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Abstract—This paper investigates the secrecy energy-efficiency
of a multi-user downlink non-orthogonal multiple access (NOMA)
transmission in the presence of a passive eavesdropper. The
secrecy energy-efficiency, capturing the trade-off between the
achievable secrecy sum-rate and the power consumption, is
here formulated as a bi-criterion optimization problem that is
shown to be convex. As such, the characterization of the Pareto-
boundary boils down to maximizing the scalarized trade-off
between the secrecy sum-rate and the power consumption, which
is solved in closed-form. Finally, this obtained closed-form is
exploited to maximize the ratio between the secrecy sum-rate
and the power consumption. Our numerical results highlight the
relative secrecy energy-efficiency gain between NOMA and OMA
that can reach up to 550%.

I. INTRODUCTION

The unprecedented growth of deployed sensors in homes,
cities, wearable, etc. is turning e-health, smart homes and cities
into reality. Thus, dealing with denser networks while insuring
high data rates, reliable communications, efficient use of both
spectral and power resources as well as integrating security
aspects becomes mandatory [1], [2].

Traditionally, orthogonal multiple access (OMA) techniques
are used, where a single user could be served on each resource
block. Despite obviously preventing interference, OMA is
not well-adapted to wireless networks dealing with an ever
increasing number of users, paving the transition to non-
orthogonal multiple access (NOMA) techniques [3], [4]. Un-
der NOMA, an arbitrary number of users can be served over
the same resource block by using superposition coding at the
transmitter side, whereas the receivers handle the interference
thanks to successive interference cancellation (SIC) [3].

Further, due to the broadcast nature of the wireless medium,
security becomes a vital feature of wireless networks. While
cryptography-based security techniques rely on the computa-
tional capabilities of the attackers, with physical layer security
confidentiality is ensured by exploiting dynamic features of the
wireless medium itself, such as interference, noise or fading.
In such a framework, the goal is to derive secrecy rates, an
extension of regular ones measured by the rate gap between
the rate achieved by the legitimate user and the one by the
eavesdropper to decode the same message [5].

Beside increasing data rates, reducing the power consump-
tion is a crucial requirement of the current, as well as of
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the future, generation of wireless network. Since these two
are conflicting goals, finding the optimal trade-off, termed as
energy-efficiency, becomes ineluctable [6]. Finally, following
the increasing security concerns, another trade-off metric,
called secrecy energy-efficiency, has been proposed to extend
the energy-efficiency ones by considering secrecy sum-rates
instead of regular ones [7].

Motivated by the above, this paper focuses on maximiz-
ing the secrecy energy-efficiency of a multi-user downlink
NOMA transmission, in the presence of an eavesdropper. The
secrecy energy-efficiency is here formulated as a bi-criterion
convex optimization problem, similarly to [8], [9] where no
eavesdropper was present. Beside the overall power budget
constraint, each of the 𝐾 ≥ 2 user is required to meet a
minimum Quality of Service (QoS) constraint expressed in
terms of its achievable rate.

A. Related works

Recently, both energy-efficiency and secrecy rate maximiza-
tion for multi-user 𝐾 ≥ 2 downlink NOMA transmission
have been widely investigated [10], [9], [11], [12], [13], [14],
[15], [16], [17], but very few works consider secrecy energy-
efficiency maximization for such networks.

To the best of our knowledge, the closest works to ours
are [9], [18], both exploiting downlink NOMA to serve an
arbitrary number 𝐾 of users under an overall power budget
as well as 𝐾 individual QoS constraints. On one hand, [9]
focuses on the maximization of the energy-efficiency defined
as a bi-objective optimization problem in the absence of eaves-
dropper. The obtained closed-form solution is then exploited to
optimize the more common energy-efficiency metric defined
as the ratio between the sum-rate and the power consumption
in a computationally efficient manner requiring only a line
search. On the other hand, [18] includes the presence of an
eavesdropper and proposes a numerical solution that relies
on the dichotomy method to maximize the ratio between the
secrecy sum-rate and the power consumption.

Here, we propose to first formulate the secrecy energy-
efficiency as a bi-criterion optimization problem that is solved
in closed form, extending both the approach of [9] to include
physical layer security considerations, and the metric consid-
ered in [18]. Similarly to [9], we then exploit our closed form
solution to solve the same secrecy energy-efficiency metric in
terms of the ratio between the secrecy sum-rate and power



consumption by the mean of a line search instead of the
dichotomy method, as initially proposed in [18].

B. Main contributions

Our main contributions, summarized below, are three-fold:
i) We prove the concavity of the secrecy sum rate of a
multi-user downlink NOMA system with respect to the power
allocation vector, leading to a convex bi-criterion secrecy
energy-efficiency optimization problem.
ii) We derive a closed form solution that maximizes the
secrecy energy-efficiency defined as a bi-criterion optimization
problem. This closed form solution characterizes all optimal
pairs of secrecy sum-rate and power consumption, hence en-
compassing the one maximizing the ratio between the secrecy
sum-rate and power consumption.
iii) We exploit this closed form solution to also maximize the
ratio between the secrecy sum-rate and power consumption
considered in [18] in a computationally efficient manner by
requiring only a line search.
Remarkably, we show that NOMA outperforms OMA in terms
of secrecy sum-rate irrespective from the number of users 𝐾 in
the network as well as from the value of the trade-off param-
eter that allows to characterize the entire Pareto-boundary of
the bi-criterion optimization problem. Nonetheless, for secrecy
sum-rate driven optimization, NOMA may consumes more
power than OMA. Finally, the relative gap between NOMA
and OMA in terms of ratio between the secrecy sum-rate and
the power consumption can reach up to 550%, highlighting
the interest of our proposed NOMA scheme.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the considered system model under
study as well as the secrecy energy-efficiency optimization
problem.

A. System model

...

Fig. 1. System model under study: the eavesdropper is highlighted in red,
whereas all the other users are considered as legitimate ones.

The network under study is composed by a single transmit-
ter (e.g. a base station), an arbitrary number of legitimate users
𝐾 ≥ 2 and a single passive eavesdropper, as depicted in Fig. 1.
To serve an arbitrary number of users in a spectral efficient
manner, NOMA is considered. As such, the transmitter em-
ploys superposition coding and broadcasts 𝑋 =

∑𝐾
𝑖=1 𝑋𝑖 , where

the message 𝑋𝑖 of average power 𝑝𝑖 is intended for the 𝑖-th
legitimate user, 𝑖 ∈ ⟦1, 𝐾⟧. Then, the received signals at the

𝑘-th legitimate user and at the eavesdropper are respectively
given as

𝑌𝑘 = ℎ𝑘

𝐾∑︁
𝑖=1

𝑋𝑖 + 𝑍𝑘 , (1)

𝑌𝑒 = ℎ𝑒

𝐾∑︁
𝑖=1

𝑋𝑖 + 𝑍𝑒, (2)

where ℎ𝑘 and ℎ𝑒 denote the channel coefficient between the
transmitter and the 𝑘-th legitimate user and the eavesdropper
respectively; 𝑍𝑘 ∼ N (

0, 𝜎2
𝑘

)
and 𝑍𝑒 ∼ N (

0, 𝜎2
𝑒

)
are the

Additive White Gaussian Noises (AWGN) at the 𝑘-th user and
eavesdropper respectively. Throughout this paper, we assume
that all noises are of unit variance, or, equivalently, we consider
normalized channel gains defined as Γ𝑘 =

ℎ2
𝑘

𝜎2
𝑘

, 𝑘 ∈ {⟦1, 𝐾⟧, 𝑒}.
Without loss of generality, we assume that the channel gains
are ordered as

Γ1 ≤ · · · ≤ Γ𝑀−1 ≤ Γ𝑒 < Γ𝑀 ≤ · · · ≤ Γ𝐾−1 < Γ𝐾 , (3)

i.e. 𝑀 − 1 out of the 𝐾 legitimate users have weaker channel
gains than the eavesdropper.

Following the superposing scheme adopted in NOMA at
the transmitter side, the interference at the receiver side is
handled via SIC. Thus, each legitimate user 𝑘 first decodes
the messages 𝑋𝑤 , 𝑤 ∈ ⟦1, 𝑘 − 1⟧, corresponding to users with
weaker channel gains compared to user 𝑘 , but suffers the
interference of messages 𝑋𝑠 , 𝑠 ∈ ⟦𝑘 + 1, 𝐾⟧, corresponding
to users with stronger channel gains when decoding its own
message 𝑋𝑘 . Hence, the achievable rate 𝑅𝑘 to decode the
message 𝑋𝑘 at the 𝑘-th legitimate user writes as

𝑅𝑘 (p) = 1
2

log2

(
1 + Γ𝑘 𝑝𝑘

Γ𝑘 (𝑝𝑘+1 + . . . + 𝑝𝐾 ) + 1

)
, (4)

where p = (𝑝1, . . . , 𝑝𝐾 ) denotes the vector collecting the 𝐾
allocated powers.

In the remaining of the paper, and unless otherwise stated,
the eavesdropper belongs to the set of users served by the
base station, but performs a passive attack undetected by
the transmitter. As such, the eavesdropper can access the
channel ordering and hence the SIC decoding order. Hence,
the achievable rate 𝑅𝑒𝑘 to decode the message 𝑋𝑘 at the
eavesdropper writes as

𝑅𝑒𝑘 (p) =
1
2

log2

(
1 + Γ𝑒𝑝𝑘

Γ𝑒 (𝑝𝑘+1 + . . . + 𝑝𝐾 ) + 1

)
. (5)

Throughout this paper, the considered network is con-
strained by an overall power budget 𝑃, such that

∑
𝑖 𝑝𝑖 ≤ 𝑃,

as well as by 𝐾 individual minimum QoS constraints in terms
of individual achievable rates expressed as 𝑅𝑖 (p) ≥ 𝑅𝑖 , 𝑖 ∈
⟦1, 𝐾⟧.

From now on, in order to simplify the derivations and
improve the presentation of our results, we will use the
following notations:

𝐴𝑘 = 22𝑅𝑘 , 𝜃𝑘 =
𝐾∑︁
𝑖=𝑘

𝑝𝑖 , 𝑘 ∈ ⟦1, 𝐾⟧ and 𝜃𝐾+1 = 0. (6)



In this notation, the feasible set for satisfying the power budget
and QoS constraints can be expressed as

Π =

{
p ∈ R𝐾+

����𝜃1 ≤ 𝑃, 𝜃𝑘 ≥ 𝐴𝑘𝜃𝑘+1 + 𝐴𝑘 − 1
Γ𝑘

}
. (7)

B. Problem formulation

Energy-efficiency, which captures the trade-off between
the achievable sum-rate and the power consumption of a
network, has be defined in several ways in the literature. It
has been characterized as a bi-criterion optimization problem,
maximizing the achievable sum-rate and the negative power
consumption [8], [9]; as a scalarized trade-off between the
achievable sum-rate and the power consumption [19], [9],
[13] or as the ratio between the sum-rate and the power
consumption [20], [9], [21].

Although different, all these metrics are linked to one
another. Indeed, since the two objectives of the bi-criterion
optimization problem are conflicting, i.e. maximizing the sum-
rate requires to consume the entire power budget, whereas
minimizing the power consumption requires to not transmit at
all, its solution lies on the Pareto boundary of the feasible set
of rate-power pairs. Further, if the sum-rate is concave w.r.t p,
finding the Pareto boundary reduces to optimize the scalarized
trade-off [19] between the achievable sum-rate and power
consumption. Finally, if the sum-rate is concave, maximizing
the ratio between the sum-rate and the power consumption
is a concave-convex fractional problem, whose solution is
equivalent to find the unique zero of the scalarized trade-
off between the sum-rate and the power consumption, which
can be computationally efficiently computed via Dinkelbach
algorithm [20], [22].

Since the network under study comprises a passive eaves-
dropper, we propose to extend the above mentioned energy-
efficiency metrics to secret energy-efficiency ones, by consid-
ering the secrecy sum-rate.

Under the framework of physical layer security, the main
idea is to exploit the noisy nature of the channels to distinguish
between the quality of the signal received by the legitimate
users and by the eavesdropper. In fact, as long as the eaves-
dropper’s channel quality is inferior to the one of the legitimate
users, secret communication can be achieved, where secrecy
rates are defined as the difference between the legitimate user’s
rate achieved and the eavesdropper’s rate to decode the same
message. As such, for each legitimate user 𝑘 ∈ ⟦1, 𝐾⟧, its
secrecy achievable rate is expressed as

𝑅𝑠𝑘 (p) =
[
𝑅𝑘 (p) − 𝑅𝑒𝑘 (p)

]+
, where [𝑥]+ = max{0, 𝑥}. (8)

Note that, given the considered channel order in (3), the 𝑀−1
weakest users achieve a zero secrecy rate, whereas all users
𝑋 𝑗 , 𝑗 ∈ ⟦𝑀, 𝐾⟧ are able to achieve strictly positive ones.

To summarize, the considered secrecy energy-efficiency
optimization problem under study writes as a bi-criterion
problem consisting in maximizing the secrecy achievable sum-
rate and minimizing at the same time the power consumption,

such that both the overall power budget and individual QoS
constraints are met:

(BiSEE) max
p∈Π

(
𝐾∑︁
𝑘=1

𝑅𝑠𝑘 (p);−
𝐾∑︁
𝑘=1

𝑝𝑘 − 𝑃𝑐
)
,

where 𝑃𝑐 denotes the constant circuit power consumption
accounting for all blocks implemented at the transmitter and
receiver sides.

III. CLOSED-FORM OPTIMAL POWER ALLOCATION POLICY

This section presents our main results. We first prove the
convex nature of the considered secrecy energy-efficiency
maximization problem expressed as a bi-objective optimiza-
tion problem. We then provide a feasibility condition allowing
to reach the optimal solution, and finally we derive the optimal
closed-form power allocation policy that maximizes the se-
crecy energy-efficiency of a multi-user downlink NOMA net-
work in the presence of a passive eavesdropper. This optimal
closed-form solution is then exploited to maximize the secrecy
energy-efficiency metric considered in [18], namely the ratio
between the secrecy sum-rate and the power consumption.

A. Concavity of the secrecy sum-rate and equivalent scalar-
ized trade-off maximization

Let us first investigate the optimization problem (BiSEE).
Using tools from convex optimization, we prove that the latter
is convex, as stated in the following theorem.

Theorem 1. Following from the concavity of the secrecy
achievable sum-rate

∑𝐾
𝑘=1 𝑅

𝑠
𝑘 (p) w.r.t. p and from the linearity

of the other objective function and constraints, the optimiza-
tion problem (BiSEE) is a convex one.

Proof: The proof follows similarly to [23]. The main steps
are to first derive the Hessian matrix 𝐻 of the secrecy sum-
rate, and then to show that it is semi-definite negative, which is
detailed in Appendix A. Finally, exploiting the linearity of the
power consumption, as well as from the overall power budget
and QoS constraints, the optimization problem under study is
a convex one, which concludes the proof.

Since the bi-criterion optimization problem (BiSEE) is a
convex one, finding the Pareto boundary reduces to maximiz-
ing the scalarized trade-off of the two objectives defined as

(SEE) max
p∈Π

𝐾∑︁
𝑘=1

𝑅𝑠𝑘 (p) − 𝛼
(
𝐾∑︁
𝑘=1

𝑝𝑘 + 𝑃𝑐
)
,

where 𝛼 ≥ 0 sweeps the entire Pareto boundary and allows to
switch between a secrecy-driven optimization problem and a
power consumption-driven one, by respectively choosing small
or large values of 𝛼.

B. Closed form solution of the scalarized energy-efficiency
optimization problem

Because of the 𝐾 individual QoS constraints, the optimiza-
tion problem may not be feasible if the overall power budget
does not allow to meet all the QoS constraints with equality.
As such, before deriving the optimal power allocation policy,



we first provide the feasibility condition of the optimization
problem (SEE).

Proposition 1. The optimization problem (SEE) is feasible if
and only if the overall power budget of the transmitter 𝑃 is
larger than 𝑃min, the overall minimum power required to fulfill
the 𝐾 individual QoS constraints with equality:

𝑃 ≥ 𝑃min =

𝐾∑︁
𝑘=1

𝐴𝑘 − 1
Γ𝑘

𝑘−1∏
𝑗=1

𝐴 𝑗 . (9)

Since the secrecy energy-efficiency optimization problem
(SEE) is convex, and provided that the above feasible condi-
tion is met, then it allows a unique optimal solution given in
closed-form in the following theorem.

Theorem 2. Provided that the feasibility condition of Propo-
sition 1 is satisfied, the optimal power allocation policy maxi-
mizing the secrecy energy-efficiency (SEE) for the considered
single eavesdropper downlink multi-user NOMA system is
obtained in closed-form as follows:

𝑝∗𝑘 (𝛼)= (𝐴𝑘−1)©«
1
Γ𝑘

+𝑝∗𝐾 (𝛼)
𝐾−1∏
𝑖=𝑘+1

𝐴𝑖+
𝐾−1∑︁
𝑖=𝑘+1

𝐴𝑖−1
Γ𝑖

𝑖−1∏
𝑗=𝑘+1

𝐴 𝑗
ª®¬
, 𝑘 <𝐾

𝑝∗𝐾 (𝛼)=min
{
max

{
𝑝(𝛼); 𝐴𝐾 − 1

Γ𝐾

}
; 𝑢

}
, (10)

where 𝑢 is given as 𝑢 = 1
𝐾−1∏
𝑖=1

𝐴𝑖

(
𝑃 − 𝑃min + 𝐴𝐾−1

Γ𝐾

𝐾−1∏
𝑗=1

𝐴 𝑗

)
and

𝑝(𝛼), whose closed-form expression is given in Appendix B,
denotes the admissible critical point of the following convex
single variable optimization problem

(SEE1) max
𝑝

𝑓 (𝑝) s.t.
𝐴𝐾 − 1
Γ𝐾

≤ 𝑝 ≤ 𝑢, with

𝑓 (𝑝) = 1
2

log2 (1 + Γ𝐾 𝑝)

− 1
2

log2

(
1+Γ𝑒

(
𝐾−1∏
𝑖=𝑀

𝐴𝑖 𝑝+
𝐾−1∑︁
𝑖=𝑀

𝐴𝑖 − 1
Γ𝑖

𝑖−1∏
𝑗=𝑀

𝐴 𝑗

))

+ 1
2

log2

𝐾−1∏
𝑖=𝑀

𝐴𝑖 − 𝛼 ©«
𝐾−1∏
𝑖=1

𝐴𝑖 +
𝐾−1∑︁
𝑖=1

𝐴𝑖 − 1
Γ𝑖

𝑖−1∏
𝑗=1

𝐴 𝑗 + 𝑃𝑐ª®¬
.

Proof: Since the optimization problem is a convex one,
the optimal power allocation is obtained thanks to the Karush-
Kuhn-Tucker (KKT) optimality conditions. Following a sim-
ilar approach as [9], one can show that the QoS constraints
of all users except the strongest one are active at the solution,
meaning that they meet their minimum rate with equality. As
such, one can express all the powers allocated to the weakest
users as function of the one allocated to the strongest user. The
optimization problem (SEE) then reduces to the convex single
variable problem (SEE1), where the feasible set corresponds
to the minimum power required to fulfill the QoS constraint
of the strongest user, i.e. 𝑝𝐾 ≤ 𝐴𝐾−1

Γ𝐾
, while the upper-bound

follows from the feasibility condition. The detailed proof can
be found in Appendix B.

C. Ratio between the secrecy sum-rate and the power con-
sumption

Let us now consider the secrecy energy-efficiency metric
defined as the ratio between the secrecy achievable sum-rate
and the power consumption as in [18]

𝜁𝑆𝐸𝐸 (p) =
∑
𝑘 𝑅

𝑠
𝑘 (p)∑

𝑘 𝑝𝑘 + 𝑃𝑐
, (11)

whose solution lies also on the Pareto boundary of the bi-
criterion optimization problem (BiSEE). Although designed
for a more general problem, our proposed closed-form solution
p∗ (𝛼) in Theorem 2 can also be used to maximize the ratio
𝜁𝑆𝐸𝐸 . Indeed, since the secrecy sum-rate is concave and
the power consumption is affine, maximizing the ratio falls
into the concave-convex fractional problem family, whose
maximization is equivalent to finding the unique zero of
scalarized trade-off between the secrecy sum-rate and power
consumption, i.e. the objective function of the optimization
problem (SEE), with respect to 𝛼 [20]:

𝐹 (𝛼) =
𝐾∑︁
𝑘=1

𝑅𝑠𝑘 (p∗ (𝛼)) − 𝛼
(
𝐾∑︁
𝑘=1

𝑝∗𝑘 (𝛼) + 𝑃𝑐
)
. (12)

The latter can be obtained in a computational efficient manner
using Dinkelbach algorithm [22] as

Algorithm 1 Dinkelbach algorithm maximizing 𝜁𝑆𝐸𝐸
1: Initialization: Fix precision 𝜖 > 0, 𝛼 = 0
2: while 𝐹 (𝛼) ≤ 𝜖 do
3: Compute opt. power allocation policy p∗ (𝛼) using (10)
4: Update 𝐹 (𝛼) using (12)
5: Update 𝛼 = 𝜁𝑆𝐸𝐸 (p∗ (𝛼))
6: end while

IV. NUMERICAL RESULTS

In this section, we compare the secrecy energy-efficiency of
the considered multi-user downlink network in the presence
of an eavesdropper exploiting NOMA with its counterpart
exploiting OMA. Before delving into numerical simulations,
we first present the closed-form optimal power allocation
policy under OMA.

A. Optimal closed-form solution under OMA

Under OMA, the closed-form solution maximizing the
secrecy energy-efficiency metric expressed as a bi-objective
optimization problem is obtained following the same approach
previously presented for NOMA. Under OMA, the achievable
rates for decoding the message intended for user 𝑘 at the 𝑘-th
legitimate user and at the eavesdropper write as

𝑅𝑘 (q) = 1
2𝐾

log2 (1 + Γ𝑘𝑞𝑘) , 𝑅𝑒𝑘 (q) =
1

2𝐾
log2 (1 + Γ𝑒𝑞𝑘) ,



where q = (𝑞1, . . . , 𝑞𝐾 ) denotes the power allocation vector
under OMA. In this case, the scalarized optimization problem
can be written as

(SEE)OMA max
q

𝐾∑︁
𝑘=1

𝑅𝑠𝑘 (q) − 𝛼
(

1
𝐾

𝐾∑︁
𝑘=1

𝑞𝑘 + 𝑃𝑐
)

s.t. 𝑞𝑘 ≥
𝐴𝐾𝑘 − 1
Γ𝑘

, 𝑘 ∈ ⟦1, 𝐾⟧,

1
𝐾

𝐾∑︁
𝑘=1

𝑞𝑘 ≤ 𝑃.

Theorem 3. If the following condition on the system param-
eters hold, the optimization problem (SEE)OMA is feasible:

𝐴𝐾𝑘 − 1
Γ𝑘

≤ 𝑃, 𝑘 ∈ ⟦1, 𝐾⟧.

The above ensures that each QoS can be met provided the
overall power budget 𝑃 of the transmitter. Further, if fea-
sible, the optimal power allocation policy maximizing the
secrecy energy-efficiency (SEE)OMA for the considered single
eavesdropper downlink multi-user OMA system is obtained in
closed-form as

𝑞∗𝑘 (𝛼)=




𝐴𝐾𝑘 − 1
Γ𝑘

, 𝑘 ≤ 𝑀 − 1,

min

{
max

{
𝑞𝑘 (𝛼);

𝐴𝐾𝑘 − 1
Γ𝑘

}
, 𝑃

}
, 𝑘 ∈ ⟦𝑀, 𝐾⟧,

where 𝑞𝑘 (𝛼) is the following admissible critical point

𝑞𝑘 (𝛼) = − (Γ𝑒 + Γ𝑘)
2Γ𝑘Γ𝑒

+
(
ΔOMA)1/2

4 ln 2𝛼Γ𝑘Γ𝑒
with

ΔOMA = (4 ln 2𝛼(Γ𝑘 − Γ𝑒)) (ln 2𝛼(Γ𝑘 − Γ𝑒) + 2Γ𝑘Γ𝑒)
Proof: The proof follows similar steps than the one

previously presented for NOMA and is hence omitted.

B. Numerical comparison between OMA and NOMA

Let us now numerically compare the performance of NOMA
and OMA. In the remaining, the channel gains ℎ2

𝑘 and ℎ2
𝑒

are evaluated using the free-space path loss with a carrier
frequency 𝑓𝑐 = 3 GHz, where the distance between the 𝑘-
th legitimate user and the base station, as well as between the
eavesdropper and the base station, is randomly drawn between
[0, 1] km. We further set the noise variance of all users as
well as of the eavesdropper as 𝜎𝑘 = 𝜎𝑒 = −60 dBm and
consider a fixed circuitry power consumption of 𝑃𝑐 = 1 W.
Unless otherwise stated, the overall power budget is set to
𝑃 = 20 W, all users are required to meet a minimum rate of
𝑅𝑖 = 0.05 bit/s/Hz and the number of users is set to 𝐾 = 10.
All the curves are averaged over 104 channel realizations
satisfying the feasibility conditions of both OMA and NOMA.

In Fig. 2, we show both the optimal sum-rate and the opti-
mal secrecy sum-rate (in bit/s/Hz on the left axis), as well as
the optimal sum-power (in W on the right axis), as a function
of the trade-off parameter 𝛼, where the solid and dashed curves

are obtained under NOMA and OMA respectively. Whereas
NOMA outperforms its OMA counterpart, irrespective from
the value of the trade-off parameter 𝛼, in terms of achievable
secrecy sum-rate, it may consume more power than OMA.
Indeed, for small values of 𝛼, i.e. when more emphasis is
put on maximizing the secrecy sum-rate, NOMA consumes
more power than OMA, but achieves higher secrecy sum-
rates; whereas for larger values of 𝛼, NOMA consumes less
power than OMA while still achieving higher secrecy sum-
rates. Furthermore, in the special case 𝛼 = 0, i.e. when the goal
is solely to maximize the secrecy sum-rate, NOMA achieves a
secrecy sum-rate almost three time larger than the one under
OMA. This increase in secrecy sum-rate comes at the cost
of the power consumption: while the entire power budget is
consumed under NOMA, only a fraction of it is used in OMA.
Indeed, under OMA, the 𝑀 − 1 first users are only provided
just enough power to meet their QoS, whereas the remaining
users are allocated the overall power budget 𝑃 in each of the
time slots of duration 1/𝐾 , leading to a sum-power smaller
than 𝑃. Under NOMA, on the other hand, all 𝐾 − 1 first users
are allocated just enough power to meet their QoS, whereas
the strongest one is provided all the remaining power budget,
leading hence to an overall power consumption of 𝑃. Finally,
when 𝛼 grows very large, each user is provided just enough
power to meet its QoS, such that the sum-rate tends toward
the fixed value

∑
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Fig. 2. Sum-rate, secrecy sum-rate (left axis) and sum-power (right axis) vs.
trade-off parameter 𝛼 under NOMA (solid curves) and OMA (dashed curves)
for 𝐾 = 10 users: NOMA always outperforms OMA in terms of secrecy sum-
rate but may consume more power for smaller values of 𝛼, i.e. for secrecy
sum-rate driven optimization.

In Fig. 3, we compare NOMA and OMA in terms of sum-
rate, secrecy sum-rate (in bit/s/Hz on the left axis) and sum-
power (in W on the right axis) as a function of the number of
users 𝐾 in the network, when the trade-off parameter 𝛼 is set
to 𝛼 = 0.5. The solid curves correspond to NOMA, whereas
the dashed ones to OMA. Again, we can see that NOMA
outperforms OMA in terms of secrecy sum-rate irrespective
from the number of users in the network. Remarkably, this gap
increases with the number of users, mainly due to the time-
sharing factor 1/𝐾 present only under OMA. Nonetheless, we



can see that for a moderate number of users, NOMA consumes
a little more power than OMA, whereas after 𝐾 = 10 users, it
consumes less power than OMA.

0

2

4

6

8

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

Number of users 𝐾

Su
m

-r
at

e
[b

it/
s/

H
z]

∑
𝑘 𝑅𝑘∑
𝑘 𝑅

𝑠
𝑘

Su
m

-p
ow

er
[W

]

∑
𝑘 𝑝𝑘 + 𝑝𝑐

Fig. 3. Sum-rate, secrecy sum-rate (in bit/s/Hz on the left axis) and sum-
power (in W on the right axis) vs. number of users 𝐾 under NOMA (solid
curves) and OMA (dashed curves) for 𝛼 = 0.5: NOMA always outperforms
OMA in terms of secrecy sum-rate but may consume a little more power for
a moderate number of users (𝐾 ≤ 10) .

In Fig. 4, we compare NOMA and OMA in terms of sum-
rate, secrecy sum-rate (in bit/s/Hz on the left axis) and sum-
power (in W on the right axis) as a function of the number
of users 𝐾 in the network, when the power allocation policy
is now optimized to maximize the secrecy energy-efficiency
defined as the ratio 𝜁𝑆𝐸𝐸 , instead of the scalarized trade-off
as presented in Fig. 3. Remarkably, NOMA (solid curves)
now outperforms its OMA counterpart (dashed curves) both in
terms of secrecy sum-rate and power consumption irrespective
from the number of users in the network. Again, the gap in
secrecy sum-rate between OMA and NOMA increases with
the number of users 𝐾 in the network.
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Fig. 4. Sum-rate, secrecy sum-rate (in bit/s/Hz on the left axis) and sum-power
(in W on the right axis) vs. number of users 𝐾 under NOMA (solid curves)
and OMA (dashed curves) when the power allocation policy maximizes
the ratio between the secrecy sum-rate and the power consumption 𝜁𝑆𝐸𝐸 :
NOMA always outperforms OMA in terms of secrecy sum-rate and power
consumption, irrespective from the number of users 𝐾 .

Finally, in Fig. 5, we compare the secrecy energy-efficiency
defined as the ratio 𝜁𝑆𝐸𝐸 under NOMA and OMA as a
function of the number of users 𝐾 in the network. While under
OMA the ratio between the secrecy sum-rate and the power
consumption decreases as the number of users 𝐾 increases,
the latter reaches its maximum value when the network is
composed of 𝐾 = 7 users under NOMA. In this case, the
relative gap in terms of secrecy energy-efficiency between
NOMA and OMA reaches 550%.
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Fig. 5. Ratio between the secrecy sum-rate and the sum-power 𝜁𝑆𝐸𝐸 vs.
number of users 𝐾 under NOMA and OMA: the relative gap between NOMA
and OMA can reach up to 550%.

V. CONCLUSION

In this paper, we investigated the secrecy energy-efficiency
of a multi-user downlink NOMA system in the presence of
a passive eavesdropper. We here considered a general secrecy
energy-efficiency metric defined as a bi-criterion optimization
problem consisting in maximizing the secrecy sum-rate and
the negative power consumption. Remarkably, we shown that
this optimization problem is convex. As such, its Pareto-
boundary can be entirely characterized through scalarization,
for which we provided a closed-form expression. Furthermore,
we exploited this closed-form optimal power allocation policy
to also maximize the ratio between the secrecy-sum-rate and
power consumption. Our proposed optimal power allocation
policy is then compared to OMA as a benchmark, for which
we also provided the closed-form optimal power allocation
policy. Our numerical results show that NOMA outperforms
OMA in terms of secrecy energy-efficiency. Remarkably, the
relative gap in terms of secrecy energy-efficiency between
NOMA and OMA can reach up to 550%.

APPENDIX A
CONCAVITY OF THE SECRECY SUM-RATE

If we denote by 𝑆𝑆𝑅(p) the achievable secrecy sum-rate,
we can rewrite it as

𝑆𝑆𝑅(p) = 1
2

log2

(
1 + Γ𝑀𝜃𝑀
1 + Γ𝑒𝜃𝑀

)
+

𝐾∑︁
𝑘=𝑀+1

1
2

log2

(
1 + Γ𝑘𝜃𝑘

1 + Γ𝑘−1𝜃𝑘

)
.



Let us further denote 𝜔𝑘 = 𝜕2𝑆𝑆𝑅
𝜕𝑝2

𝑘

. The Hessian matrix of the
achievable secrecy sum-rate is given as

𝐻 =



0 0
𝜔𝑀 𝜔𝑀 𝜔𝑀 · · · 𝜔𝑀
𝜔𝑀 𝜔𝑀+1 𝜔𝑀+1 · · · 𝜔𝑀+1

0 𝜔𝑀 𝜔𝑀+1 𝜔𝑀+2 · · · 𝜔𝑀+2
...

...
...

. . .

𝜔𝑀 𝜔𝑀+1 𝜔𝑀+2 · · · 𝜔𝐾



. (13)

Consider 𝑇 = −𝐻. Showing the concavity of the achievable
secrecy sum-rate is equivalent to showing that all principal
minors of 𝑇 are non-negative. Observe that each principal
minor which includes the first row and/or column is always
zero. Thus, we look at the determinant of the matrix 𝑇 ′,
obtained from 𝑇 by eliminating the first row and first column,

|𝑇 ′ | =

���������
©«

−𝜔𝑀 −𝜔𝑀 · · · −𝜔𝑀
0 𝜔𝑀 − 𝜔𝑀+1 · · · 𝜔𝑀 − 𝜔𝑀+1
...

. . .
. . .

...
0 . . . . . . 𝜔𝐾−1 − 𝜔𝐾

ª®®®®¬

���������
= −𝜔𝑀

𝐾∏
𝑙=𝑀+1

(𝜔𝑙−1 − 𝜔𝑙), (14)

which is non-negative since

𝜔𝑀 =
𝜕2𝑆𝑆𝑅

𝜕𝑝2
𝑀

=
1

2 ln 2

(
Γ2
𝑒

(1 + Γ𝑒𝜃𝑀 )2 − Γ2
𝑀

(1 + Γ𝑀𝜃𝑀 )2

)
(𝑎)
< 0,

𝜔𝑙−1 − 𝜔𝑙 = − 1
2 ln 2

(
Γ2
𝑙−1

(1 + Γ𝑙−1𝜃𝑙)2 − Γ2
𝑙

(1 + Γ𝑙𝜃𝑙)2

)
(𝑏)≥ 0,

where (𝑎) and (𝑏) come from the assumed channel order.
We can apply a similar reasoning to all the principal

minors of 𝑇 ′. As such, all principal minors have non-negative
determinants, leading to the matrix 𝑇 being positive semi-
definite, which concludes the proof.

APPENDIX B
OPTIMAL CLOSED-FORM SOLUTION OF (SEE)

Let L be the Lagrangian of the convex problem (SEE):

L =
1
2

log2

(
1+Γ𝑀𝜃𝑀
1+Γ𝑒𝜃𝑀

)
+
𝐾∑︁

𝑘=𝑀+1

1
2

log2

(
1+Γ𝑘𝜃𝑘

1+Γ𝑘−1𝜃𝑘

)
− 𝛼(𝜃1+𝑃𝑐)

− 𝜆
(
𝜃1 − 𝑃

)
−

𝐾∑︁
𝑘=1

𝛽𝑘

(
𝐴𝑘𝜃𝑘+1 + 𝐴𝑘 − 1

Γ𝑘
− 𝜃𝑘

)
,

where 𝜆 and 𝛽 = (𝛽1, . . . , 𝛽𝐾 ) are the positive Lagrange mul-
tipliers for the overall power constraint and the 𝐾 individual
QoS constraints respectively. The KKT optimality conditions
imply that at the solution 𝜕L

𝜕𝑝𝑘
= 0, 𝑘 ∈ ⟦1, 𝐾⟧. As such, the

difference between two consecutive Lagrange derivates also
equals zero, leading to

𝛽𝑘−1𝐴𝑘−1−𝛽𝑘 = 1
2 ln 2

(
Γ𝑘

1 + Γ𝑘𝜃𝑘
− Γ𝑘−1

1 + Γ𝑘−1𝜃𝑘

)
, 𝑘 ∈ ⟦2, 𝐾⟧.

Since Γ𝑘 ≥ Γ𝑘−1, the left hand side of the above is positive.
Additionally, since 𝛽𝑘 ≥ 0 for 𝑘 ∈ ⟦1, 𝐾⟧ and 𝐴𝑘−1 > 0, we
can deduce that 𝛽𝑘−1𝐴𝑘−1 > 𝛽𝑘 ≥ 0. Finally, since 𝐴𝑘−1 > 0,
we can conclude that 𝛽𝑘−1 > 0 for 𝑘 ∈ ⟦2, 𝐾⟧, and therefore
𝛽𝑘 > 0 for 𝑘 ≤ 𝐾 − 1. This means that all QoS constraints for
the 𝑘-th legitimate users with 𝑘 < 𝐾 are active at the solution,
hence implying:

𝜃𝑘 = 𝐴𝑘𝜃𝑘+1 + 𝐴𝑘 − 1
Γ𝑘

, 1 ≤ 𝑘 < 𝐾.

By induction, one can show that

𝜃𝑘 =
𝐾−1∏
𝑖=𝑘

𝐴𝑖𝜃𝐾 +
𝐾−1∑︁
𝑖=𝑘+1

𝐴𝑖 − 1
Γ𝑖

𝑖−1∏
𝑗=𝑘

𝐴 𝑗 + 𝐴𝑘 − 1
Γ𝑘

, 1 ≤ 𝑘 < 𝐾.

As such, at the solution, all the power allocated to the weakest
users can be expressed as function of the power 𝑝𝐾 allocated
to the strongest one. Hence, the multi-variable optimization
problem under study (SEE) reduces to the single variable
optimization problem (SEE1):

(SEE1) max
𝑝
𝑓 (𝑝) s.t.

𝐴𝐾 − 1
Γ𝐾

≤ 𝑝 ≤ 𝑢,

with

𝑓 (𝑝) = 1
2

log2 (1 + Γ𝐾 𝑝)

− 1
2

log2

(
1+Γ𝑒

(
𝐾−1∏
𝑖=𝑀

𝐴𝑖 𝑝+
𝐾−1∑︁
𝑖=𝑀

𝐴𝑖 − 1
Γ𝑖

𝑖−1∏
𝑗=𝑀

𝐴 𝑗

))

+ 1
2

log2

𝐾−1∏
𝑖=𝑀

𝐴𝑖 − 𝛼 ©«
𝐾−1∏
𝑖=1

𝐴𝑖 +
𝐾−1∑︁
𝑖=1

𝐴𝑖 − 1
Γ𝑖

𝑖−1∏
𝑗=1

𝐴 𝑗 + 𝑃𝑐ª®¬
.

One can first prove that the single variable optimization is
a convex one, for which the optimal solution is the feasible
critical point given as 𝑝∗ = min

{
max

{
𝑝(𝛼); 𝐴𝐾−1

Γ𝐾

}
; 𝑢

}
,

where

𝑢 =
1

𝐾−1∏
𝑖=1

𝐴𝑖

©«
𝑃 − 𝑃min + 𝐴𝐾 − 1

Γ𝐾

𝐾−1∏
𝑗=1

𝐴 𝑗
ª®¬
,

𝑝(𝛼) =
−

(
𝛼𝛾2Γ𝐾 (1 + 𝛾1Γ𝑒) + 𝛼𝛾2Γ𝑒

𝐾−1∏
𝑖=𝑀

𝐴𝑖

)
+ Δ1/2

2
(
𝛼𝛾2Γ𝐾Γ𝑒

𝐾−1∏
𝑖=𝑀

𝐴𝑖

)

with

𝛾1 =

𝐾−1∑︁
𝑖=𝑀

𝐴𝑖 − 1
Γ𝑖

𝑖−1∏
𝑗=𝑀

𝐴 𝑗 ; 𝛾2 = 2 ln 2
𝐾−1∏
𝑖=1

𝐴𝑖 ,

𝛾3 = Γ𝐾 (1 + 𝛾1Γ𝑒) − Γ𝑒

𝐾−1∏
𝑖=𝑀

𝐴𝑖;

Δ = (𝛼𝛾2𝛾3)2 + 4𝛼𝛾2𝛾3Γ𝑒Γ𝐾

𝐾−1∏
𝑖=𝑀

𝐴𝑖 .
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