling cycle on CH0, and this is the primary goal of delaying sanitization on
such blocks. As a consequence, we can yield better I/O performance and SSD endurance, comparing
to existing work of data sanitization.

In order to ensure PollSan performing not worse than PSan on the measure of UTI, we set PollSan
switching to PSan when the time frame (i.e., the size of time window with PSan) runs out but the
SSD device still has unsanitized data pages.

3.2 Predicting Future Adjacent Page Invalidations
Pollsan leverages ANN to predict the number of adjacent page invalidation of sanitization block, by
considering our dataset has non-linear relationships. This section describes the specifications of
our prediction model on the basis of ANN.

3.2.1 Inputs and Output. We employ the notations defined in Table 1 and make use of an artificial
neural network to predict the number of future adjacent page invalidations, that is the base of block
sanitization priority. To minimize modeling overhead, our model analyzes relevant features at the
block level, by regarding all wordlines in the block that have similar modeling features. PollSan
delays the sanitization on the SSD blocks if they will have more adjacent page invalidations in
the future, which will consequently result in fewer page moves after all data sanitization, thereby
reducing the overhead of data sanitization. That is, the blocks having considerable adjacent page
invalidations in the future will be assigned a low priority when scheduling block sanitization.
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Table 1. Notation descriptions used in the model

Symbol Explanation
𝑌 Number of future adjacent page invalidations

𝑋GC Whether there are pages with GC

𝑋Wear Whether there are pages with wear leveling

𝑋Wr Number of occurred write requests

𝑋Inv Number of occurred invalid pages

To estimate the number of future adjacent page invalidations (i.e., 𝑌 ), we considered 4 impact
features related to the given block as the inputs of ANNs, including whether there is a migrated
page caused by GC, whether there is a migrated page induced by wear leveling, the number of write
requests, and the number of invalidated data pages. Specifically, both migrated data pages caused
by GC and wear leveling might be cold update pages, and they are not likely to be invalidated in
the future [37]. The number of write requests reflects how many data pages are occupied with
valid/invalid data in the block, corresponding to the chances to have adjacent page invalidations in
the block. The number of invalidated data pages indicates how many data pages are filled with
invalid data pages that are needed to be sanitized. A larger value means that it is more likely to
have adjacent page invalidations in the future.

In summary, we train the neural network by inputting the block features and the characteristics
of data in the block. As a result, the output layer of our model can predict the future adjacent page
invalidations in target blocks. A higher value of future adjacent page invalidations implies that
the block will generate more invalid pages in the future, and it should postpone the sanitization
operation on that block, by assigning a lower sanitization priority.

3.2.2 Dataset. For training the model to cope with varying workloads, we collect a large amount
of data entries of (𝑌,𝑋𝐺𝐶 , 𝑋𝑊𝑒𝑎𝑟 , 𝑋𝑊𝑟 , 𝑋𝐼𝑛𝑣). Specifically, we replay the workloads in the trace
collection of Microsoft Research Cambridge (MSRC) [38], and the trace collection of enterprise
virtual desktop infrastructure (VDI) [39] (except 4 traces for model testing), and collect a total of
120,635 entries. All variables in the entries collected from the traces are normalized in the range
of 0-1, which can accelerate the convergence speed of training and make the model more robust.
We use 80% of the data as the training set to train the parameters of the neural network, and 20%
of the data as the validation set to select the optimal model and hyperparameters. Since SSDs are
resource-limited devices, we train the artificial neural network with an offline mode.

3.2.3 Model Architecture and Deployment. For predicting the future adjacent page invalidations
on the given SSD block, we selected a three-layer artificial neural network which is a relatively
wide design [40, 41]. The neural network consists of three layers, including the input layer, the
hidden layer, and the output layer. The input layer receives data related to the features of blocks.
The hidden layer comprises three layers, and each hidden layer having 128 neurons. The output
layer is the future adjacent page invalidations in target blocks. Furthermore, we utilized Rectified
Linear Units (ReLU ) as the activation function throughout the network. The cross-entropy loss
function and the Adam optimizer were used in our model. The learning rate of ANN was 0.001,
which determines the magnitude of weight updates for each sample during the training process.
The training loss consistently decreases and gradually approaches a lower value, indicating that
the pre-training model is suitable for the future adjacent page invalidations prediction.
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Fig. 5. ANN-based sanitization priority prediction on the granularity of SSD block. The index table is the
output of ANN by inputting the collection data items.

To minimize computational costs and memory overhead inside SSDs, we used collected data and
trained a neural network model in an offline manner, to generate an index table for dispatching
block sanitizations in the given polling cycle. As illustrated in Figure 5, we first conduct offline
training of the neural network model on the collected training dataset, and obtain a well-trained
ANN model. Then, we can utilize the pre-trained neural network model to forecast the number of
future adjacent page invalidations of the sanitization-required block. This is achieved by inputting
a (default) total of 400 data combinations between 0 and 1 to the trained model, resulting in an
output index table of different input combinations. Specifically, the ranges of input combinations
of the four features are classified as two categories. 𝑋𝐺𝐶 and 𝑋𝑊𝐿 are binary variables with a value
of 0 or 1, 𝑋𝑊𝑟 and 𝑋𝐼𝑛𝑣 vary within [0, 1.0], by increments of 0.1.

When predicting the sanitization priority of a given block, PollSan first collects the values of four
considered features on the candidate block, and then standardizes them as an input combination.
After that, we retrieved the corresponding output in the index table on the basis of the status of
blocks that are required for sanitization in the same channel. A larger output implies a greater
likelihood of subsequent adjacent page invalidations in the block. Consequently, we select the
blocks with smaller outputs for carrying out data sanitization.

3.3 Scheduling on Sanitization Blocks
Our approach of PollSan polls at the channel level. In each polling cycle on the specific channel, it
first identifies blocks that contain sanitization-required wordlines and calculates the sanitization
priorities2, with the pre-trained ANN model. After determining the priority of sanitization, PollSan
will estimate the number of blocks to be sanitized on the current polling channel, on the basis of
the channel’s time and space constraints. Then, PollSan conducts data sanitization on all invalid
data pages in the selected block (s). When all scheduled block sanitizations are completed, PollSan
will turn to another polling cycle and sanitize sensitive data pages on another channel.

2A large sanitization priority indicates a small number of future adjacent page invalidations.
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In order to determine the number of sanitization blocks in a polling cycle of the given SSD
channel, we propose a method to decide the number of blocks that can be scrubbed in the current
polling cycle, on the basis of the current I/O workloads and the free space of SSD device. Specifically,
the proposed method obeys the following time constraints and space constraints.

3.3.1 Time Constraints. Sanitization may result in certain migration operations, thus causing a rise
in the I/O workload. That is to say, choosing more blocks for sanitization on a specific channel will
bring about more impacts on normal I/O performance. To characterize the influence level of data
sanitization on I/O response time caused by our method, we propose an indicator of 𝑇 to express
the latency time caused by completing data sanitization and the enqueued I/O requests. Assuming
that the average cumulative amount of enqueued I/O requests in the case of ISan is𝑉 , the incoming
I/O workloads during the sanitization process per second is 𝐿𝑖𝑛 , the additional I/O loads per second
caused by ISan is 𝐿𝐼𝑆𝑎𝑛 , and the I/O processing throughput of the SSD device is 𝐿𝑜𝑢𝑡 . We believe
that the amount of I/O data processed within time 𝑇 should be equal to the cumulative amount of
enqueued I/O requests 𝑉 plus the generated I/Os during sanitization. Then, Equation 1 holds.

𝑉 + (𝐿in + 𝐿ISan ) ·𝑇 = 𝐿out ·𝑇 (1)
Consequently, the time required to complete data sanitization and I/O requests (i.e., the time

latency of 𝑇 ) in the proposal of ISan can be derived with Equation 2.

𝑇 =
𝑉

𝐿out − (𝐿in + 𝐿ISan )
(2)

In the scenario of PollSan, the current accumulated amount of enqueued I/O requests in the
channel can be represented as𝑉𝑃𝑜𝑙𝑙𝑆 , that the incoming I/O workloads arrive during the sanitization
process per second is denoted as 𝐿𝑖𝑛_𝑃𝑜𝑙𝑙𝑆 . The I/O workload per second of 𝑁 blocks caused by data
sanitization in the channel can be defined as 𝐿0, 𝐿1... 𝐿𝑁−1 respectively. Then, the total I/O workload
generated by selecting 𝑘 block sanitizations per second can be defined as 𝐿𝑃𝑜𝑙𝑙𝑆 =

∑𝑘−1
𝑖=0 𝐿𝑖 . Note

that the negative impacts of data sanitization caused by PollSan should not exceed that caused by
ISan. In other words, during the same time period of 𝑇 , the overall I/O workloads with the PollSan
mechanism should not exceed that with the ISan mechanism, ensuring the validity of the following
equation:

(𝐿𝑖𝑛_𝑃𝑜𝑙𝑙𝑆 + 𝐿𝑃𝑜𝑙𝑙𝑆 ) ×𝑇 +𝑉now ≤ (𝐿in + 𝐿ISan ) ×𝑇 +𝑉 (3)
Subsequently, we can expend Equation 3 by using Equation 2, to obtain the following equation:

(𝐿𝑖𝑛_𝑃𝑜𝑙𝑙𝑆 +
𝑘−1∑︁
𝑖=0

𝐿𝑖 ) ×
𝑉

𝐿out − (𝐿in + 𝐿ISan )
+𝑉now ≤ (𝐿in + 𝐿ISan ) ×

𝑉

𝐿out − (𝐿in + 𝐿ISan )
+𝑉 (4)

Finally, we can derive the suitable number of sanitization blocks in the case of using our approach
of PollSan at the given polling time slot, by selecting the maximum value of 𝑘 , according to the
constraint shown in Equation 5.

𝑘−1∑︁
𝑖=0

𝐿𝑖 ≤ 𝐿out −
𝑉now

𝑉
(𝐿out − 𝐿in − 𝐿ISan) − 𝐿in_PollS (subject to 𝑘 < 𝑁 ) (5)

3.3.2 Space Constraints. In the process of data sanitization, the valid data pages that are adjacent
to the sanitization-required pages must be migrated to other blocks in the same channel. That is,
completing data sanitization on more blocks in a specific SSD channel will decrease the available
space, thus probably triggering garbage collection (GC) to reclaim space, which will greatly impact
I/O responsiveness and lead to an inefficient sanitization process. Hence, we emphasize that it is
not recommended to migrate the valid data pages on the sanitization block (s) to a target block
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that does not have enough free space. Specifically, the number of page migrations issued by data
sanitization on SSD blocks should be limited to avoid triggering an immediate GC operation, by
considering the factor of available space on the SSD channel.

Suppose that we have a total of𝑀 blocks and that 𝑁 blocks are expected to be sanitized (termed
as source blocks) on the given channel, indicating that we have𝑀 − 𝑁 blocks (termed as destination
blocks) for holding the migrated data pages introduced by data sanitization. We assume that the
available space of destination blocks in the channel is 𝑆 , and that the minimum remaining space to
trigger GC is 𝑆∗. The space of valid move pages of 𝑁 source blocks is 𝑆0, 𝑆1...𝑆𝑁−1. Subsequently,
the additional space required for data sanitization should be less than the currently available space
of the given channel. Then, the space constraint defined in Equation 6 must be satisfied, when
determining the number of sanitization blocks 𝑘 in the polling cycle.

𝑘−1∑︁
𝑖=0

𝑆𝑖 ≤ 𝑆 − 𝑆∗ (subject to 𝑘 < 𝑁 ) (6)

In summary, we can unify both the time constraint (Equation 5) and the space constraint
(Equation 6), thus setting the smaller value of 𝑘 as the number of blocks that are supposed to be
selected for sanitization, in the current polling cycle.

4 EXPERIMENTS AND DISCUSSIONS
4.1 Experimental Settings
We performed experimental evaluation using the widely studied SSD simulator SSDSim [42], which
has been modified to support sanitization. We use a local ARM-based machine as SSD controllers
which usually have limited computation power andmemory capacity [43]. Themachine has an ARM
Cortex A7 Dual-Core with 800MHz, 128MB of memory and 32-bit Linux (ver 3.1). We simulated
a 24GB SSD device and set the performance parameters based on the values used in a recent
study [15], and Table 2 presents the specifications of the simulator. To reflect the impacts of GC and
wear leveling before replaying traces, the simulated SSD is aged so that valid data and invalid data
occupy 62.64% and 7.36% of its capacity, respectively [6], and the program/erase cycle of blocks is
initialized with warm-up by exactly referring to [44].
Apart from the newly proposed PollSan scheme, we employed the following four sanitization

schemes as comparison counterparts in evaluation tests:
• ISan [8], which requires sanitization on invalid pages immediately once the updated opera-
tion happens for ensuring the security of data.

• PSan [17], which performs sanitization in a cyclical manner, where the period is determined
by the data owner on the basis of data sensitivity. In our scenario, we have tested the time
window of sanitization in the range of 1024 and 8192 (Appendix A), and selected 4096
requests as the default size of the time window in the evaluation section.

• SAS [14], which is a sophisticated scrubbing-aware secure deletion design. SAS aims to
minimize the overhead of page migrations by adaptively choosing a proper operation
(scrubbing or erase) to delete the selected sensitive data, according to the estimated overhead.
Furthermore, SAS creates scrubbing-friendly patterns for reducing the overhead of live-page-
copying in secure deletion procedures. Specifically, SAS conducts sanitization operations
according to a Poisson distribution, and places the original data pages together with their
updated copies.

• IDS [26], which is an advanced instant data sanitization method for NAND-based flash
memory, and it can prevent data leakage without any negative effects on valid data in
shared pages. Through an analysis of the encoding rules in high-density SSDs, IDS proposes
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Table 2. Experimental settings of SSDsim

Chip parameters
(Die, Plane, Block, Page) (1, 1, 512, 384)

(Page size, Cell density) (8KB, TLC)

(Scrubbing latency) (0.7ms)

(Program latency, Read latency) (0.7ms,0.075ms)

(Erase latency) (10ms)

SSD parameters
(Channel, Chip) (8,16)

(FTL, GC trigger) (Page-level, 30%)

Table 3. Specifications on traces

Traces Req # Wr R Wr SZ Avg. INT San Page
ali_0 311756 70.8% 7.2KB 69.2ms 308587

ali_1 395658 73.0% 8.8KB 54.5ms 463262

ali_2 444494 66.6% 11.6KB 48.5ms 581864

ali_3 289746 79.9% 8.6KB 74.5ms 363173

lun0 534529 66.6% 9.3KB 6.7ms 711368

lun1 605819 47.8% 12.2KB 5.9ms 659617

mds_0 1211034 88.1% 7.2KB 4.9ms 1552880

wdev_0 1143261 79.9% 8.2KB 5.3ms 1391426

sanitizing the invalid page by storing a mirrored copy of the adjacent page in some special
cases, to reduce the migration operations on flash memory introduced by data sanitization.
Specifically, it works for some scenarios of sanitizing the MSB page in TLC SSDs. In which,
IDS first identifies whether its adjacent CSB page is valid or not. If yes, it reads the valid
CSB page data into the cache and inverses the data. Then, it sanitizes the invalid MSB page
by flushing the inversed data onto it. Otherwise, IDS works like ISan.

As discussed in Section 3.2, we trained the prediction ANN model by inputting the collected
entries after replaying the traces in the MSRC collection and the VDI collection. In order to verify
the effectiveness of the trained model in various application scenarios, we tested the practicability
of our model on both internal validation dataset and the external validation dataset. In the internal
validation dataset, two traces are from the MSRC collection and another two traces are from the
VDI collection [39]. Specifically, two VDI traces are additional-01-2016021615-LUN1 (labeled as
lun0), and additional-01-2016021618-LUN1 (lun1). To construct the external validation dataset, we
chose four recent traces from Alibaba Cloud [45], corresponding to four six-hour trace segments of
a 20GB virtual disk (close to the capacity of our emulated 24GB SSD device), labeled as ali_0 to ali_3.
Consequently, there are a total of eight disk traces of real-world applications in our evaluation
tests.
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Fig. 6. Normalized average I/O latency achieved by varied sanitization policies.

Table 3 shows the details about the selected traces of internal and external validation sets. In
the table, the metric of Req# represents the number of requests, the measures ofWr R andWr SZ
mean the ratio of write requests and the average size of write requests in the workload. The metric
of Avg. INT implies the average interval time between two requests, indicating the level of I/O
intensity in the workload, and San Page means the number of data pages requiring sanitization.

4.2 Performance Comparisons and Discussions
To measure the effectiveness of our proposal, we make use of the following metrics in our exper-
iments: (a) Average I/O latency, (b) Sanitization time, (c) Average unsafe time interval, and (d)
Block erase statistics.

4.2.1 Average I/O Latency. Reducing the I/O latency to guarantee I/O responsiveness is the primary
aim of the proposed sanitization scheduling method, and Figure 6 shows the results of normalized
average I/O latency after running the selected traces. As expected, PSan outperforms others on the
measure of I/O latency. More exactly, it can noticeably reduce the I/O latency by 52.36%, 42.30%,
43.59%, and 35.52%, in contrast to ISan, SAS, IDS, and our proposal of PollSan, respectively. This is
because PSan conducts sanitization tasks periodically, which can reduce the migration overhead of
valid pages and minimize negative effects on I/O responsiveness (see Section 4.2.2). We emphasize
that the routine of periodical sanitization in PSan greatly threatens the security of sensitive data,
even if it has the least impact on I/O performance. Besides, we see that SAS can decrease the
I/O response time by 18.11% on average, compared with ISan, since it can significantly reduce
the number of page migrations, by purposely keeping the same copies of data together. We can
observe that IDS reduces I/O latency by 16.51%, in contrast to ISan, though both of them are instant
sanitization schemes. This is because it fulfills page data sanitization by storing mirrored copies of
adjacent pages in some cases, which can eliminate the needs of migrating adjacent pages to other
free pages, leading to a reduction of GC operations.
The most important clue shown in Figure 6 is that, our proposal of PollSan results in less I/O

latency by 27.38%, 10.35% and 13.42% on average, in contrast to ISan, SAS and IDS. This fact
confirms that polling-based sanitization can contribute to a reduction of I/O latency, ensuring a
better I/O responsiveness, compared to related work. This is because PollSan can select as many
sanitization blocks as possible that may not have adjacent page invalidations in the future, so
that blocks with more adjacent page invalidations can be scrubbed later. In addition, our proposal
supports data sanitization on multiple blocks in a polling cycle, if the target SSD channel has slight
I/O workloads, which can adaptively coordinate sanitization effects and I/O performance.
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4.2.2 Sanitization Time. Each sanitization process first moves valid pages of the wordline to another
free block and then scrubs the wordline. Figures 7 (a) and 7 (b) present the sanitization time and
the number of page moves caused by sanitization, after replaying the selected traces. As seen, PSan
induces a smaller sanitization time, because it performs sanitization tasks in a periodical manner,
helping to accumulate more adjacent page invalidations, and thus results in a smaller umber of
page moves.
More importantly, our PollSan approach results in less sanitization time by 7.45% on average,

corresponding to a reduction of 11.32% on page moves, in contrast to ISan. This fact confirms that
our proposal can efficiently decrease the number of page moves, thus decreasing the sanitization
overhead and extending the lifetime of SSDs. We argue that the proposed model adopted by PollSan
can predict the number of future adjacent page invalidations and choose the appropriate time for
sanitization, which can contribute to a better compromise on I/O performance and data security.
Note that PollSan requires more sanitization time after running some selected traces, comparing to
the related work of SAS and IDS, since PollSan introduces more page moves onto the free pages of
other wordlines in sanitization processes.

4.2.3 Average Unsafe Time Interval. The unsafe time interval (UTI) is a critical factor to measure
data security. Ensuring low UTI values of sensitive data pages is another goal of our proposed
scheme. Figure 8 shows the comparison of the average UTI of all data pages after replaying the
selected traces. As seen, ISan and IDS work the best on ensuring data security, at the cost of I/O
performance degradation. This is because they performs immediate sanitization once the data
pages have been invalidated, regardless of the impacts on I/O responsiveness. Our approach of
PollSan greatly outperforms another comparison scheme of Psan by 93.73% on average, in terms of
UTI. This is because PollSan carries out polling-based sanitization among all SSD channels, which
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Fig. 9. Normalized block erase counts with varied sanitization policies.

contributes to the quick sanitization on invalid data pages of the polled channel, meanwhile other
channels can still keep services for responding to normal I/O requests. In addition, the SAS scheme
can reduce the UTI by 94.06%, in contrast to PSan. This is because SAS carries out sanitization tasks
by following the Poisson distribution. Specifically, the execution period is divided into three parts:
the early stage, the middle stage, and the late stage. SAS performs relatively sparse sanitization
operations in the early and late stages of benchmark execution, it will perform intensive sanitization
tasks in the middle stage, so that a major part of the sanitization operations can be processed
quickly.
Another interesting clue shown in Figure 8 is that PSan performs significantly worse in the

cases of running the selected ali traces. We suggest that the sanitization cycle of PSan is based on
the fixed time window of 4096 requests, and that the average request interval of the ali traces is
relatively larger, which results in longer sanitization cycles. In addition, we see that our mechanism
noticeably outperforms the related work of SAS while running the ali traces, but performs a little
bit worse than SAS in the cases of running other traces, on the measure of UTI. This is because, the
ali traces have relatively large time intervals between I/O requests, and PollSan can perform more
sanitization operations in every polling cycle, according to the time constraints. On the other hand,
the remaining traces have small intervals between I/O requests, which will limit the number of
sanitizations in each polling cycle, resulting in the accumulation of block sanitizations, as well as an
increase in UTI while using our approach of PollSan. But note that our approach outperforms the
related work of SAS, in terms of I/O latency while running intensive I/O workloads, as previously
illustrated in Section 4.2.1.
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4.2.4 Block Erase Statistics. The metric of erase counts is used to reflect the endurance of the SSD,
so that we record the number of erase operations after running the traces, by using five sanitization
schemes. Figure 9 shows the relevant results. As seen, PSan and PollSan can reduce the number
of erase counts by 42.88% and 13.80%, in contrast to ISan. This is because they can accumulate
invalid pages and sanitize them together, thus reducing the number of erase operations. Another
interest information is that the IDS method brings about a reduction of 13.53% erase operations
comparing to ISan. We suggest this is because IDS employs the data cache to make mirror copies
for ending sanitization on MSB pages if their adjacent CSB pages are valid, which can reduce the
number of migrating adjacent pages to other free pages, leading to a smaller quantity of erase
operations.

Besides, we see the SAS method increases the number of erase operations by 19.46% on average,
compared with our proposal of PollSan. This is because SAS will reserve free pages for storing
various versions of the same data and delete invalid pages by erase operation, leading to frequent
triggering of the garbage collection and an increase in block erasures.

4.3 Analysis of United Impact of I/O Latency and Data Security
To measure the united impact level of I/O performance and data security related to sanitization
schemes, we define a time metric of risk-performance index (RPI), on the top of the unitized value
of UTI and the I/O latency, by referring to the cost function [46]. In fact, the cost function is
widely used for estimating the total cost of production factors in the field of economics. Considering
ISan can yield the best I/O latency, whereas PSan can achieve the best UTI, both of them have
a normalized RPI value of 1.0, indicating they have the same total cost (i.e., the united impact)
caused by data sanitization. Figure 10 illustrates that ISan and PSan do have the same value of RPI,
and the isocost line represents the RPI value as constant for all I/O and UTI combinations. In other
words, the RPI values in the lower right quadrant indicate better performance of united I/O latency
and data security after data sanitization, in contrast to the baselines of ISan and PSan.

Equation 7 defines the specifications of obtaining the RPI value, so that we can yield the unitized
UTI weights of all traces, and compute the values of RPI for them. We emphasize that a lower PRI
value represents a smaller data sanitization impact introduced by data sanitization.

𝑅𝑃𝐼 = 𝐼/𝑂 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑘 ×𝑈𝑇𝐼 (7)

where 𝑘 is the unitized weight with respect to the given trace and Equation 8 defines the way of
obtaining it.

𝑘 =
𝑇ISan −𝑇PSan

𝑈𝑇𝐼PSan −𝑈𝑇𝐼ISan
(8)

where𝑇𝐼𝑆𝑎𝑛 and𝑇𝑃𝑆𝑎𝑛 represent the I/O time with ISan and Psan respectively,𝑈𝑇𝐼𝐼𝑆𝑎𝑛 and𝑈𝑇𝐼𝑃𝑆𝑎𝑛
mean the UTI values with ISan and Psan, respectively.

Figure 11 presents the results of RPI using five sanitization schemes. As seen, our method greatly
outperforms the other two basic comparison counterparts (i.e., ISan and PSan), by more than
23.45% on average. This is because our polling sanitization scheme can provide I/O services on
the SSD channels that are not currently enduring sanitization. Furthermore, the prediction model
helps to minimize the number of page moves caused by polling-based sanitization, which can help
reduce the sanitization time. Besides, our proposal of PollSan can result in a better RPI by 10.04%
and 8.42% on average, in contrast to SAS and IDS. It confirms that our polling-based method of
PollSan can decrease the impact caused by sanitization on the integrated metrics composed of I/O
responsiveness and data security.
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Fig. 12. Overall compute time of PollSan after replaying the selected traces. Note that the compute time
consists of the retrieving time on the index table and the computing time on deciding the quantity of block
sanitizations in each polling cycle.

4.4 Overhead Analysis and Modeling Accuracy
The main memory overhead of our proposal is due to the additional storage required for the
parameters used by the prediction model, so that PollSan results in memory overhead of about
32KB. More specifically, we need to record the feature information of blocks for predicting their
sanitization priorities, so that the spatial overhead is 4byte/block × 1024block/channel × 8channel
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Fig. 13. Modeling accuracy of PollSan after replaying the selected traces.

= 32KB, which we believe is an acceptable amount of memory space in the case of a 24GB SSD.
With respect to time overhead, our method requires dynamically selecting the sanitization blocks,
as well as predicting the values of future adjacent page invalidations on blocks by resorting to the
index table. We measured the overall compute time of PollSan, and Figure 12 shows the results. The
time cost is between 0.58 and 30.42 seconds, or less than 0.04% of the overall I/O time. Thus, we
consider that the compute time caused by PollSan remains negligible, even though our experiments
are completed on the resource-limited platform. Note that the computation overhead affects the
I/O latency by postponing dispatches on incoming I/O requests, and relevant I/O time results have
been previously reported in Section 4.2.1.

Furthermore, we have recorded the number of prediction hits on the block having fewer adjacent
page invalidations to show the accuracy of our prediction model. We define a prediction hit as the
case of the number of adjacent page invalidations is not larger than the average number of adjacent
page invalidations of all blocks. Figure 13 presents the results of the prediction accuracy, and it
shows our method can yield an accuracy of 81.94% on average with default settings. We suggest
that PollSan achieves good prediction accuracy, compared to the accuracy of 50.0% in random
predictions.

4.5 Case study on Varied Size of Index Table
PollSan employs a pre-trained index table for mapping the combinations of block features to the
sanitization priorities of SSD blocks. The size of the index table output by the pre-trained ANN
model may impact prediction accuracy, which in turn affects the performance of the storage system.
This section checks the effectiveness of our approach if the SSD has different size of index tables. We
suggest that the varied size of index tables require different memory space and retrieval overhead.
Therefore, we carry out a case study to verify the prediction accuracy and the lookup time overhead
for different index table sizes.

Figures 14 (a) and 14 (b) show the results of the modeling accuracy and compute time, while using
our approach of PollSan with varied sizes of configured index tables. In the tests, we specifically
checked the size of index table with 400, 4,000, and 40,000, labelling as PollSan-400, PollSan-
4000, and PollSan-40000. We observe that as the size of the index table becomes larger, there is
no noticeable increase in the measure of prediction accuracy after running the benchmarks, but
more retrieval time is required. In the case of running the benchmark of wdev_0, for example,
PollSan-4000 and PollSan-40000 have, respectively, 12 and 207 times the retrieval cost of the baseline
configuration of PollSan-400.
Besides, we emphasize that a larger index table requires more memory space overhead. For

example, the configuration of 40,000 entries needs 195KB of memory for the index table, indicating



Polling Sanitization to Balance I/O Latency and Data Security of High-density SSDs 1:19
M

o
d

el
in

g
 A

cc
u

ra
cy

0

0.2

0.4

0.6

0.8

1

ali_0 ali_1 ali_3 lun0 lun1ali_2 mds_0 wdev_0

(a)Modeling accuracy

N
o

rm
al

iz
ed

 C
o

m
p

u
te

 T
im

e

0

10

20

30

40

50

60

ali_0 ali_1 ali_3 lun0 lun1ali_2 mds_0 wdev_0

(b) Normalized compute time 

PollSan-400 PollSan-40000PollSan-4000

1
6

2

1
3

4

1
3

4

1
8

4

1
3

0

1
0

8

2
2

8

2
0

7

Fig. 14. The comparison of modeling accuracy and compute time with varied size of index table in PollSan.
The results of compute time are normalized to PollSan with the index table size of 400.

100 times of space overhead in contrast to the configuration of 400 entries. As a consequence, we
decided to use an index table of 400 entries by default, by considering both factors of the prediction
accuracy and the time/space overhead.

5 RELATEDWORK
This section further describes advanced schemes on data sanitization for SSDs. Specifically, data
scrubbing was first proposed by Wei et al [8], which creates an all-zero page with the same page
program command. However, this technique is not easy to perform in high-density SSDs (in which,
each wordline has multiple pages), as it incurs significant performance overhead for moving out
valid pages from the scrubbed wordline. With respect to this problem, Lin et al [25] employed one-
shot reprogramming to achieve instant and zero-copy overhead sanitization, which can minimize
the disturbance to adjacent valid pages. Wang et al [14] formulated the overhead of secure deletion,
to direct the selection of sanitization tasks, as well as created the scrubbing-friendly pattern to
reduce the overhead of moving valid pages. Kim et al [47] employed two lock commands to
disable accessing the sanitization-required data pages. Hasan and Ray [10] proposed a new analog
scrubbing scheme to guarantee that the sensitive data remains unrecoverable after sanitization.
Cui et al [15] designed ADS, to avoid moving valid pages of approximate data in the process of
sanitization, as such data have great error resilience. Consequently, the sanitization overhead in
high-density SSDs can be greatly reduced. Moreover, Raquibuzzaman et al [26] presented a novel
instant page data sanitization by creating mirror copies of adjacent valid pages and flushing them
onto the sanitization pages to fulfil page sanitization. Because it employs the data cache to make
mirror copies and directly flushes the copies to the sanitization pages, it can reduce the number
of migrating adjacent pages onto other free wordlines of flash memory, which can reduce the GC
overhead caused by data sanitization in some cases.
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We summarize that PollSan is the first mechanism that addresses the issue of balancing I/O
performance and data security during sanitization in the SSD context. Specifically, the existing
sophisticated methods either work for specific scenarios (e.g., approximate data [15]) or expect
hardware supports (e.g., the lock functionality [47]). Unlike existing sanitization approaches, PollSan
does not require application contexts with special data characteristics or hardware supports, which
can make guarantee the I/O performance and data security in a wide range of applications.

6 CONCLUSION
This paper has proposed the PollSan sanitization scheduling method, which intends to minimze the
sanitization impacts on I/O latency and data security of high-density SSDs. To this end, PollSan
requires each polling cycle to fulfill sanitization on a specific channel, for completing data saniti-
zation on the selected block (s). In the polling cycle on the specific channel, our proposal places
low priorities on the blocks that will have more adjacent page invalidations in the near future,
to minimize the negative impacts of moving valid pages in data sanitization. Moreover, PollSan
considers both time and space constraint on the SSD channel, for deciding the preferred number of
sanitization blocks in the polling cycle of the given channel.
The experimental results show that our approach can efficiently reduce RPI by up to 40.40%,

compared to the existing methods, implying that it can better mitigate the negative impacts on
I/O responsiveness and data security regarding data sanitization. We suggest that Pollsan does not
require any hardware modifications, and it can be implemented using standard user-mode flash
commands in the FTL firmware.
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A APPENDIX: PSAN PERFORMANCEWITH VARIED SIZE OF TIMEWINDOW
The sanitization interval of PSan is determined by the data owners on the basis of their data
sensitivity. We have tested the performance of PSan while the time window varies from 1024
requests to 8192 requests. Figure 15 presents the results of major performance indicators, showing
a larger interval may result in better I/O performance and SSD lifetime, but with the cost of worse
data security.
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Fig. 15. Normalized PSan performance with varied sanitization time window.
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