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Abstract 

Early-stage clustering in two Al-Mg-Zn(-Cu) alloys has been investigated using atom probe 

tomography and transmission electron microscopy. Cluster identification by the iso-position 

method and a statistical approach based on the pair correlation function have both been 

applied to estimate the cluster size, composition and volume fraction from atom probe 

datasets. To assess the accuracy of the quantification of synthesized distributions of clusters 

of different mean size, a synthesized virtual dataset was used accounting for a simulated 

degraded spatial resolution. The quality of the predictions made by the two complementary 

methods are discussed, considering the measured and virtual datasets. 
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1 Introduction 

Atom probe tomography (APT) has a unique combination of three dimensional (3D) spatial 

resolution down to the nanometer scale along with high chemical sensitivity [1, 2]. This 

enables the study of small precipitates or clusters in metals. Quantification of cluster size and 

composition at different stages of precipitation is essential and remains at the forefront of 

research in understanding and designing the next generation of alloys.   

Several approaches for cluster identification have been developed to define and characterize 

clustering and precipitation over the years [1, 3-13]. In most cases, they consist of three data 

mining steps; (i) the clustering algorithm identifies solute clusters in the data by considering 

solute segregation[14], (ii) an enveloping algorithm searches for atoms of other elements that 

are within each solute cluster and (iii) an eroding algorithm erodes the matrix-particle 

interface that may have formed as a result of the enveloping step. 

These methodologies generally demand the user to manually determine multiple parameters, 

leading to inconsistent results and challenges in reproducing them. Also, to correctly identify 

certain clustering phenomena, a visual inspection of the results is often used to assess the 
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suitability of the method. This too is strongly user dependent and can give inconsistent 

results. Usually, a well-defined parameter estimation procedure is used as seen for the case of 

the maximum separation method (MSM)[15] to improve reproducibility and consistency in 

the results. Studying clustering and precipitation through atom probe is rendered more 

complicated due to the local magnification effects due to differences in evaporation fields 

between different phases (matrix and particles) [16]. This effect is most severe for high 

evaporation field particles [5]. The advantage of cluster identification is that it enables the 

extraction of local information by providing information on each identified cluster 

(composition, size). 

Statistical approaches such as radial distribution functions [17, 18], on the other hand, aim at 

describing the distribution of solute atoms as a whole and do not consider each cluster 

separately. This gives element specific averaged information on the cluster state of the 

matrix, both in terms of amplitude and correlation length. This enables a direct comparison of 

the degree of clustering between different datasets without the need of user-defined 

parameter. 

Recently, Zhao et al. [19] coupled this parameter free statistical approach to an interpretation 

model enabling a fit of the RDFs in order to extract the composition of second phase particles 

and estimate volume fraction, number density and particle size. The methodology has been 

previously applied to Al-Cu-(Li-Mg) [20] alloys, Al-Mg alloy system [21] and the Al-Zn-Mg 

[19] system. This enables a statistical significance of the results and reproducibility, while 

giving the average values from the dataset analyzed.   

Here, we combine two different approaches: a local cluster identification method, i.e. the iso-

position method (IPM) and a statistical methodology based on RDF or rather on pair 

correlation functions (PCF) [12, 19]. On the basis of these two methodologies applied to atom 

probe datasets of two Al-Zn-Mg-(Cu) alloys, as well as with the help of simulated datasets, 

we aim at better assessing the robustness of the experimental parameters obtained by APT on 

very small clusters.  

 

2 Experimental Section 
 

6 mm thick plates from two commercial alloys, received from Benteler automotives are used 

in this study. The major difference between the two alloys is that one contains copper and is 

slightly richer in solute content, while the other is a copper-free alloy. The accurate 

composition measurements of the two alloys are given in Table 4. 

Table 1. Alloy composition of the investigated alloys [22]. 

  Cu Fe Mg Si Ti Zn Zr Al 

7003 

 

wt.% 

at.% 

0.01 

0.00 

0.22 

0.11 

0.73 

0.84 

0.09 

0.09 

0.02 

0.01 

5.68 

2.43 

0.15 

0.05 
Bal. 

7046 

 

wt.% 

at.% 

0.28 

0.12 

0.2 

0.1 

1.31 

1.52 

0.08 

0.08 

0.03 

0.00 

6.47 

2.79 

0.15 

0.05 
Bal. 
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Small blocks of samples sized 3 cm × 3 cm were cut and solution heat treated (SHT) at 

480ºC for half an hour in a salt bath followed by a quick water quench. The samples were 

grounded and polished for micro-hardness measurements using a 1000 gf Vickers indenter. 

The hardness values reported are an average of 5 individual measurements for each condition. 

The alloys were allowed to naturally age (NA) for 3 months at room temperature, after which 

they were used for APT and TEM characterizations.  

All samples for APT were prepared by following a standard two-step electropolishing process 

[12]. A minor contamination of copper (Cu) was seen as a capping layer at the tip of the APT 

needle similar as reported by Famelton et al. [23]. This could be due to the Cu present within 

the sample itself or the Cu tube holding the APT needle which contaminates the electrolytic 

solution. The reconstructed volume containing this Cu enriched region was removed from the 

subsequent data analysis. 

APT experiments were carried out on the Local Electrode Atom Probe (LEAP) 5000XS by 

Cameca instruments. It is a straight flight path instrument with a detection efficiency of 80%. 

For all analysis, the base temperature was set to 30K and the laser energy is adjusted to obtain 

an equivalent pulse fraction of 20% of the DC voltage to avoid preferential evaporation (Ref) 

(i.e. around 100-130 pJ). A detection rate of 0.5% and a pulse frequency of 250 kHz were 

used for all samples analyzed. Datasets containing 25-35 million ions were collected for each 

alloy. Reconstructions were made using the structural information according to Gault et al. 

[24] by using the Integrated Visualization and Analysis Software (IVAS) by Cameca 

Instruments Inc. The Norwegian Atom Probe App software [25] developed by C. Hatzoglou 

has been additionally used for post processing of the experimental as well as for the 

simulated data.  

The cluster identification method used, i.e., the IPM method, has been developed at the 

Groupe de Physique des Materiaux (University of Rouen, France) and is based on the 

chemical concentration (Mg + Zn) and atomic distance criteria. A detailed explanation of the 

methodology and its criteria estimation can be found elsewhere [5, 12].  

In the 7xxx Al alloy system, the clusters exhibit higher atomic density as compared to that of 

the matrix, and with morphological distortion. This is mainly due to the local magnification 

effects typically observed due to the difference in evaporation fields between cluster/matrix, 

previously reported [26, 27] and also seen in the same alloys in a previous study [22, 28]. 

However, the cluster dimension along the evaporation direction (Z direction) is less biased by 

local magnification effects [16, 29], since it is the least biased direction in the APT. A more 

precise estimate of the size of clusters, as identified by iso-position method, can be based on a 

directional estimate in the Z-direction, the so-called Extentz parameter [13], which for one 

cluster is defined as 

 𝐸𝑧 = |𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛| 
 

(1) 

Here 𝑍𝑚𝑎𝑥 and 𝑍𝑚𝑖𝑛 are the outermost atoms in the z direction of the identified cluster. 

Hence, 𝐸𝑧 is the maximum distance between outermost cluster atoms in this direction. The 𝐸𝑧 

is very similar to the way size measurements from TEM results often are obtained.  

Another standard way of estimating size for spherical particles in APT is using the radius of 

gyration (or diameter), as obtained from a cluster identification methodology. The radius of 
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gyration, is the root mean square of the distance between the center of mass and the 

coordinates of the constituent atoms classified as a cluster[12, 30]. Other methodologies like 

the best fit ellipsoid [31] can also be used to quantify size measurements for non-spherical 

particles, but are not required in this study. Sizes reported in this study are all based on 

diameters extracted from the Guinier radius and from 𝐸𝑧. The Guinier diameter is simply 

twice the Guinier radius calculated from the cluster identification. The size and compositional 

errors are calculated based on the standard deviation. The error in the number density is 

calculated by dividing the number density by the square root of the total number of clusters. 

The PCF method is based on the RDF calculated for each solute (Zn, Mg and Cu) as the 

central atom. The RDF na-b(r) is defined as the number of atoms of species ‘b’ at a distance 

‘r’ of an atom ‘a’. The RDF enables the computation of the average composition Ca-b (r) of 

element ‘b’ at a distance of ‘r’ of the element given as: 

 
𝐶𝑎−𝑏(𝑟) =  

𝑛𝑎−𝑏(𝑟)

∑ 𝑛𝑎−𝑏(𝑟)𝑏
 

(2) 

 

If  𝐶𝑎
̅̅ ̅ is the bulk composition of element ‘a’, then in an isotropic system, 𝐶𝑎

̅̅ ̅. 𝐶𝑎−𝑏(𝑟) is the 

correlation of the spatial composition of element ‘a’ and element ‘b’ given as: 

 𝐶𝑎
̅̅ ̅ ⋅ 𝐶𝑎−𝑏(𝑟) = < 𝐶𝑎(𝑟1⃗⃗⃗  ) ⋅  𝐶𝑏(𝑟2⃗⃗  ⃗) > (3) 

 

Where 𝑟 =  |𝑟2⃗⃗  ⃗ − 𝑟1⃗⃗⃗  |. When ‘r’ approaches large values (larger distances), the convolution 

approaches 𝐶𝑎
̅̅ ̅ . 𝐶𝑏

̅̅ ̅ . The pair correlation function can then be introduced by subtracting this 

final value: 

 𝛾𝑎−𝑏(𝑟) =  𝐶𝑎
̅̅ ̅ ⋅  𝐶𝑎−𝑏(𝑟) − 𝐶𝑎

̅̅ ̅  ⋅  𝐶𝑏
̅̅ ̅ (4) 

  

The 𝛾𝑎−𝑏(𝑟) = 0 occurs when there is no correlation, and this is true for large ‘r’. The PCF 

can be rewritten as  

 𝛾𝑎−𝑏(𝑟) = < ∆𝐶𝑎(𝑟1⃗⃗⃗  )  ⋅  ∆𝐶𝑏(𝑟2⃗⃗  ⃗) > 
 

(5) 

 

This highlights the fluctuation in composition (∆𝐶𝑎 = 𝐶𝑎(𝑟1⃗⃗⃗  ) − 𝐶𝑎
̅̅ ̅) which is the difference 

from the average, is relevant to the PCF. A normalized correlation function can further be 

introduced: 

 𝛾𝑎−𝑏(𝑟) =  ∆𝐶𝑎 ⋅ ∆𝐶𝑏 ⋅  𝛾𝑎−𝑏
0 (𝑟) 

 

(6) 

Where 𝛾𝑎−𝑏
0 (0) = 1 and 𝛾𝑎−𝑏

0 = 0 for large ‘r’. If we consider only a single type of ion, we 

obtain the autocorrelation: 

 𝛾𝑎−𝑎(𝑟) =  ∆𝐶𝑎
2 ⋅  𝛾𝑎−𝑎

0 (𝑟) (7) 

 

As mentioned by Zhao et al. [19], the mean squared composition fluctuation is immune to the 

local magnification effects due to difference in the electric field required to induce the 

evaporation phenomenon of the different phases (but not to spatial resolution effects).  
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If we further assume a two-phase system with a homogenous composition in element ‘a’, 

with precipitate composition 𝐶𝑝
𝑎  in a matrix of composition 𝐶𝑚

𝑎  and that both share the same 

atomic volume, the volume fraction of the precipitates can be written as: 

 
𝑓𝑣 = 

𝐶𝑎
̅̅ ̅ − 𝐶𝑚

𝑎

𝐶𝑝
𝑎 − 𝐶𝑚

𝑎  
(8) 

The average of the product of compositional fluctuations can be then calculated as: 

 ∆𝐶𝑎 ⋅ ∆𝐶𝑏 = 𝑓𝑣(1 − 𝑓𝑣)(𝐶𝑝
𝑎 − 𝐶𝑚

𝑎 )(𝐶𝑝
𝑏 − 𝐶𝑚

𝑏 ) (9) 

 

For a single type of ions, this can be simplified as: 

 ∆𝐶𝑎
2 = 𝑓𝑣(1 − 𝑓𝑣)(𝐶𝑝

𝑎 − 𝐶𝑚
𝑎 )

2
= (𝐶𝑝

𝑎 − 𝐶𝑎)(𝐶𝑎 − 𝐶𝑚
𝑎 ) (10) 

 

The value of the PCF at origin (‘r’=0) in combination with the matrix composition [32] help 

extract the precipitate composition and volume fraction without being affected by local 

magnification effects. The normalized correlation function for a sphere of radius ‘R’ can also 

be calculated assuming a homogenous density with a sharp interface with the matrix as [33, 

34]: 

 

𝛾0
𝑠𝑝ℎ𝑒𝑟𝑒(𝑟, 𝑅) =  {

1 −
3𝑟
4𝑅 + 

𝑟3

16𝑅3  (𝑟 ≤ 2𝑅)

0 (𝑟 > 2𝑅)
 

(11) 

 

Assuming a log-normal size distribution of spheres and integrating Equation Erreur ! Source 

du renvoi introuvable., the experimental data can be fit to extract the size of the clusters. A 

20% dispersity in the log-normal distribution is assumed and a contribution of an excluded 

volume is also added.  

The PCF is plotted as 𝛾(𝑟) ⋅ 𝑟 allowing for an easier comparison of the differences in size 

between different conditions, as the position of the maximum of 𝛾(𝑟) ⋅ 𝑟  is related to the 

length of correlation (i.e., to the size of the clusters). 

The TEM specimens were prepared by grinding bulk specimens to ~ 100 μm thickness before 

they were punched out to 3 mm discs and subsequently electropolished using an electrolyte 

mixture of 1/3 HNO3 and 2/3 C3CH3OH. The temperature was kept at 25±5°C at an applied 

voltage of 20 V. High angle annular dark-field scanning TEM (STEM) images were collected 

using a double corrected JEOL ARM200CF operated at 200 kV with convergence semi-angle 

and inner collector angle 27 and 48 mrad, respectively.  

 

3 Results 
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3.1 Hardness  

The hardness of the supersaturated solid solution (SSSS) for the 7003 alloy starts at around 

46 HV while it is higher for the 7046 alloy, close to 61 HV. The hardness progressively 

increases for both alloys during NA, as shown in Figure 5. 

 

Figure 1. Evolution of hardness as a function of ageing time for both 7003 and 7046 alloys. 

The blue circles indicate the condition which was chosen for APT analysis. 

The hardness measurements taken after 3 months of NA, revealed a considerable hardness 

increase to around 115 HV for the 7003 alloy and 135 HV for the 7046 alloy. Further 

hardness measurements revealed that the hardness for both alloys later saturated at around 

125 HV and 155 HV for the 7003 and 7046 alloy, respectively, after one year NA. 

Nevertheless, 3 months of NA was chosen as the conditions to characterize the microstructure 

of these alloys. 

 

3.2 APT results processed by the IPM methodology 

The APT datasets were used to extract smaller region of interest (ROI) that were used for 

visualizing the clustering, as shown through Figure 2 (a and b) for 7003 alloy and Figure 2(d 

and e) for 7046 alloy. The IPM was used to extract size distributions, as seen in Figure 2 (c 

and f) for 7003 and 7046 alloys, respectively. Size measurements in this study refer to the 

diameter of the precipitates measured using Equation (1) similar to our previous studies [22, 

35]. Additionally, the radius of gyration has been used to elucidate the mean diameter. The 

radius of gyration is the radius of a body having its mass concentrated at a single distance 

from its center of mass [1, 2]. The size distributions shown is an average of the size 

distributions obtained for the two datasets for each alloy.  

For both alloys, the size distribution fits well with a log-normal distribution. Table 4 shows 

the quantitative measurements extracted from the IPM. It is quite evident that the two 

datasets for each alloy show similar size and composition of the clusters. The average size of 

the clusters for the 7003 alloy is around 1.8 nm, while it is slightly lower, around 1.5 nm, for 
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the 7046 alloy, as measured by the 𝐸𝑧. The average Zn/Mg ratio for the 7003 alloy is around 

2 while it is around 1.5 for the 7046 alloy, as indicated in Table 4. The measured ExtentX (Ex) 

is consistently larger than 𝐸𝑧, as seen in Table 2 for all four datasets. This is mainly due to the 

spatial resolution aspect of APT dominating the local magnification effects and will be 

discussed in detail in later sections. Since Extent in x and y are very similar, only Ex is 

reported in Table 2 and Erreur ! Source du renvoi introuvable.. The measured 𝐸𝑧  is in 

close agreement with the size measurements by TEM (shown in the later section) and hence 

is regarded as more relevant in terms of describing the size using the IPM in this case. 

 

Figure 2. APT sub-volumes of dimensions 25 × 25 × 70 nm3 extracted from the APT 

datasets showing clustering in the 7003 alloy for (a) dataset 1 and (b) dataset 2. Similar 

cluster volumes for the 7046 alloy are shown for (d) dataset 1 and (e) dataset 2. The average 

size distribution based on 𝐸𝑧 of the two datasets of the two alloys is shown in (c) and (f). 

 

Table 2. Average (mean) results of cluster analysis by IPM for APT datasets of 7003 and 

7046 alloys. Compositions and Zn/Mg ratios are calculated by class size of 0.2 nm the 
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average is computed. The uncertainties are calculated through 2√
𝐶(1−𝐶)

𝑁
 , where, C is the 

concentration of a particular element and N the total number of atoms. 

 

 

 

 

Mean 

Diameter 

(nm) 

 
Ez  

(nm) 

Cluster Composition (at.%) Number 

Density  
(1024/m3) 

Zn/Mg Ex  

(nm) Zn Mg Cu 

7003 D1 
2.45 ± 

0.60 

2.59 

± 

1.53 

1.75 ± 

0.91 

11.77 ± 

0.32 

5.82 ± 

0.22 

0.09 ± 

0.02 
3.19 ± 0.08 

2.03 ± 

0.14 

7003 D2 
2.53 ± 

0.59 

2.69 

± 

1.45 

1.88 ± 

0.84 

10.77 ± 

0.29 

5.35 ± 

0.21 

0.04 ± 

0.01 
3.25 ± 0.08 

2.02 ± 

0.10 

7046 D1 
2.15 ± 

0.45 

2.29 

± 

1.10 

1.50 ± 

0.64 

11.59 ± 

0.41 

7.61 ± 

0.15 

0.19 ± 

0.10 
2.34 ± 0.07 

1.52 ± 

0.08 

7046 D2 
1.96 ± 

0.39 

1.63 

± 

1.02  

1.21 ± 

0.57 

12.39 ± 

0.45 

8.09 ± 

0.67 

0.32 ± 

0.19 
1.51 ± 0.10 

1.54 ± 

0.17 

 

3.3 APT results processed by the PCF methodology 

The calculations of zinc (Zn-Zn), magnesium (Mg-Mg), copper (Cu-Cu) correlations along 

with the cross correlations for the three elements are shown in Figure 5. The first maximum 

of the curves, indicative of the size of the objects, is similar for all the correlations. This 

indicates a single distribution of clusters containing both Zn and Mg (and Cu for 7046). This 

size is consistently smaller for 7046 than for 7003, in agreement with the IPM results. The 

amplitude of the Zn-Zn PCF is larger for 7003 than for 7046, while the Mg-Mg PCF 

amplitude is smaller for 7003 than for 7046. These observations confirm a higher Zn/Mg 

ratio for the 7003 than for the 7046. The Cu correlations in Figure 3 containing are shown 

only for the 7046 alloy, since 7003 is a Cu-free alloy. Figure 3(f) shows higher scatter for the 

Cu-Cu plot due to lower signal from the Cu atoms. 

More quantitative results can be obtained from the PCF by fitting the data to a 2-phase 

modelled dataset (matrix+clusters) containing spherical particles of homogeneous 

composition and with sharp interfaces (we shall further see that while this might be a 

reasonable assumption for larger precipitates, it is a coarse approximation for small clusters). 

The spherical shape is a good approximation being confirmed by the TEM analyses presented 

in the next section. We further assume a log-normal distribution of the diameter. This model 

implies that all correlations should be proportional, i.e., they should all have the same shape 

𝛾0(𝑟), but with a different amplitude Δ𝐶2. For more efficient fitting, we thus fitted the shape 

to the Zn-Zn correlation and assumed it was fixed for the other correlations, with only the 

amplitude changing. Despite the limitations of the interpretation model (spheres, 
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homogeneous composition, sharp interface), the quality of the fit is excellent, enabling the 

parameters of the model (size, compositions) to be extracted.  

Figure 3. Pair correlation functions for (a) Zn-Zn, (b) Zn-Mg, (c) Zn-Cu, (d) Mg-Mg, (e) Mg-

Cu and (f) Cu-Cu pairs from the APT datasets shown in Figure 2.  

 

Table 3. Mean cluster size (diameter), composition, number density and Zn/Mg ratio obtained 

by fitting the PCF methodology data in Figure 5 assuming a log normal distribution of 

spherical clusters.   

 

Mean 

diameter 

(nm) 

Cluster Composition (at.%) Number 

Density  
(1024/m3) 

Zn/Mg 
Zn Mg Cu 

7003 D1 2.98  9.76 5.03 0.14 5.9  1.97 

7003 D2 3.15 8.69 4.52 0.11 6.3 1.95 

7046 D1 2.61 7.76 5.34 0.3 13.2 1.47  

7046 D2 3.1 8.02 5.32 0.36 7.7 1.53 

 

The parameters extracted from the fit are shown in Table 3. These parameters show similar 

trends than the IPM data, in that the 7003 sizes are consistently larger than the 7046, the 

cluster compositions are in reasonable agreement and the Zn/Mg ratio is close to 2 for 7003 

and 1.5 for 7046. There are also systematic discrepancies between the IPM and PCF results, 
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which can be explained by the way these parameters are computed and will be discussed 

further in the paper. 

3.4  Cluster observed by HAADF-STEM 

Atomically resolved HAADF-STEM was employed to investigate the clusters in the alloys. 

Figure 4. HAADF-STEM images from (a) 7003 and (b) 7046 showing a dense population of 

GPI zones. Corresponding size distribution estimation has been done for (c) 7003 and (b) 

7046 based on 50-60 clusters. The finer clusters without structure were not included in the 

statistics due to uncertainty of overlap. 

a and b show that both 7003 and 7046 exhibit a dense population of GPI zones. Visually, the 

GPI zones have a larger diameter in the 7003 alloy (Figure 4. HAADF-STEM images from 

(a) 7003 and (b) 7046 showing a dense population of GPI zones. Corresponding size 

distribution estimation has been done for (c) 7003 and (b) 7046 based on 50-60 clusters. The 

finer clusters without structure were not included in the statistics due to uncertainty of 

overlap. 

a) than the ones in the 7046 alloy (Figure 4. HAADF-STEM images from (a) 7003 and (b) 

7046 showing a dense population of GPI zones. Corresponding size distribution estimation 

has been done for (c) 7003 and (b) 7046 based on 50-60 clusters. The finer clusters without 

structure were not included in the statistics due to uncertainty of overlap. 

b). This is in accordance with our previous results on the same alloy [22]. To investigate this 

in a quantitative matter, the diameters of at least 300 GPI zones were measured per condition. 

The GPI zones in 7003 had an average diameter of (1.87±0.17) nm, while in 7046 the 

average diameter was (1.67±0.11) nm.  

Size distributions for the 7003 and 7046 alloys are shown in Figure 4(c and d). Here, only the 

structured GPI zones that could clearly be identified were used to estimate the distribution 

(around 50-60 GP zones). The unstructured clusters, usually the clusters smaller than 1 nm in 

diameter, were challenging to include in the statistics due to the uncertainty of overlapping 

with lower-lying clusters. While this should not impact the trend indicating slightly larger 

clusters in the 7003 alloy than in the 7046 alloy, it should be kept in mind that it means that 

the mean diameters estimated from HAADF-STEM are likely overestimated. 
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Figure 4. HAADF-STEM images from (a) 7003 and (b) 7046 showing a dense population of 

GPI zones. Corresponding size distribution estimation has been done for (c) 7003 and (b) 

7046 based on 50-60 clusters. The finer clusters without structure were not included in the 

statistics due to uncertainty of overlap. 

3.5 The IPM and the PCF methodology applied on simulated datasets 

Experimental artefacts associated with an APT dataset include: 

(i) A reduced detection efficiency of 80% (similar to the LEAP 5000XS used to 

analyze the experimental datasets in Figure 2). 

(ii) Positioning uncertainty of atoms with different resolutions. 

The reduced detection efficiency of 80% was accounted for in the simulated datasets. APT 

volumes were simulated with box dimensions 20 × 20 × 100 nm3. A dataset with a mean 

particle diameter of 1.8 nm was synthesized, picked up from the learnings of the 7003 alloy 

datasets. This is labeled as V1.8. A standard deviation of around 20% of the mean diameter 

and a log-normal distribution were applied. The particles were Zn and Mg enriched but 

without Cu, like the experimental datasets of the 7003 alloy. Only Al, Zn and Mg elements 

were used to generate the volumes. The particles introduced into the volumes had a sharp 

interface. Once all particles have been introduced, a random spatial distortion of each atom 
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position was made to obtain a more realistic dataset as compared to an experimental 

measurement. Hence, the initially abrupt particle interface was blurred.   

First, an ‘ideal resolution’ of 0.2 nm in depth and 0.5 nm in lateral resolution was applied to 

the entire dataset. This implies that the position of atoms was randomized by 0.2 and 0.5 nm 

in the evaporation and lateral directions respectively. The concentration of solute in the 

particles is set higher than what is extracted from the experimental data. Next, the resolution 

is degraded until a match in the PCFs is observed when compared with the experimental 

PCFs. We call this dataset the ‘degraded resolution’ and labels it V1.8DR.  

The number densities of both datasets were set to 1E25 m-3. The size distribution for V1.8 is 

shown in Figure 5(b) while the corresponding PCFs are seen through Figure 5(c-e). The 

amplitude of the PCF of V1.8 is much greater than other datasets (experimental and 

simulation) while the amplitude of PCF of V1.8DR is very similar to that of the experimental 

datasets (7003 D1 and D2). 

Table 4. Average (mean) results of particle analysis done by the IPM on simulated volumes. 

Conditi

on 

Guinier 

Diameter 

(nm) 

Ex 

(nm) 

Ez 

(nm) 

Cluster Composition 

(at.%) 

Number 

Density  
(1024/m3) 

Zn/Mg 

Zn Mg   

V1.8 
2.32 ± 

0.24 

2.36 ± 

1.11 

2.24 ± 

1.01 

16.56 ± 

0.52 

8.17 ± 

0.32 
5.65 ± 0.02 2.03 ± 0.08 

V1.8D

R 

1.93 ± 

0.20 

2.40 ± 

1.012 

1.89 ± 

0.86 

12.92 ± 

0.37 

6.37 ± 

0.21 
3.50 ± 0.01 2.03 ± 0.07 

 

Table 5. Mean particle diameter, composition, number density and Zn/Mg ratio obtained by 

the PCF methodology by fitting the data in Figure 5, assuming a log normal distribution of 

spherical particles. 

Condition 
Diameter  

(nm) 

Particle Composition 

(at.%) 

Number Density  
(1024/m3) 

Zn/Mg 

Zn Mg   

V1.8 2.24  18.76  9.43  6.82 1.99 

V1.8DR 2.90  10.50  5.12  5.14 2.05  

 

The quantitative data extracted by the IPM for V1.8 and V1.8DR are shown in Table 4.  Both 

these volumes have a higher concentration of solute input in the particles; 20 at.% Zn and 10 

at.% Mg. Since both the ideal resolution and the degraded resolution volumes resulted in 

concentrations much lower than the input concentrations, it is clear from the IPM results that 

the apparent composition of the clusters is greatly affected by the resolution. Number 

densities of detected clusters are also highly affected, for both volumes, as seen in Table 4.  

When the resolution is degraded, the size measurements for V1.8DR by the IPM are 

underestimated, as seen in Table 4, using the Ez parameter, being smaller than expected. This 

is a non-trivial effect, which indicates that a substantial proportion of the interfacial cluster 

atoms has been attributed to the matrix during IPM. Since the applied spatial resolution is 

better in Z than in XY, the Ex values are consistently larger than Ez.  
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Because of the broader extension of the clusters due to the spatial resolution, the PCF 

methodology computes a larger average size than prescribed by input the dataset. The 

degraded resolution also strongly affects both the amount of detected solutes in the clusters 

and their number densities c.f. Erreur ! Source du renvoi introuvable. and Table 4. 

The PCF methodology confirms the effect of the degraded resolution with similar results as 

compared to IPM for V1.8, as seen in Table 4 and Table 5. Most importantly, it should be 

noticed that V1.8DR seems to mimic the behavior of the 7003: it gives similar results on the 

detected clusters with both IPM and PCF, the overall shape and amplitude of the PCF curves 

are similar, and the volume was obtained with initial cluster sizes compatible with HAADF-

STEM. 
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Figure 5. Simulated volume (a) V1.8 showing iso-concentration surface of 7 at.% Zn+Mg to 

visualize the particles inserted. Size distribution obtained from IPM for (b) V1.8. PCF for (c) 

Zn-Zn, (f) Zn-Mg and (g) Mg-Mg for both volumes. 

 

 

4 Discussion 
 

4.1 The apparent discrepancies in the clusters parameters as seen by the methodologies 

We have looked at the clustering state in the 7003 and 7046 alloys by APT (IPM and PCF) 

and by HAADF-STEM. We found similar trends among the methods: the clusters seem 

consistently smaller in the 7046 than in the 7003. The Zn/Mg ratio was found to be about 2 

for 7003 and 1.5 for 7046 with both APT methods. There are however systematic 

discrepancies which can be at least partially explained both by the difference in approach 

between IPM and PCF based methods, and by the nature of APT data. These discrepancies 

are: 

i) The IPM method finds consistently higher solute content in the clusters than the 

PCF methodology. 

ii) The IPM method finds consistently lower number density of clusters than the PCF 

methodology. 

iii) Both APT methods find larger clusters than HAADF-STEM. 

These discrepancies should be discussed in the context of very small clusters which do not 

present a sharp interface with the matrix, partly or entirely because of a finite spatial 

resolution limiting the positioning accuracy. 

It should be kept in mind that the IPM methodology and the PCF methodology are two very 

different approaches. The IPM is a cluster identification method. Its objective is to label each 

atom in the dataset as belonging either to the clusters or to the matrix. The result depends on 

the choice of parameters, which are chosen through an optimization process aiming at 

minimizing the amount of “false positives” whereby atoms from the matrix are wrongly 

labeled as clusters. It requires as input an estimate of a minimal size for the clusters. An 

erosion step guarantees that the clusters do not include a shell of matrix. This ensures that 

compositions computed on the detected clusters are measured in a condition, neither 

including too small clusters nor interfacial area of the clusters that includes matrix atoms 

from a diffuse interface. 

This is in contrast with the PCF method, which considers the dataset as a whole and assumes 

that the clusters have a homogeneous composition. Hence, when the cluster/matrix interface 

is actually diffuse and the cluster size is small, the average composition measured by the PCF 

fitting method is likely to be smaller, explaining discrepancy i). 

Discrepancy ii) is indirectly related to i) and can also be explained by the selective approach 

(IPM) vs global approach (PCF): the smaller clusters from the dataset may be part of the 



 15 

cluster distribution fitted by the PCF approach, while being labeled as too small to be a 

cluster by IPM, thus lowering the detected number density. Whether this is a good or a bad 

thing depends on the situation. The IPM parameters could be set to detect more clusters, but 

very likely at the cost of an apparent lower cluster composition. 

Discrepancy iii) is more informative on the metrology of such small clusters by APT than on 

the methods themselves. The size histograms obtained by HAADF-STEM are likely to be 

very good estimates of the size of the clusters. If anything, they might be slight 

overestimations since the smaller diffuse clusters were left out of the calculation. This means 

that the clusters apparent size in APT is too large. Since the datasets reconstructions were 

properly calibrated and since the local magnification effect (higher density in these objects) 

should have a reverse effect, this can be only attributed to a spatial resolution blurring of the 

interfaces [36]. 

The application of the two methodologies to simulated datasets enabled to better estimate the 

instrumental effect on the cluster parameters by attempting to create realistic simulated 

datasets that are compatible with our experimental results. 

4.2 Studies of Simulated Volumes 

4.2.1 Number density measurements 

From the ideal resolution dataset 64% of the particles are detected with the IPM, while when 

applied to the degraded resolution dataset (V1.8DR) only 39% of particles are detected. Hyde 

et al.[5] found it challenging to detect clusters smaller than 1 nm in diameter using the same 

methodology, while the detection of clusters was even worse using the MSM, despite having 

a higher solute concentration contrast between the matrix and the clusters. This is in line with 

the current observations as demonstrated in Figure 5(b) with the size distribution showing no 

clusters detected below 1 nm in diameter. 

The results for the ‘degraded resolution’ suggest that the number densities measured are even 

lower when a lower resolution is accounted for. The spatial distortions in lateral and depth 

resolution make it further challenging to detect the clusters smaller or close to 1 nm in 

diameter. To distinguish the smallest particles (with diameter smaller than about 1 nm) from 

random solute fluctuations becomes problematic, and thus a lot of fine particles are not 

detected by the IPM. With the degraded resolution, the smaller clusters are simply not there 

anymore due to the blurring caused by the spatial resolution effects. 

The statistical method using the PCF on the other hand, estimates the number density from 

the volume fraction of particles based on the average volume of particles as 𝑓𝑣/⟨𝑉⟩. There is 

only a slightly higher estimated volume fraction for the cases with degraded resolution. 

However, the average particle diameter estimated for V1.8DR is higher than for V1.8. Hence, 

similar number densities are predicted by the PCF methodology for the ideal resolution and 

the degraded spatial resolution. As already discussed, this difference between IPM and PCF 

is due to different approaches (selective for IPM and global for PCF). 

4.2.2 Size measurements 

When considering the ideal resolution dataset (V1.8), we see that both methods (IPM and 

PCF) overestimate the size of particles by around 28% c.f. Table 4 and Table 5. However, 

when considering the degraded resolution dataset (V1.8DR), a smaller average cluster 

diameter is estimated by the IPM (~1.9 nm c.f. Table 4), while the PCF methodology 
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overestimates the size by almost 60% (c.f. Table 5) The IPM mitigates the effect of spatial 

resolution and blurring of atoms by utilizing the erosion step which removes the interface 

atoms from the clusters. This in turn reduces the size of clusters and can explain the trend of 

lower size measurements for V1.8DR. Note that this dataset is very similar to the 

experimental one in terms of PCF amplitudes and concentration estimates.  

The PCF methodology, on the other hand, slightly overestimates the cluster diameter with 

degraded spatial resolution. This can be explained by the scatter to the atomic positions, 

which for the PCF methodology leads to an increase in the net volume within each cluster. 

The volume fraction measured by the PCF methodology also increases for V1.8DR as 

compared to their ideal resolution counterparts, which explains the increase in the mean 

diameter estimated by the PCF methodology.  

 

4.2.3 Composition estimates 

 

The simulated volumes V1.8 and V1.8DR had a higher input concentration of solutes in the 

particles (Zn = 20 at. % and Mg = 10 at. %) than the measured ones. This was mainly done to 

achieve a similar amplitude of the PCFs after spatial degradation as compared to the 

experimental data. The amplitudes of V1.8DR and of the experimental dataset (7003 D1 and 

D2) are very similar, as seen in Figure 6. 

For both the IPM and the PCF methodology, the Zn and Mg content in the clusters are close 

to the input composition of particles for V1.8. However, when the spatial resolution is 

degraded, the Mg and Zn contents in the clusters become underestimated by both 

methodologies for V1.8DR, as seen in Table 4 and Table 5.  

Let us first consider the PCF approach. The amplitude of PCFs for the degraded datasets is 

smaller than its ideal resolution counterpart, as seen in Figure 6. Note that Equation (10) for 

the particle compositions involves the bulk composition as well as the matrix composition. 

𝐶𝑝
𝑎 is very sensitive, because of the factor of 1/(𝐶̅ − 𝐶𝑚) in Equation (10). This increases the 

uncertainty and makes the composition of solute in particles challenging to accurately 

measure by this method. The computation of the particle composition thus strongly depends 

on the matrix and bulk compositions used. The values of ∆𝐶𝑀𝑔
2  , ∆𝐶𝑍𝑛

2  and ∆𝐶𝑍𝑛−𝑀𝑔
2  at r=0 

can be used in Equation (10) to extract these as the two unknowns (𝐶𝑝
𝑀𝑔

 𝑎𝑛𝑑 𝐶𝑝
𝑍𝑛), although 

matrix compositions can be influenced strongly by the lateral scatter. 

Although IPM estimated the composition of particles in V1.8 close to the input 

concentrations, care must be taken, since the particles smaller than about 1 nm in diameter, 

remain undetected due to the spatial degradation and possibly the particles no longer existing 

(become a part of the random fluctuation). These small particles then become poorly 

represented in terms of the statistics. Hence, the composition of these particles has a high 

uncertainty, and the estimated composition is dominated by the larger particles, which have a 

defined interface and composition. However, in the synthesized samples considered here, all 

particles had the same stoichiometry, hence this issue did not affect the estimates in our 

cases. 
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The IPM underestimates the composition for the degraded resolution volumes. This is 

expected, since the lateral scatter can result in the artificial introduction of a significant level 

of matrix (Al) into the defined particle. A similar trend was seen by Hyde et al. [37] when 

using MSM to determine the composition for simulation of trajectory aberrations. This results 

in a small solute cluster being significantly diluted due to the scatter caused by the degraded 

resolution parameters.  

 

Figure 6. PCF plots of (a) Zn-Zn, (b) Zn-Mg and (c) Mg-Mg for the simulated and 

experimental (7003) datasets. The degraded resolution dataset of the simulated volume is a 

close match in terms of PCF’s compared to the 7003 datasets. 

 

Interestingly, the concentration of solute in particles measured by both IPM and PCF for 

V1.8DR is very similar to the experimental datasets, as seen in Table 3. Although the solute 

concentration is underestimated when compared to the input values in the dataset, we see that 

the degraded resolution (V1.8DR) is indeed a good representation of the actual experimental 

dataset. This in turn indicates the underestimation of solute concentration in the experimental 

datasets. It is well known that the local magnification effects cause trajectory aberrations, 

ultimately leading to the underestimation of solute inside clusters [38]. We see a similar trend 

here confirmed by V1.8DR, wherein a higher concentration of solute in particles is heavily 

underestimated, causing erroneous composition measurements. The Zn/Mg ratio estimated 

for both simulated volumes is close to two, as seen from Table 4 and Table 5, indicating that 
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the quantification of the amount of Zn and Mg inside particles is affected proportionally and 

hence, the true ratio is expected to be preserved. 

4.3 Experimental data interpretation 

The analysis conditions were optimized for the experimental data to avoid preferential 

evaporation. A high pulse fraction and low temperature were used to analyze all datasets [39]. 

No sign of molecular dissociation [40] was seen. Based on the understanding gained from the 

simulated volumes, the average compositions of GP zones for 7003 and 7046 alloys 

estimated by both PCF methodology and IPM are underestimated. The apparent particle 

composition was lower than the input value (20 at. % Zn and 12 at. % Mg) for the simulated 

volume, along with a reduced measured number density, mainly due to particles below 1 nm 

not being detected.  

In principle, the shapes of the PCF’s for Zn, Mg and Zn-Mg should all be the same, since 

they origin from the same particles (spheres). This is very well reproduced in the simulated 

volume, as seen in Figure 5(b and c). Both simulated volumes (V1.8and V1.8DR) have the 

same shape as seen from Figure 5(b and c). They overlap each other and follow the ‘pseudo-

binary’ assumption.  

The experimental dataset, on the other hand, shows slightly different shapes of the PCF’s. 

Since we have only a single population of clusters, (GP zones predominantly) we should 

ideally expect all PCF’s to be of the same shape. In particular, the mean size of the GP zones 

would be slightly smaller if it was based on the fit from Mg rather than that of Zn. Several 

works on Al-Zn-Mg alloys [41, 42] have reported this effect, where the extension of the Zn 

enrichment in precipitates is higher than that of Mg. This can be interpreted as an APT 

artefact, wherein subtle changes in the evaporation field of the matrix atoms within particles 

changes the electric field distribution and hence causes these chromatic aberrations [43].  

However, the use of the Zn PCF in the calculations cannot solely explain the overestimation 

of the mean diameter by the PCF methodology. A decrease of the estimated diameter of 

around 7% is seen when using the PCF of Mg instead of Zn. The spatial resolution is element 

specific, as we see in the case of PCF’s plotted for different elements for the same dataset in 

Figure 7. This is more of an instrument effect that is not seen in the simulated volumes. 

Additionally, this will also affect the results obtained by the IPM. The spatial resolution plays 

an important role in determining the size, as also pointed out by other authors [36, 43]. 

It can be seen by comparing Figure 5(a) and Figure 5(b and c) that there is a part of the PCF 

which is negative. This “dip” is more prominent in the PCF curves from the measured 

experimental datasets than in the simulated volumes. The interparticle interaction 

qualitatively gives this effect and the dip can be well reproduced by accounting for an 

‘excluded volume’ [44] in the PCF methodology. This is because two particles cannot 

overlap. Hence the position of each particle is not independent. However, the dip can also be 

due to depletion in solute around the particles as part of the solute diffusion, which is also not 

accounted for. Anyhow, the correction for the dip decreases the estimate of the mean 

diameter only slightly, by a few percent. Hence, it will neither affect much the estimates of 

particle compositions.  
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Figure 7. Normalized PCF for Zn-Zn, Zn-Mg and Mg-Mg obtained from (a) 7003 

experimental dataset and simulated volumes (b) V2DR and (c) V3DR. 

 

The IPM gives representative size measurements with Guinier diameter, Ex as well as Ez for 

the simulated volumes as seen in Erreur ! Source du renvoi introuvable. and Table 4. This 

is not the case for experimental datasets though. TEM measurements agree with the IPM size 

measurements (Ez) for the experimental datasets. The Ex is overestimated for all four datasets 

and on average is around 1.7 times the Ez. The considered clusters are low field precipitates 

giving rise to higher atomic density, hence the opposite was expected, i.e., a contraction in 

the XY plane and potentially to appear smaller. However, this is not the case. This opposite 

trend is attributed to the local magnification effects and trajectory overlaps due to the 

difference in evaporation field between the matrix and particles which are seen in the 

experimental datasets [29]. In other words, the spatial resolution is locally worse.  

Number density measurements, as highlighted in the above section, is heavily 

underdetermined by IPM for V1.8. From the TEM results, many disordered clusters smaller 



 20 

than 1 nm are seen, which  are not taken into account while estimating the size distribution as 

seen in Figure 4(c and d) due to the challenge of de-convoluting the overlapping clusters. 

Both methodologies have shown reasonable agreements on size and composition 

measurements. The important understanding from the simulated volumes in an attempt to 

mimic the experimental datasets showed that both methodologies underestimate the 

concentration of solute within particles. Features less than 1 nm usually go undetected, and 

consequently the number densities are underestimated. Care must be taken, since number 

densities measured by IPM are sensitive to the size of the particles, while the estimate by the 

PCF is based on the average volume of the particles. 

 

5  Conclusions 
By using a combination of APT data interpretation methodologies, supported by simulated 

datasets and HAADF-STEM experiments, we have shown that reliable APT measurements of 

the size and compositions from small clusters issued from the early stages of decomposition 

in Al-Zn-Mg alloy are challenging. Because of their small size, the particles/clusters are 

subject to significant distortions due to trajectory aberrations, leading to an increase of their 

apparent size as well as a decrease of their apparent solute content. While these effects are 

likely to be system dependent, we have estimated in our case that the clusters solute content 

dropped 40%. The effect on the apparent size is more complex to evaluate because it is 

strongly anisotropic, due to the anisotropy of the local magnification effect. It is clear, 

however, that these effects are most severe for the smaller clusters, so that particular care 

should be taken when interpreting apparent size and compositions of clusters from APT 

measurements of naturally age hardened or under aged conditions of AlZnMg aluminum 

alloys. 
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