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Abstract

We investigate the behavior of one-dimensional non-autonomous dynamical systems obtained by slowly varying
over time the bifurcation parameter of the corresponding autonomous systems, i.e., whose bifurcation parameter is
constant. In this context, the study focuses on the case for which the time-varying parameter crosses the bistability
domain of the corresponding autonomous system. Considering the time-varying parameter as a new (slow) state
variable, the considered non-autonomous one-dimensional system becomes a two-dimensional fast-slow system. In the
bistability domain, the latter has attracting manifolds (resp. a repelling manifold) associated with the two stable
branches (resp. unstable branch) of the bifurcation diagram of the corresponding autonomous system with constant
parameter. In the framework of the geometric singular perturbation theory, we define the separatrix in the phase space
between what we call the dynamic basin of attraction of the attracting manifolds. Reverse time numerical integration
is used to practically compute this separatrix. Finally the proposed methodology is illustrated on a simple musical
reed instrument model. This highlights which asymptotic regime is reached (played note or silence) in the bistability
domain, depending on how the musician’s control is varied over time.

Multistability is a common phenomenon in non-
linear dynamics. It corresponds to the coex-
istence, in a dynamical system, of stable solu-
tions for a given set of parameters. A multi-
stable system can switch abruptly from a state
to another when a parameter is slightly varied,
a phenomenon sometimes referred to as critical
transition. In this context, we investigate the
behavior of one-dimensional non-autonomous dy-
namical systems obtained by slowly varying over
time a bifurcation parameter of the correspond-
ing autonomous systems, i.e., whose bifurcation
parameter is constant. The study focuses on
the case for which the time-varying parameter
crosses the bistability domain of the correspond-
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ing autonomous system. Depending on the char-
acteristics of the time-varying parameter, when
the bistability domain is crossed, the system can
remain close to its current position or leave it
abruptly to reach another parameter dependent
attractor (called attracting manifold in the pa-
per). Considering the time-varying parameter as
another (slow) state variable and then the stud-
ied model as a fast-slow system, we define and
compute the separatrix in the phase space (which
includes the time-varying parameter as another
state variable) between what we call the dynamic
basin of attraction of a given attractor, i.e., the
set of initial conditions leading the system to this
attractor. We illustrate our methodology using
a simple bistable model of reed musical instru-
ment.
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1 Introduction

Nonlinear dynamical systems can possess coexisting sta-
ble solutions (or states) for a given set of parameters.
This phenomenon is called multistability and can imply
stable states of different nature such as equilibria, peri-
odic, quasiperiodic and chaotic solutions. To illustrate
the concepts considered below we consider the following
n-dimensional autonomous (i.e., with no explicit depen-
dence on time) dynamical system

ẋ = f(x, γ), (1)

with x ∈ Rn the vector of state variables, γ the considered
control parameter and f a nonlinear function.

Multistability can be related to the phenomenon of
“critical transition”, i.e., a sudden and large change in
the output of the system induced by a small change in
the input. The link between multistability and criti-
cal transition is discussed in the survey article [22] and
applications are presented in physics, neuroscience, cli-
mate science, biology and ecology. Critical transitions
are also referred to as “tipping points”, in particular in
climate sciences, and can relate to different phenomena.
Ashwin et al. [3] propose three categories based on the
mathematical description of the underlying mechanisms:
noise-induced transitions, bifurcation-induced transitions
and rate-induced transitions. Noise-induced transitions,
where noise make a multistable system switch from one
stable state to another, are not considered in the present
article. Then there are the bifurcation-induced transi-
tions (or dynamic bifurcations [6]) and the rate-induced
transitions. Both of these transitions consider (n + 1)-
dimensional autonomous systems of the following form

ẋ = f(x, y), (2a)
ẏ = ϵg(y), (2b)

associated to Eq. (1) but with a time-varying bifurcation
parameter y which therefore becomes a new state vari-
able. The time variation of the latter is slow compared
to the original time scale of Eq. (1); this is accounted
for here by the small dimensionless parameter ϵ in the
right-hand side of Eq. (2b). y is called the slow variable,
the variables of the original state vector x are called the
fast variables and Eq. (2) is a fast-slow dynamical sys-
tem. Solutions of Eq. (1) (both transient and stationary)
are no more solutions of Eq. (2) since y is no c onstant
in time anymore. However, stable stationary solutions
of Eq. (1) are associated with attracting invariant man-
ifolds of Eq. (2) that evolve in its (n + 1)-dimensional
phase space and attract orbits which are in their vicin-
ity [21, 27]. Bifurcation-induced transitions correspond to

the slow variable y passing through a bifurcation point γ∗

at which the considered stable solution of Eq. (1) losses
stability. At this point, the corresponding manifold of
Eq. (2) ceases to be attracting and in general the transi-
tion to another attracting manifold does not appear at γ∗

but at a larger value through a phenomenon of bifurcation
delay [11, 34, 28]. The rate-induced transitions, identified
by Wieczorek et al. [35], are transitions between stable at-
tracting manifolds of Eq. (2) without the presence of noise
or a bifurcation point. In this case the critical transition
is only due to the time variation of parameter under con-
sideration. Considering equilibria of Eq. (1) (becoming
a one-dimensional manifold of Eq. (2)), Ashwin et al. [3]
derived the critical value of the parameter ϵ above which
the orbit of the system leaves the attracting manifold it
was going along.

In Ref. [2], Ashwin et al. introduce a formalism that
uses so-called pullback attractors to describe the phenom-
ena of bifurcation-induced transitions and rate-induced
transitions, again considering equilibria. The method
is extended by Alkhayoun and Ashwin [1] to the case
of stable periodic solutions of Eq. (1), becoming two-
dimensional manifolds of Eq. (2). In a realistic physi-
cal system, critical transitions may be associated with a
combination of the three mechanisms mentioned above.

The works cited in the previous paragraph focus on
the conditions causing an orbit to leave the neighbor-
hood of a manifold that it was following. Therefore,
these works deal with the beginning of the critical transi-
tion. However, the question of the end of the transition,
when several other attracting manifolds can be poten-
tially reached, is poorly addressed in the literature. In
the case of dynamical system with constant parameters
(i.e., of type (1)) for an asymptotically stable solution to
be reached, the initial conditions must be in its basin of
attraction, i.e., the set of initial conditions leading to it.
What happens to the notion of basin of attraction when
the control (or bifurcation) parameter slowly varies over
time, i.e., when Eq. (2) is considered? In other words,
what happens to an orbit of Eq. (2) when it leaves the
neighborhood of a given attracting manifold (or a mani-
fold which has been locally attracting) and several other
attracting manifolds exist?

In this paper, we propose first elements of response
to these questions. To do so, (i) we consider a one-
dimensional original system (i.e., x ∈ R in Eq. (1) and
(2)) and (ii) we consider the framework of the geomet-
ric singular perturbation theory (GSPT) [21, 27] which
provides general results on the behavior of fast-slow dy-
namical systems. In this context, the concepts of dy-
namic basin of attraction (DBA) and of the separatrix
between two DBAs are introduced. Basically, these con-
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cepts can be exemplified as follows: if, in the case of a
one-dimensional nonlinear ODE with a constant control
parameter (i.e., of type (1) with x ∈ R), the system is
bistable with two coexisting stable equilibria whose basins
of attraction, called here static basin of attraction (SBA),
are separated by an unstable equilibrium; then, for the
same ODE with a slowly time-varying control parameter
(i.e., of type (2) with x ∈ R) the stable equilibria be-
comes attracting one-dimensional manifolds that evolve
in the two-dimensional phase space. Depending on the
initial condition considered, one or other of these man-
ifolds is reached by the system orbit. The set of initial
conditions, in the two-dimensional phase space, leading to
a given attracting manifold constitutes the DBA of this
manifold. Logically, the Separatrix Between two DBA
(SDBA) also becomes a one-dimensional manifold. The
present research aims (i) to propose mathematical def-
initions of DBA and SDBA and to propose a method
to compute the SDBA and (ii) to illustrate the method
on a toy model of reed instrument with a linearly time-
increasing mouth pressure parameter.

Self-sustained musical instruments - such as wind in-
struments, bowed string instruments or singing voice - are
nonlinear dynamical systems known to produce a diver-
sity of different sound regimes. An important specificity
is that sound production in a musical context is associated
to a time-varying control. Indeed, control parameters are
modified continuously by the instrument player. In par-
ticular, wind instruments players control air pressure in
their mouth with variations over time finely tuned, first to
start the sound and then to obtain the desired sound ef-
fect. However, in general, when the corresponding math-
ematical models of musical instruments are analyzed, the
control parameters are assumed to be constant. Con-
sequently, the instruments are modeled by autonomous
nonlinear systems of differential equations (ODEs) which
can have a wealth of solutions including equilibria, pe-
riodic and quasiperiodic solutions. In this context, the
silence corresponds to the trivial equilibrium of the in-
strument model and a musical note to a periodic solution.
In general, for a given set of constant control parameters,
this desired periodic solution is not the only stable so-
lution of the model. In practice, from the point of view
of instrument playing, the size of the SBA of a given pe-
riodic solution can be linked to the ease with which the
corresponding note can be played. For example, in the
case of a reed instrument such as the saxophone, musi-
cians know that for a given fingering corresponding to a
low pitch note, the first harmonic of the desired note are
sometimes easier to play. It is also on this principle of
mulistability that brass instruments, such as trumpets,
operate.

In physical models of wind musical instruments, state
variables are classically the modal pressures and their
derivatives: these are the fast variables of Eq. (2). The
considered control parameter is the pressure inside the
mouth of the musician. We assume that it varies slowly
over time and it is considered as another state variable:
the slow variable such as y for Eq. (2). In this context,
previous theoretical works by the authors [7, 8, 10] in-
vestigated the emergence of oscillations in simple models
of reed instruments in which the pressure in the mouth,
which is the control parameter, varies over time. This al-
lowed to interpret experimental results [9] as the manifes-
tation of the bifurcation delay phenomenon. After study-
ing this in the case of the appearance of oscillations, we
investigate here the influence of the temporal dynamics of
the mouth pressure on the nature of the regime reached in
the presence of multistability. A problem that has been
preliminary studied by Colinot et al. [18] through a pos-
teriori observations on results of direct time numerical
integration of a saxophone model. Authors showed that
different regimes may be reached by modifying the mouth
pressure dynamics. Here, we focused on the underlying
phenomenons allowing us to interpret these kinds of ob-
servations. Although the dynamics observed in this par-
ticular system corresponds to a bifurcation-induced tran-
sition, the concepts of BDA and SDBA might also be of
interest in the case of rate-induced transitions.

The paper is organized as follows. In Section 2, the sin-
gle reed instrument model under consideration is briefly
presented. The static bifurcation diagram of the model
is computed in Section 3. Section 4 provides elements
of geometric singular perturbation theory needed for the
mathematical definition of the DBA and of the separatrix
between two of them. The latter are defined in Section 5.1
in which the method used to compute the separatrix is
also presented. The method is then illustrated on the
studied model in Section 5.2. A discussion about the case
of a blowing pressure which saturates in the bistability
domain and about the extension of the method to more
realistic models of instruments is proposed in Section 6.
Finally, concluding remarks and some perspectives are
given in Section 7.

2 Background on the physical model of reed in-
strument

The model of single reed instrument model considered in
the paper consists in a classical toy model obtained under
strong assumptions (see Section A.1). We focus here on
dynamic basins of attraction mentioned above and de-
scribe a method to define and compute the separatrix
between two basins. For sake of conciseness, details on
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the clarinet model (which is classical in musical acoustics)
are presented in the Appendix A.

The state variables are the pressure p at the entrance
to the instrument resonator (i.e., inside the mouthpiece)
and its first time derivative and the bifurcation parame-
ter is the blowing pressure γ. We consider the averaged
dynamics of this model, in which the amplitude x of p
is a state variable, with a time-varying blowing pressure
(the control parameter under consideration in this work),
now considered as another state variable and denoted y
(see Section A.2).

Equations of the averaged dynamics are of the form of
Eq. (2), i.e.,

ẋ = f(x, y), (3a)
ẏ = ϵg(y), (3b)

with (x, y) ∈ R2. Eq. (3a) is the equation of the physical
instrument model and Eq. (3b) describes the time varia-
tion of the blowing pressure y. The function f is derived
from the so-called nonlinear characteristic (NLC) of the
instrument exciter which links the volume flow through
the reed channel to the pressure difference between the
mouth and the mouthpiece and has been widely studied
in the literature [26, 19].

In the following sections, we refer to static when the
mouth pressure is time-constant (i.e. ẏ = 0) and to
dynamic when the mouth pressure is time-varying (i.e.
ẏ = ϵg(y)).

3 Static bifurcation diagram of the model

The static bifurcation diagram is a commonly used tool
in musical acoustics (see e.g. Refs. [16, 25]). It pro-
vides useful information beyond the purely static case,
and has shown its interest in the dynamic case, in par-
ticular in a model of reed musical instrument [10, 7, 8].
Here, the static bifurcation diagram is computed by stat-
ing ẏ = 0 with y = const. = γ in Eq. (3). Fixed points
of ẋ = f(x, γ) (with f given by Eq. (36)) are computed
by solving f(x, γ) = 0. In practice, we use the function
NSolve of the Mathematica software [37].

The trivial fixed point is the equilibrium solution of
the original (non-averaged) dynamics (27) and the non
trivial fixed points correspond to the periodic solution
of (27). The stability of the fixed points is determined
subsequently from the sign of ∂xf(x, γ).

Fig. 1 shows the static bifurcation diagram obtained
for the modal parameters of the air-column and the em-
bouchure parameter ζ given in Table 1. Unless stated
otherwise, the parameter values given in Table 1 are used
through out the article. Fig. 1 shows that the model is

Table 1. Modal and embouchure parameters. Taken from
Ref. [25]. Unless stated otherwise, these parameter values are
used through out the article.

Modal parameters ϵ1 = 1/36.6
ω1 = 1440
Z1 = 50

Embouchure parameter ζ = 0.1

Bistability
domain

Stable
Unstable

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1. Static bifurcation diagram of the clarinet obtained
by averaging procedure. A bistability domain is observed be-
tween γ = 1.11 and γ = 1.34 and depicted by an blue colored
area. The parameters given in Table 1 are used.

bistable between γ = 1.11 and γ = 1.34. Within this
range of the parameter value the trivial fixed point and
a non trivial fixed point are stable and, lying between
them, the other non trivial fixed point is unstable.

For a given stable solution, the static basin of attrac-
tion (SBA) is the set of initial conditions leading to this
solution. Here, for our 1D system ẋ = f(x, γ), the sepa-
ratrix between the SBAs of the two stable fixed points in
the bistability domain is trivial, and is the unstable fixed
point.

4 Elements of geometric singular perturbation
theory

In this section some basics of the geometric singular per-
turbation theory (GSPT) [27] are recalled. System (3) is
considered for sake of illustration. In the GSPT frame-
work (i) the latter is a (1, 1)-fast-slow system, i.e., a dy-
namical system with one fast variable (x, here the ampli-
tude of the mouthpiece pressure) and one slow variable
(here y, the blowing pressure) and (ii) t represents the
fast timescale. Most of these elements of GSPT are repro-
duced from Berglund and Gentz [12, 13] and Kuehn [29].
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Eq. (3) is now written on the slow timescale τ = ϵt,
Eq. (3) becomes

ϵx′ = f(x, y) (4a)
y′ = g(y), (4b)

where {}′ = dτ {} (the first time derivative with respect
to the slow time τ).

As an illustration, Fig. 2 shows an example of possible
time series x(τ) and p(τ) obtained from the numerical
integration of the averaged system (4) and of the original
system (27) (replacing γ par y(t′) and switching from t′ to
t, see Appendix A), respectively. We considered a linear
time variation of the slow variable, i.e.,

y(τ) = τ + y0, (5)

or y(t) = ϵt + y0, with y0 = y(0). Therefore, the function
g(y) is simply

g(y) = 1. (6)
We used the parameters given in Table 1.

The time profile of the linearly increasing blowing pres-
sure y(τ) is also represented. Overall, the figure shows
an excellent agreement between time series x(τ) and p(τ)
which validates the averaging procedure.

The time evolution of slow-fast systems is characterized
by possible successions of fast epochs and slow epochs.
This is shown in Fig. 2. Indeed, the variable x first de-
creases rapidly to zero (first fast epoch). Then during
the increase of the mouth pressure, x follows zero (first
slow epoch) and increases rapidly at τ ≈ 0.65 (second fast
epoch). A slow evolution follows corresponding to oscil-
lations of the mouthpiece pressure p (second slow epoch).
Finally, x decreases again rapidly to zero at τ ≈ 1.45
(third fast epoch) and follows zero slowly (third slow
epoch).

In the GSPT framework, the so-called slow subsystem
is obtained by stating ϵ = 0 in Eq. (4), which leads to

0 = f(x, y) (7a)
y′ = g(y). (7b)

The dynamics of (7) approximates the dynamics of (3)
(or (4)) during slow epochs. It is restricted to the critical
manifold M0 defined below.
Definition 4.1. The critical manifold is defined as

M0 =
{

(x, y) ∈ R2 | x = x⋆(y)
}

(8)

with x⋆(y) the branches of the solution of

f (x⋆(y), y) = 0 (9)

in each interval of y where ∂xf(x, y) does not vanish and
therefore where we can write that f(x, y) = 0 is equiva-
lent to x = x⋆(y) by the implicit function theorem.

0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

P
re
ss
ur
e

Figure 2. Times series x(τ) (green) and p(τ) (blue) obtained
from the numerical integration of the averaged system (4) and
of the original system (27) (replacing γ by y(t′) and switching
from t′ to t, see Appendix A), respectively. Both are obtained
with g(y) = 1. The time profile of the linearly increased blow-
ing pressure y(τ) is also represented (red). The parameters
given in Table 1 are used with ϵ = 0.0183. The initial condi-
tions are: x(0) = p(0) = 0.1, ṗ(0) = 0 and y(0) = 0.15.

Note that the critical manifold does not depend on the
function g(y).

Points on the critical manifold are equilibria (or fixed
points) of the so-called fast subsystem defined by

ẋ = f(x, y) (10a)
ẏ = 0 (10b)

which describes the dynamics of the variable x for a con-
stant bifurcation parameter. This corresponds to the
static case considered in Section 3.

Definition 4.2. Let a⋆(y) be the linearization of the fast
vector field (10) on M0, i.e., at x = x⋆(y), defined as

a⋆(y) = ∂xf (x⋆(y), y) (11)

A value x⋆(y) of the fast variable x is a hyperbolic
equilibrium point of (10) if a⋆(y) ̸= 0; stable if a⋆(y) < 0
and unstable if a⋆(y) > 0. Then, the critical manifold
is called attracting (resp. repelling) if a⋆(y) < 0 (resp.
a⋆(y) > 0) for y ∈ I with I a subset of R. A subset Mnh

0
of the critical manifold M0 is normally hyperbolic if for
each point P = (x⋆(y), y) ∈ Mnh

0 we have a⋆(y) ̸= 0, i.e.,
Mnh

0 is either attracting or repelling1.

1Normally means that each point of M0 must be hyperbolic
only in the the direction normal (i.e., non tangent) to itself (see
e.g. Definition 2.3.4 and the text below of Ref. [29]).
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A simple form of the Fenichel’s theorem (from [13]) is
given below. It states that all orbits starting near an at-
tracting branch of the critical manifold actually converge
to an invariant manifold.

Theorem 4.1 (Fenichel 1979). If the critical manifold
M0 is normally hyperbolic (i.e. attracting or repelling),
then there exists a manifold Mϵ, which is O(ϵ)-close2

to M0 and invariant under the flow (3)3 (or (4)). The
manifold Mϵ is normally hyperbolic, i.e., it attracts or
repels neighboring orbits exponentially fast in directions
normal to itself.

For a more complete statement of the Fenichel’s theo-
rem see e.g. Chap. 3 of Ref. [29].

Definition 4.3. The manifold Mϵ, as obtained by the
Theorem 4.1, is called the slow manifold.

Here and as often, we say “the” manifold Mϵ. For-
mally, this is incorrect. Indeed, the complete statement of
the Fenichel’s theorem stipulates that Mϵ is usually not
unique. However, it also stipulates that all these mani-
folds are exponentially close to each other, i.e., they lie at
a distance [?] O(e−K/ϵ) from each other for some K > 0
with K = O(1). Consequently, we adopt the convention
to refer to Mϵ as “the” slow manifold of Eq. (4).

Based on these elements of GSPT, the definition of
what we referred to as a dynamic basin of attraction is
formalized in Section 5.

5 Separatrix between dynamic basins of attrac-
tion

This section presents the main results of this work. We
give in Section 5.1 definitions for general (1, 1)-fast-slow
systems. The results are then illustrated in Section 5.2.

5.1 Definitions and method for computing separatrix be-
tween DBAs

The definitions stated in this section are valuable for
(1, 1)-fast-slow systems in the form of Eq. (3) whose crit-
ical manifold M0 (see Definition 4.1) has a bistability
domain. The definition of the latter is given below.

Definition 5.1 (Bistability domain of M0). An open
subset

D =]yl, yu[ (12)
2To be understood in the sense of the Hausdorff distance (see

e.g. Chap. 3 of Ref. [29]).
3Mϵ is called invariant (locally in I) under the flow, if (x0, y0) ∈

Mϵ implies that (x(t), y(t)) ∈ Mϵ as long as y(t) ∈ I holds.

of R is called a bistability domain of the critical manifold
if for y ∈ D Eq. (9) has two attracting branches x⋆

1(y)
and x⋆

2(y), i.e., a⋆
1(y) = ∂xf (x⋆

1(y), y) < 0 and a⋆
2(y) =

∂xf (x⋆
2(y), y) < 0. Necessarily, Eq. (9) has also a re-

pelling branch x⋆
3(y) for which a⋆

3(y) = ∂xf (x⋆
3(y), y) > 0.

The critical manifold is non normally hyperbolic at y = yl
and y = yu.

The bistability domain of the critical manifold M0 is
of course, in the case of a (1, 1)-fast-slow system, identi-
cal to the bistability domain of the corresponding static
problem (see Fig. 1), one has therefore yl = 1.11 and
yu = 1.34.

We can now define what we call a dynamic basin of
attraction.

Definition 5.2 (Dynamic basin of attraction). In the
bistability domain D (see Definition 5.1) the critical man-
ifold M0 of (4) has two coexisting attracting branches
M0,a1 and M0,a2 defined as

M0,ai = {x ∈ R, y ∈ D | x = x⋆
i (y)} , i = 1, 2 (13)

separated by a repelling branch M0,r

M0,r = {x ∈ R, y ∈ D | x = x⋆
3(y)} (14)

Through Fenichel’s Theorem 4.1, Eq. (4) has two at-
tracting invariant manifolds Mϵ,ai

O(ϵ)-close of M0,ai

(i = 1, 2) and a repelling slow invariant manifold Mϵ,r
O(ϵ)-close of M0,r. Then the dynamic basin of attraction
(DBA) of a given attracting branch Mϵ,ai (i = 1, 2) is
the subset of the phase space for which orbits originat-
ing from initial conditions in the DBA end up following
Mϵ,ai

(i = 1, 2) when the bistability domain D is crossed.

We state in Definition 5.2 “end up following” because
some transient regimes can exist before the branches
Mϵ,ai

(i = 1, 2) are reached.
The separatrix between two DBAs and its nature are

finally defined.

Definition 5.3 (Separatrix between DBAs). The separa-
trix between DBAs (SDBA) is the boundary in the phase
space that separates two DBAs.

Definition 5.4 (Nature of the SDBA). The SDBA is the
repelling invariant manifold Mϵ,r considered beyond the
lower bound yl of the bistability domain until a point of
the phase space having the smallest physically relevant
value of the slow variable y.

The previous definitions are especially relevant when
the increasing blowing pressure does not saturate in the
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bistability domain. In such a case, the system has no
fixed points (at least it has none for y < yu) and we want
to know when the bistability zone is crossed whether or
not the original (i.e., non averaged) system oscillates sig-
nificantly. In the case of musical instrument, this cor-
responds to the fact that a sound is produced (or not)
during the transient. The case of a blowing pressure that
saturates in the bistability domain is discussed in Sec-
tion 6.1.

In view of the definitions 5.3 and 5.4, we are inter-
ested in computing the repelling invariant manifold Mϵ,r.
Through the Fenichel’s theorem 4.1, if x⋆(y) is a normally
hyperbolic branch of the critical manifold (either attract-
ing or repelling), the invariant manifold Mϵ (either at-
tracting or repelling) admits a parametric equation of the
form x = x̄(y, ϵ), where x̄(y, ϵ) = x⋆(y)+O(ε). The func-
tion x̄(y, ε) is the solution of ϵ dx

dy = f(x,y)
g(x,y) obtained by

dividing (4a) by (4b). Asymptotic analytical expressions
of x̄(y, ϵ), in the form of a power series in ϵ, can be easily
obtained in regions in which the critical manifold is hy-
perbolic (see e.g. Ref. [13]). These approximations fail
at non hyperbolic points, making them unusable for our
study4. Indeed, an SDBA is the extension of a repelling
invariant manifold Mϵ,r through non hyperbolic points
of the critical manifold (see Definition 5.3). The curve
x̄(y, ϵ) can be defined as a particular solution of Eq. (3)
or Eq. (4). In the manner of Berglund and Landon [15],
this particular solution, i.e., the SDBA, is here approxi-
mated numerically by means of a time reversal procedure,
i.e., by a numerical integration of

ϵx′ = −f(x, y) (15a)
y′ = −g(x, y) (15b)

choosing an initial condition (x0, y0) on the upper bound-
ary of the bistability domain D and on the repelling part
M0,r of the critical manifold, i.e.,

(x0, y0) = (x⋆
3(yu), yu). (16)

We use the fact that, through Theorem 4.1, M0,r is O(ϵ)-
close to the corresponding repelling invariant manifold
Mϵ,r which is attracting for (15). The numerical inte-
gration is then stopped at the required value of the slow
variable y.

4The behavior of a (1, 1)-fast-slow system near a non hyperbolic
point of the critical manifold can be analytically studied by means
of the methodology developed by Berglund et al. [14, 12] which
consists in determining the scaling law of the system, i.e., the de-
pendance of the system in the parameter ϵ in the neighborhood of
the non hyperbolic point. This is not the purpose of the present
paper because this analytical method cannot be extended for higher
dimensional phase spaces.

The time reversal method has also the advantage to be
easily extended to higher dimensional systems (see Sec-
tion 6.2).

5.2 Illustration of SDBAs in the averaged clarinet model
with slowly time varying blowing pressure

The attracting and repelling branches of the critical man-
ifold M0 of Eq. (4) with the parameters given in Ta-
ble 1 are respectively the stable and unstable branches
of the bifurcation diagram depicted in Fig. 1 (see Defi-
nition 4.1 and the beginning of Section 3). The bista-
bility domain of M0, as described by Definition 5.1, is
D = [yl = 1.11, yu = 1.34]. In the latter, the DBAs
of each attracting invariant manifold Mϵ,a1 and Mϵ,a2

(see Definition 5.2) are denoted DBA1 and DBA2, re-
spectively. Without loss of generality, we chose arbitrarily
that Mϵ,a1 is the branch corresponding to x⋆

1(y) = 0. The
separatrix between DBA1 and DBA2 is obtained through
Definition 5.4. It is the extended slow repelling invariant
manifold Mϵ,r (associated to the repelling branch M0,r
of the critical manifold) beyond the lower bound yl of the
bistability domain to a point of the phase space having
the smallest possible value of the slow variable y. In sys-
tem (15) with a linear time variation of y, i.e., g(y) = 1,
x(τ) diverges as τ tends to infinity. Consequently, the
SDBA is approximated by an orbit of Eq. (15) having
the appropriate initial condition given by (16). Here that
yields (x0, y0) = (x⋆

3(yu) = 0.95, yu = 1.34). As men-
tioned in Section 5.1, this orbit is obtained by a numerical
simulation. The simulation is stopped when an arbitrary
large value of x(τ) is reached. The resulting times series
are shown in Fig. 3(a) (red solid and dashed lines for x(τ)
and y(τ), respectively).

Fig. 3(b) shows the time integration of the direct time
system (4) with an initial condition (IC) first in DBA1 (in
blue) and then in DBA2 (in green). Both of these initial
conditions are chosen close to the SDBA. In the case of
IC ∈ DBA1, we observe that x(τ) first rapidly approaches
zero and remains equal to zero over time. In the case of
IC ∈ DBA2, similarly to the example in Fig. 2, after a
first similar start transient, x(τ) remains close to zero for
a moment and then moves away from it, taking a non-zero
value for a period of time before falling back to zero. The
first (resp. second) situation seems to correspond well
to the case where the trajectory tends to follow Mϵ,a1

(resp. Mϵ,a2) when the bistability domain D is crossed.
This appears more clearly in Fig. 3(c) in which the orbits
previously computed are represented in the phase plane
and superimposed to the critical manifold. The stream
plot of the vector field Eq. (4) is also shown. The latter
shows, for y < yu, that the orbits starting with an initial
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condition in the DBA1 (resp. DBA2), i.e., below (resp.
above) the SDBA, end up following Mϵ,a1 (resp. Mϵ,a2).

To better understand what happens in the vicinity of
the y-axis, a logarithmic scale is used in Fig. 3(d) for the
ordinates. This example shows that very small ampli-
tudes are encountered. In a real-world problems, residual
noise would prevent reaching such low amplitudes. In
the future, stochastic studies (similar to what was done
in Ref. [10]) would be relevant to complete this work.

The transient regimes mentioned after Definition 5.2
are visible in the stream plot in Fig. 3(c). These tran-
sient regimes are all the longer as the initial conditions
are chosen close to the SDBA. This begs the following
question: will these transients be short enough for the
system to reach the branches Mϵ,ai

before the end of
the bistability domain? This question relates to the link
between the duration of transients and the distance be-
tween the initial conditions and the SDBA. This will be
explored in future works.

Examples similar to those of Figs. 3(c) and 3(d) are
shown in Fig. 4 for two other values of the parameter ϵ:
ϵ = 0.00366 < 0.0183 (see Fig. 4(a)) and ϵ = 0.0732 >
0.0183 (see Fig. 4(b)). This shows that the smaller ϵ, the
shorter (in terms of y) the above-mentioned transients,
and the more visible the distinction between slow and fast
phases. In Fig. 4(b) in particular (top, blue line) the orbit
is still relatively far from the Mϵ,a2 (the y-axis) when the
upper bound of the bistability domain is reached. This
highlights the limits of the approach for large values of
ϵ. Nevertheless, the approach allows to interpret these
borderline situations.

6 Discussion

6.1 Case of a blowing pressure saturating in the bista-
bility domain

In this section the case where the blowing pressure tends
towards a finite limit ytarg in the bistability domain is
explored. More precisely, an exponential growth of the
blowing pressure is considered using g(y) = ytarg−y (with
ytarg ∈ D) which yields

y(τ) = ytarg + (y0 − ytarg)e−τ , (17)

with again y0 = y(0). Written in the slow timescale τ ,
the system takes the following form

ϵx′ = f(x, y) (18a)
y′ = ytarg − y. (18b)

This differs from the case studied so far, in which the
pressure does not saturate. Here fixed points are solutions

of f(x, y) = 0 and ytarg−y = 0, that leads to f(x, ytarg) =
0 and x = x⋆

i (ytarg) (i = 1, 2, 3). Therefore, the points
P ⋆

i = (x⋆
i (ytarg), ytarg) (i = 1, 2, 3) are the fixed points of

Eq. (18). The Jacobian matrices J(P ⋆
i ) of (18) evaluated

at each fixed point P ⋆
i are

J(P ⋆
i ) =

(
a⋆

i (ytarg)
ϵ

∂yf(x⋆
i (ytarg), ytarg)

ϵ
0 −1

)
(19)

whose eigenvalues are µ1 = a⋆
i (ytarg)

ϵ and µ2 = −1. Be-
cause a⋆

1(ytarg) < 0, a⋆
2(ytarg) < 0 and a⋆

3(ytarg) > 0 (see
Definition 5.1), P ⋆

1 and P ⋆
2 are nodes (i.e., µ1µ2 > 0) and

P ⋆
3 is a saddle (i.e., µ1µ2 < 0). These classical definitions

of nodes and saddle are taken from Ref. [32].
The problem therefore becomes a classic problem of

finding the basins attraction of stable fixed points of a
2-dimensional system. In this case, the DBAs of the at-
tracting branches Mϵ,ai

(i = 1, 2) and the SBAs of the
fixed points P ⋆

1 and P ⋆
2 are identical. The separatrix be-

tween these basins is the stable manifold of the unstable
fixed point P ⋆

3 [17]. The latter is again computed using
a time reversal simulation. The following equation

ϵx′ = −f(x, y) (20a)
y′ = −ytarg + y. (20b)

is numerically integrated from initial condition chosen as
a small perturbation of P ⋆

3 .
An example is shown in Fig. 5. Figures 5(a) and 5(b)

show similar representations as in Figs 3(c) and 3(d), re-
spectively. In Fig. 5(a) the orange vertical line indicates
the target value ytarg of the mouth pressure. Intersections
between this vertical line and the critical manifold cor-
respond to fixed points of (18). Importantly, the critical
manifold is independent of the function g(y) and there-
fore identical to the one previously obtained in Section 5.2
for a linear growth of y. Still in Fig. 5(a), a zoom near
the unstable fixed point P ⋆

3 is performed to highlight its
stable manifold interpreted here as a SDBA (represented
by a red line in the figure). We can see in Fig. 5(b) that
the SDBA intersects the x-axis for a value of y just below
0.01.

Two orbits obtained by numerical integration of the di-
rect time system Eq. (18) with (i) a IC first in DBA1 (in
blue) and (ii) in DBA2 (in green) also appear in Fig. 5.
The corresponding time series are plotted in Figs. 5(d)
and 5(c), respectively. In the case of IC ∈ DBA1, the
orbit stays close to the y-axis for a moment and then
moves away from it, follows the branch Mϵ,a1 of the crit-
ical manifold before stopping at P ⋆

1 . For IC ∈ DBA2,
it is the point P ⋆

2 which ends up being reached. Here
too transients are observed before the fixed points are
reached.
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6.2 DBA and SDBA to more realistic models

This work introduces the notions of DBA and SDBA for
(1, 1)-fast-slow systems. However, more realistic models
of reed instruments cannot be reduced to (1, 1)-fast-slow
systems. Working in the plane makes it easier to illus-
trate and understand these concepts. However, the con-
cepts of DBA and SDBA can be generalized to (m, n)-
fast-slow systems. Indeed, the SDBA is a particular so-
lution of the considered system. However, there are two
things to bear in mind when the fast subsystem is more
than one-dimensional. Firstly, the critical manifold is
also more than one-dimensional and it can be attracting
(if all eigenvalues of the Jacobian matrix of the fast sub-
system evaluated on the critical manifold have negative
real parts), repelling (if all the eigenvalues have positive
reals parts) and saddle-type (if there are eigenvalues with
negative real parts and others with positive real parts).
Previous definitions are taken from Ref. [29] (Chap. 3). In
this case of a saddle-type invariant manifold, the SDBA
cannot be obtained by reversing the time, as presented
above for a purely repelling manifold. Indeed, a saddle-
type manifold in direct time remains saddle-type in re-
verse time. In this case methods of continuation of orbits
could be used, for example using the software AUTO [20].
The second thing to consider is that the fast subsystem
can have other types of than equilibria; such as periodic
or quasiperiodic solutions. The complete bifurcation dia-
gram of the fast subsystem (including periodic solutions
and if possible quasiperiodic solutions) is not anymore
the critical manifold of the studied (m, n)-fast-slow sys-
tem which includes only the equilibrium solutions. In
a (m, n)-fast-slow system, invariant manifolds associated
to quasiperiodic solutions of the fast subsystem are more
complicated to deal with, both analytically and computa-
tionally. However, periodic solutions can be treated in the
same way as equilibrium solutions. First, because theo-
retically Berglund [12] proposes an analogue of Fenichel’s
theorem on the existence of an invariant manifold track-
ing families of periodic orbits and also because periodic
solutions are easy to compute numerically. As in the case
of equilibrium solutions, for the time reversal method to
be used, the invariant manifold considered for the SDBA
calculation must be repelling. For periodic solutions, that
means that m − 15 of the Floquet multipliers associated
with the periodic solution under consideration have mod-
ulus strictly larger than one (see e.g. Ref. [32], Chap. 7,
for details about local stability of periodic solutions).

We provide here an illustration for the original system

5A periodic solution of an m-dimensional fast subsystem is asso-
ciated to m Floquet multipliers but one is always unity (see Lemma
7.3 of Ref. [32]).

(27) (replacing γ par y(t′) and switching from t′ to t,
see Appendix A), a (2, 1)-fast-slow system (globally 3-
dimensional) since the 1-dimensional complex Eq. (33) is
a 2-dimensional real equation.

As mentioned above, the trivial fixed point of the fast
subsystem (10) associated to the averaged dynamics (3)
is the equilibrium solution of the original non-averaged
dynamics (27) and non trivial fixed points correspond to
periodic solutions of (27). In the bistability domain the
fast subsystem associated to the original dynamics has
thus a stable equilibrium solution, a stable and an unsta-
ble periodic solutions. The manifolds corresponding to
these periodic solutions are represented in Fig. 6 by gray
and black surfaces in the (y, p, ṗ)-space, respectively. In
practice these manifolds, which also represent the static
bifurcation diagram of the original dynamical system, are
deduced from the critical manifold of Eq. (3). Indeed, in
the (p, ṗ)-plane periodic solutions of the non-averaged dy-
namics (27) is a circle whose radius is equal to the value of
the corresponding fixed point of Eq. (3). The manifolds
of the periodic solutions of the latter are then obtained
by rotation of the critical manifold of Eq. (3) around the
y-axis.

The SDBA is here the extension of a 2-dimensional
repelling slow invariant manifold associated to the un-
stable periodic solution of the fast subsystem. In a 2-
dimensional system an unstable periodic solution is as-
sociated to two Floquet multipliers, one is unity [?] and
the other has modulus larger than one. Therefore, the
associated invariant manifold is repelling and the reverse
time procedure can be used.

In Fig. 6 the SDBA is shown in red in the (y, p, ṗ)-
space. Although the SDBA is 2-dimensional, here we
computed only one solution of the time-reversed system
for initial conditions on the periodic solution at y = yu.
Here, the period of oscillations is short enough for the
two-dimensional SDBA to be represented correctly by a
single periodic orbit.

Results of time-domain simulation of the (2, 1)-fast-
slow original system (in direct time) with two different
sets of initial conditions, one in DBA1 (in blue) and the
second one in DBA2 (in green) are also shown in Fig. 6.
The parameters and IC are the same as the same as in
Fig. 3 (same parameters and initial conditions) and simi-
lar observations can be made: when IC ∈ DBA1, the orbit
first winds around the y-axis and remains in the vicinity
of it. Conversely, when IC ∈ DBA2, after a first similar
start transient, the orbits stays on vicinity of the y-axis
for a while and then moves away to reach the manifold
associated to the stable periodic solution. The simulation
is carried out over a shorter period of time than in Fig. 3.
This is why we do not observe the orbit falling back to
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zero.

7 Conclusion

In this paper the behavior of a class of one-dimensional
non-autonomous dynamical systems has been investi-
gated. These systems are obtained by slowly varying
over time the bifurcation parameter of the correspond-
ing autonomous systems (called fast subsystem in the
paper) whose bifurcation parameter is constant. More
precisely, the case considered corresponds to the time-
varying parameter crossing a bistability domain of the
associated autonomous system. The proposed methodol-
ogy has been illustrated on a simple musical reed instru-
ment model.

In the bistability domain, the non-autonomous system
has attracting manifolds (resp. a repelling manifold) as-
sociated with the two stable branches (resp. unstable
branch) of the bifurcation diagram of the corresponding
autonomous system. The concept of dynamic basin of at-
traction (DBA) of a given attracting manifold has been
introduced and defined as the set of initial conditions in
the phase space (in which the time-varying parameter
is considered as another state variable) from which the
orbits end up following this attracting manifold. The
separatrix between two DBAs (SDBA), i.e., the bound-
ary in the phase space that separates the two DBAs,
has been defined as the repelling invariant manifold men-
tioned above and considered beyond the lower bound of
the bistability domain until a point of the phase space
having the smallest possible value of the time-varying bi-
furcation parameter. In practice, the separatrix has been
computed using a numerical reverse time integration with
relevant initial conditions.

As a first perceptive, keep working on low dimension
systems, it would be interesting to develop analytical
methods that would make it possible to relate the char-
acteristics of the time-varying parameter to the nature of
the observed regime. Moreover, in the purpose of real-
life applications, the method should be extended to more
complex dynamic systems. First, the notions of DBA
and SDBA remain valid for high dimensional systems.
However, if the solutions (stable and unstable) of the
multistable autonomous system are more complex than
equilibria, the challenge will be to detect the unstable
solutions to then deduce the possible SDBAs of the non-
autonomous system. Secondly, multistable systems are
known to be very sensitive to noise. Therefore, the influ-
ence of noise on SDBAs should be studied in the future.

Finally, we believe that the general nature of the
method suggests that the results obtained go beyond mu-
sical acoustics. Application in physics, neuroscience or

climate science can be envisaged, in particular to deal
with the so-called critical transition problems.

Data Availability Statement

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable re-
quest.

A Derivation of the model

A.1 Classical single reed instrument model

Sound production by single reed instruments is classi-
cally modeled through the nonlinear coupling between
two linear components [5, 24, 16]: the reed and the air-
column inside the instrument. While blowing air through
the reed channel into the instrument, the instrumentalist
provides a quasi-static source of energy. The instrument
and the player constitute an autonomous dynamical sys-
tem. When the trivial equilibrium solution of this system
becomes unstable, a sound is produced [36, 23, 33].

Since the lowest resonance frequency of the reed is one
order of magnitude higher than the sound frequency for
many notes, the reed is often modeled as a lossless stiff-
ness spring [4, 30]. Therefore its position relative to rest is
proportional to the pressure drop across the reed, i.e., the
pressure difference between the mouth and the mouth-
piece of the instrument. The linear pressure response of
the air column P to the volume flow U through the reed
channel is given in the frequency domain through the in-
put impedance of the air column Z

P (ω) = Z(ω)U(ω), (21)
where ω is the angular frequency. We point out that
the model presented in the appendix already considers a
dimensionless pressure and flow (see Chap. 9 of Ref. [16]
for more details on the model).

The contribution at the input of the instrument of the
(infinite) series of modes of the air column is taken into
account in Z(ω). For computational reasons, the series is
truncated to N modes, where N is an integer:

Z(ω) =
N∑

n=1
Zn

jϵnωnω

ω2
n + jϵnωnω − ω2 , (22)

with Zn, ωn and ϵn the modal parameters, respectively
the modal factor, the resonance angular frequency and
the inverse of the quality factor of the nth peak of the
impedance (corresponding to the nth mode of the air col-
umn). Eq. (22) can be written in the time domain
dt′′t′′pn+ϵnωndt′′pn+ω2

npn = Znϵnωndt′′u, ∀n ∈ [1, N ],
(23)
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in which t′′ is used to denote the original timescale, u is
the inverse Fourier transform of U and pn is such that
p =

∑N
i=1 pn, where p is the inverse Fourier transform

of P [33] and corresponds to the time evolution of the
mouthpiece pressure.

Through Bernoulli’s principle, the volume flow through
the reed channel u is related nonlinearly to the reed
channel opening and the pressure difference between the
mouth and the mouthpiece [26, 19]

u = F̂ (p, γ) = ζ(1+p−γ)
√

|γ − p| sgn(γ −p)H(1+p−γ)
(24)

where H is the Heaviside function, γ is the dimension-
less pressure in the mouth of the musician and ζ a di-
mensionless parameter accounting for many embouchure
parameters. The parameters γ and ζ are the control (or
bifurcation) parameters of the model. The relation (24)
is called the nonlinear characteristic (NLC) of the instru-
ment exciter. In this work a polynomial fitting of the
function F̂ (p, γ) (see Eq. (24)), denoted F (p, γ), is ob-
tained using the function InterpolatingPolynomial of
the Mathematica software [37] (see Fig. 7).

Using the function F (p, γ), Eq. (23) can be written
using only the pressure p as follows

dt′′t′′pn+ϵnωndt′′pn+ω2
npn−Znϵnωndt′′pn∂pF (p, γ) = 0,

∀n ∈ [1, N ]. (25)

A minimal model of a reed instrument including a sin-
gle mode of the air-column is obtained by stating N = 1.
In this case (25) becomes

dt′′t′′p+ ϵ1ω1dt′′p+ω2
1p−Z1ϵ1ω1dt′′p∂pF (p, γ) = 0 (26)

In this case (N = 1), since p1 = p, p1 is replaced by p in
Eq. (26). This is clearly a minimal yet useful model of
sound production in reed instruments. Indeed, it takes
into account the two main control parameters, γ et ζ, ad-
justed by the musician and describes the physical mecha-
nism through which sound emerges from the trivial equi-
librium (i.e. silence) when a resonance of the air column
is excited by an incoming flow. We finally introduce the
dimensionless time t′ = ω1t′′, so Eq. (26) takes the form
of the following self-excited oscillator

dt′t′p + ϵ1h(p, dt′p, γ) + p = 0. (27)

where

h(p, dt′p, γ) = dt′p (1 − Z1∂pF (p, γ)) . (28)

A.2 Averaged dynamics with a slowly time-varying con-
trol parameter

Eq. (27), in the phase space (p, dt′p), is transformed to a
slowly varying system using the following complex repre-

sentation introducing a new variable ξ as

ξejt′
= dt′p + jp (29)

with j2 = −1. Combining Eq. (29) and its complex con-
jugate yields the expressions of p and dt′p as functions of
ξ

p = ξejt′ − ξ∗e−jt′

2j
, (30)

dt′p = ξejt′ + ξ∗e−jt′

2 , (31)

where ξ∗ is the complex conjugate of ξ. Deriving Eq. (29)
with respect to t′ and using Eq. (31) give dt′t′p as

dt′t′p = dt′ξejt′
+ jξejt′

− j

2

(
ξejt′

+ ξ∗e−jt′
)

. (32)

Substituting Eqs. (30), (31) and (32) into Eq. (27)
yields the following complex non-autonomous system

dt′ξ = −ϵ1h

(
ξejt′ − ξ∗e−jt′

2j
,

ξejt′ + ξ∗e−jt′

2 , γ

)
e−jt′

.

(33)
Then, stating ξ = xejφ and ϕ = t′ + φ and separating

real and imaginary parts of each side of Eq. (33) gives

dt′x = −ϵ1h (x sin ϕ, x cos ϕ, γ) cos ϕ, (34a)

dt′ϕ = 1 + ϵ1h (x sin ϕ, x cos ϕ, γ) sin ϕ

x
. (34b)

Since 0 < ϵ1 ≪ 1, Eq. (34) is simplified by means of an
averaging method (see Chap. 7 of Ref. [31]) to

dt′x = ϵ1f(x, γ), (35a)
dt′ϕ = 1 (35b)

where x and ϕ are uncoupled and

f(x, γ) = − 1
2π

∫ 2π

0
h (x sin α, x cos α, γ) cos αdα. (36)

Details on the averaging procedure are provided in Sec-
tion B.

The integral in Eq. (36) is generally hard to solve an-
alytically, except if the function h is assumed to have a
polynomial form. This is the case here using the polyno-
mial fitting F (p, γ) of the NLC.

The dynamics of the mouth pressure (now denoted y)
is finally added as dt′y = ϵ̂g(y). Then, assuming ϵ̂/ϵ1 ≪
1, switching the time from t′ to t = ϵ1t′ and using the
notation {̇} = dt{}, the following system is obtained

ẋ = f(x, y) (37a)
ẏ = ϵg(y) (37b)
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where ϵ is defined as

ϵ = ϵ̂

ϵ1
(38)

which is the relevant small parameter to use for this
model.

B Details on the averaging procedure

Omitting here, for the sake of clarity, the dependence in
γ, and introducing

X(x, ϕ) = −h (x sin ϕ, x cos ϕ, γ) cos ϕ, (39a)

Ω(x, ϕ) = h (x sin ϕ, x cos ϕ, γ) sin ϕ

x
, (39b)

Eq. (34) becomes

dt′x = ϵ1X(x, ϕ), (40a)
dt′ϕ = 1 + ϵ1Ω(x, ϕ). (40b)

The latter is a (1, 1)-fast-slow systems with t′ the fast
timescale, x the slow variable and ϕ the fast variable.
The principle of the average procedure (see Chap. 7 of
Ref. [31]), consists in assuming the following form for the
variable x

x = v + ϵ1u(v, ϕ) (41)

with u(v, ϕ) a function 2π−periodic in ϕ.
Using Eq. (41) and

dt′u = (1 + ϵ1Ω(v + ϵ1u, ϕ)) ∂ϕu + dt′v∂vu, (42)

Eq. (40a) becomes

dt′v(1 + ϵ1∂vu) + ϵ1 (1 + ϵ1Ω(v + ϵ1u, ϕ)) ∂ϕu =
ϵ1X(v + ϵ1u, ϕ). (43)

Each ϵ1-dependent function in (43) is expanded in a
first-order Taylor series around ϵ1 = 0, that yields

dt′v+ϵ1
(
1 + ϵ1Ω(v, ϕ) + O(ϵ2

1)
)

(1−ϵ1∂vu+O(ϵ2
1))∂ϕu =(

ϵ1X(v, ϕ) + O(ϵ2
1)
)

(1 − ϵ1∂vu + O(ϵ2
1)) (44)

which simplifies into

dt′v = ϵ1 (X(v, ϕ) − ∂ϕu) + O(ϵ2
1) (45)

Then one assumes a function u(v, ϕ) which satisfies the
following equation

∂ϕu = X(v, ϕ) − f(v). (46)

Integrating (46) with respect to ϕ from 0 to 2π and
because u(v, ϕ) is 2π-periodic in ϕ we obtain

f(v) = 1
2π

∫ 2π

0
X(v, α)dα, (47)

and then f(v) is the average of X(v, ϕ) as defined in
Eq. (36).

Substituting (46) into (45) and adding Eq. (40b) we
obtain a simplified dynamical system with the following
form

dt′v = ϵ1f(v) + O(ϵ2
1) (48a)

dt′ϕ = 1 + O(ϵ1). (48b)

Finally, consistently with 0 < ϵ1 ≪ 1, we have ϵ1f(v)+
O(ϵ2

1) ≈ ϵ1f(v), 1 + O(ϵ1) ≈ 1 and v ≈ x and therefore
Eq. (35) is proven.
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Figure 3. Illustration of DBA and SDBA for a linear time-
varying blowing pressure. (a) Times series of x(τ) (solid line)
and y(τ) (dashed line) obtained by numerical integration of
the reverse time system (15) with g(y) = 1 and an initial
condition (IC) given by (16) (red). (b) Time series of the di-
rect time system (4) with a IC first in DBA1 (in blue) and in
DBA2 (in green). (c) The corresponding orbits (same colors
are used) in the phase plane and superimposed to the crit-
ical manifold. The orbit corresponding to the reverse time
integration corresponds to the SDBA. The stream plot of the
vector field Eq. (4) with streamlines colored in light blue is
also shown. (d) The same as in (c) but with a logarithmic
scale for the ordinates. The parameters are given in Table 1
with in addition ϵ = 0.0183.
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(b) ϵ̂ = 2 · 10−3, ϵ = 0.0732.

Figure 4. The same figures as Figs 3(c) and 3(d) but with (a) ϵ̂ = 10−4 and therefore ϵ = 0.00366 and (b) ϵ̂ = 2 · 10−3 and
therefore ϵ = 0.0732.
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Figure 5. Illustration of DBA and SDBA for an exponential time-varying blowing pressure. (a) Orbit obtained by the numerical
integration of the reverse time system (15) with g(y) = ytarg − y and an initial condition (IC) chosen as a small perturbation of
the non trivial fixed point P ⋆

3 (in red). This represents the SDBA of Eq. (18). Two orbits obtained by the numerical integration
of direct time system Eq. (18): with a IC first in DBA1 (in blue) and in DBA2 (in green). The corresponding time series are
plotted in Figs. 5(d) and 5(c), respectively. The stream plot of the vector field Eq. (4) with streamlines colored in light blue
is also shown is also shown. (b) The same as in (a) but with a logarithmic scale for the ordinates. The parameters are given
in Table 1 with in addition ϵ = 0.0732, ytarg = 1.25.
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Figure 6. Illustration of DBA and SDBA for the original
system (27) with a linear time-varying blowing pressure. The
manifolds associated to the stable and unstable periodic so-
lutions of the fast subsystem of the original non-averaged dy-
namics (27) are depicted by gray and black surfaces, respec-
tively. Orbit obtained by the numerical integration of the
reverse time system associated to Eq. (27) (replacing γ par
y(t′) and switching from t′ to t, see Appendix A) and an IC
on the circle representing the periodic solution in the (p, ṗ)-
plane at y = yu (in red). This represents the SDBA of the
3-dimensional original dynamics. Two orbits obtained by the
numerical integration of direct time system: with a IC first in
DBA1 (in blue) and in DBA2 (in green). Same parameters as
in Fig. 3.
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Figure 7. Comparison between the function F̂ (p, γ) given by
Eq. (24) (blue line) and its polynomial fitting F (p, γ) (green
line) as functions of the pressure difference γ − p.
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