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The conduit equation is a dispersive non-integrable scalar equation modeling the flow of a low-viscous buoyant fluid embedded in a highly viscous fluid matrix. This equation can be written in a special form reminiscent of the famous Godunov form proposed in 1961 for the Euler equations of compressible fluids. We propose a hyperbolic approximation of the conduit equation by retaining the Godunov-type structure. The comparison of solutions to the conduit equation and those to the approximate hyperbolic system is performed : the wave fission of a large initial perturbation of a rectangular or of gaussian form. The results are in good agreement. New generalized solutions to the conduit equation are discovered composed of a finite set of waves of the same period and linked with a constant solution by generalized Rankine-Hugoniot relations. Such multi-hump structures interact which each other almost as solitary waves : they collide, merge and reconstruct after the interaction. This partly indicates the stability of such multi-hump solutions under small perturbations. Both the exact and approximate hyperbolic system describe such an interaction with good accuracy.

Introduction

Consider the conduit equation :

u t + u 2 + u x u t -uu tx x = 0, (1) 
involving one dependent variable u(t, x) and two independent variables t (time) and x (space coordinate). Physically, the equation (1) represents the mass conservation law written in dimensionless variables for the magnitude u(t, x) of the non-dimensional circular cross-section of a low-viscosity buoyant fluid embedded in a highly viscous fluid at rest (cf. [START_REF] Olson | Solitary wave propagation in a fluid conduit within a viscous matrix[END_REF][START_REF] Lowman | Dispersive hydrodynamics in viscous fluid conduits[END_REF][START_REF] Lowman | Dispersive shock waves in viscously deformable media[END_REF][START_REF] Lowman | Interactions of large amplitude solitary waves in viscous fluid conduits[END_REF][START_REF] Maiden | Observation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits[END_REF][START_REF] Maiden | Modulations of viscous fluid conduit periodic waves[END_REF][START_REF] Maiden | Solitary wave fission of a large disturbance in a viscous fluid conduit[END_REF]). Hence, only positive solutions u(t, x) are physically admissible. Another conservative form which, a priori, has no physical meaning can be found for the conduit equation :

1 u + u xx u t -(2 ln (u)) x = 0. ( 2 
)
Its mathematical importance will be shown later. The dispersion relation for the conduit equation linearized on the solution u = u 0 = const > 0 can be written as

c p = 2u 0 1 + u 0 k 2 , ( 3 
)
where k is the wave number, and c p is the corresponding phase velocity. It has the same dispersive properties as the Benjamin-Bona-Mahony (BBM) equation [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF]. The derivation of the modulation equations to the conduit equation and their stability study for small amplitude waves has been performed in [START_REF] Maiden | Modulations of viscous fluid conduit periodic waves[END_REF][START_REF] Johnson | Modulational instability of viscous fluid conduit periodic waves[END_REF].

In [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF][START_REF] Dhaouadi | Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation[END_REF][START_REF] Busto | On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems[END_REF][START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF][START_REF] Besse | Perfectly matched layers methods for mixed hyperbolic-dispersive equations[END_REF][START_REF] Tkachenko | Extended Lagrangian approach for the numerical study of multi-dimensional dispersive waves: applications to the Serre-Green-Naghdi equations[END_REF], a general method of hyperbolic regularization of dispersive equations that are the Euler-Lagrange equations for a "master" Lagrangian has been proposed: the original high order derivative dispersive equations were approximated by a first order hyperbolic system of the Euler-Lagrange equations for a one or two parameter family of "extended" Lagrangians. The "master" Lagragian is obtained from the "extended" Lagrangian in some limit. Thus, the variational structure of the governing equations was conserved. In a particular case of long gravity surface waves described by the Serre-Green-Naghdi equations, the method of "extended Lagrangian" was mathematically justified in [START_REF] Duchêne | Rigorous justification of the Favrie-Gavrilyuk approximation to the Serre-Green-Naghdi model[END_REF]. The advantage of such an approach is obvious: one can use for dispersive equations the full range of finite volume methods developed for hyperbolic equations. Furthermore, some non-linear dispersive equations admit shock-type solutions: the dispersion cannot always prevent the formation of such singularities [START_REF] Gavrilyuk | Stationary shock-like transition fronts in dispersive systems[END_REF][START_REF] Gavrilyuk | Singular solutions of the BBM equation: analytical and numerical study[END_REF]. Thus, the study of such singularities can be done much more easily when the hyperbolic approximation is used.

Despite a large number of works on the conduit equation, unlike the almost similar BBM equation (at least in the linear limit), neither other linearly independent conservation laws for this equation, nor the existence of a Lagrangian allowing this equation to be considered as the Euler-Lagrange equation, are known [START_REF] Johnson | Modulational instability of viscous fluid conduit periodic waves[END_REF]. Having in mind to approximate the conduit equation by a system of hyperbolic equations, we then ask the following question: what is the mathematical structure (different from a classical variational structure) of the conduit equation, and should it be retained when the equation is approximated by a system of hyperbolic equations?

In this paper, we will exhibit such a structure and will formulate an approximating hyperbolic system of equations conserving this structure. The compar-iason of numerical solutions to the exact conduit equation and to its "structure conserving" hyperbolic approximation show a very good convergence results.

2 Mathematical structure of the conduit equation

In 1961 [START_REF] Godunov | An interesting class of quasi-linear systems[END_REF] S. K. Godunov proposed the following abstract form of a system of conservation laws for the vector variable v = (v 1 , ..., v n ) T :

∂L 0 (v) ∂v t + m i=1 ∂L i (v) ∂v xi = 0, (4) 
with given functions (potentials) L i (v), i = 0, ..., m. This system admits an additional conservation law

∂L 0 (v) ∂v • v -L 0 (v) t + m i=1 ∂L i ∂v • v -L i xi = 0. ( 5 
)
If the Hessian matrix of L 0 is positive definite, the equations can be written in the symmetric form of Friedrichs. Denoting the variable t by x 0 , we can rewrite the system (4) and its consequence (5) in a compact form :

∂ ∂x β ∂L β ∂v α = 0, ∂E β ∂x β = 0, E β = v α ∂L β ∂v α -L β , (6) 
with β = 0, ..., m, α = 1, ..., n. Here the summation is taken over repeated indexes. A number of reversible models of continuum mechanics can be written in Godunov's form (6) [START_REF] Godunov | Elements of Continuum Mechanics and Conservation Laws[END_REF].

A generalization of such a class of models with multiple examples coming from the reversible continuum mechanics was proposed in [START_REF] Gavrilyuk | Media with equations of state that depend on derivatives[END_REF], with potentials L β depending not only on uknowns but also on their first derivatives. More precisely, let us denote v α , γ = ∂v α ∂x γ . Consider functions L β (v α , v α , γ ) (we will use the same notations as for the old potentials L β depending only on v β ) and a conservative system in the form

∂ ∂x β δL β δv α = 0. ( 7 
)
Here we used usual notation for the variational derivatives :

δL β δv α = ∂L β ∂v α - ∂ ∂x γ ∂L β ∂v α , γ
. Equations ( 7) also admit an additional conservation law

∂E β ∂x β = 0, E β = v α δL β ∂v α -L β + v α , γ ∂L β ∂v α , γ . (8) 
Let us rewrite the conduit equation in the form [START_REF] Duchêne | Rigorous justification of the Favrie-Gavrilyuk approximation to the Serre-Green-Naghdi model[END_REF]. For this, we will use the conservative form (2) with x 0 = t and x 1 = x . Let us consider the change of variables u = √ 1 + 2v [START_REF] Gavrilyuk | Singular solutions of the BBM equation: analytical and numerical study[END_REF] and potentials L(v, v x ) and M (v) (instead of generic potentials L 0 and L 1 ) defined as :

L(v, v x ) = √ 1 + 2v - v 2 x 2(1 + 2v) , M (v) = - 1 2 (1 + 2v)(ln(1 + 2v) -1). ( 10 
)
Then, one obtains :

δL δv = 1 √ 1 + 2v + v xx 1 + 2v - v 2 x (1 + 2v) 2 = 1 + u xx u = 1 u + u xx u . ( 11 
)
∂M (v) ∂v = -ln(1 + 2v) = -2 ln (u). ( 12 
)
Hence, the equation ( 2) is written of the form [START_REF] Duchêne | Rigorous justification of the Favrie-Gavrilyuk approximation to the Serre-Green-Naghdi model[END_REF]:

δL(v, v x ) δv t + ∂M (v) ∂v x = 0, (13) 
The equation ( 13) admits an additional conservation law :

v δL δv -L t + v t L vx + v ∂M ∂v -M x = 0. ( 14 
)
Unfortunately, it is not a new conservation law, but just a linear combination of (1) and [START_REF] Besse | Perfectly matched layers methods for mixed hyperbolic-dispersive equations[END_REF]. The equations (13) also admit a "symmetric" form. Indeed, consider the partial Legendre transform of L :

L (v, w) = wv x -L(v, v x ), where w = L vx . (15) 
It implies, by using the implicit function theorem,

L v = -L v , L w = v x . (16) 
It allows thus to rewrite [START_REF] Godunov | An interesting class of quasi-linear systems[END_REF] as

(L v ) t -(M (v)) x + w tx = 0, (L w ) t -v tx = 0. ( 17 
)
Or

L vv L vw L vw L ww v w t - M (v) 0 0 0 v w x + 0 1 -1 0 v w tx = 0. ( 18 
)
The form [START_REF] Ketcheson | High-order wave propagation algorithm for hyperbolic systems[END_REF] contains also a skew symmetric matrice multiplied by a vector of mixed derivatives.

Extended hyperbolic system

The idea of the hyperbolic approximation of the equation ( 1) is to replace it by an "extended" parametric family of reversible hyperbolic systems having also the Godunov-type form [START_REF] Duchêne | Rigorous justification of the Favrie-Gavrilyuk approximation to the Serre-Green-Naghdi model[END_REF]. The word "extended" means that the governing equations contain an extra unknown z(t, x) which is asymptotically close to the unknown u(t, x) when parameters of the model go to infinity. Such a "penalization" method was already used in [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF][START_REF] Dhaouadi | Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation[END_REF][START_REF] Busto | On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems[END_REF][START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF][START_REF] Besse | Perfectly matched layers methods for mixed hyperbolic-dispersive equations[END_REF][START_REF] Bourgeois | Dynamics of a regularized and bistable Ericksen bar using an extended Lagrangian approach[END_REF] for mathematical models admitting a variational formulation. The "extended" system of equations was obtained as the Euler-Lagrange equations for an "extended" Lagrangian. Equation [START_REF] Godunov | An interesting class of quasi-linear systems[END_REF] does not correspond to any Euler-Lagrange equation. Indeed, it involves two potentials, L and M , while the Euler-Lagrange equations are written in terms of a single potential (Lagrange function). Doing so, we expect a better approximation of the conduit equation by the corresponding hyperbolic system of equations. Consider a two-parameter family of potentials

L(v, z, z x , z t ) = √ 1 + 2v + z 2 t 2c 2 - z 2 x 2 - λ 2 z - √ 1 + 2v 2 , (19) 
where λ and c are large parameters. Let us replace the equation ( 13) by a system of equations for two unknowns v and z:

∂L ∂v t + ∂M ∂v x = 0, δL δz = 0, (20) 
with

δL δz = L z -(L zt ) t -(L zx ) x .
It admits the conservation law :

(z t L zt + vL v -L) t + (z t L zx + vM v -M ) x = 0, (21) 
i.e., it conserves the structure of the system [START_REF] Godunov | An interesting class of quasi-linear systems[END_REF]. Indeed,

(z t L zt + vL v -L) t + (z t L zx + vM v -M ) x = -z t δL δz = 0.
Let us also remark that if one introduces a function ϕ(t, x) instead of variable z(t, x) : z = ϕ t , the equation for z can be written in equivalent form as

δL δz t = δL δϕ = 0.
Now we will write the equations [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF] in explicit form by using the expressions for derivatives :

∂L ∂v = 1 √ 1 + 2v + λ z - √ 1 + 2v √ 1 + 2v , (22a) 
∂L ∂z = -λ z - √ 1 + 2v , (22b) 
∂L ∂z x = -z x , (22c) 
∂L ∂z t = z t c 2 . ( 22d 
)
The first equation of ( 20) becomes :

1 √ 1 + 2v + λ z - √ 1 + 2v √ 1 + 2v t - 2 1 + 2v v x = 0. ( 23 
)
The second equation of ( 20) becomes :

- 1 c 2 z tt + z xx = λ(z - √ 1 + 2v). (24) 
Finally, we return back to u-variable (u = √ 1 + 2v):

1 u + λ z -u u t - 2u x u = 0, - 1 c 2 z tt + z xx = λ(z -u). (25) 
Similar to the conduit equation, this system is reversible in the sense that it is invariant under the change of independent variables t → -t , x → -x. Its first order quasi-linear formulation can then be written as :

1 u + λ z -u u t - 2u x u = 0, (26a) 
- 1 c z t + z x = p, (26b) 
1 c p t + p x = λ(z -u). (26c) 
The eigenvalues are ±c and 2u/(1 + λz). Hence, for large enough c and λ, the equations are hyperbolic. The initial conditions for (26) are :

u(0, x) = u 0 (x), z(0, x) = u 0 (x), p(0, x) = du 0 (x) dx . ( 27 
)
These are the conditons we used for the benchmark tests in Section 7. In the following, we will take λ = c 2 . The system (25) admits the conservation law [START_REF] Leveque | Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems[END_REF] which is equivalent to the following one : 

z 2 t c 2 + z 2 x + λz 2 -u(1 + λz) t -(u 2 + 2z t z x ) x = 0. ( 28 

Dispersion relation

The dispersion relation for the hyperbolic system (26) linearized on the solution u = u 0 , z = u 0 , p = 0 is :

1 k 2 = 1 + λu 0 λ (c 2 p /c 2 -1)(c p -2u 0 /(1 + λu 0 )) c p -2u 0 . (29) 
For any wave number k the real root c p approximating the exact dispersion relation (3) satisfies the inequality

2u 0 1 + λu 0 < c p < 2u 0 . (30) 
For large λ and c 2 the approximate dispersion relation can be written as :

1 k 2 = c p u 0 2u 0 -c p + O 1 λ + 1 c 2 . (31) 
Figure [START_REF] Busto | On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems[END_REF] shows the "quality" of the approximate dispersion relation [START_REF] Olson | Solitary wave propagation in a fluid conduit within a viscous matrix[END_REF]. The asymptotic formula [START_REF] Sprenger | Discontinuous shock solutions of the Whitham modulation equations as dispersionless limits of travelling waves[END_REF] suggests a natural choice of λ = c 2 to pass to one parameter family of penalty functions L(v, z, z t , z x ) defined by [START_REF] Métayer | A numerical scheme for the Green-Naghdi model[END_REF].

Periodic solutions

Periodic and solitary wave solutions to the conduit equation can be found, for example, in [START_REF] Olson | Solitary wave propagation in a fluid conduit within a viscous matrix[END_REF]. Here a quick overview of the solutions is given. Looking for traveling solutions to (2) depending only on ξ = x -Dt, D = const > 0 is the wave velocity, one obtains the ODE : admitting the first integral

Du = (C -1)u -2u ln(u) -D, C = const, (32) 
P(u) u 1 u 2 u 3 u
Du 2 = P (u) = Cu 2 -2u 2 ln(u) -2Du -Q, Q = const. (33) 
Here "prime" means the derivative with respect to ξ. Since u ln(u) is convex for u > 0, the function P (u) has maximum two critical points for u > 0, and hence maximum three roots. In the last case we denote them u i , P (u i ) = 0, i = 1, 2, 3, 0 < u 1 < u 2 < u 3 . A typical behavior of P (u) is shown in Figure 5. One can construct periodic solution oscillating between u 2 (minimum of the wave amplitude) and u 3 (maximum of the wave amplitude). The case u 1 = u 2 gives the solitary wave solutions. The wave velocity D, and the constants C and Q are thus calculated from the linear system :

Cu 2 i -2u 2 i ln(u i ) -2Du i -Q = 0, i = 1, 2, 3. ( 34 
)
Its solution is unique if u 1 = u 2 = u 3 . The wave length L and averaged over the wave length the periodic solution u are given by the following expressions coming directly from (33):

L = 2 √ D u3 u2 du P (u) , u = u3 u2 udu P (u) u3 u2 du P (u) . ( 35 
)
To study traveling wave solutions to (26), we will use the conservative form of equations :

1 u + λ z -u u t -(ln(u 2 )) x = 0, z 2 t c 2 + z 2 x + λz 2 -u(1 + λz) t -(u 2 + 2z t z x ) x = 0.
Using again the sign "prime" for the derivative with respect to the traveling wave coordinate ξ = x -Dt, one gets the following ODE system

-D 1 u + λ z -u u -ln(u 2 ) = c 1 , (36a) 
D 1 - D 2 c 2 z 2 = D(λz 2 -u(1 + λz)) + u 2 + c 2 , (36b) 
where c i , i = 1, 2 are constants. It can be reduced to only one equation for u.

Indeed, one has

z = u - u Dλ c 1 + ln(u 2 ) + D u , (36c) 
that yields

dz du = 1 - 1 Dλ (c 1 + 2 + 2 ln(u)) . ( 36d 
)
Then the equation (36b) becomes

D 1 - D 2 c 2 1 - 1 Dλ (c 1 + 2 + 2 ln(u)) 2 (u ) 2 = u 2 Dλ Dλ -c 1 -2 ln(u) - D u 2 -Dλu 2 + c 1 u 2 + u 2 + 2u 2 ln(u) + c 2
Finally, a compact form of this equation is :

(u ) 2 = F (u) G(u) , (37a) 
where

F (u) = u 2 Dλ Dλ -c 1 -2 ln(u) - D u 2 + u 2 (1 + c 1 -Dλ + 2 ln(u)) + c 2 , (37b) 
G(u) = D 1 - D 2 c 2 1 - 1 Dλ (c 1 + 2 + 2 ln(u)) 2 . ( 37c 
)
To find the solution of (37) numerically using an ODE solver, we need to determine the parameters c 1 , c 2 , and D first. Given three constant states u 1 , u 2 , and u 3 , 0 < u 1 < u 2 < u 3 , that are the equilibrium solutions of F (u), this amounts solving the system of nonlinear equations:

F (u 1 ) = 0, F (u 2 ) = 0, F (u 3 ) = 0;
we do this by employing a quasi-Newton method (cf. [START_REF] Nocedal | Numerical Optimization[END_REF]) using the coefficients from the periodic solution of the conduit equation as the initial guess, see (33), achieving the convergent results after 1 or 2 iterative steps, depending on the convergence tolerance. Once we get u, we may set z and p = 1 -D c z based on (36c) and (36d), respectively.

Numerical methods

As in [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF][START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF], we use a fractional-step approach for the numerical resolution of the hyperbolic conduit system: at each time step, we alternate between by solving the homogeneous (hyperbolic) part of the system (26)

  1/u + λ (z -u) /u -z/c p/c   t +   -ln u 2 z p   x = 0 (38a)
over a time step ∆t, and the ODEs

  1/u + λ (z -u) /u -z/c p/c   t =   0 p λ (z -u)   (38b)
using the inital data from the previous step and the same time step. Here the numerical method we employed for (38a) is the same as for the conduit equation, see Appendix A. To update the solution of the ODEs (38b), we need to solve the linear second-order ODE:

z tt + λc 2 E 0 E 0 + λ z = λc 2 E 0 + λ (39a) 
with the initial conditions

1 u + λ z -u u t=0 = E 0 , z(0) = z 0 , p(0) = p 0 . (39b) 
If E 0 > 0, its exact solution is:

z = 1 E 0 1 + (E 0 z 0 -1) cos (ωt) - cp 0 E 0 ω sin (ωt) , (40a) 
where ω 2 = λc 2 E 0 /(E 0 + λ). We then have

p = - 1 c z t = p 0 cos (ωt) + ω (E 0 z 0 -1) cE 0 sin (ωt) . (40b) 
If E 0 < 0 (E 0 + λ > 0 for large λ), we find the exact solution:

z = 1 2E 0 2 + E 0 z 0 -1 - cp 0 E 0 µ e µt + E 0 z 0 -1 + cp 0 E 0 µ exp -µt , (40c) 
p = - 1 c z t = - µ 2cE 0 E 0 z 0 -1 - cp 0 E 0 µ e µt -E 0 z 0 -1 + cp 0 E 0 µ exp -µt , (40d) 
where µ 2 = -λc 2 E 0 /(E 0 + λ). Recall that E 0 , z 0 and p 0 are the solution of the homogeneous system (38a).

Numerical results

For the tests below, we take a uniform mesh size ∆x = 0.05, and a time step ∆t determined from the Courant-Friedrich-Lewy (CFL) condition for the stability of the hyperbolic solver. The non-reflecting boundary condition was employed on the left and right of the boundaries during the computations. For comparision, we will present results obtained using four different schemes for the homogeneous system (38a): MUSCL, WENO3, WENO5, and BVD35, see Appendix A for the details. The ODEs (38b) is solved using the exact solution (40) in all cases.

Our first test is an example studied in [START_REF] Maiden | Solitary wave fission of a large disturbance in a viscous fluid conduit[END_REF] for solitary wave fission of a large disturbance in a viscous fluid conduit. In this test, the initial condition for the conduit equation is the box:

u(0, x) = 1 + 1 2 α tanh x -x 0 β -tanh x -x 0 -L β , (41) 
where α = 0.88, β = 2.5, and x 0 = 300 for x ∈ [0, 1500].

For the hyperbolic model, the parameter values we set for c and λ are 30 and 900, respectively.

Figure 3 shows numerical results for L = 48 and 96 at time t = 350 obtained using BVD35 case of the algorithm, observing good agreement of the state variable u between the conduit equation and its hyperbolic variant. In addition, we observe the similar solution structure between u and z which confirms the validity of our formal approach. For comparison, we repeat the computations using MUSCL, WENO3, and WENO5 cases. In Figure 4 we show snapshots of the state variable u at time t = 350 only partially in the region x ∈ [1000, 1500] (for completeness, the BVD35 results are included). It is clear that among them WENO5 and BVD35 give better solutions than WENO3 and MUSCL. For the MUSCL case, in particular, it is surprising to see the nonconvergence on the phase and amplitude for the foregoing solitary waves; this may mean that the third-order truncation (dispersive) error is too large for this problem, when discretizing the hyperbolic conduit equation based on the MUSCL approach.

Our second test is an example studied in [START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF] for the BBM equation. In this test, for the conduit equation, we take the Gaussian profile: -200, 600]. For the hyperbolic model, we use the same initialization procedure as before under (42), and the same parameter values for c and λ during the computations.

u(0, x) = 1 + 2 √ π exp(-x 2 /L 2 ) (42) for x ∈ [
Figure 5 shows numerical results in the case of L = 20 and 50 at time t = 150 obtained using BVD35 case of the algorithm. We again observe good agreement of the state variable u between the conduit equation and its hyperbolic variant, and also the same solution behavior between u and z. As in the previous test, we perform the computations using MUSCL, WENO3, and WENO5 cases also, Figure 3: Numerical results for the first test. Snapshots of solutions are obtained using BVD35 case of the method are shown at time t = 350 for L = 48 and L = 96. In both cases, parameter values c = 30 and λ = 900 were used in the computations. The blue line legend "conduith" means the results obtained using the hyperbolic approximation of the conduit equation, while the red line legend "conduit" is for the exact conduit equation. 6; only the partial solutions in the region x ∈ [200, 600] are shown. We find sensible good agreement of the solutions, even in the MUSCL case.

To show the convergence of the hyperbolic conduit solution to the conduit one, we perform a parameter study on c and λ = c 2 for c = 20 and 100. In Figure 7, the solutions of u for the first test in the case of L = 96 and the second test in the case of L = 50 are shown at times t = 350 (the first row) and t = 150 (the second row), respectively. Here, for clarity, only the partial solutions in the region x ∈ [1210, 1450] and x ∈ [300, 530] are drawn. It is clear that the solution is more accurate when a larger parameter is used in the computations. Table 1 gives the timing study in CPU (sec) for the results shown in Fig. 7, where the tests were performed in a Mac mini M2 Pro with 32GB RAM. We observe the higher computational cost when the hyperbolic model ( 26) is used as compared to the dispersive conduit equation (2).

Generalized Riemann problem

We call a generalized Riemann problem (GRP) the Cauchy problem

u(0, x) = u L (x), x < 0, u R (x), x > 0, (43) 
where u L and u R (x) are different periodic travelling wave solutions of the corresponding dispersive equations (in particular, of the conduit equation). Such a problem was studied in [START_REF] Gavrilyuk | Stationary shock-like transition fronts in dispersive systems[END_REF] for the Serre-Green-Naghdi and Boussinesq equations with linear dispersion, in [START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF] for the BBM equation, and in [START_REF] Sprenger | Discontinuous shock solutions of the Whitham modulation equations as dispersionless limits of travelling waves[END_REF] for the fifth order KdV equation. In particular, in the first reference new stable shocklike travelling wave solutions were found linking a constant solution (denoted further by u ) to a periodic wave train. The shock-like transition zone between the constant state and the wave train was well described by the half of solitary wave having the wave crest at the maximum of the nearest periodic wave. Such a configuration was stable under certain conditions. For example, for the BBM equation such a shock-like structure is stable if the phase velocity of the periodic wave train is not less than the solution wave averaged representing indeed the characteristic velocity of a dispersionless homogeneous state [START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF]. In our case, the characteristic velocity of the dispersionless equation (u t + (u 2 ) x = 0) is 2u.

Since the dispersive properties of the BBM equation are similar to those of the conduit equation, we expect that the stable configuration linking a constant state u to a periodic wave train having the velocity D can be also realized for D > 2u (see the definition (35) of the wave averaged.) The aim of this section is thus to reveal the analogous solutions for the conduit equation numerically.

We begin by looking into a modified version of (43) in the form

u(0, x) =    u, x < x 0 , u(x), x 0 < x < x 1 , u, x > x 1 , (44) 
where u(x) is a wave profile that consists of N periodic waves in the interval (x 0 , x 1 ), and u is the average value of a single periodic wave over a wavelength.

In the numerical experiments performed here, the parameters we take for the initial periodic solution are u 1 = 1, u 3 = 2 and u 2 = 2 -m 0 , m 0 = 0.999. Then with Wolfram Mathematica, Version 12, one gets the phase speed D ≈ 2.546, the average state u ≈ 1.216, and the wave length L ≈ 42.72. The initial wave train is formed by introducing N = 48 of such a periodic solution into one.

In Figure 8, we show the pseudo-color plot of the solution in (x, t)-plane, observing clearly the formation of a constant state u on the left of the primary periodic wave train and on the right of the left rarefaction wave. This is as expected, because as in [START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF] we have the phase speed D ≈ 2.546 larger than the characteristic speed 2u ≈ 2.432, a necessary condition for the existence of the stable shock-like travelling structure. The snapshot of the solution for the problem at time t = 600 is shown in Figure 9, where the solution shown on the left is obtained using the conduit equation, and on the right is obtained using the hyperbolic model. We observe good agreement of the results qualitatively.

To determine analytically the state u , we use the Rankine-Hugoniot relation coming from the conservative form (1) (the mass conservation law). We consider the jump relation for (1) on the travelling wave solutions for a shock having the same velocity D as that of the travelling wave train, and linking the maximum amplitude u 3 of the wave train with the constant state u (see [START_REF] Gavrilyuk | Stationary shock-like transition fronts in dispersive systems[END_REF][START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF] for details) :

-

D(u 3 -u ) + (u 2 3 -u 2 + u 3 Du | u=u3 ) = 0 (45) 
We have used the fact that in the u 3 state and extremal state "star" the derivative u vanishes. The states u 2 (minimum value of u), u 3 (maximum value of u) and the velocity D are related through the first integral :

Cu 2 2 -2u 2 2 ln(u 2 ) -2Du 2 = Cu 2 3 -2u 2 3 ln(u 3 ) -2Du 3 (46) 
It allows us to find C :

C = 2u 2 3 ln(u 3 ) + 2Du 3 -2u 2 2 ln(u 2 ) -2Du 2 u 2 3 -u 2 2 . (47) 
Hence, one can estimate Du at the maximum u 3 from (32) : 

Du | u=u3 = (C -1)u 3 -2u 3 ln(u 3 ) -D. (48) 

Conclusion

We have proposed a hyperbolic approximation of the conduit equation preserving, in particular, invariance properties of the conduit equation (reversibility in time and space) and approximating the solutions of the conduit equation with good accuracy. The advantage of the hyperbolic approximation is that it allows all the numerical tools developed for hyperbolic equation systems to be applied to the study of dispersive equations.

We have constructed new solutions to the conduit equation representing an assemblage of many waves of the same period linked to a constant solution by the generalized Rankine-Hugonit relation, also taking into account the curvature of periodic waves. The generalized shock linking the maximum of the lateral periodic waves to a constant state has the same velocity as that of the periodic wave train. Such a multi-hump solitary wave is stable if the wave velocity is twice as great as u. This condition means that the phase velocity of such a structure must be supercritical with respect to the homogeneous state u having the characteristic slope 2u. The hyperbolic approximation of the conduit equation also admits such stable solutions.

for u with prescribed boundary conditions based on a finite-difference scheme [START_REF] Leveque | Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems[END_REF].

It should be mentioned that from (1) one can also find numerical solutions to the conduit equation when we apply the algorithm to solve the following hyperbolic-elliptic system:

u t + u 2 + x = 0, (53a) 
- x u x + u 2 = 2u xx , (53b) 
separately for u and during each time step. More precisely, in the hyperbolic step, we use the semi-discrete finite volume method written in a wave-propagation form as before [START_REF] Gavrilyuk | Stationary shock-like transition fronts in dispersive systems[END_REF], but employ a different solution reconstruction technique, the BVD (boundary variation diminishing) principle, which is more robust than the classical one for the interpolated states (K for (52) or u for (53)) at cell boundaries (cf. [START_REF] Deng | High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces[END_REF] and the references cited therein). These reconstructed variables form the basis for the initial data of the Riemann problems, where the solutions of the Riemann problems are then used to construct the fluctuations in the spatial discretization that gives the right-hand side of the system of ODEs (cf. [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF][START_REF] Ketcheson | Wenoclaw: A higher order wave propagation method, in: Hyperbolic problems: Theory, numerics, applications[END_REF][START_REF] Ketcheson | High-order wave propagation algorithm for hyperbolic systems[END_REF]). To integrate the ODE system in time, the strong stability-preserving (SSP) multistage Runge-Kutta scheme [START_REF] Gottlieb | Strong stability-preserving highorder time discretization methods[END_REF][START_REF] Shu | High order weighted essentially nonoscillatory schemes for convection dominated problems[END_REF] is used. In particular, for the numerical results presented in this paper, the third-order SSP scheme was employed together with the pair of third-and fifth-order WENO (weighted essentially non-oscillatory) scheme in the BVD reconstruction process.
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 21 Figure 1: Comparison of the exact dispersion relation for u 0 = 1 (black dashed curve) and approximate one (red curve for c = 15, λ = c 2 = 225) is shown.

Figure 2 :

 2 Figure 2: A typical behavior of the function P (u) is shown. In a domain of parameters C, D > 0, Q < 0 it has three roots 0 < u 1 < u 2 < u 3 . The periodic solution oscillates between u 2 and u 3 .
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 4 Figure 4: Numerical methods comparison for the first test. Snapshots of the state variable u obtained using four different hyperbolic solvers are shown at time t = 350 in the case of L = 48 and L = 96; only partial solutions in the region x ∈ [1000, 1500] are shown. In both cases, parameter values c = 30 and λ = 900 were used in the computations. 13

Figure 5 :

 5 Figure 5: Numerical results for the second test. Snapshots of solution obtained using BVD35 case of the method are shown at time t = 150 for L = 20 and L = 50. In both cases, parameter values c = 30 and λ = 900 were used in the computations.
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 6 Figure 6: Numerical methods comparison for the second test. Snapshots of the state variable u obtained using four different hyperbolic solvers are shown at time t = 150 for L = 20 and L = 50; only the partial solutions in the region x ∈ [200, 600] are shown. In both cases, parameter values c = 30 and λ = 900 were used in the computations. 16
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 7 Figure 7: A parameter study of the solutions on c and λ = c 2 for the hyperbolic model. On the first row, the solutions are for the first test in the case of L = 96 at time t = 350, and on the second row, the solutions are for the second test in the case of L = 50 at time t = 150; only the snapshots of the state variable u are shown together with the conduit solution. In both cases, we used parameter values c = 20 and c = 100 in the computations.
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 8 Figure 8: The general solution structure of Cauchy problem (44) for the conduit equation is shown in (x, t)-plane. The wave train in the middle consists of 48 periodic waves, where the initial parameters for each of them are: u 1 = 1, u 3 = 2 and u 2 = 2 -m 0 , m 0 = 0.999. The wave average on the left and right of the wave train is u ≈ 1.216.
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 9 Figure 9: The snapshot of the solution for the Cauchy problem (44) at time t = 600. The solution shown on the left is obtained using the conduit equation, and on the right is obtained using the hyperbolic model with the parameters c = 30 and λ = 900. 19
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 10 Figure 10: Illustration of the initial conditions for the multi-hump problems. The plot shown on the left is for the single hump problem (50), and on the right is for the double hump problem (51).

Figure 11 :

 11 Figure 11: The snapshot of the conduit solution for the multi-hump problem (50) at time t = 1000. The solution on the left is for the conduit equation, and on the right is for the hyperbolic model. The computation domain is x ∈ [0, 4000]; only the partial solutions in the region x ∈ [3130, 3730] are shown.

Figure 12 :

 12 Figure 12: The snapshot of the conduit solution for the two multi-hump problem (51) at times t = 500, 2000, 2500, 3000, 4000, 5000. The plots are displayed from the left top to bottom and continues from the right top to bottom. The computation domain is adjusted in time to have the multi-hump solution stayed in the domain; only the partial solutions in the neighborhood of the multi-hump solitons are shown.

Figure 13 :

 13 Figure 13: The snapshot solutions of the hyperbolic conduit model for the two multi-hump problem (51) at times t = 500, 2000, 2500, 3000, 4000, 5000. The plots are displayed in the same manner as Fig. 13.

Table 1 :

 1 The CPU time (sec) taken for the numerical results shown in Fig.7

		conduit	hyperbolic model
			c = 20	c = 100
	first test	1021.528 3057.535 14572.31
	second test 247.996 1238.719 6150.387
	and show numerical results in Figure
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We can now replace all into (45) to obtain the equation for u :

As for the BBM equation [START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF], one can prove that u 1 < u < u 2 .

In particular, if we take the same u 2 , u 3 , and D as in the Cauchy problem (44), we find the value u ≈ 1.000499. Then we may construct a multi-hump structure in the form

with u M as a periodic wave train linked to u . Fig. 10, the left column, shows u M composed of N = 11 periodic wave solutions. This multi-hump solution structure is a stable one as we can see in Fig. 11. Here we present the snapshot solutions obtained using the conduit equation and the hyperbolic model at time t = 1000. We are next concerned with a double multi-hump problem for the interaction of two periodic wave trains. The initial condition is:

where ũL and ũR are having analogous structure to (50), see the right column of Fig. 10 for an illustration. To be specific, for each wave train it consists of N = 11 periodic waves together with a hybrid half wavelength periodic and solitary waves, and x 0 = 1600. The state values we take for ũL are u L 1 = 0.9, u L 2 = 0.907, u L 3 = 1.7, and that give D L ≈ 2.25, u L ≈ 1.123, and u L ≈ 0.903477. For ũR , we have u R 1 = 0.9, u R 2 = 0.907, u R 3 = 1.25, and get D R ≈ 2.01871, u R ≈ 1.00894, and u R ≈ 0.903467. Since the states u L and u R are approximately the same, and D L > D R , we can study the overtaking multi-hump soliton problem propagation on the same level u .

Figure 12 shows the numerical solutions for the conduit equation at times t = 500, 2000, 2500, 3000, 4000, 5000, observing the wave interaction, merging, and their full reconstruction. Here without introducing a large domain size, the computation domain is adjusted in time by the method to have the multi-hump solution stayed inside the region. The solutions for the hyperbolic model are shown in Fig. 13, we again observe good qualitative agreement of the solution, and the validation of the numerical solutions.

The stability of multi-hump solutions created "artificially" by combining periodic solutions and constant states related by the generalized Rankine-Hugoniot relations show that they are stable weak solutions to the conduit equation. In particular, they are stable under a "perturbation" of the conduit equation by a hyperbolic system conserving its original Godunov type form. Ethics

The work is original, has not been published before, and is not currently being considered for publication elsewhere.

A Numerical methods for the conduit equation

To find approximate solutions to the conduit equation ( 2), we use the hyperbolicelliptic splitting approach developed previously in [START_REF] Métayer | A numerical scheme for the Green-Naghdi model[END_REF][START_REF] Gavrilyuk | Stationary shock-like transition fronts in dispersive systems[END_REF][START_REF] Gavrilyuk | Hyperbolic approximation of the BBM equation[END_REF]. This algorithm consists of two steps. In the first step, the hyperbolic step, we employ the stateof-the-art method for hyperbolic conservation laws for the numerical resolution of the equation K t -ln u 2

x = 0 (52a) over a time step ∆t. In the second step, the elliptic step, using the approximate solution K computed during the hyperbolic step, we invert numerically the elliptic operator:

-u xx + Ku = 1 (52b)