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We derive a homogenized classical Cauchy continuum with an affine stress-strain relationship derived from a heterogeneous Cosserat continuum. The homogenization process encompasses intrinsic lengths related to scale-size effects. The resulting local problem exhibits asymmetry, due to the micropolar couple modulus inherited from the original microscopic Cosserat problem. To validate our results, we conducted numerical simulations using the finite element method on circularly perforated square and rectangular unit cells, highlighting the impact of the micropolar couple modulus on effective coefficients. Furthermore, we numerically show that there exists a threshold micropolar couple modulus which affects the behavior of the cell and compare the cell displacement in the presence and absence of a micropolar couple modulus.

Introduction

Natural materials, such as bone, conch shells, or spider silk, exhibit remarkable mechanical prowess and superior performance that surpasses their human-engineered counterparts. The underlying factor attributing to these exceptional properties lies in the intricate hierarchical microstructures as well as the geometry they possess (see, e.g., [START_REF] Gu | Hierarchically enhanced impact resistance of bioinspired composites[END_REF], [START_REF] Libonati | Bone-inspired materials by design: Toughness amplification observed using 3D printing and testing[END_REF], [START_REF] Schumacher | Microstructures to control elasticity in 3d printing[END_REF], [START_REF] Nika | Design of multi-layer materials using inverse homogenization and a level set method[END_REF], [START_REF] Agnelli | Design of thin micro-architectured panels with extension-bending coupling effects using topology optimization[END_REF]). In stark contrast, many engineering applications have historically been constrained to the use of homogeneous materials, D r a f t either due to design simplicity or limitations in manufacturing capabilities. However, the contemporary breakthroughs in additive manufacturing technology have spurred a widespread adoption of composites. A composite, in this context, represents a material amalgamated from two or more constituent materials exhibiting different physical or chemical properties. Common instances of engineered composites include ceramic matrix composites, fiber-reinforced polymers, and various advanced composite materials. What renders composites particularly attractive for diverse applications is the resultant material product possessing characteristics distinct from those of its individual constituent components. These unique properties, arising from the combination of preferred constituent attributes, facilitate the creation of microstructured composites with programmable features such as a low weight-to-strength ratio, desired buckling modes, auxeticity, and more. At the core of composite materials lies the recurring theme of a hierarchical microstructure and geometry. Moreover, in recent years, a pervasive observation in materials science is the dependence of mechanical properties in composite materials-ubiquitous in various applications-on distinct characteristic lengths. These lengths are intricately determined either by the inherent structure itself or by the nuanced attributes of an underlying microstructure, or often, by a synergistic interplay of both factors [START_REF] Lakes | Size effects and micromechanics of porous solids[END_REF][START_REF] Park | Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent[END_REF][START_REF] Lakes | Strongly Cosserat elastic lattice and foam materials for enhanced toughness[END_REF][START_REF] Lakes | On the torsional properties of single osteons[END_REF][START_REF] Rueger | On the torsional properties of single osteons[END_REF][START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF]. The implications of these phenomena extend beyond the microscale, manifesting as macroscopic properties of the composite material that may starkly deviate from the intrinsic properties of its constituents. Particularly intriguing is the scenario wherein these characteristic lengths align closely with the dimensions of the microstructure. In such cases, the classical framework of continuum mechanics a loses its accuracy in characterizing the mechanical behavior of these materials. These phenomena, encapsulated by the term scalesize effects, prompt the exploration of alternative frameworks, and one avenue involves modeling them through generalized continuum theories (see, e.g., [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF], [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Ostoja-Starzewski | Microstructural Randomness and Scaling in Mechanics of Materials[END_REF], [START_REF] Molavitabrizi | Second-order homogenization of 3-D lattice materials towards strain gradient media: numerical modelling and experimental verification[END_REF]).

Generalized continuum theories b find applications in modeling materials with intricate microstructures, granular materials, fibrous composites, and materials exhibiting lattice structures [START_REF] Cosserat | Théorie des Corps Déformables[END_REF][START_REF] Grioli | Elasticita asimmetrica[END_REF][START_REF] Toupin | Elastic materials with couple-stresses[END_REF][START_REF] Toupin | Theory of elasticity with couple-stress[END_REF][START_REF] Koiter | Couple-stress in the theory of elasticity[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF][START_REF] Eringen | Nonlinear theory of simple microelastic solids-I[END_REF][START_REF] Eringen | Nonlinear theory of simple microelastic solids-II[END_REF][START_REF] Mindlin | On the equations of elastic materials with micro-structure[END_REF][START_REF] Eringen | Linear theory of micropolar elasticity[END_REF][START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF][START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF]. Among the possible generalized continuum theories two seem to be the most utilized: higher-grade theories, that introduce higher gradients of the displacement field, and higher-order theories, that introduce additional degrees of freedom. Among the pioneering contributions to generalized continuum mechanics theories, the Cosserat brothers' formulation of continuum mechanics stands out (see [START_REF] Cosserat | Théorie des Corps Déformables[END_REF]). Their theory, centers around the concept that each point of the continuum, in addition to displacing, also rotates independently of the displacement. Notably, Cosserat elasticity predicts size effects through intrinsic length scales, a phenomenon that classical elasticity theory lacks the mechanism to describe [START_REF] Lakes | On the torsional properties of single osteons[END_REF], [START_REF] Eringen | Microcontinuum Field Theories: I. Foundations and Solids[END_REF], [START_REF] Ha | Chiral three-dimensional lattices with tunable Poisson's ratio[END_REF], [START_REF] Ostoja-Starzewski | Microstructural Randomness and Scaling in Mechanics of Materials[END_REF]. Furthermore, Cosserat elasticity proves versatile enough to model chiral microstructures. Chiral c or non-centrosymmetric materials lack a center of symmetry and exhibit non-invariance to the inversion of coordinates transformation d . a The Cauchy postulate loses its validity. See the the edited volume of articles in [START_REF]Mechanics of generalized continua[END_REF] and references therein for an excellent exposition to the topic.

b Following the example of G. Maugin in [START_REF]Mechanics of generalized continua[END_REF], I would like to apologise in advance if I have neglected to cite someone that I should have cited. I have done my best to comprehend the many contributions of all the authors I have cited but, almost surely, I have missed others. c The reader can consult the work in [START_REF] Ha | Chiral three-dimensional lattices with tunable Poisson's ratio[END_REF] for a precise definition of chirality in the context of Cosserat rods. The concept of chirality is very important in continuum mechanics since experimental observations have revealed that certain materials with microstructures conform to Cosserat elasticity with chirality rather than classical elasticity (see, e.g. [START_REF] Lakes | Size effects and micromechanics of porous solids[END_REF], [START_REF] Park | Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent[END_REF], [START_REF] Lakes | Strongly Cosserat elastic lattice and foam materials for enhanced toughness[END_REF], [START_REF] Lakes | On the torsional properties of single osteons[END_REF], [START_REF] Rueger | On the torsional properties of single osteons[END_REF]). Moreover, chirality seems to be present, virtually, on every scale, from the nanometer to the meter. d This lack of distinction between chiral and non-centrosymmetric material is true in dimension three. There seems D r a f t

Simultaneously with the resurgence of generalized continua, homogenization theory emerged independently as a particularly apt method for analyzing highly heterogeneous and microstructured materials (see, e.g., [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF][START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF][START_REF] Ciorȃnescu | An Introduction to Homogenization[END_REF][START_REF] Mei | Homogenization Methods for Multiscale Mechanics[END_REF]). In homogenization, effective material properties of periodic structures are defined through the analysis of a periodicity cell. These properties depend on the mechanics of constituents and the geometry of the periodic structure, remaining independent of external boundary conditions and applied forces. Furthermore, homogenization seems to be a natural conduit for exploring the connections between generalized continuum theories and classical theories applicable to heterogeneous structures. The combination of these theories enables a more comprehensive understanding of the mechanical behavior of complex materials. A series of investigations starting in the late eighties onwards starting applying the homogenization method within the context of Cosserat continua (see, e.g., [START_REF] Bytner | Homogenization of Cosserat continuum[END_REF][START_REF] Triantafyllidis | The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models[END_REF][START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF][START_REF] Forest | Estimating the overall properties of heterogeneous Cosserat materials[END_REF][START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF]). The latter inquiries focused on estimating effective properties of heterogeneous Cosserat materials while accounting for size effects [START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF][START_REF] Forest | Estimating the overall properties of heterogeneous Cosserat materials[END_REF][START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF]. In particular, the work by [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] delves into periodic heterogeneous Cosserat materials, considering a hierarchy of three characteristic lengths: the size of inhomogeneities, the Cosserat intrinsic length of constituents e , and the typical size of the structure under consideration. Employing two-scale expansions, the authors heuristically derived diverse homogenized models based on the scaling relationships between these characteristic lengths, substantiating their findings through finite element calculations. Their work was made rigorous using the periodic unfolding method, where a chirality length was also included f in [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF][START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF] (some corrector type results

were also given).

The objective of this article encompasses various facets: Starting from foundational thermodynamic principles and balance laws, we deduce a set of constitutive laws for a linear Cosserat continuum, grounded in the tenets of the principle of virtual work (refer to, for instance, [START_REF] Germain | La méthode des puissances virtuelles en mécanique des milieux continus, I: Théorie du second gradient[END_REF], [START_REF] Ga Maugin | The method of virtual power in continuum mechanics: application to coupled fields[END_REF], [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF]). In systems characterized by isothermal conditions and time stationarity, we enhance the aforementioned constitutive laws through the application of the homogenization method. Concurrently, within this homogenization framework, we incorporate intrinsic lengths linked to scale-size phenomena inherent in the mechanics of the Cosserat continuum. As evidenced in prior studies (cf. [START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF], [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF], [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF], [START_REF] Nika | Cosserat continuum modelling of chiral scale-size effects and their influence on effective constitutive laws[END_REF], [START_REF] Nika | Effective medium theory for second-gradient elasticity with chirality[END_REF], [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF]), the homogenized medium's characteristic behavior relies on four distinctive lengths: the length ℓ of heterogeneities, and the intrinsic lengths ℓ coss and ℓ chiral associated with Cosserat and/or chirality aspects of the constituents, respectively, and the typical dimension L of the structure. Departing from previous investigations, our consideration extends to scenarios where the ratios ℓ coss /ℓ ∼ ℓ/L 1/2 and ℓ chiral /ℓ ∼ ℓ/L 3/2 . The resulting homogeneous problem manifests as a classical Cauchy continuum, exhibiting, however, an affine stress-strain relation. However, it introduces an asymmetric elastic local problem with a micropolar couple modulus. As a departure from prior works, our approach features only on local problem instead of multiple as is common in this type of problems. Our endeavor involves the characterization of the micropolar couple modulus's impact across various unit cell geometries, with a focus on describing its influence on both volume fraction and the material's shearing capabilities.

The structure of the article is as follows: In Section 2 we develop the model from fundamental laws of thermodynamics and derive the constitutive laws based on the celebrated Coleman-Noll procedure (see [START_REF] Noll | The thermodynamics of elastic materials with heat conduction and viscosity[END_REF]). In Section 3 we perform the analysis of the corresponding isothermal and to be a difference in the two dimensional setting. The reader can consult the work of [START_REF] Auffray | Anisotropic structure of two-dimensional linear Cosserat elasticity[END_REF] for more information. e This length scale parameter loosely represents the absolute size of constituents within the unit cell. f A similar chiral length scale was introduced in [START_REF] Joumaa | Stress and couple-stress invariance in noncentrosymmetric micropolar planar elasticity[END_REF], however, the chiral length scales in [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF][START_REF] Nika | Cosserat continuum modelling of chiral scale-size effects and their influence on effective constitutive laws[END_REF][START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF] were a bit more general. D r a f t time stationary system using the method of periodic unfolding. Subsequently, in Section 4 we carry out simulations of the derived local problem and ascertain the influence of the micropolar couple modulus on the effective coefficients as well as on the shearing resistance or lack thereof of the material. Finally, in Section 5 we describe some conclusions and future work.

Notation

We denote by bold capital letters tensors of order four and by blackboard font letters tensors of order two. Their corresponding elements will be denoted by a scalar quantity with the appropriate number of indices corresponding to the order of the tensor. To expedite the presentation of our results, hereonwards we will make use of the following notation:

-Throughout the article we employ the Einstein summation notation of repeated indices unless otherwise stated.

-The third order tensor ϵ ϵ ϵ ijk is the Levi-Civita symbol that is equal to 1 if (i, j, k) is an even permutation of (1, 2, 3), -1 if it is an odd permutation, and zero if any index is repeated.

-Tensor contractions: Let v v v be a vector, A and B be second order tensors. We define the following contractions of tensor-tensor or tensor-vector contractions:

1. A:B=A ij B ij (Frobenius inner product) 2. ϵ ϵ ϵ.v v v=ϵ ϵ ϵ ijk v i (contraction of the Levi-Civita tensor with a vector leads to second order tensor) 2. ϵ ϵ ϵ:A=ϵ ϵ ϵ ijk A ij (contraction of the Levi-Civita tensor with a second order tensor leads to a vector) 2 Modeling and thermodynamic restrictions 2.1 Balance laws 1.Balance of linear and angular momentum. Denote by s ij :=∂ x j u i -3 k=1 ϵ ϵ ϵ kji φ k and κ ji =∂ x j φ i for i, j ∈ {1, 2, 3} where u u u is the displacement and φ φ φ is the rotation. The balance of linear and angular momentum g is written in the form of the principle of virtual work. Define,

W int (Ω, u u u, φ φ φ)=- Ω σ:∇ u u u * dv- Ω µ:∇ φ φ φ * dv+ Ω ϵ ϵ ϵ. φ φ φ * :σ dv=- Ω σ:ṡ * dv- Ω µ: κ * dv (2.1)
g In the linear Cosserat context where we assume infinitesimal displacements, the mass density per unit volume ρ ≈ ρ 0 , where ρ 0 is the Lagrangian constant mass denisity. Similarly, under infinitesimal rotations, the microintertia term reduces to ρι due to the spherical symmetry assumption we make. In general, the microinertia term, is a second order tensor I ij that under the spherical symmetry assumption becomes I ij = ριδ ij . The reader can consult the works of, e.g., [START_REF] Eringen | Nonlinear theory of simple microelastic solids-I[END_REF] and [START_REF] Eringen | Nonlinear theory of simple microelastic solids-I[END_REF] (this where the concert of microinertia was introduced), [START_REF] Eringen | Microcontinuum Field Theories: I. Foundations and Solids[END_REF], [START_REF] Germain | The method of virtual power in continuum mechanics. Part 2: Microstructure[END_REF], [START_REF] Grekova | Basic equations of kelvin's medium and analogy with ferromagnets[END_REF]. In the nonlinear Cosserat context, in addition to having conservation of mass, we also need to have conservation of microinertia.

D r a f t

W ext (Ω, u u u, φ φ φ)= ∂Ω t t t. u u u * da+ ∂Ω m m m. φ φ φ * da+ Ω ρf f f. u u u * dv+ Ω ριℓ ℓ ℓ. φ φ φ * dv (2.2) W acc (Ω, u u u, φ φ φ)= Ω ρ ü u u. u u u * dv+ Ω ρι φ φ φ. φ φ φ * dv (2.
3)

The sum of the virtual work of internal, external, and acceleration forces acting on any subdomain D of the body for any virtual set of vector fields ( u u u * , φ φ φ * ) vanishes at each instant t of the evolution.

W int (Ω, u u u, φ φ φ)+W ext (Ω, u u u, φ φ φ)=W acc (Ω, u u u, φ φ φ), (2.4) 
for all Ω and for all admissible ( u u u * , φ φ φ * ). Consequences of the virtual power principle are,

div σ + ρf f f = ρ ü u u in Ω, div µ + ϵ ϵ ϵ:σ + ριℓ ℓ ℓ = ρι φ φ φ in Ω, σ.n n n = t t t on ∂Ω, µ.n n n = m m m on ∂Ω.
(2.5)

The tensor σ is the non-symmetric stress tensor, µ the couple-stress tensor, ϵ ϵ ϵ the Levi-Civita tensor with ϵ ϵ ϵ:σ = 3 j,k=1 ϵ ϵ ϵ ijk σ jk for i ∈ {1, 2, 3}, f f f the body forces, and ℓ ℓ ℓ the body couples.

2.The first law of thermodynamics. The balance law for the energy is,

d dt Ω ρe dv + W acc (Ω, u u u, φ φ φ)=W ext (Ω, u u u, φ φ φ)- ∂Ω q q q.n n nda+ Ω ρrda, (2.6) 
or, equivalently after taking the principle of virtual work into account,

d dt Ω ρe dv= -W int (Ω, u u u, φ φ φ)- ∂Ω q q q.n n nda+ Ω ρrda.
(balance of energy)

The local equations then take the form, ρ ė=σ:ṡ+µ: κ-div q q q+ρr.

(2.7)

3.The second law of thermodynamics. The second law of thermodynamics keeps its classical global form for any material subdomain D,

d dt Ω ρη dv≥ - ∂Ω q q q T .n n nda+ Ω ρ r T dv.
(growth of entropy)

Combining the growth of entropy and the balance of energy together with the Helmholtz free energy ψ:=e -Tη we obtain the Clausius-Duhem inequality, ρ( ψ+ Ṫ η)-σ:ṡ-µ: κ+ q q q.grad T T ≤ 0.

(Clausius-Duhem ineq.) D r a f t

Constitutive laws based on thermodynamic restrictions

Following the celebrated Coleman-Noll procedure, constitutive functions depend on the state variables (s, κ, T ):

ψ = ψ(s, κ, T ). (2.8)
We require that the Helmholtz free energy satisfy the principle of material objectivity, namely,

ψ(s, κ, T ) = ψ(Qs, Qκ, T ) (2.9)
for all Q ∈ SO(3). Hence, the classical chain rule gives,

ψ= ∂ ψ ∂s :ṡ+ ∂ ψ ∂κ : κ+ ∂ ψ ∂T Ṫ .
(2.10)

Replacing the above expression in the Clausius-Duhem ineq. we obtain,

ρ ∂ ψ ∂s -σ :ṡ + ρ ∂ ψ ∂κ -µ : κ + ρ ∂ ψ ∂T + η Ṫ + 1 T q q q.∇T ≤ 0. (2.11) 
Thermodynamic restrictions give the following constitutive relations:

σ = ρ ∂ ψ ∂s , µ = ρ ∂ ψ ∂κ , ρη = -ρ ∂ ψ ∂T .
(2.12)

The above relations reduce the dissipative part of the system to the purely thermal compomponent h , namely,

1 T q q q • ∇T ≤ 0. (2.13)
3 Analysis of an isothermal and quasi-stationnary system

Henceforth, we will assume that the material is in its natural configuration, meaning the prestress and the couple pre-stress are both zero. Moreover, we will consider a system that is quasistationary and thermally isolated where heat exchange does not occur. A reasonable free energy could have the following form,

ρ ψ = 1 2 Es:s + 1 2 Mκ:κ + Cs:κ, (3.1) 
h Within this context, should one contemplate a quadratic free energy formulation for a material in its inherent state-wherein both prestress and couple prestress parameters assume a value of zero-a comprehensive thermomechanical system for a Cosserat continuum can be deduced. However, the exploration of this avenue diverges from the primary focus of this article. Consequently, we opt to defer this exploration to a subsequent undertaking, as it falls outside the immediate scope of our present objectives. D r a f t and the ensuing constitutive laws from (2.12) become,

σ µ = E C C ⊤ M s κ (3.2)
The term s is the Cosserat strain tensor and κ is the torsion tensor (or curvature-twist tensor or curvature tensor or curvature). Additionally, thermodynamic relations impose the following symmetry on the tensors E jikℓ , M jikℓ , and C jikℓ :

E jikℓ = E kℓji , M jikℓ = M kℓji , and 
C jikℓ = C kℓji (3.3)
The pseudo-tensor C jikℓ , expresses the chirality i effects [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF]. If C jikℓ ≡ 0 then the material is called centrosymmetric [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF] and the problem has been addressed formally in [START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF], [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] and rigorously via unfolding in [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF]. Regarding non-centrosymmetric material, one can consult [START_REF] Bytner | Homogenization of Cosserat continuum[END_REF] as well as recent work in [START_REF] Nika | Cosserat continuum modelling of chiral scale-size effects and their influence on effective constitutive laws[END_REF], [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF].

Dimensional analysis

Let L be the characteristic length of the body Ω and ℓ the characteristic length of the periodic cell.

We normalize all the parameters involved, including material parameters, as follows:

x x x * = x x x L , u u u * (x x x * ) = u u u(x x x) L , φ φ φ * (x x x * ) = φ φ φ(x x x). (3.4) 
In non-centrosymmetric Cosserat media there are two additional and independent length scale parameters that are of importance, namely, the Cosserat intrinsic length ℓ coss of the constituents [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF], and the chirality coefficient ℓ chiral . The Cosserat intrinsic length and the chirality coefficient are defined as follows,

M = E ℓ 2 coss , C = E ℓ 1/p coss ℓ 1/p ′ chiral with 1 p + 1 p ′ = 1, p, p ′ ∈ (1, +∞), (3.5) 
where

E = max z z z∈Y ℓ |E jikl (z z z)|, C = max z z z∈Y ℓ |C jikl (z z z)|, M = max z z z∈Y ℓ |M jikl (z z z)| for i, j, k, l ∈ {1, 2, 3}
, and Y ℓ = (-ℓ/2, ℓ/2] 3 is periodic cell characterizing the body Ω. Additionally, the non-symmetric strain and curvature scale as,

s * = s and κ * = L κ. (3.6)
Moreover, we define the scaled stress, couple-stress, and fourth order material tensors as follows,

i Chiral materials exhibit a distinctive quality wherein they lack invariance under a coordinate transformation involving inversion. This implies a inherent orientation within the body. In the realm of three dimensions, this orientation is defined by adopting either a right-hand rule or a left-hand rule convention to determine the positioning of the axes. Frequently, in scholarly literature, chirality and non-centrosymmetry have been used interchangeably. However, this interchangeability holds true exclusively in spatial dimensions of three or more. In two dimensions, these two concepts diverge. For clarity, our focus in this current study will adhere to three dimensions, thereby sidestepping potential confusion. Readers seeking further insight are encouraged to refer to the recent work in [START_REF] Auffray | Anisotropic structure of two-dimensional linear Cosserat elasticity[END_REF].

D r a f t

σ * = E -1 σ, µ * = (EL) -1 µ, (3.7) 
E * (x x x * ) = E -1 E(x x x), C * (x x x * ) = C -1 C(x x x), M * (x x x * ) = M -1 M(x x x). (3.8) 
We remark that the fourth order material tensors E * (x x x * ), C * (x x x * ), and

M * (x x x * ) are Y * periodic
where,

Y * = ℓ L Y, Y:= - 1 2 , 1 2 3 . 
(3.9) Hence, the system of equations in (2.5) scales as:

-div σ * = f f f * in Ω, -div µ * -ϵ ϵ ϵ:σ * = ℓ ℓ ℓ * in Ω, (3.10) 
where f f f * , and ℓ ℓ ℓ * are the appropriately scaled body forces and body couples j (see [21, Eq. ( 14), pg.

4589]) and with constitutive laws, for i, j ∈ {1, 2, 3}:

σ * ji = 3 k,ℓ=1 E * jikℓ s * kℓ + ℓ coss L 1/p ℓ chiral L 1/p ′ C * ijkℓ κ * kℓ , (3.11) 
µ * ji = 3 k,ℓ=1 ℓ coss L 1/p ℓ chiral L 1/p ′ C * kℓij s * kℓ + ℓ coss L 2 M * jikℓ κ * kℓ .
(3.12)

Thus, one can generate an ε periodic problem by defining the nondimensional number ε as the ratio of ℓ/L and let ε → 0 to obtain an effective medium. However, different cases ought to be considered depending on how ℓ coss and ℓ chiral scale with ℓ and L, respectively. Here we consider the case where p = p ′ = 2,

ℓ coss /L ∼ ε 1/2 , ℓ chiral /L ∼ ε 3/2 .
(scaling scheme)

Scaling of the stress and couple-stress

If ℓ chiral /ℓ = ε p ′ then ℓ chiral /L = ε p ′ +1
. Hence, the stress and couple-stress become k , j For expediting the presentation, we have also absorbed into the body forces and body couples the mass density, ρ, and the microinertia density, ρι, respectively.

k This scaling is quite different than the scaling introduced in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF]. As we will see in the preceding section where we make the homogenization rigorous through the periodic unfolding technique, some more effort is require to pass to the limit for the rotations under this scheme. The reader is invited to compare this result with the work in [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF], [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF]. D r a f t

σ ε ij = 3 k,ℓ=1 E ijkl ( x x x ε )s ε kl + εC ijkl ( x x x ε )κ ε kl , µ ε ij = 3 k,ℓ=1 εC klij ( x x x ε )κ ε kl + εM ijkl ( x x x ε )s ε kl .
(3.13)

The microscopic mathematical model

We consider an elastic solid with periodic microstructure of period ε occupying a region Ω. The region Ω, that the body occupies, is assumed to be a connected (possibly non-simple), open set of R 3 with a Lipschitz boundary. Y = (-1/2, 1/2] 3 is the unit cube in R 3 and Z 3 is the set of all vectors with integer components. For every positive ε, let N ε be the set of all points m ∈ Z 3 such that ε(m + Y) is strictly included in Ω. Let T ⊂ interior(Y) be a Lipschitz domain such that T ⊂ Y with T ε m := ε(m + T ) will represent the region containing one of the material phases (see Fig. 1). Hence, we can define the following subsets of Ω l :

Ω 1ε := m∈Nε T ε m , Ω 2ε :=Ω\Ω 1ε , Ω:=Ω 1ε ∪ Ω 2ε .
Moreover, we denote by Σ = ∂Ω the boundary of

Ω such that Σ = Σ D Σ N with Σ D Σ N = ∅ m .
The vector n n n will denote the unit normal on Σ pointing in the outward direction. Hence, the heterogeneous Cosserat continuum is characterized by the following coupled system:

-div σ ε = f f f in Ω, -div µ ε -ϵ ϵ ϵ:σ ε = ℓ ℓ ℓ in Ω, σ.n n n = 0 0 0 on Σ N , µ.n n n = 0 0 0 on Σ N , u u u ε = 0 0 0 on Σ D , φ φ φ ε = 0 0 0 on Σ D . (3.14) 
Here σ ε is the stress, µ ε is the couple-stress, u u u ε is the displacement, and φ φ φ ε is the rotation. The system of equations (3.14) characterizes the mechanical deformation that the body undergoes. The equations are fully coupled and the system is closed with homogeneous Dirichlet boundary conditions on Σ. In addition to computing the displacement we must also compute the rigid rotations which makes for a fully coupled system of partial differential equations.

Constitutive relations. The stress and couple-stress are related to the strain and curvature-twist, respectively, though the fourth order material tensors

E ε (x x x) := E( x x x ε ), C ε (x x x) := C( x x x ε ), and 
M ε (x x x) := M( x x x ε
) by the relation (see [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF]), D r a f t 

R 3 Ω Σ Σ ε ε ε εY
σ ε µ ε = E ε C ε C ε⊤ M ε s ε κ ε (3.15)
The tensors E ε , M ε , and C ε are linear isotropic tensors in each phase and have the following form,

207 E ε jikℓ (x x x):=E jikℓ ( x x x ε ) = (ϑ( x x x ε ) + α( x x x ε )) δ jk δ iℓ + (ϑ( x x x ε ) -α( x x x ε )) δ jℓ δ ik + ϖ( x x x ε ) δ ij δ kℓ , (3.16) 
M ε jikℓ (x x x):=M jikℓ ( x x x ε ) = (θ( x x x ε ) + β( x x x ε )) δ jk δ iℓ + (θ( x x x ε ) -β( x x x ε )) δ jℓ δ ik + ω( x x x ε ) δ ij δ kℓ , (3.17) 
D r a f t

C ε jikℓ (x x x):=C jikℓ ( x x x ε ) = c 1 ( x x x ε ) δ kℓ δ ij + c 2 ( x x x ε ) δ ik δ jℓ + c 3 ( x x x ε ) δ iℓ δ jk , (3.18) 
respectively. The coefficients ϑ, θ, α, β, ϖ, ω, and c ι for ι = 1, 2, 3 are material parameters that are piece-wise constant in each phase. The restrictions on the coefficients are the following n (see [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF], [START_REF] Nowacki | Theory of asymmetric elasticity[END_REF]),

ϑ > 0, 3ϖ + 2ϑ > 0, ϑ + α > 0, α > 0, θ > 0, 3ω + 2θ > 0, θ + β > 0, β > 0. (3.19)

Assumptions

We frame model (3.14) under the following general assumptions:

• The body force f f f and body couple ℓ ℓ ℓ are such that f f f ∈ L 2 (Ω; R 3 ) and ℓ ℓ ℓ ∈ H(curl, Ω).

• The fourth order material characterization tensors

E ε , M ε , C ε belong in L ∞ . Moreover, E ε
and M ε satisfy the Legendre condition, i.e for any fourth rank tensor A,

A αβij ξ α i ξ β j ≥ λ|ξ ξ ξ| 2 , ∀ ξ ξ ξ ∈ R 3×3 (3.20)
where λ > 0.

Existence and uniqueness. Denote by,

J ε [v v v, ψ ψ ψ] = 1 2 Ω s κ E ε Ĉε Ĉε⊤ Mε s κ dx x x (3.21)
where s := ∇v v v -ϵ ϵ ϵ.ϕ ϕ ϕ and κ := ∇ψ ψ ψ. Then the total energy of the system described in (3.14),

E ε [v v v, ψ ψ ψ] = J ε [v v v, ψ ψ ψ] - Ω (f f f • v v v + ℓ ℓ ℓ • ψ ψ ψ) dx x x. (3.22)
The tensors with the hat notation are simply place holders. So, under the scaling scheme Ĉε ≡ εC ε and Mε ≡ εM ε . Computing the Euler-Lagrange equations and grouping terms by test function (see [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF]) one can recover system (3.14) in the sense of distributions.

One can readily verify that the above energy is sequentially weakly lower semicontinuous in

H 1 Σ D (Ω, R 3 ) × H 1 Σ D (Ω, R 3 ), where H 1 Σ D (Ω, R 3 ) = g g g ∈ H 1 (Ω, R 3 ) | g g g Σ D = 0 and g g g Σ D D r a f t
is the usual trace operator. Thus, if the energy is also coercive then we can simply rely on the direct method that will guarantee the existence of a unique minimizer.

Coercivity under the scaling scheme. Using the ellipticity conditions for the tensors E, M, and Cauchy's inequality with δ we obtain,

ĉ ∥s ε ∥ 2 L 2 (Ω;R 3×3) + cε ∥κ ε ∥ 2 L 2 (Ω;R 3×3 ) ≤J ε [u u u ε , φ φ φ ε ] -ε Ω C jikl ( x x x ε )s ε :κ ε dx x x ≤J ε [u u u ε , φ φ φ ε ] + ε Ω |s ε ||κ ε | dx x x ≤J ε [u u u ε , φ φ φ ε ] + ε 2δ ∥s ε ∥ + ε δ 2 ∥κ ε ∥ 2 .
(3.23)

Thus,

( c -2δ)ε ∥κ ε ∥ 2 L 2 (Ω;R 3×3 ) + (ĉ - ε 2δ ) ∥s ε ∥ 2 L 2 (Ω;R 3×3 ) ≤ J ε [u u u ε , φ φ φ ε ]. (3.24) 
Picking δ > 0 appropriately and using the smallness of ε > 0 we can guarantee that the above expression is always positive. Moreover, by [START_REF] Hlaváček | On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. I: Cosserat continuum[END_REF]Thm. 3.1] (see also [START_REF] Necas | Les Méthodes Directes en Théorie des Equations Elliptiques[END_REF], [START_REF] Hlávȃcek | On inequalities of Korn's type. I. Boundary-value problems for elliptic systems of partial differential equations[END_REF]) in

H 1 Σ D (Ω, R 3 ) × H 1 Σ D (Ω, R 3 
), the following estimate holds:

∥u u u ε ∥ 2 H 1 Σ D (Ω;R 3 ) + ∥φ φ φ ε ∥ 2 L 2 (Ω;R 3 ) +ε ∥∇φ φ φ ε ∥ 2 L 2 (Ω;R 3×3 ) ≤ c ∥f f f∥ 2 L 2 (Ω;R 3 ) + ∥ℓ ℓ ℓ∥ 2 L 2 (Ω;R 3 ) , (3.25) 
for some generic constant c independent of ε.

The periodic unfolding operator

We define the following domain decompositions (see [START_REF] Ciorȃnescu | Éclatement périodique et homogénéisation[END_REF][START_REF] Damlamian | An elementary introduction to periodic unfolding[END_REF][START_REF] Ciorȃnescu | The periodic unfolding method in homogenization[END_REF][START_REF] Ciorȃnescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF]): 

K - ε := ℓ ∈ Z 3 | ε(ℓ + Y) ⊂ Ω , Ω - ε :=int ∪ ℓ∈K - ε ε(ℓ + Y) , Λ - ε :=Ω\Ω - ε . ( 3 
x x x = ε x x x ε Y + x x x ε Y . (3.27) 
For any Lebesgue measurable function ϕ on Ω we define the periodic unfolding operator by, D r a f t (3.28)

ε ε Ω Ω - ε 0 ∈ R 3 ε x ε ∈ Z 3 εy ∈ εY x ∈ Ω
In a similar fashion we define the local average operator

M ε : L p (Ω) → L p (Ω) for p ∈ [1, +∞], M ε (ϕ)(x x x) = 1 |Y| Y ϕ ε x x x ε + εz z z dz z z for a.e. x x x ∈ Ω - ε 0 for a.e. x x x ∈ Λ - ε . (3.29) 
Note that the local average M ε is connected to the unfolding operator T ε via the average over Y, namely, 

M ε (ϕ) = 1 |Y| Y T ε (ϕ)(•,
I. T ε (ϕ ψ) = T ε (φ) T ε (ψ)
for every pair of Lebesgue measurable functions φ, ψ on Ω II. For every ϕ ∈ L 1 (Ω) we have,

1 |Y| Ω×Y T ε (ϕ)(x x x, y y y) dx x x dy y y = Ω - ε ϕ(x x x) dx x x = Ωε ϕ(x x x) dx x x - Λ - ε ϕ(x x x) dx x x (3.31) III. ∥T ε (ϕ)∥ L p (Ω×Y) ≤ |Y| 1/p ∥ϕ∥ L p (Ω) for every ϕ ∈ L p (Ω) IV. T ε (ϕ) → ϕ strongly in L p (Ω × Y) for ϕ ∈ L p (Ω) as ε → 0 V. If {ϕ ε } ε is a sequence in L p (Ω) such that ϕ ε → ϕ strongly in L p (Ω), then T ε (ϕ ε ) → ϕ strongly in L p (Ω × Y) VI. If ϕ ∈ L p (Y) is Y-periodic and ϕ ε (x x x) = ϕ x x x ε then T ε (ϕ ε ) → ϕ strongly in L p (Ω × Y) as ε → 0 D r a f t VII. If ϕ ε ⇀ ϕ in H 1 (Ω)
then there exists an non-relabeled subsequence and a φ ∈ L 2 (Ω;

H 1 per (Y)) such that a. T ε (ϕ ε ) → ϕ in L 2 (Ω; H 1 (Y)) b. T ε (∇ϕ ε ) ⇀ ∇ x ϕ + ∇ y φ in L 2 (Ω × Y)
VIII. Let ϕ ε ∈ H 1 (Ω) and assume that {ϕ ε } ε is converging weakly to some ϕ in L 2 (Ω) and satisfying for some strictly positive sequence {δ(ε)} ε converging to zero,

δ(ε) ∥∇ϕ ε ∥ L 2 (Ω) is bounded as ε tends to zero. If lim ε→0 δ(ε)/ε = +∞ then, a. T ε (ϕ ε ) ⇀ ϕ in L 2 (Ω; H 1 (Y)), b. ∇ y T ε (ϕ ε ) → 0 0 0 in L 2 (Ω × Y; R 3 ).
Furthermore, there exists a φ ∈ L 2 (Ω; H 1 per (Y)) with zero average over Y, such that, up to then there exist

a subsequence o , c. δ(ε) ε T ε (ϕ ε -M ε (ϕ ε )) ⇀ φ in L 2 (Ω; H 1 (Y)), d. δ(ε)T ε (∇ϕ ε ) → ∇ y φ in L 2 (Ω × Y; R 3 ).

Presentation and discussion of the results

u u u 0 ∈ H 1 Σ D (Ω; R 3 ), u u u 1 ∈ L 2 (Ω; H 1 per (Y; R 3 )), φ φ φ 0 ∈ L 2 (Ω; H 1 per (Y; R 3 )) such that, T ε (u u u ε ) ⇀ u u u 0 in L 2 (Ω; H 1 (Y; R 3 )), (3.32) 
T ε (∇u u u ε ) ⇀ ∇ x u u u 0 + ∇ y u u u 1 in L 2 (Ω × Y; R 3×3 ), (3.33) 
T ε (φ φ φ ε ) ⇀ φ φ φ 0 in L 2 (Ω; H 1 (Y; R 3 )), (3.34) δ(ε) ε T ε (φ φ φ ε -M ε (φ φ φ ε )) ⇀ φ φ φ in L 2 (Ω; H 1 (Y; R 3 )), (3.35) 
δ(ε)T ε (∇φ φ φ ε ) → ∇ y φ φ φ in L 2 (Ω × Y; R 3 ) (3.36)
and (u u u 0 , φ φ φ 0 , u u u 1 ) is the unique solution set of,

1 |Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ) + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ :(∇ x V V V+∇ y W W W) dy y y dx x x - 1 |Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ) + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ :ϵ ϵ ϵ.Ψ Ψ Ψ dy y y dx x x - 1 |Y| Ω×Y (f f f • V V V + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ(∇ x V V V + ∇ y W W W) dy y y dx x x = 0. (3.37) 
o Property VIII. is not as well-known in classical homogenization literature. Nevertheless, this result, along with its proof, can be found in [START_REF] Ciorȃnescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF]Lemma 1.44 

(ii), pg. 32]. D r a f t for all (V V V, Ψ Ψ Ψ) ∈ (H 1 σ (Ω; R 3 ), L 2 (Ω, R 3 )) and W W W ∈ L 2 (Ω; H 1 (Y; R 3 
)). Equation (3.37) can be put in a more familiar form,

Ω σ eff :∇ x V V V dx x x = 1 2 Ω ℓ ℓ ℓ • curl x V V V dx x x + Ω f f f • V V V dx x x, (3.38) 
with σ eff := E eff ∇ x u u u 0 + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ the Cauchy stress p , 

E eff jipq := 1 |Y| Y E jikℓ (
for all v v v ∈ H 1 per (Y; R 3 ).
Remark 3.1. We would like to highlight a few key aspects regarding the above theorem. Firstly, the relationships presented in equations (3.34)-(3.36) differe from those found in either [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF] or [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF].

This discrepancy is attributed to the nature of the scaling scheme, which differs from the scaling assumed in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF]. The approach can be employed to systematically incorporate any power of ε in front of terms involving the Cosserat components, thereby establishing a rigorous homogenization limit.

Secondly, it is worth noting that the effective coefficients derived in (3.39) are derived solely from a single local problem. This approach proves to be more efficient and practical, both computationally and geometrically, in comparison to the approach presented in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF], and [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF], where two distinct local problems are introduced. Additionally, within the effective coefficient tensor, a non-symmetric component is evident, characterized by the Cosserat couple modulus (further analyzed in detail in Section 4). This component distinguishes the effective coefficients from their classical counterparts. then there exist u u u 0 ∈ H

Proofs of the main results

1 Σ D (Ω; R 3 ), u u u 1 ∈ L 2 (Ω; H 1 per (Y; R 3 )), φ φ φ 0 ∈ L 2 (Ω; H 1 per (Y; R 3 )) such that,
p The reader should remark immediately that the relationship between effective stress and effective strain is not linear but rather affine. Nevertheless, in the proof of the theorem we will show that the effective stress is symmetric. Hence, the body-couples play an important role in stress equilibrium. q We remark here that there is only one local solution. By contrast, in the works of [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF], [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF] there are two local problems. The approach herein is both mathematically more consistent as well as computationally more efficient since there is only one local problem. D r a f t

T ε (u u u ε ) ⇀ u u u 0 in L 2 (Ω; H 1 (Y; R 3 )), (3.32) 
T ε (∇u u u ε ) ⇀ ∇ x u u u 0 + ∇ y u u u 1 in L 2 (Ω × Y; R 3×3 ), (3.33) 
T ε (φ φ φ ε ) ⇀ φ φ φ 0 in L 2 (Ω; H 1 (Y; R 3 )), (3.34) δ(ε) ε T ε (φ φ φ ε -M ε (φ φ φ ε )) ⇀ φ φ φ in L 2 (Ω; H 1 (Y; R 3 )), (3.35) 
δ(ε)T ε (∇φ φ φ ε ) → ∇ y φ φ φ in L 2 (Ω × Y; R 3 ) (3.36)
and (u u u 0 , φ φ φ 0 , u u u 1 ) is the unique solution set of,

1 |Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ) + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ :(∇ x V V V+∇ y W W W) dy y y dx x x - 1 |Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ) + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ :ϵ ϵ ϵ.Ψ Ψ Ψ dy y y dx x x - 1 |Y| Ω×Y (f f f • V V V + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ(∇ x V V V + ∇ y W W W) dy y y dx x x = 0. (3.37) for all (V V V, Ψ Ψ Ψ) ∈ (H 1 σ (Ω; R 3 ), L 2 (Ω, R 3 )) and W W W ∈ L 2 (Ω; H 1 (Y; R 3 )). Equation (3.37) can be put in a more familiar form, Ω σ eff :∇ x V V V dx x x = 1 2 Ω ℓ ℓ ℓ • curl x V V V dx x x + Ω f f f • V V V dx x x, (3.38) 
with σ eff := E eff ∇ x u u u 0 + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ the Cauchy stress r , 

E eff jipq := 1 |Y| Y E jikℓ (
for all v v v ∈ H 1 per (Y; R 3 ).
r The reader should remark immediately that the relationship between effective stress and effective strain is not linear but rather affine. Nevertheless, in the proof of the theorem we will show that the effective stress is symmetric. Hence, the body-couples play an important role in stress equilibrium. s We remark here that there is only one local solution. By contrast, in the works of [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF], [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF] there are two local problems. The approach herein is both mathematically more consistent as well as computationally more efficient since there is only one local problem. 

D r a f t

Find (u u u ε , φ φ φ ε ) ∈ H 1 Σ D (Ω; R 3 ) × H 1 Σ D (Ω; R 3 ) such that, Ω E( x x x ε )(∇u u u ε -ϵ ϵ ϵ.φ φ φ ε ):(∇v v v-ϵ ϵ ϵ.ψ ψ ψ) dx x x- Ω ε C( x x x ε ) ∇φ φ φ ε :(∇v v v -ϵ ϵ ϵ.ψ ψ ψ) dx x x - Ω ε C( x x x ε ) (∇u u u ε -ϵ ϵ ϵ.φ φ φ ε ):∇ψ ψ ψ dx x x - Ω ε M( x x x ε ) ∇φ φ φ ε :∇ψ ψ ψ dx x x - Ω (f f f • v v v + g g g • ψ ψ ψ) dx x x = 0.
(3.41)

Unfold the above expression using Proposition 3.1 properties I., II., and IV. and obtain,

1 |Y| Ω×Y E(y y y)(T ε (∇u u u ε ) -ϵ ϵ ϵ.T ε (φ φ φ ε )):(T ε (∇v v v) -ϵ ϵ ϵ.T ε (ψ ψ ψ)) dy y y dx x x - 1 |Y| Ω×Y ε C (y y y) T ε (∇φ φ φ ε ):(T ε (∇v v v) -ϵ ϵ ϵ.T ε (ψ ψ ψ)) dx x x dy y y - 1 |Y| Ω×Y ε C (y y y) (T ε (∇u u u ε ) -ϵ ϵ ϵ.T ε (φ φ φ ε )):T ε (∇ψ ψ ψ) dx x x dy y y - 1 |Y| Ω×Y ε M (y y y) T ε (∇φ φ φ ε ):T ε (∇ψ ψ ψ) dy y y dx x x - 1 |Y| Ω×Y (T ε (f f f) • T ε (v v v) + T ε (g g g) • T ε (ψ ψ ψ)) dy y y dx x x = 0. (3.42) Set (v v v, ψ ψ ψ):=(V V V(x x x), Ψ Ψ Ψ(x x x)), where (V V V, Ψ Ψ Ψ) ∈ {C ∞ (Ω; R 3 ) | V V V=0 on Σ D } × {C ∞ (Ω; R 3 ) | Ψ Ψ Ψ=0 on Σ D }
are arbitrary test functions, in (3.42) and let ε → 0 to obtain,

1 |Y| Ω×Y E(y y y) (∇ x u u u 0 k + ∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ):(∇ x V V V-ϵ ϵ ϵ.Ψ Ψ Ψ) dy y y dx x x - 1 |Y| Ω×Y (f f f • V V V+g g g • Ψ Ψ Ψ) dx x x = 0. (3.43)
Select now a test function of the form

(v v v, ψ ψ ψ)=(v v v ε , ψ ψ ψ ε ):= ε U(x x x) W W W x x x ε , ε Φ(x x x) Ξ Ξ Ξ x x x ε where (U, Φ) ∈ C ∞ 0 (Ω) × C ∞ 0 (Ω) and (W W W, Ξ Ξ Ξ) ∈ H 1 per (Y; R 3 ) × H 1 per (Y; R 3 ). It is immediately clear that (v v v ε , ψ ψ ψ ε ) → (0 0 0, 0 0 0) in L 2 (Ω; R 3 ) × L 2 (Ω; R 3 ). Moreover, for v v v ε we have ∂ x j v ε i (x x x)=ε∂ x j U(x x x)W i (x x x/ε)+U(x x x)∂ y j W i (x x x/ε) (3.44) which implies T ε (∂ x j v ε i ) ⇀ ∂ y j W i (x x x, y y y) in L 2
(Ω × Y) as ε → 0 where W i (x x x, y y y):=U(x x x) W i (y y y).

Likewise, for ψv ε , we have D r a f t

∂ x j ψ ε i (x x x)=ε∂ x j Φ(x x x)Ξ i (x x x/ε) + Φ(x x x)∂ y j Ξ i (x x x/ε) (3.45) which implies T ε (∂ x j ψ ε i ) ⇀ ∂ y j Ξ i (x x x, y y y) in L 2
(Ω × Y) as ε → 0 where Ξ i (x x x, y y y):=Φ(x x x) Ξ i (y y y).

Hence, unfolding (3.42) with the test function (v v v ε , ψ ψ ψ ε ) and letting ε tend to zero we obtain, 

1 |Y| Ω×Y E(y y y) (∇ x u u u 0 + ∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ):∇ y W W W(x x
1 |Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ):(∇ x V V V+∇ y W W W-ϵ ϵ ϵ.Ψ Ψ Ψ) dy y y dx x x = 1 |Y| Ω×Y (f f f•V V V+ℓ ℓ ℓ•Ψ Ψ Ψ) dy y y dx x x.
(3.47)

By the density of

C ∞ 0 (Ω)⊗H 1 per (Y; R 3 ) in L 2 (Ω; H 1 per (Y; R 3 
)) the result holds for all (W W W(x x x, y y y), Ξ Ξ Ξ(x x x, y y y)) ∈

L 2 (Ω; H 1 per (Y; R 3 )) × L 2 (Ω; H 1 per (Y; R 3 )).
In order to better understand what happens to the balance of linear momentum and angular momentum, we re-write the body couple force as follows: ℓ i = 1 2 ϵ ϵ ϵ ipq ϵ ϵ ϵ jpq ℓ j , i = 1, 2, 3. Then, grouping the terms in (3.47) by test function we obtain,

1

|Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ) + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ :(∇ x V V V+∇ y W W W) dy y y dx x x

- 1
|Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ) + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ :ϵ ϵ ϵ.Ψ Ψ Ψ dy y y dx x x

- 1 |Y| Ω×Y (f f f • V V V + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ(∇ x V V V + ∇ y W W W) dy y y dx x x = 0. (3.48)
From here we can obtain two sets of equations. By considering, first, that

(V V V, W W W, Ψ Ψ Ψ) = (V V V, W W W, 0 0 0)
we have,

1 |Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 )+ 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ :(∇ x V V V+∇ y W W W) dy y y dx x x - 1 |Y| Ω×Y (f f f • V V V + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ(∇ x V V V + ∇ y W W W) dy y y dx x x = 0. (3.49)
This is precisely the balance of linear momentum. By considering, (V V V, W W W, Ψ Ψ Ψ) = (0 0 0, 0 0 0, Ψ Ψ Ψ) we have, Shifting our focus to (3.49), when we opt for V V V ≡ 0 0 0, it becomes evident that both u u u 1 and φ φ φ 0 exhibit a linear dependence on ∇ x u u u 0 . Consequently, the local predicament faces two potential outcomes: it either lacks a solution, or there exists a linear relationship between u u u 1 and φ φ φ 0 . t In the case where the displacement and rotation are dependent then a possible way to construct local solutions is as follows, 

- 1 |Y| Ω×Y E(y y y)(∇ x u u u 0 +∇ y u u u 1 -ϵ ϵ ϵ.φ φ φ 0 ) + 1 
for all v v v ∈ H 1 per (Y; R 3 ). Returning to (3.49) and substituting W W W = 0 0 0, u u u 1 and φ φ φ 0 from (3.51) and

(3.52) respectively, we obtain,

Ω σ eff :∇ x V V V dx x x= 1 2 Ω ϵ ϵ ϵ.ℓ ℓ ℓ:∇ x V V V dx x x+ Ω f f f • V V V dx x x, (3.54) 
where

σ eff :=E eff ∇ x u u u 0 + 1 2 ϵ ϵ ϵ.ℓ ℓ ℓ, (3.55) 
and

E eff jipq = 1 |Y| Y E jikℓ (y y y) δ kp δ qℓ + ∂ y ℓ w pq k -ϵ ϵ ϵ νkℓ ϵ ϵ ϵ ναβ ∂ y β w pq α dy y y. (3.56)
The stress recovered, σ eff , is symmetric. To see this, select u u u 1 , φ φ φ 0 as in (3.51), (3.52), respectively with Ψ Ψ Ψ an arbitrary test function, and substitute them in (3.50) to obtain, t In the work by [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF], [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF], it was posited that the expressions for u u u 1 and φ φ φ 0 are as follows: u u u 1 (x x x, y y y) = ζ ζ ζ kℓ (y y y), ∂x ℓ u 0 k (x x x) + c c c(x x x) and φ φ φ 0 (x x x, y y y) = ξ ξ ξ kℓ (y y y), ∂x ℓ u 0 k (x x x). Here, two distinct local solutions, denoted as (ζ ζ ζ kℓ , ξ ξ ξ kℓ ), were assumed, each satisfying disparate local problems. It is noteworthy that a similar construction of two local independent solutions was also presented in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF]. Our aforementioned methodology stands out for its efficiency, characterized by the consolidation of considerations into a singular local problem. This streamlined approach not only simplifies potential computations but also enhances overall computational efficiency.

u Local problem (3.53) is not a classical elasticity problem. The material parameter, α usually referred to as the Cosserat angle, provides a rotational component. Absent the Cosserat angle, the local problem reduces to the usual local problem we encounter in the homogenization of classical elasticity.

D r a f t

- Ω σ eff :ϵ ϵ ϵ.Ψ Ψ Ψ dx x x = - Ω (ϵ ϵ ϵ:σ eff ) • Ψ Ψ Ψ dx x x = 0. (3.57) 
Hence, locally we have ϵ ϵ ϵ:σ eff = 0 0 0 (ϵ ϵ ϵ ijk σ eff jk = 0, i = 1, 2, 3) which implies that σ eff =(σ eff ) ⊤ and therefore angular momentum is conserved. v

The local problem

The local problem that arises from the above multi-continuum homogenization scheme is,

w w w pq ∈ H 1 per (Y; R 3 ), Y
w w w pq dy y y = 0, Y E(y y y) (e e e p ⊗ e e e q + ∇ y w w w pq -ϵ ϵ ϵ.curl y (w w w pq )):∇ y v v v dy y y = 0,

for all v v v ∈ H 1 per (Y; R 3 ). The above cell/local problem differs fundamentally from the classical cells problem that one finds in the homogenization literature in two ways: First, the mateial tensor E is assumed to be isotropic in the Cosserat mechanics context and has the following form,

E ε jikℓ (x x x):=E jikℓ ( x x x ε ) = (ϑ( x x x ε ) + α( x x x ε )) δ jk δ iℓ + (ϑ( x x x ε ) -α( x x x ε )) δ jℓ δ ik + ϖ( x x x ε ) δ ij δ kℓ , (3.59) 
One can remark immediately the parameter α, often referred to as the Cosserat angle, that gives the tensor and anti-symmetric component.

The second way the cell problem differs, is through the extra term that appears and it is a remnant of the rotations, E(y y y)ϵ ϵ ϵ.curl y (w w w pq ).

Nevertheless the cell problem does have a unique solution.

Proposition 3.2. Assume that the material tensor E is isotropic as given by (3.16) and ϑ ≥ α then the cell problem in (3.53) has a unique solution up to an additive constant.

v The reader should take note that the multi-continuum homogenization approach has yielded a notable reduction in complexity. Specifically, it has transformed the system, previously governed by a pair of equations-one imposing the balance of linear momentum and the other imposing the balance of angular momentum-into a unified set of equations encapsulating homogenized classical elasticity with a homogenized symmetric stress tensor, adding a layer of elegance to the system's formalism.
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Proof. Define the bi-linear form, B[w w w pq , v v v] = Y E(y y y) (∇ y w w w pq -ϵ ϵ ϵ.curl y (w w w pq )):∇ y v v v dy y y.

(3.60)

The form is indeed bi-linear given the isotropy of the material tensor E in (3.16). By using tensor identities and straightforward calculations we see,

E(y y y) ∇ y w w w pq :∇ y v v v = 2θe ij (w w w pq )∂ y i v j + 2αω ij (w w w pq )∂ y i v j + ϖdiv y (w w w pq )div y (v v v), (3.61) 
E(y y y)ϵ ϵ ϵ.curl y (w w w pq ):

∇ y v v v = E jikl ϵ ϵ ϵ rkl ϵ ϵ ϵ rmn ∂ yn w pq m ∂ y i v j = -4αω ij (w w w pq )∂ y i v j , (3.62) 
where

e ij (f) = 1/2(∂ y i f j + ∂ y j f i ) and ω ij (f) = 1/2(∂ y i f j -∂ y j f i ) denote the symmetric and
anti-symmetric part of a second order tensor. Using the above calculation we arrive at the bi-linear form w , 

B[w w w pq , v v v] = Y Ê(y y y) ∇ y w w w pq :∇ y v v v dy y y, (3.63) 
The form B[w w w pq , v v v] is coercive, in the space of functions H 1 per (Y, R 3 ) with zero average, due to Poincaré's inequality and continuous. Moreover, the remaining term is linear and continuous and thus, Lax-Milgram provides a unique solution x .

w It is imperative for the reader to discern the nuanced yet significant distinction between E and Ê. Notably, the positions of the material parameters ϑ(y y y) -α(y y y) and ϑ(y y y) + α(y y y) have undergone a reversal compared to the original isotropic definition of the material tensor E. In instances where α ≡ 0, " the classical cell problem encountered in the periodic homogenization of linear elasticity is recovered. In such cases, the meticulous tracking of index orders becomes inconsequential, owing to the symmetry that naturally emerges.

x As a clarifying remark, we point out that the bilinear form, B[w w w pq , v v v], is constructed with the tensor Ê while the continuous and linear form contains the tensor E.

D r a f t 4 Numerical simulations

In this section, we carry out two-dimensional computations employing the finite element method to determine the effective coefficients. The primary objective of these numerical simulations serves a dual purpose. Initially, we visualize the effective shear coefficients, derived from (3.39) using equation (3.53), across varying volume fractions. It's noteworthy that, in contrast to conventional methodologies, we examine two scenarios: first, when the micropolar couple modulus, denoted as α, approaches zero, and subsequently, when the micropolar couple modulus closely aligns with the parameter θ. In the latter scenario, the rotational effects are triggered, becoming more pronounced, while in the former scenario, the outcomes align with those anticipated in the classical realm of linear elasticity.

The secondary objective is to ascertain the influence exerted by the micropolar couple modulus on the shear coefficients. Consequently, we graphically represent the shear coefficients over a spectrum of micropolar couple moduli spanning the interval [0, 1], numerically pinpointing a critical micropolar couple modulus. This critical micropolar couple modulus marks the juncture at which rotational effects become prominent, rendering the material more resistant to shear forces. Lastly, we graphically represent the deformed unit cell for a 1 × 1 unit cell under two distinct conditions: first, when the micropolar couple modulus approaches zero, and subsequently, when the micropolar couple modulus closely aligns with the parameter θ. This graphical demonstration is then replicated for a 1/2 × 2 unit cell, enhancing our ability to elucidate the impact of the micropolar D r a f t couple modulus on the deformation of the unit cell. The computational domain is set within the confines of the unit square and expands thereafter to encompass the unit rectangle. Both computational domains adhere to periodic boundary conditions imposed on opposing faces and are permeated with a "weak" material configured in the form of a circle (refer to Fig. 3). The focal point of these simulations lies in understanding the impact that local rotations impart upon the elastic coefficients, enabling a comparative analysis with their classical counterparts without the rotational influences. In all computational analyses, we employed a conventional triangular mesh. Specifically, we utilized 200 P2 elements to mesh the circular inclusion, complemented by an additional 20 P2 elements for the remainder of the unit cell. Throughout the entirety of our investigations, we assigned a Poisson's ratio of ν = 0.3 to each phase. The Young's modulus for the "strong" phase was set at E 1 = 0.91 GPa, while the "weak" phase was set at E 0 = 10 -3 GPa. All computations were carried out using the software, FreeFem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. In all computations, the material parameters were defined as follows:

ϑ = E 2(1 + ν) , ϖ = Eν (1 + ν)(1 -2ν) , α = η ϑ, (4.1) 
with E = E 0 , for the weak material, E 1 , for the strong material and α = 10 -3 , for the weak material, ηθ, for the strong material, (

were η is a dimensionless number within the closed interval [0,1], the symbols ϑ and ρ represent the classical Lamé constants, with α commonly denoted as the 'micropolar couple modulus' (see, e.g., [START_REF] Hassanpour | Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF]). Moreover, in the two-dimensional setting, the tensor,

E jikl =     E 1111 E 1122 E 1112 E 1121 E 2211 E 2222 E 2212 E 2221 E 1211 E 1222 E 1212 E 1221 E 2111 E 2122 E 2112 E 2121     =     2ϑ + ϖ ϖ 0 0 ϖ 2ϑ + ϖ 0 0 0 0 ϑ + α ϑ -α 0 0 ϑ -α ϑ + α     , (4.3) 
with the tensor Ê having the same form with the lower left 2 × 2 block having the signs switched.

Effect of volume fraction on effective coefficients

In Fig. 4 we plot the effective coefficients E eff 1212 and E eff 1221 as a function of the volume fraction.

We have only computed the shear coefficients since they are the only ones (up to symmetry)

where the rotations make a contribution. From the analysis of Fig. 4, it is evident that non-zero values of α introduce discernible distinctions in the coefficients, notably E eff 1212 ̸ = E eff 1221 . This contrast is not observed under the condition α = 0, where the coefficients exhibit equality, i.e., E eff 1212 = E eff 1221 . Additionally, in accordance with expectations, an augmentation in the volume fraction of the weaker phase renders the material more amenable to shear. Intriguingly, the computations reveal a substantial discrepancy in the value of E eff 1212 between the scenarios with and without D r a f t α, showcasing that the presence of microstructural elements allowing for displacement and (constrained) rotation leads to a pronounced ease of shear along one direction (21-direction) and a corresponding difficulty in the perpendicular direction (12-direction). This asymmetry aligns with the findings from numerical computations of elastic moduli in [START_REF] Rodríguez-Ramos | Micro-macro asymptotic approach applied to heterogeneous elastic micropolar media. analysis of some examples[END_REF] for a two-phase centrosymmetric laminated composite, as well as the investigations in [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF] focusing on a two-phase hexagonal unit cell within the realm of compact bone biomechanics y . As a last comment, just as it is evident that a discrepancy arises in the values of E eff 1212 and E eff 1221 for α > 0, especially as the volume fraction of the weaker material escalates, it is equally noteworthy the observation that the distinction between E eff 1212 (α > 0) and E eff 1212 (α ≈ 0) remains relatively constant as the volume fraction increases. This divergence becomes more pronounced when comparing E eff 1221 (α > 0) and E eff 1212 (α ≈ 0).

Effect of micropolar couple modulus on effective coefficients

An inherent question that arises is the exploration of the influence exerted by the micropolar couple modulus on the effective coefficients. Delving into this question is not only intellectually stimulating but also crucial for comprehending the intricate dynamics at play within the material system.

Equally vital is the investigation into the spatial response of the unit cell when the micropolar couple modulus becomes operatively significant.

Understanding the displacement patterns and structural alterations incurred under the activation of the couple modulus is integral for gaining a comprehensive insight into the nuanced behavior y In the study conducted in [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF], the methodology relies on unrestricted rotations, formulated under a somewhat idealized assumption and constructed via a distinct local problem. Our current approach represents a refinement of this methodology in that it streamlines the process to a singular local problem for computation. Notably, the rotations are constrained, introducing a more realistic depiction within the context of a homogenized Cauchy problem. of the material at a microscale. This line of inquiry delves into the finer details of how the material structure adapts and deforms in response to the activation of the micropolar couple modulus, shedding light on the mechanical intricacies that govern its behavior in a more nuanced fashion.

In the plot in Fig. 5, the variation of the coefficient η with respect to shear coefficients for a unit cell exhibiting a volumetric fraction of 15% is illustrated. When scrutinizing the lower range of η values, it becomes apparent that the micropolar couple modulus exerts negligible influence on the shear coefficients, resulting in homogenized coefficients that are indistinguishable-specifically, E eff 1212 equals E eff 1221 . However, as η approaches unity, a noteworthy transformation in behavior is observed. Numerical analyses reveal a pivotal threshold at approximately η ≈ 0.42, denoting the point at which the micropolar couple modulus becomes actively influential, consequently rendering the unit cell more resistant to shear. This pivotal transition is visually demarcated in Fig. 5 by a blue, dotted vertical line. Beyond this critical micropolar couple modulus value, the homogenized coefficients exhibit a discernible divergence, progressively amplifying until η attains unity. At this upper limit, the discrepancy between the homogenized coefficients reaches its zenith, underscoring the maximal impact of the micropolar couple modulus on the mechanical properties of the unit cell. To further elucidate the impact of the micropolar couple modulus on cellular displacement, we employ a visual representation in Fig. 6.

This graphic illustrates the morphological changes undergone by the mesh under the influence of the local solution w w w 12 computed from problem (3.53). The examination is conducted first under conditions where the micropolar couple modulus is near zero, i.e., η ≈ 0, and subsequently when it approaches the parameter θ, i.e, η ≈ 1. Upon inspection, the following transformation unfolds: when η ≈ 0, the pliant material undergoes displacement, assuming an elliptical configuration in a clockwise trajectory. Intriguingly, as the micropolar couple modulus traverses beyond the critical threshold, activating rotational effects, the cellular microstructure undergoes displacement in a counterclockwise direction. Notably, the resulting elliptical form appears to exhibit a more D r a f t The image on Fig. 6b shows that when η ≈ 0, the weak material undergoes displacement, assuming an elliptical configuration in a clockwise trajectory. Conversely, as the micropolar couple modulus traverses beyond the critical threshold, activating rotational effects, the cellular microstructure undergoes displacement in a counterclockwise direction.

expansive area, suggesting a nuanced interplay between micropolar coupling and the intricate deformation of the material. This phenomenon underscores the significance of the micropolar couple modulus on spatial alterations within the cellular matrix and the higher resistance in shearing.

In a conceptual exploration aimed at further illuminating the ramifications of the micropolar couple modulus on cellular displacement, we present the same visual exposition as before, this time utilizing a 1/2 × 2 unit cell, thus introducing a measure of anisotropy. The visual representation in Fig. 7, akin to its precursor in Fig. 6, delineates the displacement transformations exhibited by the mesh. These alterations are due to the local solution w w w 12 derived from the solution to problem (3.53), albeit with heightened visualization due the specific geometric arrangement. As the micropolar couple modulus surpasses the critical threshold, ushering in rotational effects, the microstructural framework of the cellular unit undergoes displacement in a counterclockwise trajectory-an observable consistency with the earlier explicated scenario. Nevertheless, in contrast to the 1 × 1 unit cell, when the micropolar couple modulus is approximatelly zero, the displaced configuration of the weak material takes on a non-elliptical form, adding a layer of intricacy to the narrative. However, when η ≈ 1 then the displaced configuration of the weak material deforms to an elliptical shape.

Conclusions

We introduced a multi-continuum homogenization scheme derived from a heterogeneous Cosserat continuum. One of the key contribution lies in our approach to decomposing the micro-macro solutions in equation (3.52), leading to a streamlined representation of a single local problem with constraint rotations. This decomposition results in more efficient computations compared to existing methodologies.

To substantiate our findings, we conducted numerical simulations, showcasing the pronounced influence of the micropolar couple modulus on both the effective coefficients and the displacement of the unit cell. This empirical validation is shown in figures 6 and 7, illustrating the impact of our proposed methodology. Our numerical simulations revealed a critical micropolar couple modulus, beyond which rotational effects are activated, inducing a transformative shift in the kinematic behavior of the cell and consequently altering the macroscopic material properties. 7a elucidates that for η ≈ 0, the weak material experiences displacement, adopting a non-elliptical configuration, for this type of cell, in a clockwise trajectory. Conversely, when the micropolar couple modulus surpasses the critical threshold, inducing rotational effects, the cellular microstructure undergoes displacement in a counterclockwise direction consistent with the previous example. The anisotropy of the cell vividly illustrates the pronounced impact of these rotations, providing a more discernible manifestation in this particular cell type.

Our future research endeavors will delve into addressing the complete thermoelastic Cosserat problem, encompassing mechanical and thermal scale-size effects. This will involve a modification of Fourier's law, as in the works of [START_REF] Pan | A generalized heat conduction model in rarefied gas[END_REF], [START_REF] Christov | On a higher-gradient generalization of Fourier's law of heat conduction[END_REF], and [START_REF] Nika | A gradient system for a higher-gradient generalization of fourier's law of heat conduction[END_REF]. Alternatively, we may explore a direct incorporation of entropy density to model scale-size thermal effects, following the methodology outlined in [START_REF] Forest | Hypertemperature in thermoelastic solids[END_REF]. These forthcoming investigations aim to provide a comprehensive understanding of the interplay between mechanical and thermal factors at various scales. D r a f t D r a f t D r a f t

Figure 1 :

 1 Figure 1: Schematic of the heterogeneous Cosserat medium with perfect transmission conditions. The red arrows are there to indicate that the body can also independently rotate in addition to displacing.

. 26 )

 26 Let [z z z] Y = (⌊z 1 ⌋, ⌊z 2 , ⌊z 3 ⌋) denote the integer part of z z z ∈ R 3 and denote by {z z z} Y the difference z z z -[z z z] Y which belongs to Y. Regarding our multiscale problem that depends on a small length parameter ε > 0, we can decompose any x x x ∈ R 3 using the maps [•] Y : R 3 → Z 3 and {•} Y : R 3 → Y the following way (see Fig. 2 (right)),
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 2 Figure 2: Unfolding operator on a periodic grid.
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 33031 Proposition For any p ∈ [1, +∞) the unfolding operator T ε : L p (Ω) → L p (Ω × Y) is linear, continuous, and has the following properties:

Theorem 3 . 1 .

 31 If (u u u ε , φ φ φ ε ) is the solution set to (3.14) under the scaling scheme with δ(ε):=ε1/2 

  y y y) δ kp δ qℓ + ∂ y ℓ w pq k -ϵ ϵ ϵ νkℓ ∂ y k w pq ν dy y y, (3.39) the effective coefficients, and ζ ζ ζ kℓ the local solution q satisfying the problem, w w w pq ∈ H 1 per (Y; R 3 ), Y w w w pq dy y y = 0, Y E(y y y) (e e e p ⊗ e e e q + ∇ y w w w pq + ϵ ϵ ϵ.curl y w w w pq ) :∇ y v v v dy y y = 0, (3.40)
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 41131 Proof of Theorem 3.If (u u u ε , φ φ φ ε ) is the solution set to (3.14) under the scaling scheme with δ(ε):=ε 1/2

  y y y) δ kp δ qℓ + ∂ y ℓ w pq k -ϵ ϵ ϵ νkℓ ∂ y k w pq ν dy y y, (3.39) the effective coefficients, and ζ ζ ζ kℓ the local solution s satisfying the problem, w w w pq ∈ H 1 per (Y; R 3 ), Y w w w pq dy y y = 0, Y E(y y y) (e e e p ⊗ e e e q + ∇ y w w w pq + ϵ ϵ ϵ.curl y w w w pq ) :∇ y v v v dy y y = 0, (3.40)

Proof.

  Using the estimates from (3.25) and the results from Proposition 3.1 VII. and VIII. we obtain (3.32)-(3.36) with δ(ε):= ε 1/2 . Moreover, the weak form (3.14) of the Cosserat continuum reads:

  x, y y y) dy y y dx x x = 0. (3.46) Adding (3.43) and (3.46) we arrive at:

  2 ϵ ϵ ϵ.ℓ ℓ ℓ :ϵ ϵ ϵ.Ψ Ψ Ψ dy y y dx x x = 0.(3.50)D r a f tHence, the balance of angular momentum is satisfied for the homogenized equation in the unfolding space.

u u u 1

 1 (x x x, y y y) = w w w pq (y y y) ∂ xq u 0 p (x x x) + c c c(x x x), (3.51) φ φ φ 0 (x x x, y y y) = ∂ xq u 0 p (x x x) curl y (w w w pq ), (3.52) Hence, the corrector w w w pq satisfies the following problem u , w w w pq ∈ H 1 per (Y; R 3 ), Y w w w pq dy y y = 0, Y E(y y y) (e e e p ⊗ e e e q + ∇ y w w w pq -ϵ ϵ ϵ.curl y (w w w pq )):∇ y v v v dy y y = 0,

where

  Êjikℓ (y y y) = (ϑ(y y y) -α(y y y)) δ jk δ iℓ + (ϑ(y y y) + α(y y y)) δ jℓ δ ik + ϖ(y y y) δ ij δ kℓ . (3.64) Now the problem, Y E(y y y) (e e e p ⊗ e e e q +∇ y w w w pq -ϵ ϵ ϵ.curl y (w w w pq )):∇ y v v v dy y y = 0 ⇕ B[w w w pq , v v v]+ Y E(y y y) e e e p ⊗ e e e q :∇ y v v v dy y y = 0.

Figure 3 :

 3 Figure 3: A square and rectangular unit cell with a circular "hole". The "hole" is represented a very weak material with a Young's modulus of 10 -3 GPa.

Figure 4 :

 4 Figure 4: The effective coefficients E eff 1212 and E eff 1221 are graphically illustrated across varying volume fractions and distinct α values. The plotted lines, distinguished by diamond and triangle markers, correspond to the values of E eff 1212 and E eff 1221 respectively, with η = 0.999 (α ≈ θ). Conversely, the line adorned with crossed diamonds signifies E eff 1212 = E eff 1221 for η = 0.0001 (α ≈ 0).

Figure 5 :

 5 Figure 5: The effective shear coefficients E eff 1212 and E eff 1221 plotted against different values of η for a unit cell with 15% volume fraction. Numerically there seems to exist a pivotal threshold of η ≈ 0.42 at which the micropolar couple modulus becomes actively influential, consequently rendering the unit cell more resistant to shear and leading to the divergence in values of the coefficients E eff 1212 and E eff 1221 .

  (a) Undeformed unit cell. (b) Deformed unit cell (η≈0). (c) Deformed unit cell (η≈1).

Figure 6 :

 6 Figure 6: Comparison of the displacement of the unit cell under different values of the micropolar couple modulus.

  Undeformed unit cell. (b) Deformed unit cell (η≈0).(c) Deformed unit cell (η≈1).

Figure 7 :

 7 Figure 7: Comparison of the displacement of the 1/2 × 2 unit cell is scrutinized across various micropolar couple modulus values. The visual representation in Fig.7aelucidates that for η ≈ 0, the weak material experiences displacement, adopting a non-elliptical configuration, for this type of cell, in a clockwise trajectory. Conversely, when the micropolar couple modulus surpasses the critical threshold, inducing rotational effects, the cellular microstructure undergoes displacement in a counterclockwise direction consistent with the previous example. The anisotropy of the cell vividly illustrates the pronounced impact of these rotations, providing a more discernible manifestation in this particular cell type.

l In this work, we assume perfect contact between the two different phases of the of the body. m The component Σ D (Σ N ) represents the part of the boundary where we are going to apply a Dirichet (Neumman / traction) boundary condition.

n The constants c 1 , c 2 , and c 3 in the pseudo tensor C ε are the chirality constants (see, e.g.,[START_REF] Joumaa | Stress and couple-stress invariance in noncentrosymmetric micropolar planar elasticity[END_REF]). The tensor changes sign under an inversion of coordinates transformation. No restrictions, as the ones mentioned for the other coefficients in the case of isotropy, seem to exist in the literature for the coefficients c 1 , c 2 , and c 3 .
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