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When playing a self-sustained reed instrument (such as the clarinet), initial acoustical transients (at the beginning of
a note) are known to be of crucial importance. Nevertheless, they have been mostly overlooked in the literature on
musical instruments. We investigate here the dynamic behavior of a simple model of reed instrument with a time-
varying blowing pressure accounting for attack transients performed by the musician. In practice, this means studying
a one-dimensional non-autonomous dynamical system obtained by slowly varying in time the bifurcation parameter
(the blowing pressure) of the corresponding autonomous systems, i.e., whose bifurcation parameter is constant. In this
context, the study focuses on the case for which the time-varying blowing pressure crosses the bistability domain (with
the coexistence of a periodic solution and an equilibrium) of the corresponding autonomous model. Considering the
time-varying blowing pressure as a new (slow) state variable, the considered non-autonomous one-dimensional system
becomes an autonomous two-dimensional fast-slow system. In the bistability domain, the latter has attracting manifolds
associated with two stable branches of the bifurcation diagram of the system with constant parameter. In the framework
of the geometric singular perturbation theory, we show that a single solution of the two-dimensional fast-slow system
can be used to describe the global system behavior. Indeed, this allows to determine, depending on initial conditions
and rate of change of the blowing pressure, which manifold is approached when the bistability domain is crossed and
to predict whether a sound is produced during transient as a function of the musician’s control.

As many dynamical systems, musical instruments have
been shown to sustain a possibly high degree of multista-
bility, corresponding to the coexistence of stable solutions
(equilibria, periodic and quasiperiodic solutions as well
as chaotic regimes) for a given set of parameters. In the
simple model of reed musical instrument considered here,
multistability manifests itself by the coexistence of a pe-
riodic solution (i.e., a musical note) and an equilibrium
(i.e., the silence) in a region of the bifurcation diagram re-
ferred to as bistability domain. In this context, we inves-
tigate the behavior of this simple reed instrument model
when the blowing pressure (the main control parameter
in practice) is varied over time and crosses the bistability
domain of the corresponding model with constant param-
eter. This is motivated by the will of achieving a better
understanding of the role of attack transients performed
by the musician on the behavior of actual instruments, in-
cluding their transient dynamics. Indeed, because such
instruments have a very rich dynamics with respect to
the blowing pressure, many different regions with qual-
itatively different and possibly multistable dynamics are
likely to be crossed during the attack of a note. In our sim-
ple model, when the bistability domain is crossed, the sys-
tem can remain close to its current position and follow an
attracting invariant manifold (no sound is produced dur-
ing attack transient), or leave it abruptly to reach the other
attracting invariant manifold (a sound is produced during

attack transient). We show that this depends on the char-
acteristics of the time-varying parameter and we predict
whether or not a sound is produced during the attack tran-
sient. More precisely, considering the framework of the
geometric singular perturbation theory (GSPT), we define
and compute a particular trajectory which splits the phase
space into two subsets. This allows us to know which ini-
tial conditions cause one or the other of these two attract-
ing manifolds to be followed while crossing the bistability
domain and as such to predict whether or not a sound is
produced during the attack transient.

I. INTRODUCTION

Self-sustained musical instruments such as wind instru-
ments, bowed string instruments or the singing voice are
dynamical systems known to produce a wide diversity of
regimes. This includes a number of equilibrium and
periodic solutions as well as quasiperiodic and chaotic
regimes17,20,29,35,52. In a musical context, equilibria corre-
spond to silence and periodic solutions are, most often, the de-
sired regimes. They correspond to musical notes with differ-
ent acoustical features. In particular, fundamental frequency
and frequency content (Fourier spectrum) of the periodic so-
lution are associated to the pitch and timbre of a note, respec-
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tively. As many dynamical systems in a range of applications,
musical instruments have been shown to sustain a possibly
high degree of multistability.

An important specificity of self-sustained instruments is
that their operation (namely sound production in a musi-
cal context) is associated to time-varying control parameters
which are adjusted continuously by the musician. For exam-
ple, wind instruments players control finely and continuously
the air pressure in their mouth to obtain the desired sound
regime. In particular, attack transients, which correspond to
the transient dynamics of the blowing pressure from its initial
value (corresponding either to a zero overpressure in the mu-
sician’s mouth or to the blowing pressure used to play a previ-
ous note) to its target value, selected by the musician to play
the desired sound regime, have been shown to be of particu-
lar importance21,46. Indeed, they determine initial acoustical
transients, i.e. the beginning of the sound, which are known to
be crucial for both sound production and sound perception48.
In the literature, comparisons between beginners and experi-
enced musicians suggest that some characteristics of attack
transients relate to physiological constraints, but also showed
that experienced musicians control different aspects of these
attack transients to reach the desired sound regime in a reliable
manner21,46 . In particular, experimental observations22 have
shown that control parameters evolve on a slower timescale
than acoustical variables related to the instrument internal dy-
namics. Despite their importance, time-varying control pa-
rameters in general and attack transients in particular have
been mostly overlooked in the literature on nonlinear dynam-
ics of self-sustained musical instruments. In physical models
in particular, control parameters are generally assumed to be
constant. Few studies investigated experimentally and numer-
ically the dynamics of a clarinet with slowly varying blow-
ing pressure, with a focus on the effect of both noise and the
rate of change of the control parameter. Previous theoreti-
cal works by the authors7,8,10 investigated the emergence of
oscillations in simple models of reed instruments when the
blowing pressure varies over time. This allowed to inter-
pret experimental results9 as the manifestation of the bifur-
cation delay phenomenon. Nevertheless, the timescales con-
sidered for the blowing pressure were even slower than those
of experimentally-observed attack transients. More recently,
Colinot et al. showed that, in a multistable physical model of
single-reed instrument, different attack transients can lead to
different sound regimes being observed in the long term, after
any transient dynamics has died out18. Overall, to the best of
the authors knowledge, the influence of time-varying control
parameters on the acoustical transient of the instrument has
not been investigated theoretically.

From a more general point of view, nonlinear dynam-
ics of multistable systems with time-varying parameters has
attracted considerable attention in the last years, see for
example25,47 as an entry point to the literature. Many stud-
ies focused on critical transitions, also referred to as tip-
ping points in climate sciences, that correspond to regime
shifts due to changing conditions with applications in fields
as diverse as physics, neurosciences, climate science, biology
and ecology3,25. Ashwin et al.3 proposed a classification of

critical transitions based on the mathematical description of
the underlying mechanisms: noise-induced transitions, where
noise makes a multistable system switch between two stable
states, bifurcation-induced transitions and rate-induced tran-
sitions. Bifurcation-induced tipping occurs when the time-
varying parameter crosses a bifurcation point (for example a
fold) and also relates to dynamic bifurcation6. Rate-induced
tipping, identified by Wieczorek et al.55, occurs when the ex-
ternal forcing (or control parameter) evolves with a rate of
increase that has exceeded a critical value, usually without
crossing any bifurcation point. More precisely, the system can
deviate significantly from its evolving stable solutions under
the effect of the changing parameter and crosses a threshold
as such, for example a boundary between basins of attraction
(a phenomenon referred to as basin instability43).

In both bifurcation-induced and rate-induced transitions,
the difference between the internal timescales of the sys-
tem and the timescale of the evolving parameters have been
shown to play a crucial role47. In bifurcation-induced tran-
sitions, sufficiently different timescales can result in bifur-
cation delay6,11,33,53. In the case of rate-induced transitions,
the timescales difference relates directly to the critical rate of
change of the parameter above (or sometimes below) which
transitions occur47. In particular, in the case of transitions be-
tween equilibrium solutions, Ashwin et al.3 derived the criti-
cal rate of change above which the system leaves the solution
branch it was going along. In Ref. 2, Ashwin et al. intro-
duce a formalism that uses so-called pullback attractors to de-
scribe the phenomena of bifurcation-induced transitions and
rate-induced transitions, again considering equilibria. The
method has been extended by Alkhayoun and Ashwin1 to
periodic solutions. Combining compactification technique57

with concepts from Geometric Singular Perturbation Theory24

(GSPT), Wieczorek et al.56 developed a mathematical frame-
work for the study of rate-induced tipping for asymptotically
autonomous dynamical systems, i.e., with time-varying pa-
rameters having finite limits when the time tends to infinity.
O’Sullivan et al.45 introduced a complementary framework to
analyze rate-induced tipping in a non-autonomous (and also
asymptotically autonomous) fast-slow dynamical system. In
actual physical systems, critical transitions may be associated
with a combination of noise-induced, bifurcation-induced and
rate-induced transitions.

Here we consider a state-of-the-art model of reed musical
instruments, written as a n-dimensional system of ordinary
differential equations, where n relates to the number of acous-
tical modes taken into account15 to model the instrument res-
onator:

ẋ = f (x,γ), (1)

with x ∈ Rn the vector of state variables (i.e., the modal coor-
dinates of the mouthpiece pressure and their first time deriva-
tive) and γ the considered control parameter. The function
f : Rn ×R → Rn is assumed to be sufficiently smooth. In
the simple case where a single acoustical mode is considered
(n = 2) and when a constant blowing pressure is considered,
a bifurcation analysis shows that different regions with quali-
tatively different dynamics are found when the blowing pres-
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sure is considered as a bifurcation parameter. For both low
and high values of the blowing pressure, an equilibrium cor-
responding to silence is the only stable solution. In between
these two regions, one finds a range of the blowing pressure
where a periodic solution corresponding to a musical note is
the only stable solution, and a bistability region where the sta-
ble periodic solution and the stable equilibrium coexist.

In this article, we consider this model with a time-varying
blowing pressure accounting for attack transients performed
by the musician, and we focus on the case where the blowing
pressure crosses the bistability region (without saturating in-
side this region): as such, the question of which regime is ob-
tained in the long term is trivial. Rather, we aim at predicting
transient dynamics of the system itself (i.e. acoustical tran-
sient at the sound onset, which are known for their importance
in a musical context), with respect to the characteristics of the
control parameter such as its rate of change. This is motivated
by practical aspects of instrument playing: when the musician
performs an attack transient, the mouth pressure evolves from
an initial value which is most often close to zero22 towards a
target value at which the desired sound regime exists and is
stable. Because the dynamics of these instruments with re-
spect to the blowing pressure can be rich, the system is likely
to cross several regions of the bifurcation diagram with qual-
itatively different dynamics during the attack transient of the
control parameter, thus resulting in possibly complex transient
dynamics.

In practice, the model is rewritten as a (n+1)-dimensional
autonomous system:

ẋ = f (x,y), (2a)
ẏ = εg(y), (2b)

associated to Eq. (1) where the control parameter of Sys-
tem (1) varies in time and is written as a new state variable
y. The function g : R → R is also assumed to be sufficiently
smooth. Eq. (2b) being an autonomous first-order ordinary
differential equation its solution y(t) is monotonic, we as-
sume here that it is a monotonically increasing function. Here,
ε is a small parameter accounting for the slow evolution of
the blowing pressure with respect to the acoustical variables.
Overall, system (2) is a slow-fast dynamical system where y
is the slow variable and x is the vector of the n fast variables.
We adopt a slow-fast dynamical point of view, and consider
the framework of GSPT which provides general results on the
complicated dynamics of slow-fast dynamical systems by ex-
ploiting the separation between the different timescales. In
particular here, solutions of (1) are not solutions of (2) since
y is not constant in time anymore. Nevertheless, stable so-
lutions of (1) are associated with attracting invariant mani-
folds of (2)24,32. In this context, we focus on the parameter
region for which System (1) (with constant control parame-
ter) is bistable. When the control parameter varies in time and
crosses this bistability region, we aim at determining the tran-
sient dynamics of variables x of System (2) and, in particular,
at determining toward which attracting manifold the system is
attracted while this region is crossed. In the case mentioned
above where an equilibrium solution coexists with a stable pe-
riodic solution, this corresponds at determining whether or

not the instrument produces a sound during the attack tran-
sient. In more complicated (and realistic) cases where a region
with several stable periodic solutions is crossed during an at-
tack transient, this means determining which musical note is
played during the attack transient. To provide an initial answer
to this question, we investigate a simple problem of bistability
in which the instrument model with constant control parame-
ter reduces to a one-dimensional nonlinear ODE (i.e., of type
(1) with x ∈ R, it corresponds to the system with n = 2 men-
tioned above which has been reduced by an averaging tech-
nique) having, in an interval D ⊂ R, two coexisting stable
equilibria (one corresponds to silence and the other to a mu-
sical note36). Basins of attraction of these equilibria are sep-
arated by an unstable equilibrium. For the same ODE with a
control parameter varying slowly in time (i.e., of type (2) with
x ∈ R), for x ∈ D, the stable equilibria become attracting one-
dimensional invariant manifolds and the unstable equilibrium
becomes a repelling one-dimensional invariant manifold that
evolves in the two-dimensional phase space of (2). We find
that a given trajectory of (2), denoted as S and whose section
for x ∈ D is the repelling manifold mentioned above, splits the
two-dimensional phase space into two subsets. Trajectories
resulting from initial conditions in the first subset will follow
one of the attracting manifolds when D is crossed, while tra-
jectories resulting from initial conditions in the second sub-
set will follow the other attracting manifold. This represents
two qualitatively different behaviors for the system, one cor-
responds to silence during transient and the other to a musi-
cal note played during transient. It is interesting to see that a
single object (i.e., S) allows to describe this global (and non
trivial) behavior during transients.

The paper is organized as follows. In Section II, the model
of single reed instrument under consideration is briefly pre-
sented. The bifurcation diagram of the model is computed in
Section III. Elements of geometric singular perturbation the-
ory required for the study are recalled in Section IV. Section V
presents and illustrates the methodology proposed to predict
the nature of the transient behavior of the model. In Sec-
tion VI, the case where the blowing pressure saturates in the
bistability domain is discussed together with the possible ex-
tension of the method to more realistic models of instruments.
Finally, concluding remarks and some perspectives are given
in Section VII.

II. BACKGROUND ON THE PHYSICAL MODEL OF
REED INSTRUMENT

The model of single reed instrument model considered in
the paper consists in a classical toy model obtained under
strong assumptions (see Section A 1). For sake of concise-
ness, details on the clarinet model (which is classical in musi-
cal acoustics) are presented in the Appendix A.

The state variables are the pressure p at the entrance to the
instrument resonator (i.e., inside the mouthpiece) and its first
time derivative and the bifurcation parameter is the blowing
pressure γ (the control parameter under consideration in this
work). We consider the averaged dynamics of this model, in
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TABLE I. Modal and embouchure parameters. Taken from Ref. 28.
Unless stated otherwise, these parameter values are used throughout
the article.

Modal parameters ε1 = 1/36.6
ω1 = 1440
Z1 = 50

Embouchure parameter ζ = 0.1

which the amplitude x of p is a state variable, with a time-
varying blowing pressure, now considered as another state
variable and denoted y (see Section A 2).

Equations of the averaged dynamics are of the form of
Eq. (2) where the generic functions f and g are now specific
functions defined in Appendix A with now f : R2 → R, i.e.,

ẋ = f (x,y), (3a)
ẏ = εg(y), (3b)

with (x,y) ∈ R2. Eq. (3a) is the equation of the physical in-
strument model and Eq. (3b) describes the time variation of
the blowing pressure y. The function f is derived from the
so-called nonlinear characteristic (NLC) of the instrument ex-
citer which links the volume flow through the reed channel to
the pressure difference between the mouth and the mouthpiece
and has been widely studied in the literature19,31.

III. BIFURCATION DIAGRAM OF THE MODEL

Bifurcation analysis is a common method in musical acous-
tics (see e.g. Refs. 15 and 28). The resulting bifurcation dia-
grams provides useful information beyond the case with con-
stant control parameters and have shown their interest in the
case with slowly time-varying blowing pressure, in particu-
lar in simple models of reed musical instruments7,8,10. Here,
the bifurcation diagram is computed by stating ẏ = 0 with
y = const. = γ in Eq. (3). Fixed points of ẋ = f (x,γ) (with
f given by Eq. (A16)) are computed by solving f (x,γ) = 0.
In practice, we use the function NSolve of the Mathematica
software59.

The trivial fixed point is the equilibrium solution of the
original (non-averaged) dynamics (A7) and the non trivial
fixed points correspond to the two periodic solutions of (A7).
The stability of the fixed points is determined subsequently
from the sign of ∂x f (x,γ).

Fig. 1 shows the bifurcation diagram obtained for the modal
parameters of the air-column and the embouchure parame-
ter ζ given in Table I. Unless stated otherwise, the param-
eter values given in Table I are used throughout the article.
Fig. 1 shows that the model is bistable between γ = 1.11 and
γ = 1.34. Within this range of the parameter value the trivial
fixed point and a non trivial fixed point are stable and, lying
between them, the other non trivial fixed point is unstable.

For a given stable solution, the basin of attraction (BA) is
the set of initial conditions leading to this solution. Here, for
our 1D system ẋ = f (x,γ), the separatrix between the BAs of
the two stable fixed points in the bistability domain is trivial,
and is the unstable fixed point.

Bistability
domain

Stable
Unstable

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 1. Bifurcation diagram of the clarinet obtained by averaging
procedure. A bistability domain is observed between γ = 1.11 and
γ = 1.34 and depicted by an blue colored area. The parameters given
in Table I are used.

IV. ELEMENTS OF GEOMETRIC SINGULAR
PERTURBATION THEORY

In this section some basics of the geometric singular pertur-
bation theory (GSPT)32 are recalled for the planar dynamical
systems called (1,1)-fast-slow system, i.e., with one fast state
variable and one slow state variable.

System (3), which is obtained as detailed in Appendix A, is
considered for sake of illustration. It is a (1,1)-fast-slow sys-
tem where the amplitude x of the mouthpiece pressure is the
fast variable and the blowing pressure y is the slow variable.

Eq. (3) is now written on the slow timescale τ = εt, Eq. (3)
becomes

εx′ = f (x,y) (4a)

y′ = g(y), (4b)

where (x,y)∈R2 and {}′ = dτ{} (the first time derivative with
respect to the slow time τ).

As an illustration, Fig. 2 shows an example of possible time
series x(τ) and p(τ) obtained from the numerical integration
of the averaged System (4) and of the original System (A7)
(replacing γ par y(t ′) and switching from t ′ to t, see Ap-
pendix A), respectively. We considered a linear time variation
of the slow variable, i.e.,

y(τ) = τ + y0, (5)

or y(t) = εt +y0, with y0 = y(0). Therefore, the function g(y)
is simply

g(y) = 1. (6)

We used the parameters given in Table I.
The time profile of the linearly increasing blowing pressure

y(τ) is also represented. Overall, the figure shows an excellent
agreement between time series x(τ) and p(τ) which validates
the averaging procedure.
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FIG. 2. Times series x(τ) (green) and p(τ) (blue) obtained from the
numerical integration of the averaged system (4) and of the original
System (A7) (replacing γ by y(t ′) and switching from t ′ to t, see
Appendix A), respectively. Both are obtained with g(y) = 1. The
time profile of the linearly increased blowing pressure y(τ) is also
represented (red). The parameters given in Table I are used with
ε = 0.0183. The initial conditions are: x(0) = p(0) = 0.1, ṗ(0) = 0
and y(0) = 0.15.

The time evolution of slow-fast systems is characterized by
possible successions of fast epochs and slow epochs. This is
shown in Fig. 2. Indeed, the variable x first decreases rapidly
to zero (first fast epoch). Then during the increase of the
mouth pressure, x follows zero (first slow epoch) and increases
rapidly at τ ≈ 0.65 (second fast epoch). A slow evolution fol-
lows corresponding to oscillations of the mouthpiece pressure
p (second slow epoch). Finally, x decreases again rapidly to
zero at τ ≈ 1.45 (third fast epoch) and follows zero slowly
(third slow epoch).

In the GSPT framework, the so-called slow subsystem is
obtained by stating ε = 0 in Eq. (4), which leads to

0 = f (x,y) (7a)

y′ = g(y). (7b)

The dynamics of (7) approximates the dynamics of (3) (or
(4)) during slow epochs. It is restricted to the critical manifold
M0 defined below.

Definition IV.1 (Critical manifold12). The critical manifold is
defined as

M0 =
{
(x,y) ∈ R2 | x = x⋆(y)

}
(8)

with x⋆(y) the branches of the solution of

f (x⋆(y),y) = 0 (9)

in each interval of y where ∂x f (x,y) does not vanish and
therefore where we can write that f (x,y) = 0 is equivalent
to x = x⋆(y) by the implicit function theorem.

Note that the critical manifold does not depend on the func-
tion g(y).

Points on the critical manifold are equilibria (or fixed
points) of the so-called fast subsystem defined by

ẋ = f (x,y) (10a)
ẏ = 0 (10b)

which describes the dynamics of the variable x for a constant
bifurcation parameter. This corresponds to the static case con-
sidered in Section III.

Definition IV.2 (Kuehn34). Let a∗(y) : R → R be the lin-
earization of the fast vector field (10) on M0, i.e., at x = x⋆(y),
defined as

a⋆(y) = ∂x f (x⋆(y),y) . (11)

A value x⋆(y) of the fast variable x is a hyperbolic equilib-
rium point of (10) if a⋆(y) ̸= 0; stable if a⋆(y)< 0 and unstable
if a⋆(y) > 0. Then, the critical manifold is called attracting
(resp. repelling) if a⋆(y) < 0 (resp. a⋆(y) > 0) for y ∈ I with
I a subset of R. A subset M nh

0 of the critical manifold M0

is normally hyperbolic if for each point P = (x⋆(y),y) ∈ M nh
0

we have a⋆(y) ̸= 0, i.e., M nh
0 is either attracting or repelling37.

A simple form of the Fenichel’s theorem (from13) is given
below. It states that all orbits starting near an attracting branch
of the critical manifold actually converge to an invariant man-
ifold.

Theorem IV.1 (Fenichel 197924, reproduced from Ref. 13).
If the critical manifold M0 is normally hyperbolic (i.e. at-
tracting or repelling), then there exists a manifold Mε , which
is O(ε)-close38 to M0 and invariant under the flow (3)39 (or
(4)). The manifold Mε is normally hyperbolic, i.e., it attracts
or repels neighboring orbits exponentially fast in directions
normal to itself.

For a more complete statement of the Fenichel’s theorem
see e.g. Chap. 3 of Ref. 34.

Definition IV.3 (Kuehn34). The manifold Mε , as obtained by
the Theorem IV.1, is called the slow manifold.

Here and as often, we say “the” manifold Mε . For-
mally, this is incorrect. Indeed, the complete statement of the
Fenichel’s theorem stipulates that Mε is usually not unique.
However, it also stipulates that all these manifolds are ex-
ponentially close to each other, i.e., they lie at a distance38

O(e−K/ε) from each other for some K > 0 with K = O(1).
Consequently, we adopt the convention to refer to Mε as “the”
slow manifold of Eq. (4).

V. PREDICTING THE NATURE OF TRANSIENTS

This section presents the main results of this work.
We consider the (1,1)-fast-slow system (3) (or (4)) whose

critical manifold M0 (see Definition IV.1) has a bistability do-
main as depicted here in Fig. 140.

The bistability domain of M0 is the following subset

UD = R×D (12)
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of R2, with D = (yl,yu). The complement UD is denoted
as U ′

D. In UD the critical manifold M0, defined by Eq. (8),
has two attracting branches x⋆1(y) and x⋆2(y), i.e., a⋆1(y) =
∂x f (x⋆1(y),y)< 0 and a⋆2(y) = ∂x f (x⋆2(y),y)< 0, correspond-
ing to the stable branches of the bifurcation diagram shown
in Fig. 1. Necessarily, M0 has also a repelling branch x⋆3(y)
for which a⋆3(y) = ∂x f (x⋆3(y),y) > 0 and correspnding to the
unstable branch of the bifurcation diagram shown in Fig. 1.
The critical manifold is non normally hyperbolic at y = yl and
y = yu. For the model of reed instrument studied here with the
parameters given in Table I, one has yl = 1.11 and yu = 1.34
(see Fig. 1).

From now on, we will focus on the behavior of the system
before and during the crossing of UD. Consequently, we con-
sider that in Eqs. (3) and (4) one has (x,y) ∈U with U the set
of R2 defined as

U = R× (−∞,yu). (13)

In UD (see Eq. (12)) the critical manifold M0 of (4) has two
coexisting attracting branches M0,a1 and M0,a2 defined as

M0,ai = {(x,y) ∈UD | x = x⋆i (y)} , i = 1,2 (14)

separated by a repelling branch M0,r

M0,r = {(x,y) ∈UD | x = x⋆3(y)} . (15)

Through Fenichel’s Theorem IV.1, Eq. (4) has two attracting
invariant manifolds Mε,ai O(ε)-close to M0,ai (i = 1,2) and
a repelling slow invariant manifold Mε,r O(ε)-close to M0,r
defined as

Mε,ai = {(x,y) ∈UD | x = x̄i(y,ε)} , i = 1,2 (16)

with x̄i(y,ε) = x⋆i (y)+O(ε), and

Mε,r = {(x,y) ∈UD | x = x̄3(y,ε)} (17)

with x̄3(y,ε) = x⋆3(y)+O(ε). We chose arbitrarily that Mε,a1
is the branch corresponding to x⋆1(y) = 0.

Fenichel’s theorem states that the branches of Mε are nor-
mally hyperbolic (either attracting or repelling) and are O(ε)-
close to M0 only if y ∈ D. However, the curves x̄i(y,ε)
(i = 1,2) and x̄3(y,ε), which are given solutions of Eq. (3) or
Eq. (4), continue to exist to the left of D for y < yl. Moreover,
because a solution starting from any point in U is uniquely
determined, one knows (if we assume without loss of gener-
ality that x̄1(y,ε)< x̄3(y,ε)) x̄2(y,ε)> x̄3(y,ε) for y ∈ D, that
x̄1(y,ε)< x̄3(y,ε) and x̄2(y,ε)> x̄3(y,ε) when y < yl. Conse-
quently, a solution of Eq. (3) or Eq. (4) that starts in a point in
U ′

D with x < x̄3(y,ε) (resp. x > x̄3(y,ε)) enters the bistability
domain with also x < x̄3(y,ε) (resp. x > x̄3(y,ε)) and, since
ε is small, will quickly be attracted by Mε,a1 (resp. Mε,a2 ).
Therefore, the solution x̄3(y,ε) in the whole domain U , de-
noted as S and defined as

S = {(x,y) ∈U | x = x̄3(y,ε)} , (18)

splits U into two subsets, denoted as Bi (i = 1,2) and defined
as

B1 = {(x,y) ∈U | x < x̄3(y,ε)} (19)

and

B2 = {(x,y) ∈U | x > x̄3(y,ε)} , (20)

respectively, with therefore

U = B1 ∪S∪B2. (21)

Note that S follows a repelling manifold along its entire
length, therefore through Ref. 54 it can be seen as a maximum
canard solution of (4).

The solution S therefore provides useful information on the
global behavior of the system in U . Indeed, orbits originating
from initial conditions in Bi end up following Mε,ai (i = 1,2)
when the slow variable y crosses the interval D, this indicates
if a sound is played or not during transient (even if this conclu-
sion can be questioned for trajectories initialized very close to
S, this is discussed here). Considering that it allows to predict
a qualitative change in the system behavior, S relates to the so-
called rate-tipping thresholds and quasithresholds. These con-
cepts are rigorously defined in Refs. 56 and 45 for asymptoti-
cally autonomous dynamical system, i.e., with a time-varying
parameter having a finite limit when the time tends to infin-
ity (which is not the case here), by means of a methodology
which combines the compactification technique57 with con-
cepts from GSPT24.

The question of whether a given trajectory will reach Mε,a1
or Mε,a2 is relatively simple if the initial condition of the tra-
jectory is in UD since the Fenichel’s theorem guarantees that
x̄3(y,ε) = x⋆3(y)+O(ε). Moreover, asymptotic analytical ex-
pressions of x̄3(y,ε), in the form of a power series in ε , can be
easily obtained for y ∈ D (see e.g. Ref. 13). These approxima-
tions fail in the vicinity of non hyperbolic points41, especially
here at y = yl.

In the study of bifurcation-induced and rate-induced tran-
sitions (and especially in a musical context when the musi-
cian starts a note) it is more crucial to know which attracting
branch Mε,ai (i = 1 or 2) will be reached for an initial condi-
tion in U ′

D. In this case, the problem is no longer simple be-
cause along S non-hyperbolic points are approached in which
the scaling laws (see Note 40) are not easy to obtain in general
and where bifurcation delay can appear.

Because analytical methods based on finding scaling laws
seem very complicated to generalize to higher dimensional
systems we focus on numerical methods. As a canard solu-
tion, S is very sensitive to parameter variations and it is there-
fore hard to detect using numerical direct time integration.
The general idea is here to first determine S in UD (in which
Fenichel’s theorem guarantees that it is normally hyperbolic
and O(ε)-close to the critical manifold) and subsequently de-
duce S in U ′

D to finally obtain S in U . Because S is repelling
in UD, in the manner of Berglund and Landon14, the simplest
way to compute S is here a time reversal numerical integra-
tion starting in UD close to the critical manifold. Note that in
higher dimensional systems, in which the solutions equivalent
to S will probably be locally saddle-type manifolds (i.e., asso-
ciated with both negative and positive eigenvalues of the fast
subsystem), advanced numerical methods (e.g. continuations
methods) must be used (see the discussion in Section VI B).
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Then, S is here approximated by the numerical integration of

εx′ =− f (x,y) (22a)

y′ =−g(x,y) (22b)

choosing an initial condition (x0,y0) on the upper boundary of
the bistability domain D and on the repelling part M0,r of the
critical manifold, i.e.,

(x0,y0) = (x⋆3(yu),yu). (23)

We use the fact that, through Theorem IV.1, M0,r is O(ε)-
close to the corresponding repelling invariant manifold Mε,r
which is attracting for (22). The numerical integration is then
stopped at the required value of the slow variable y. Note
that, since M0,r is attracting in reverse time, the precise choice
of the initial condition for the reverse time integration is not
crucial as long as it is taken close to the critical manifold.

The previous definitions are especially relevant for purely
transient dynamics when the increasing blowing pressure does
not saturate in the bistability domain. In such a case, the sys-
tem has no fixed points (at least it has none for y < yu) and we
want to know when the bistability zone is crossed whether or
not the original (i.e., non averaged) system oscillates signifi-
cantly. In the case of musical instrument, this corresponds to
the fact that a sound is produced (or not) during the transient.
The case of a blowing pressure that saturates in the bistability
domain is discussed in Section VI A.

Following the methodology described above, S is computed
as the solution of (22) with the initial condition (23) (here this
is (x0,y0) = (x⋆3(yu) = 0.95,yu = 1.34)). The simulation is
stopped when an arbitrary large value of x(τ) is reached. The
resulting times series are shown in Fig. 3(a) (red solid and
dashed lines for x(τ) and y(τ), respectively).

Fig. 3(b) shows the time integration of the direct time Sys-
tem (4) with an initial condition (IC) first in B1 (in blue) and
then in B2 (in green). Both of these initial conditions are cho-
sen close to S. In the case of IC ∈ B1, we observe that x(τ) first
rapidly approaches zero and remains equal to zero over time.
In the case of IC ∈ B2, similarly to the example in Fig. 2,
after a first similar start transient, x(τ) remains close to zero
for a moment and then moves away from it, taking a non-zero
value for a period of time before falling back to zero. The first
(resp. second) situation seems to correspond well to the case
where the trajectory tends to follow Mε,a1 (resp. Mε,a2 ) when
the bistability domain D is crossed. This appears more clearly
in Fig. 3(c) in which the orbits previously computed are rep-
resented in the phase plane and superimposed to the critical
manifold. The stream plot of the vector field Eq. (4) is also
shown. The latter shows, for y < yu, that the orbits starting
with an initial condition in the B1 (resp. B2), i.e., below (resp.
above) S, end up following Mε,a1 (resp. Mε,a2 ).

To better understand what happens in the vicinity of the y-
axis, a logarithmic scale is used in Fig. 3(d) for the ordinates.
This example shows that very small amplitudes are encoun-
tered. In a real-world problems, residual noise would prevent
reaching such low amplitudes. In the future, stochastic stud-
ies (similar to what was done in Ref. 10) would be relevant to
complete this work.

Trajectories with initial conditions in B1 (resp. B2), but very
close to S, follow it in a part of UD before reaching quickly
Mε,a1 (resp. Mε,a2 ). These special solutions can be seen as
canards “without head”54 (resp. “with head”) and are repre-
sented in Fig. 3(c) by an orange (resp. magenta) streamline.
In our application, clearly for long canards “without head”
(see e.g. the orange streamline in Fig. 3(c)) a sound is pro-
duced during transient, in contradiction with the previous con-
clusions (i.e., a trajectory initialized in B1 means no sound).
Moreover, for long canards “with head” (see e.g. the magenta
streamline in Fig. 3(c)) a sound is produced but it is short since
the attracting branch Mε,a2 is reached close to the end of the
bistability domain. We can therefore temper the previous con-
clusion (i.e., a trajectory initialized in B1 means silence and
in B2 means sound during transient) by saying that it is valid
for solutions of (4) that are not canard solutions. The latter
represent a median behavior between silence and sound dur-
ing transient. From this point of view, the transition from a
perceptible sound to a real silence during transient does not
therefore take place through the single trajectory S (the max-
imum canard) but through a family of canards. This situa-
tion has therefore common features with rate-induced tipping
caused by crossing a rate-tipping quasithreshold, as reported
by O’Sullivan et al.45. Even if canards are marginal solutions,
to find out whether this subtlety could have an impact in the
description of a real-life attack transient in single reed instru-
ment, it would be interesting to quantify, for a given value of
ε , the set of initial conditions corresponding to canards (or,
for a given initial condition, the range of ε corresponding to
these special solutions). This is left for future work.

Examples similar to those of Figs. 3(c) and 3(d) are shown
in Fig. 4 for two other values of the parameter ε: ε =
0.00366 < 0.0183 (see Fig. 4(a)) and ε = 0.0732 > 0.0183
(see Fig. 4(b)). This shows that the smaller ε , the shorter (in
terms of y) the above-mentioned transients, and the more vis-
ible the distinction between slow and fast epochs. In Fig. 4(b)
in particular (top, blue line) the orbit is still relatively far from
the Mε,a2 (the y-axis) when the upper bound of the bistability
domain is reached. This highlights the limits of the approach
for large values of ε . Nevertheless, the approach allows to
interpret these borderline situations.

VI. DISCUSSION

A. Case of a blowing pressure saturating in the bistability
domain

In this section the case where the blowing pressure tends to-
wards a finite limit ytarg in the bistability domain is explored.
More precisely, an exponential growth of the blowing pres-
sure is considered using g(y) = ytarg−y (with ytarg ∈ D) which
yields

y(τ) = ytarg +(y0 − ytarg)e−τ , (24)
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FIG. 3. (a) Times series of x(τ) (solid line) and y(τ) (dashed line) obtained by numerical integration of the reverse time System (22) with
g(y) = 1 and an initial condition (IC) given by (23) (red). (b) Time series of the direct time System (4) with a IC first in B1 (in blue) and in
B2 (in green) with B1 and B2 defined by Eqs. (19) and (20), respectively. (c) The corresponding orbits (same colors are used) in the phase
plane and superimposed to the critical manifold. The orbit corresponding to the reverse time integration corresponds to the special solution
S defined by Eq. (18). The stream plot of the vector field Eq. (4) with streamlines colored in light blue is also shown. Special streamlines
corresponding to canard solutions “without head” and “with head" (i.e., following S, the maximal canard, in a part of UD before leaving it on
one side or the other) are represented in magenta and orange, respectively. (d) The same as in (c) but with a logarithmic scale for the ordinates.
The parameters are given in Table I with in addition ε = 0.0183.

with again y0 = y(0). Written in the slow timescale τ , the
system takes the following form

εx′ = f (x,y) (25a)

y′ = ytarg − y. (25b)

This differs from the case studied so far, in which the
pressure does not saturate. Here fixed points are solutions
of f (x,y) = 0 and ytarg − y = 0, that leads to f (x,ytarg) = 0
and x = x⋆i (ytarg) (i = 1,2,3). Therefore, the points P⋆

i =
(x⋆i (ytarg),ytarg) (i = 1,2,3) are the fixed points of Eq. (25).
The Jacobian matrices J(P⋆

i ) of (25) evaluated at each fixed
point P⋆

i are

J(P⋆
i ) =

(a⋆i (ytarg)

ε

∂y f (x⋆i (ytarg),ytarg)

ε
0 −1

)
(26)

whose eigenvalues are µ1 =
a⋆i (ytarg)

ε
and µ2 = −1. Because

a⋆1(ytarg) < 0, a⋆2(ytarg) < 0 and a⋆3(ytarg) > 0 (see Eq. (12)),
P⋆

1 and P⋆
2 are nodes (i.e., µ1µ2 > 0) and P⋆

3 is a saddle (i.e.,
µ1µ2 < 0). These classical definitions of nodes and saddle are
taken from Ref. 50.

The problem therefore becomes a classic problem of find-
ing the basins of attraction of stable fixed points of a two-
dimensional system. In this case, the subsets B1 and B2 are
indeed the basins of attraction of the stable equilibria P⋆

1 and
P⋆

2 and S is the separatrix between these basins. This is the
stable manifold of the unstable fixed point P⋆

3
16. The latter is

again computed using a time reversal simulation. The follow-
ing equation

εx′ =− f (x,y) (27a)

y′ =−ytarg + y. (27b)

is numerically integrated from initial condition chosen as a
small perturbation of P⋆

3 .
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(b) ε̂ = 2 ·10−3, ε = 0.0732.

FIG. 4. The same figures as Figs 3(c) and 3(d) but with (a) ε̂ = 10−4 and therefore ε = 0.00366 and (b) ε̂ = 2 ·10−3 and therefore ε = 0.0732.

An example is shown in Fig. 5. Figures 5(a) and 5(b) show
similar representations as in Figs 3(c) and 3(d), respectively.
In Fig. 5(a) the orange vertical line indicates the target value
ytarg of the mouth pressure. Intersections between this verti-
cal line and the critical manifold correspond to fixed points
of (25). Importantly, the critical manifold is independent of
the function g(y) and therefore identical to the one previously
obtained for a linear growth of y. Still in Fig. 5(a), a zoom
near the unstable fixed point P⋆

3 is performed to highlight its
stable manifold S.

Two orbits obtained by numerical integration of the direct
time system Eq. (25) with (i) a IC first in B1 (in blue) and
(ii) in B2 (in green) also appear in Fig. 5. The corresponding
time series are plotted in Figs. 5(c) and 5(d), respectively. In
the case of IC ∈ B1, the orbit stays close to the y-axis for
a moment and then moves away from it, follows the branch
Mε,a1 of the critical manifold before stopping at P⋆

1 . For IC
∈ B2, it is the point P⋆

2 which ends up being reached. Here
two different transients are observed before the fixed points
are reached.

B. Case of more realistic models

This work aims to study the transient behavior of a sim-
ple model of reed instrument which reduces to a (1,1)-fast-

slow system. However, more realistic models of reed instru-
ments cannot be reduced to (1,1)-fast-slow systems. Working
in the plane makes it easier to illustrate and understand the
non trivial dynamic behavior we are interested in. However,
the results obtained could be generalized to (m,n)-fast-slow
systems. However, there are two things to bear in mind when
the fast subsystem is more than one-dimensional. Firstly, the
critical manifold is also more than one-dimensional and it can
be attracting (if all eigenvalues of the Jacobian matrix of the
fast subsystem evaluated on the critical manifold have nega-
tive real parts), repelling (if all the eigenvalues have positive
reals parts) and saddle-type (if there are eigenvalues with neg-
ative real parts and others with positive real parts). Previous
definitions are taken from Ref. 34 (Chap. 3). Saddle-type in-
variant manifolds cannot be obtained by reversing the time,
as presented above for a purely repelling manifold. Indeed, a
saddle-type manifold in direct time remains saddle-type in re-
verse time. In this case, advanced numerical methods must be
used to compute the equivalent of the solution S, as proposed
for example by Guckenheimer and Kuehn30 and Farjami et
al.23. The second thing to consider is that the fast subsystem
can have other types of solutions than equilibria; such as peri-
odic or quasiperiodic solutions. The complete bifurcation di-
agram of the fast subsystem (including periodic solutions and
if possible quasiperiodic solutions) is not anymore the criti-
cal manifold of the studied (m,n)-fast-slow system which in-
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FIG. 5. (a) Orbit obtained by the numerical integration of the reverse time System (22) with g(y) = ytarg−y and an initial condition (IC) chosen
as a small perturbation of the non trivial fixed point P⋆

3 (in red). This special solution S which is here the stable manifold of the unstable fixed
point P⋆

3 . Two orbits obtained by the numerical integration of direct time system Eq. (25): with a IC first in B1 (in blue) and in B2 (in green).
The corresponding time series are plotted in Figs. 5(c) and 5(d), respectively. The stream plot of the vector field Eq. (4) with streamlines
colored in light blue is also shown is also shown. (b) The same as in (a) but with a logarithmic scale for the ordinates. The parameters are
given in Table I with in addition ε = 0.0732, ytarg = 1.25.

cludes only the equilibrium solutions. In a (m,n)-fast-slow
system, invariant manifolds associated to quasiperiodic solu-
tions of the fast subsystem are more complicated to deal with,
both analytically and computationally. However, periodic so-
lutions can be treated in the same way as equilibrium solu-
tions. First, because theoretically Berglund12 proposes an ana-
logue of Fenichel’s theorem on the existence of an invariant
manifold tracking families of periodic orbits and also because
periodic solutions are easy to compute numerically. As in the
case of equilibrium solutions, for the time reversal method to
be used, the invariant manifold considered to compute S must
be repelling. For periodic solutions, that means that m− 142

of the Floquet multipliers associated with the periodic solu-
tion under consideration have modulus strictly larger than one
(see e.g. Ref. 50, Chap. 7, for details about local stability of
periodic solutions).

We provide here an illustration for the original Sys-
tem (A7) (replacing γ by y(t ′) and switching from t ′ to
t, see Appendix A), a (2,1)-fast-slow system (globally 3-

dimensional) since the 1-dimensional complex Eq. (A13) is
a two-dimensional real equation.

As mentioned above, the trivial fixed point of the fast
subsystem (10) associated to the averaged dynamics (3) is
the equilibrium solution of the original non-averaged dynam-
ics (A7) and non trivial fixed points correspond to periodic
solutions of (A7). In the bistability domain the fast sub-
system associated to the original dynamics has thus a stable
equilibrium solution, a stable and an unstable periodic solu-
tions. The manifolds corresponding to these periodic solu-
tions are represented in Fig. 6 by gray and black surfaces in
the (y, p, ṗ)-space, respectively. In practice these manifolds,
which also represent the bifurcation diagram of the original
dynamical system, are deduced from the critical manifold of
Eq. (3). Indeed, in the (p, ṗ)-plane periodic solutions of the
non-averaged dynamics (A7) is a circle whose radius is equal
to the value of the corresponding fixed point of Eq. (3). The
manifolds of the periodic solutions of the latter are then ob-
tained by rotation of the critical manifold of Eq. (3) around
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the y-axis.
The equivalent of the solution S (see Eq. (18)) for the orig-

inal system (A7) (also denoted here as S for the sake of con-
ciseness) is here the extension of a two-dimensional repelling
slow invariant manifold associated to the unstable periodic so-
lution of the fast subsystem. In a two-dimensional system an
unstable periodic solution is associated to two Floquet mul-
tipliers, one is unity42 and the other has modulus larger than
one. Therefore, the associated invariant manifold is repelling
and the reverse time procedure can be used.

In Fig. 6 the solution S is shown in red in the (y, p, ṗ)-space.
Although S is now two-dimensional, here we computed only
one solution of the time-reversed system for initial conditions
on the periodic solution at y = yu. Here, oscillations are suf-
ficiently fast for S to be represented correctly by a single pe-
riodic orbit. Here also S splits the three-dimensional phase
space into two subsets, here again denoted as B1 and B2 for
the sake of conciseness.

Results of time-domain simulation of the (2,1)-fast-slow
original system (in direct time) with two different sets of ini-
tial conditions, one in B1 (in blue) and the second one in B2
(in green) are also shown in Fig. 6. The parameters and IC are
the same as in Fig. 3 (same parameters and initial conditions)
and similar observations can be made: when IC ∈ B1, the orbit
first winds around the y-axis and remains in the vicinity of it.
Conversely, when IC ∈ B2, after a first similar start transient,
the orbits stays on vicinity of the y-axis for a while and then
moves away to reach the manifold associated to the stable pe-
riodic solution. The simulation is carried out over a shorter
period of time than in Fig. 3. This is why we do not observe
the orbit falling back to zero.

VII. CONCLUSION

In this paper the behavior of a class of one-dimensional
non-autonomous dynamical systems has been investigated.
These systems are obtained by slowly varying over time the
bifurcation parameter of the corresponding autonomous sys-
tems with constant bifurcation parameter (referred to as the
fast subsystem throughout this article). More precisely, we
focused on the case where the time-varying parameter crosses
a bistability domain of the corresponding autonomous system.
This is motivated by the application context of self-sustained
musical instruments, with a focus here on a simple model of
reed instrument (such as the clarinet). Indeed, initial acous-
tical transients (at the beginning of a note) are known to be
of crucial importance in a musical context and they depend
directly on attack transients on the playing parameter as con-
trolled by the musician.

In the bistability domain, the non-autonomous system has
attracting invariant manifolds (resp. a repelling invariant man-
ifold) associated with the two stable branches (resp. unstable
branch) of the bifurcation diagram of the corresponding au-
tonomous system. We have shown that knowledge of a single
solution of the system under study (in which the time-varying
parameter is considered as another state variable) can be used

FIG. 6. The manifolds of (A7) associated to the stable and unstable
periodic solutions of the fast subsystem of the original non-averaged
dynamics (A7) are depicted by gray and black surfaces, respectively.
Orbit obtained by the numerical integration of the reverse time sys-
tem associated to Eq. (A7) (replacing γ by y(t ′) and switching from
t ′ to t, see Appendix A) and an IC on the circle representing the pe-
riodic solution in the (p, ṗ)-plane at y = yu (in red). This represents
the solution S of the 3-dimensional original dynamics. Two orbits
obtained by the numerical integration of direct time system: with a
IC first in B1 (in blue) and in B2 (in green). Same parameters as in
Fig. 3.

to describe its global behavior. This solution, whose section
in the bistability domain is the repelling invariant manifold,
splits the phase space into two subsets which have the follow-
ing feature: a solution with an initial condition in one of these
subsets ends up following one of the attracting manifolds and
a solution with an initial condition in the other subset ends
up following the other attracting manifold. In practice, the
threshold solution has been computed using a numerical re-
verse time integration with relevant initial conditions.

From an application point of view, this allows to predict the
nature of the acoustical transient associated to a given attack
transient on the control parameter, for example in the case
considered in this article to discriminate between transients
where no sound is produced and transients where a sound is
produced. As such, these results might pave the way towards a
better understanding and modeling of the transient dynamics
of musical instruments which may be of interest for virtual
prototyping and instrument making.

As a first perspective, still on low dimensional systems,
it would be interesting to develop analytical methods that
would make it possible to relate the characteristics of the
time-varying parameter to the nature of the observed regime.
Moreover, in the context of real-life applications, the method
should be extended to more complex dynamical systems. In
this case, if the solutions (stable and unstable) of the multi-
stable autonomous system are more complex than equilibria,
the challenge will be to detect the unstable solutions to then
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deduce the possible threshold solution of the non-autonomous
system. This implies to use more advanced numerical ap-
proaches such as continuation methods. Secondly, multistable
systems and systems with time-varying parameter undergoing
so-called bifurcation delay are known to be very sensitive to
noise. Therefore, the influence of noise should be studied in
the future.

From a more general point of view, we believe that the re-
sults and method presented in the article might be of interest
beyond the specific application considered here, for example
in physics, neurosciences or climate sciences. In particular,
our results strongly relate to the phenomena of critical tran-
sitions, rate-induced and bifurcation-induced tipping which
have attracted considerable attention in the last years, but with
the focus here on the transient dynamics.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Appendix A: Derivation of the model

1. Classical single reed instrument model

Sound production by single reed instruments is classically
modeled through the nonlinear coupling between two linear
components5,15,27: the reed and the air-column inside the in-
strument. While blowing air through the reed channel into the
instrument, the instrumentalist provides a quasi-static source
of energy. The instrument and the player constitute an au-
tonomous dynamical system. When the trivial equilibrium
solution of this system becomes unstable, a sound is pro-
duced26,51,58.

Since the lowest resonance frequency of the reed is one
order of magnitude higher than the sound frequency for
many notes, the reed is often modeled as a lossless stiffness
spring4,44. Therefore its position relative to rest is propor-
tional to the pressure drop across the reed, i.e., the pressure
difference between the mouth and the mouthpiece of the in-
strument. The linear pressure response of the air column P to
the volume flow U through the reed channel is given in the
frequency domain through the input impedance of the air col-
umn Z

P(ω) = Z(ω)U(ω), (A1)

where ω is the angular frequency. We point out that the model
presented in the appendix already considers a dimensionless
pressure and flow (see Chap. 9 of Ref. 15 for more details on
the model).

The contribution at the input of the instrument of the (infi-
nite) series of modes of the air column is taken into account
in Z(ω). For computational reasons, the series is truncated to
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FIG. 7. Comparison between the function F̂(p,γ) given by Eq. (A4)
(blue line) and its polynomial fitting F(p,γ) (green line) as functions
of the pressure difference γ − p.

N modes, where N is an integer:

Z(ω) =
N

∑
n=1

Zn
jεnωnω

ω2
n + jεnωnω −ω2 , (A2)

with Zn, ωn and εn the modal parameters, respectively the
modal factor, the resonance angular frequency and the inverse
of the quality factor of the nth peak of the impedance (corre-
sponding to the nth mode of the air column). Eq. (A2) can be
written in the time domain

dt ′′t ′′ pn + εnωndt ′′ pn +ω
2
n pn = Znεnωndt ′′u, ∀n ∈ [1,N],

(A3)
in which t ′′ is used to denote the original timescale, u is the in-
verse Fourier transform of U and pn is such that p = ∑

N
i=1 pn,

where p is the inverse Fourier transform of P51 and corre-
sponds to the time evolution of the mouthpiece pressure.

Through Bernoulli’s principle, the volume flow through the
reed channel u is related nonlinearly to the reed channel open-
ing and the pressure difference between the mouth and the
mouthpiece19,31

u = F̂(p,γ) = ζ (1+ p− γ)
√

|γ − p|sgn(γ − p)H(1+ p− γ)
(A4)

where H is the Heaviside function, γ is the dimensionless
pressure in the mouth of the musician and ζ a dimension-
less parameter accounting for many embouchure parameters.
The parameters γ and ζ are the control (or bifurcation) pa-
rameters of the model. The relation (A4) is called the non-
linear characteristic (NLC) of the instrument exciter. In
this work a polynomial fitting of the function F̂(p,γ) (see
Eq. (A4)), denoted F(p,γ), is obtained using the function
InterpolatingPolynomial of the Mathematica software59

(see Fig. 7).
Using the function F(p,γ), Eq. (A3) can be written using
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only the pressure p as follows

dt ′′t ′′ pn + εnωndt ′′ pn +ω
2
n pn −Znεnωndt ′′ pn∂pF(p,γ) = 0,

∀n ∈ [1,N]. (A5)

A minimal model of a reed instrument including a single
mode of the air-column is obtained by stating N = 1. In this
case (A5) becomes

dt ′′t ′′ p+ ε1ω1dt ′′ p+ω
2
1 p−Z1ε1ω1dt ′′ p∂pF(p,γ) = 0 (A6)

In this case (N = 1), since p1 = p, p1 is replaced by p in
Eq. (A6). This is clearly a minimal yet useful model of sound
production in reed instruments. Indeed, it takes into account
the two main control parameters, γ et ζ , adjusted by the mu-
sician and describes the physical mechanism through which
sound emerges from the trivial equilibrium (i.e. silence) when
a resonance of the air column is excited by an incoming flow.
We finally introduce the dimensionless time t ′ = ω1t ′′, so
Eq. (A6) takes the form of the following self-excited oscil-
lator

dt ′t ′ p+ ε1h(p,dt ′ p,γ)+ p = 0. (A7)

where

h(p,dt ′ p,γ) = dt ′ p(1−Z1∂pF(p,γ)) . (A8)

2. Averaged dynamics with a slowly time-varying control
parameter

Eq. (A7), in the phase space (p,dt ′ p), is transformed to a
slowly varying system using the following complex represen-
tation introducing a new variable ξ as

ξ e jt ′ = dt ′ p+ jp (A9)

with j2 =−1. Combining Eq. (A9) and its complex conjugate
yields the expressions of p and dt ′ p as functions of ξ

p =
ξ e jt ′ −ξ ∗e− jt ′

2 j
, (A10)

dt ′ p =
ξ e jt ′ +ξ ∗e− jt ′

2
, (A11)

where ξ ∗ is the complex conjugate of ξ . Deriving Eq. (A9)
with respect to t ′ and using Eq. (A11) give dt ′t ′ p as

dt ′t ′ p = dt ′ξ e jt ′ + jξ e jt ′ − j
2

(
ξ e jt ′ +ξ

∗e− jt ′
)
. (A12)

Substituting Eqs. (A10), (A11) and (A12) into Eq. (A7)
yields the following complex non-autonomous system

dt ′ξ =−ε1h

(
ξ e jt ′ −ξ ∗e− jt ′

2 j
,

ξ e jt ′ +ξ ∗e− jt ′

2
,γ

)
e− jt ′ .

(A13)

Then, stating ξ = xe jϕ and φ = t ′+ϕ and separating real
and imaginary parts of each side of Eq. (A13) gives

dt ′x =−ε1h(xsinφ ,xcosφ ,γ)cosφ , (A14a)

dt ′φ = 1+ ε1h(xsinφ ,xcosφ ,γ)
sinφ

x
. (A14b)

Since 0 < ε1 ≪ 1, Eq. (A14) is simplified by means of an
averaging method (see Chap. 7 of Ref. 49) to

dt ′x = ε1 f (x,γ), (A15a)
dt ′φ = 1 (A15b)

where x and φ are uncoupled and

f (x,γ) =− 1
2π

∫ 2π

0
h(xsinα,xcosα,γ)cosαdα. (A16)

Details on the averaging procedure are provided in Section B.
The integral in Eq. (A16) is generally hard to solve analyti-

cally, except if the function h is assumed to have a polynomial
form. This is the case here using the polynomial fitting F(p,γ)
of the NLC.

The dynamics of the mouth pressure (now denoted y) is
finally added as dt ′y = ε̂g(y). Then, assuming ε̂/ε1 ≪ 1,
switching the time from t ′ to t = ε1t ′ and using the notation
{̇}= dt{}, the following system is obtained

ẋ = f (x,y) (A17a)
ẏ = εg(y) (A17b)

where ε is defined as

ε =
ε̂

ε1
(A18)

which is the relevant small parameter to use for this model.

Appendix B: Details on the averaging procedure

Omitting here, for the sake of clarity, the dependence in γ ,
and introducing

X(x,φ) =−h(xsinφ ,xcosφ ,γ)cosφ , (B1a)

Ω(x,φ) = h(xsinφ ,xcosφ ,γ)
sinφ

x
, (B1b)

Eq. (A14) becomes

dt ′x = ε1X(x,φ), (B2a)
dt ′φ = 1+ ε1Ω(x,φ). (B2b)

The latter is a (1,1)-fast-slow systems with t ′ the fast
timescale, x the slow variable and φ the fast variable. The
principle of the average procedure (see Chap. 7 of Ref. 49),
consists in assuming the following form for the variable x

x = v+ ε1u(v,φ) (B3)

with u(v,φ) a function 2π−periodic in φ .
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Using Eq. (B3) and

dt ′u = (1+ ε1Ω(v+ ε1u,φ))∂φ u+dt ′v∂vu, (B4)

Eq. (B2a) becomes

dt ′v(1+ ε1∂vu)+ ε1 (1+ ε1Ω(v+ ε1u,φ))∂φ u =

ε1X(v+ ε1u,φ). (B5)

Each ε1-dependent function in (B5) is expanded in a first-
order Taylor series around ε1 = 0, that yields

dt ′v+ε1
(
1+ ε1Ω(v,φ)+O(ε2

1 )
)
(1−ε1∂vu+O(ε2

1 ))∂φ u=(
ε1X(v,φ)+O(ε2

1 )
)
(1− ε1∂vu+O(ε2

1 )) (B6)

which simplifies into

dt ′v = ε1
(
X(v,φ)−∂φ u

)
+O(ε2

1 ) (B7)

Then one assumes a function u(v,φ) which satisfies the fol-
lowing equation

∂φ u = X(v,φ)− f (v). (B8)

Integrating (B8) with respect to φ from 0 to 2π and because
u(v,φ) is 2π-periodic in φ we obtain

f (v) =
1

2π

∫ 2π

0
X(v,α)dα, (B9)

and then f (v) is the average of X(v,φ) as defined in Eq. (A16).
Substituting (B8) into (B7) and adding Eq. (B2b) we obtain

a simplified dynamical system with the following form

dt ′v = ε1 f (v)+O(ε2
1 ) (B10a)

dt ′φ = 1+O(ε1). (B10b)

Finally, consistently with 0 < ε1 ≪ 1, we have ε1 f (v) +
O(ε2

1 ) ≈ ε1 f (v), 1 + O(ε1) ≈ 1 and v ≈ x and therefore
Eq. (A15) is proven.
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