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The conduit equation : hyperbolic approximation

and generalized Riemann problem

Sergey Gavrilyuk∗, Boniface Nkonga †, Keh-Ming Shyue ‡

January 4, 2024

Abstract

The conduit equation is a dispersive non-integrable scalar equation
modeling the flow of a low-viscous buoyant fluid embedded in a highly
viscous fluid matrix. This equation can be written in a special form remi-
niscent of the famous Godunov form proposed in 1961 for the Euler equa-
tions of compressible fluids. We propose a hyperbolic approximation of
the conduit equation by retaining the Godunov-type structure. The com-
parison of solutions to the conduit equation and those to the approximate
hyperbolic system is performed : the wave fission of a large initial per-
turbation of a rectangular or of gaussian form. The results are in good
agreement. New generalized solutions to the conduit equation are dis-
covered composed of a finite set of waves of the same period and linked
with a constant solution by generalized Rankine-Hugoniot relations. Such
multi-hump structures interact which each other almost as solitary waves
: they collide, merge and reconstruct after the interaction. This partly
indicates the stability of such multi-hump solutions under small perturba-
tions. Both the exact and approximate hyperbolic system describe such
an interaction with good accuracy.

Keywords : Mathematics Subject Classification numbers: 35L40,
35Q35, 35Q74.

1 Introduction

Consider the conduit equation :

ut +
(
u2 + uxut − uutx

)
x

= 0, (1)
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Valrose, 06108 NICE Cedex 2 France, Boniface.Nkonga@unice.fr

‡Institute of Mathematical Sciences, National Taiwan University, Taipei 106, Taiwan,
shyue@ntu.edu.tw

1



involving one dependent variable u(t, x) and two independent variables t (time)
and x (space coordinate). Physically, the equation (1) represents the mass
conservation law written in dimensionless variables for the magnitude u(t, x)
of the non-dimensional circular cross-section of a low-viscosity buoyant fluid
embedded in a highly viscous fluid at rest (cf. [29, 22, 23, 24, 27, 26, 25]). Hence,
only positive solutions u(t, x) are physically admissible. Another conservative
form which, a priori, has no physical meaning can be found for the conduit
equation : (

1

u
+
uxx
u

)
t

− (2 ln (u))x = 0. (2)

Its mathematical importance will be shown later. The dispersion relation for
the conduit equation linearized on the solution u = u0 = const > 0 can be
written as

cp =
2u0

1 + u0k2
, (3)

where k is the wave number, and cp is the corresponding phase velocity. It has
the same dispersive properties as the Benjamin-Bona-Mahony (BBM) equation
[1]. The derivation of the modulation equations to the conduit equation and
their stability study for small amplitude waves has been performed in [26, 16].

In [8, 6, 4, 10, 2, 32], a general method of hyperbolic regularization of disper-
sive equations that are the Euler-Lagrange equations for a “master” Lagrangian
has been proposed: the original high order derivative dispersive equations were
approximated by a first order hyperbolic system of the Euler-Lagrange equations
for a one or two parameter family of “extended” Lagrangians. The “master”
Lagragian is obtained from the “extended” Lagrangian in some limit. Thus, the
variational structure of the governing equations was conserved. In a particular
case of long gravity surface waves described by the Serre-Green-Naghdi equa-
tions, the method of “extended Lagrangian” was mathematically justified in [7].
The advantage of such an approach is obvious: one can use for dispersive equa-
tions the full range of finite volume methods developed for hyperbolic equations.
Furthermore, some non-linear dispersive equations admit shock-type solutions:
the dispersion cannot always prevent the formation of such singularities [11, 9].
Thus, the study of such singularities can be done much more easily when the
hyperbolic approximation is used.

Despite a large number of works on the conduit equation, unlike the almost
similar BBM equation (at least in the linear limit), neither other linearly inde-
pendent conservation laws for this equation, nor the existence of a Lagrangian
allowing this equation to be considered as the Euler-Lagrange equation, are
known [16]. Having in mind to approximate the conduit equation by a system
of hyperbolic equations, we then ask the following question: what is the mathe-
matical structure (different from a classical variational structure) of the conduit
equation, and should it be retained when the equation is approximated by a
system of hyperbolic equations?

In this paper, we will exhibit such a structure and will formulate an approx-
imating hyperbolic system of equations conserving this structure. The compar-
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iason of numerical solutions to the exact conduit equation and to its “structure
conserving” hyperbolic approximation show a very good convergence results.

2 Mathematical structure of the conduit equa-
tion

In 1961 [13] S. K. Godunov proposed the following abstract form of a system of
conservation laws for the vector variable v = (v1, ..., vn)T :(

∂L0(v)

∂v

)
t

+

m∑
i=1

(
∂Li(v)

∂v

)
xi

= 0, (4)

with given functions (potentials) Li(v), i = 0, ...,m. This system admits an
additional conservation law(

∂L0(v)

∂v
· v − L0(v)

)
t

+

m∑
i=1

(
∂Li

∂v
· v − Li

)
xi

= 0. (5)

If the Hessian matrix of L0 is positive definite, the equations can be written in
the symmetric form of Friedrichs. Denoting the variable t by x0, we can rewrite
the system (4) and its consequence (5) in a compact form :

∂

∂xβ

(
∂Lβ

∂vα

)
= 0,

∂Eβ

∂xβ
= 0, Eβ = vα

∂Lβ

∂vα
− Lβ , (6)

with β = 0, ...,m, α = 1, ..., n. Here the summation is taken over repeated
indexes. A number of reversible models of continuum mechanics can be written
in Godunov’s form (6) [14].

A generalization of such a class of models with multiple examples coming
from the reversible continuum mechanics was proposed in [12], with potentials
Lβ depending not only on uknowns but also on their first derivatives. More

precisely, let us denote vα, γ =
∂vα

∂xγ
. Consider functions Lβ(vα, vα, γ) (we will use

the same notations as for the old potentials Lβ depending only on vβ) and a
conservative system in the form

∂

∂xβ

(
δLβ

δvα

)
= 0. (7)

Here we used usual notation for the variational derivatives :

δLβ

δvα
=
∂Lβ

∂vα
− ∂

∂xγ

(
∂Lβ

∂vα, γ

)
.

Equations (7) also admit an additional conservation law

∂Eβ

∂xβ
= 0, Eβ = vα

δLβ

∂vα
− Lβ + vα, γ

∂Lβ

∂vα, γ
. (8)
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Let us rewrite the conduit equation in the form (7). For this, we will use the
conservative form (2) with x0 = t and x1 = x . Let us consider the change of
variables

u =
√

1 + 2v (9)

and potentials L(v, vx) and M(v) (instead of generic potentials L0 and L1)
defined as :

L(v, vx) =
√

1 + 2v − v2x
2(1 + 2v)

, M(v) = −1

2
(1 + 2v)(ln(1 + 2v)− 1). (10)

Then, one obtains :

δL

δv
=

1√
1 + 2v

+
vxx

1 + 2v
− v2x

(1 + 2v)2
=

1 + uxx
u

=
1

u
+
uxx
u
. (11)

∂M(v)

∂v
= − ln(1 + 2v) = −2 ln (u). (12)

Hence, the equation (2) is written of the form (7):(
δL(v, vx)

δv

)
t

+

(
∂M(v)

∂v

)
x

= 0, (13)

The equation (13) admits an additional conservation law :(
v
δL

δv
− L

)
t

+

(
vtLvx + v

∂M

∂v
−M

)
x

= 0. (14)

Unfortunately, it is not a new conservation law, but just a linear combination
of (1) and (2). The equations (13) also admit a “symmetric” form. Indeed,
consider the partial Legendre transform of L :

L?(v, w) = wvx − L(v, vx), where w = Lvx . (15)

It implies, by using the implicit function theorem,

L?v = −Lv, L?w = vx. (16)

It allows thus to rewrite (13) as

(L?v)t − (M ′(v))x + wtx = 0, (L?w)t − vtx = 0. (17)

Or (
L?vv L?vw
L?vw L?ww

)(
v
w

)
t

−
(
M ′′(v) 0

0 0

)(
v
w

)
x

+

(
0 1
−1 0

)(
v
w

)
tx

= 0. (18)

The form (18) contains also a skew symmetric matrice multiplied by a vector of
mixed derivatives.
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3 Extended hyperbolic system

The idea of the hyperbolic approximation of the equation (1) is to replace it by
an “extended” parametric family of reversible hyperbolic systems having also
the Godunov-type form (7). The word “extended” means that the governing
equations contain an extra unknown z(t, x) which is asymptotically close to the
unknown u(t, x) when parameters of the model go to infinity. Such a “penal-
ization” method was already used in [8, 6, 4, 10, 2, 3] for mathematical mod-
els admitting a variational formulation. The “extended” system of equations
was obtained as the Euler-Lagrange equations for an “extended” Lagrangian.
Equation (13) does not correspond to any Euler–Lagrange equation. Indeed,
it involves two potentials, L and M , while the Euler-Lagrange equations are
written in terms of a single potential (Lagrange function). Doing so, we expect
a better approximation of the conduit equation by the corresponding hyperbolic
system of equations.

Consider a two-parameter family of potentials

L(v, z, zx, zt) =
√

1 + 2v +
z2t
2c2
− z2x

2
− λ

2

(
z −
√

1 + 2v
)2
, (19)

where λ and c are large parameters. Let us replace the equation (13) by a
system of equations for two unknowns v and z:(

∂L
∂v

)
t

+

(
∂M

∂v

)
x

= 0,
δL
δz

= 0, (20)

with
δL
δz

= Lz − (Lzt)t − (Lzx)x.

It admits the conservation law :

(ztLzt + vLv − L)t + (ztLzx + vMv −M)x = 0, (21)

i.e., it conserves the structure of the system (13). Indeed,

(ztLzt + vLv − L)t + (ztLzx + vMv −M)x = −zt
δL
δz

= 0.

Let us also remark that if one introduces a function ϕ(t, x) instead of variable
z(t, x) : z = ϕt, the equation for z can be written in equivalent form as(

δL
δz

)
t

=
δL
δϕ

= 0.

Now we will write the equations (20) in explicit form by using the expressions
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for derivatives :

∂L
∂v

=
1√

1 + 2v
+ λ

z −
√

1 + 2v√
1 + 2v

, (22a)

∂L
∂z

= −λ
(
z −
√

1 + 2v
)
, (22b)

∂L
∂zx

= −zx, (22c)

∂L
∂zt

=
zt
c2
. (22d)

The first equation of (20) becomes :(
1√

1 + 2v
+ λ

z −
√

1 + 2v√
1 + 2v

)
t

− 2

1 + 2v
vx = 0. (23)

The second equation of (20) becomes :

− 1

c2
ztt + zxx = λ(z −

√
1 + 2v). (24)

Finally, we return back to u-variable (u =
√

1 + 2v):(
1

u
+ λ

z − u
u

)
t

− 2ux
u

= 0, − 1

c2
ztt + zxx = λ(z − u). (25)

Similar to the conduit equation, this system is reversible in the sense that it is
invariant under the change of independent variables t→ −t , x→ −x. Its first
order quasi-linear formulation can then be written as :(

1

u
+ λ

z − u
u

)
t

− 2ux
u

= 0, (26a)

− 1

c
zt + zx = p, (26b)

1

c
pt + px = λ(z − u). (26c)

The eigenvalues are ±c and 2u/(1 + λz). Hence, for large enough c and λ, the
equations are hyperbolic. The initial conditions for (26) are :

u(0, x) = u0(x), z(0, x) = u0(x), p(0, x) =
du0(x)

dx
. (27)

These are the conditons we used for the benchmark tests in Section 7. In the
following, we will take λ = c2. The system (25) admits the conservation law
(21) which is equivalent to the following one :(

z2t
c2

+ z2x + λz2 − u(1 + λz)

)
t

− (u2 + 2ztzx)x = 0. (28)
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Figure 1: Comparison of the exact dispersion relation for u0 = 1 (black dashed
curve) and approximate one (red curve for c = 15, λ = c2 = 225) is shown.

4 Dispersion relation

The dispersion relation for the hyperbolic system (26) linearized on the solution
u = u0, z = u0, p = 0 is :

1

k2
=

1 + λu0
λ

(c2p/c
2 − 1)(cp − 2u0/(1 + λu0))

cp − 2u0
. (29)

For any wave number k the real root cp approximating the exact dispersion
relation (3) satisfies the inequality

2u0
1 + λu0

< cp < 2u0. (30)

For large λ and c2 the approximate dispersion relation can be written as :

1

k2
=

cpu0
2u0 − cp

+O
(

1

λ
+

1

c2

)
. (31)

Figure (4) shows the “quality” of the approximate dispersion relation (29). The
asymptotic formula (31) suggests a natural choice of λ = c2 to pass to one
parameter family of penalty functions L(v, z, zt, zx) defined by (19).

5 Periodic solutions

Periodic and solitary wave solutions to the conduit equation can be found, for
example, in [29]. Here a quick overview of the solutions is given. Looking for
traveling solutions to (2) depending only on ξ = x −Dt, D = const > 0 is the
wave velocity, one obtains the ODE :

Du′′ = (C − 1)u− 2u ln(u)−D, C = const, (32)
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P(u)

u1 u2 u3 u

Figure 2: A typical behavior of the function P (u) is shown. In a domain of
parameters C,D > 0, Q < 0 it has three roots 0 < u1 < u2 < u3. The periodic
solution oscillates between u2 and u3.

admitting the first integral

Du′2 = P (u) = Cu2 − 2u2 ln(u)− 2Du−Q, Q = const. (33)

Here “prime” means the derivative with respect to ξ. Since u ln(u) is convex
for u > 0, the function P (u) has maximum two critical points for u > 0, and
hence maximum three roots. In the last case we denote them ui, P (ui) = 0,
i = 1, 2, 3, 0 < u1 < u2 < u3. A typical behavior of P (u) is shown in Figure
5. One can construct periodic solution oscillating between u2 (minimum of the
wave amplitude) and u3 (maximum of the wave amplitude). The case u1 = u2
gives the solitary wave solutions. The wave velocity D, and the constants C
and Q are thus calculated from the linear system :

Cu2i − 2u2i ln(ui)− 2Dui −Q = 0, i = 1, 2, 3. (34)

Its solution is unique if u1 6= u2 6= u3. The wave length L and averaged over
the wave length the periodic solution u are given by the following expressions
coming directly from (33):

L = 2
√
D

∫ u3

u2

du√
P (u)

, u =

∫ u3

u2

udu√
P (u)∫ u3

u2

du√
P (u)

. (35)

To study traveling wave solutions to (26), we will use the conservative form of
equations : (

1

u
+ λ

z − u
u

)
t

− (ln(u2))x = 0,(
z2t
c2

+ z2x + λz2 − u(1 + λz)

)
t

− (u2 + 2ztzx)x = 0.
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Using again the sign “prime” for the derivative with respect to the traveling
wave coordinate ξ = x−Dt, one gets the following ODE system

−D
(

1

u
+ λ

z − u
u

)
− ln(u2) = c1, (36a)

D

(
1− D2

c2

)
z′2 = D(λz2 − u(1 + λz)) + u2 + c2, (36b)

where ci, i = 1, 2 are constants. It can be reduced to only one equation for u.
Indeed, one has

z = u− u

Dλ

(
c1 + ln(u2) +

D

u

)
, (36c)

that yields

dz

du
= 1− 1

Dλ
(c1 + 2 + 2 ln(u)) . (36d)

Then the equation (36b) becomes

D

(
1− D2

c2

)(
1− 1

Dλ
(c1 + 2 + 2 ln(u))

)2

(u′)
2

=

u2

Dλ

(
Dλ− c1 − 2 ln(u)− D

u

)2

−Dλu2 + c1u
2 + u2 + 2u2 ln(u) + c2

Finally, a compact form of this equation is :

(u′)
2

=
F (u)

G(u)
, (37a)

where

F (u) =
u2

Dλ

(
Dλ− c1 − 2 ln(u)− D

u

)2

+ u2 (1 + c1 −Dλ+ 2 ln(u)) + c2,

(37b)

G(u) = D

(
1− D2

c2

)(
1− 1

Dλ
(c1 + 2 + 2 ln(u))

)2

. (37c)

To find the solution of (37) numerically using an ODE solver, we need to
determine the parameters c1, c2, and D first. Given three constant states u1,
u2, and u3, 0 < u1 < u2 < u3, that are the equilibrium solutions of F (u), this
amounts solving the system of nonlinear equations:

F (u1) = 0, F (u2) = 0, F (u3) = 0;

we do this by employing a quasi-Newton method (cf. [28]) using the coefficients
from the periodic solution of the conduit equation as the initial guess, see (33),
achieving the convergent results after 1 or 2 iterative steps, depending on the

convergence tolerance. Once we get u, we may set z and p =

(
1− D

c

)
z′ based

on (36c) and (36d), respectively.
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6 Numerical methods

As in [8, 10], we use a fractional-step approach for the numerical resolution
of the hyperbolic conduit system: at each time step, we alternate between by
solving the homogeneous (hyperbolic) part of the system (26)1/u+ λ (z − u) /u

−z/c
p/c


t

+

− ln
(
u2
)

z
p


x

= 0 (38a)

over a time step ∆t, and the ODEs1/u+ λ (z − u) /u
−z/c
p/c


t

=

 0
p

λ (z − u)

 (38b)

using the inital data from the previous step and the same time step. Here the
numerical method we employed for (38a) is the same as for the conduit equation,
see Appendix A. To update the solution of the ODEs (38b), we need to solve
the linear second-order ODE:

ztt +
λc2E0

E0 + λ
z =

λc2

E0 + λ
(39a)

with the initial conditions(
1

u
+ λ

z − u
u

)∣∣∣∣
t=0

= E0, z(0) = z0, p(0) = p0. (39b)

If E0 > 0, its exact solution is:

z =
1

E0

[
1 + (E0z0 − 1) cos (ωt)− cp0E0

ω
sin (ωt)

]
, (40a)

where ω2 = λc2E0/(E0 + λ). We then have

p = −1

c
zt = p0 cos (ωt) +

ω (E0z0 − 1)

cE0
sin (ωt) . (40b)

If E0 < 0 (E0 + λ > 0 for large λ), we find the exact solution:

z =
1

2E0

[
2 +

(
E0z0 − 1− cp0E0

µ

)
eµt +

(
E0z0 − 1 +

cp0E0

µ

)
exp−µt

]
,

(40c)

p = −1

c
zt = − µ

2cE0

[(
E0z0 − 1− cp0E0

µ

)
eµt −

(
E0z0 − 1 +

cp0E0

µ

)
exp−µt

]
,

(40d)

where µ2 = −λc2E0/(E0 + λ). Recall that E0, z0 and p0 are the solution of the
homogeneous system (38a).
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7 Numerical results

For the tests below, we take a uniform mesh size ∆x = 0.05, and a time step ∆t
determined from the Courant-Friedrich-Lewy (CFL) condition for the stability
of the hyperbolic solver. The non-reflecting boundary condition was employed
on the left and right of the boundaries during the computations. For com-
parision, we will present results obtained using four different schemes for the
homogeneous system (38a): MUSCL, WENO3, WENO5, and BVD35, see Ap-
pendix A for the details. The ODEs (38b) is solved using the exact solution (40)
in all cases.

Our first test is an example studied in [25] for solitary wave fission of a large
disturbance in a viscous fluid conduit. In this test, the initial condition for the
conduit equation is the box:

u(0, x) = 1 +
1

2
α

[
tanh

(
x− x0
β

)
− tanh

(
x− x0 − L

β

)]
, (41)

where α = 0.88, β = 2.5, and x0 = 300 for x ∈ [0, 1500].
For the hyperbolic model, the parameter values we set for c and λ are 30

and 900, respectively.
Figure 3 shows numerical results for L = 48 and 96 at time t = 350 obtained

using BVD35 case of the algorithm, observing good agreement of the state
variable u between the conduit equation and its hyperbolic variant. In addition,
we observe the similar solution structure between u and z which confirms the
validity of our formal approach. For comparison, we repeat the computations
using MUSCL, WENO3, and WENO5 cases. In Figure 4 we show snapshots of
the state variable u at time t = 350 only partially in the region x ∈ [1000, 1500]
(for completeness, the BVD35 results are included). It is clear that among
them WENO5 and BVD35 give better solutions than WENO3 and MUSCL.
For the MUSCL case, in particular, it is surprising to see the nonconvergence
on the phase and amplitude for the foregoing solitary waves; this may mean that
the third-order truncation (dispersive) error is too large for this problem, when
discretizing the hyperbolic conduit equation based on the MUSCL approach.

Our second test is an example studied in [10] for the BBM equation. In this
test, for the conduit equation, we take the Gaussian profile:

u(0, x) = 1 +
2√
π

exp(−x2/L2) (42)

for x ∈ [−200, 600]. For the hyperbolic model, we use the same initialization
procedure as before under (42), and the same parameter values for c and λ
during the computations.

Figure 5 shows numerical results in the case of L = 20 and 50 at time t = 150
obtained using BVD35 case of the algorithm. We again observe good agreement
of the state variable u between the conduit equation and its hyperbolic variant,
and also the same solution behavior between u and z. As in the previous test,
we perform the computations using MUSCL, WENO3, and WENO5 cases also,
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Figure 3: Numerical results for the first test. Snapshots of solutions are obtained
using BVD35 case of the method are shown at time t = 350 for L = 48 and
L = 96. In both cases, parameter values c = 30 and λ = 900 were used in
the computations. The blue line legend “conduith” means the results obtained
using the hyperbolic approximation of the conduit equation, while the red line
legend “conduit” is for the exact conduit equation.
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Figure 4: Numerical methods comparison for the first test. Snapshots of the
state variable u obtained using four different hyperbolic solvers are shown at
time t = 350 in the case of L = 48 and L = 96; only partial solutions in the
region x ∈ [1000, 1500] are shown. In both cases, parameter values c = 30 and
λ = 900 were used in the computations.
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Table 1: The CPU time (sec) taken for the numerical results shown in Fig. 7

conduit hyperbolic model
c = 20 c = 100

first test 1021.528 3057.535 14572.31
second test 247.996 1238.719 6150.387

and show numerical results in Figure 6; only the partial solutions in the region
x ∈ [200, 600] are shown. We find sensible good agreement of the solutions, even
in the MUSCL case.

To show the convergence of the hyperbolic conduit solution to the conduit
one, we perform a parameter study on c and λ = c2 for c = 20 and 100. In
Figure 7, the solutions of u for the first test in the case of L = 96 and the second
test in the case of L = 50 are shown at times t = 350 (the first row) and t = 150
(the second row), respectively. Here, for clarity, only the partial solutions in the
region x ∈ [1210, 1450] and x ∈ [300, 530] are drawn. It is clear that the solution
is more accurate when a larger parameter is used in the computations. Table 1
gives the timing study in CPU (sec) for the results shown in Fig. 7, where the
tests were performed in a Mac mini M2 Pro with 32GB RAM. We observe the
higher computational cost when the hyperbolic model (26) is used as compared
to the dispersive conduit equation (2).

8 Generalized Riemann problem

We call a generalized Riemann problem (GRP) the Cauchy problem

u(0, x) =

{
uL(x), x < 0,
uR(x), x > 0,

(43)

where uL and uR(x) are different periodic travelling wave solutions of the cor-
responding dispersive equations (in particular, of the conduit equation). Such
a problem was studied in [11] for the Serre-Green-Naghdi and Boussinesq equa-
tions with linear dispersion, in [10] for the BBM equation, and in [31] for the
fifth order KdV equation. In particular, in the first reference new stable shock-
like travelling wave solutions were found linking a constant solution (denoted
further by u?) to a periodic wave train. The shock-like transition zone between
the constant state and the wave train was well described by the half of solitary
wave having the wave crest at the maximum of the nearest periodic wave. Such
a configuration was stable under certain conditions. For example, for the BBM
equation such a shock-like structure is stable if the phase velocity of the periodic
wave train is not less than the solution wave averaged representing indeed the
characteristic velocity of a dispersionless homogeneous state [10]. In our case,
the characteristic velocity of the dispersionless equation (ut + (u2)x = 0) is 2u.
Since the dispersive properties of the BBM equation are similar to those of the
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Figure 5: Numerical results for the second test. Snapshots of solution obtained
using BVD35 case of the method are shown at time t = 150 for L = 20 and
L = 50. In both cases, parameter values c = 30 and λ = 900 were used in the
computations.
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Figure 6: Numerical methods comparison for the second test. Snapshots of the
state variable u obtained using four different hyperbolic solvers are shown at
time t = 150 for L = 20 and L = 50; only the partial solutions in the region
x ∈ [200, 600] are shown. In both cases, parameter values c = 30 and λ = 900
were used in the computations. 16



Figure 7: A parameter study of the solutions on c and λ = c2 for the hyperbolic
model. On the first row, the solutions are for the first test in the case of L = 96
at time t = 350, and on the second row, the solutions are for the second test in
the case of L = 50 at time t = 150; only the snapshots of the state variable u
are shown together with the conduit solution. In both cases, we used parameter
values c = 20 and c = 100 in the computations.
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conduit equation, we expect that the stable configuration linking a constant
state u? to a periodic wave train having the velocity D can be also realized for
D > 2u (see the definition (35) of the wave averaged.) The aim of this section
is thus to reveal the analogous solutions for the conduit equation numerically.

We begin by looking into a modified version of (43) in the form

u(0, x) =

 u, x < x0,
u(x), x0 < x < x1,
u, x > x1,

(44)

where u(x) is a wave profile that consists of N periodic waves in the interval
(x0, x1), and u is the average value of a single periodic wave over a wavelength.
In the numerical experiments performed here, the parameters we take for the
initial periodic solution are u1 = 1, u3 = 2 and u2 = 2−m0, m0 = 0.999. Then
with Wolfram Mathematica, Version 12, one gets the phase speed D ≈ 2.546,
the average state u ≈ 1.216, and the wave length L ≈ 42.72. The initial wave
train is formed by introducing N = 48 of such a periodic solution into one.

In Figure 8, we show the pseudo-color plot of the solution in (x, t)–plane,
observing clearly the formation of a constant state u? on the left of the primary
periodic wave train and on the right of the left rarefaction wave. This is as
expected, because as in [10] we have the phase speed D ≈ 2.546 larger than
the characteristic speed 2u ≈ 2.432, a necessary condition for the existence of
the stable shock-like travelling structure. The snapshot of the solution for the
problem at time t = 600 is shown in Figure 9, where the solution shown on the
left is obtained using the conduit equation, and on the right is obtained using
the hyperbolic model. We observe good agreement of the results qualitatively.

To determine analytically the state u?, we use the Rankine-Hugoniot relation
coming from the conservative form (1) (the mass conservation law). We consider
the jump relation for (1) on the travelling wave solutions for a shock having the
same velocity D as that of the travelling wave train, and linking the maximum
amplitude u3 of the wave train with the constant state u? (see [11, 10] for details)
:

−D(u3 − u?) + (u23 − u2? + u3Du
′′|u=u3

) = 0 (45)

We have used the fact that in the u3 state and extremal state “star” the deriva-
tive u′ vanishes. The states u2 (minimum value of u), u3 (maximum value of u)
and the velocity D are related through the first integral :

Cu22 − 2u22 ln(u2)− 2Du2 = Cu23 − 2u23 ln(u3)− 2Du3 (46)

It allows us to find C :

C =
2u23 ln(u3) + 2Du3 − 2u22 ln(u2)− 2Du2

u23 − u22
. (47)

Hence, one can estimate Du′′ at the maximum u3 from (32) :

Du′′|u=u3
= (C − 1)u3 − 2u3 ln(u3)−D. (48)
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Figure 8: The general solution structure of Cauchy problem (44) for the conduit
equation is shown in (x, t)–plane. The wave train in the middle consists of 48
periodic waves, where the initial parameters for each of them are: u1 = 1, u3 = 2
and u2 = 2 −m0, m0 = 0.999. The wave average on the left and right of the
wave train is u ≈ 1.216.

Figure 9: The snapshot of the solution for the Cauchy problem (44) at time
t = 600. The solution shown on the left is obtained using the conduit equation,
and on the right is obtained using the hyperbolic model with the parameters
c = 30 and λ = 900.
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We can now replace all into (45) to obtain the equation for u? :

−D(u3 − u?) + (u23 − u2? + u3(C u3 − 2u3 ln(u3)− u3 −D)) = 0. (49)

As for the BBM equation [10], one can prove that u1 < u? < u2 .
In particular, if we take the same u2, u3, and D as in the Cauchy prob-

lem (44), we find the value u? ≈ 1.000499. Then we may construct a multi-hump
structure in the form

u(0, x) = ũ(x) =

 u?, x < x0,
uM (x), x0 < x < x1,
u?, x > x1.

(50)

with uM as a periodic wave train linked to u?. Fig. 10, the left column, shows
uM composed of N = 11 periodic wave solutions. This multi-hump solution
structure is a stable one as we can see in Fig. 11. Here we present the snapshot
solutions obtained using the conduit equation and the hyperbolic model at time
t = 1000.

We are next concerned with a double multi-hump problem for the interaction
of two periodic wave trains. The initial condition is:

u(0, x) =

{
ũL(x), x ≤ x0,
ũR(x), x > x0,

(51)

where ũL and ũR are having analogous structure to (50), see the right column
of Fig. 10 for an illustration. To be specific, for each wave train it consists of
N = 11 periodic waves together with a hybrid half wavelength periodic and
solitary waves, and x0 = 1600. The state values we take for ũL are uL1 = 0.9,
uL2 = 0.907, uL3 = 1.7, and that give DL ≈ 2.25, uL ≈ 1.123, and uL? ≈ 0.903477.
For ũR, we have uR1 = 0.9, uR2 = 0.907, uR3 = 1.25, and get DR ≈ 2.01871, uR ≈
1.00894, and uR? ≈ 0.903467. Since the states u?L and u?R are approximately the
same, and DL > DR, we can study the overtaking multi-hump soliton problem
propagation on the same level u?.

Figure 12 shows the numerical solutions for the conduit equation at times
t = 500, 2000, 2500, 3000, 4000, 5000, observing the wave interaction, merging,
and their full reconstruction. Here without introducing a large domain size, the
computation domain is adjusted in time by the method to have the multi-hump
solution stayed inside the region. The solutions for the hyperbolic model are
shown in Fig. 13, we again observe good qualitative agreement of the solution,
and the validation of the numerical solutions.

The stability of multi-hump solutions created “artificially” by combining pe-
riodic solutions and constant states related by the generalized Rankine-Hugoniot
relations show that they are stable weak solutions to the conduit equation. In
particular, they are stable under a “perturbation” of the conduit equation by a
hyperbolic system conserving its original Godunov type form.
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Figure 10: Illustration of the initial conditions for the multi-hump problems.
The plot shown on the left is for the single hump problem (50), and on the right
is for the double hump problem (51).

Figure 11: The snapshot of the conduit solution for the multi-hump problem (50)
at time t = 1000. The solution on the left is for the conduit equation, and on
the right is for the hyperbolic model. The computation domain is x ∈ [0, 4000];
only the partial solutions in the region x ∈ [3130, 3730] are shown.
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Figure 12: The snapshot of the conduit solution for the two multi-hump prob-
lem (51) at times t = 500, 2000, 2500, 3000, 4000, 5000. The plots are displayed
from the left top to bottom and continues from the right top to bottom. The
computation domain is adjusted in time to have the multi-hump solution stayed
in the domain; only the partial solutions in the neighborhood of the multi-hump
solitons are shown.
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Figure 13: The snapshot solutions of the hyperbolic conduit model for the two
multi-hump problem (51) at times t = 500, 2000, 2500, 3000, 4000, 5000. The
plots are displayed in the same manner as Fig. 13.
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9 Conclusion

We have proposed a hyperbolic approximation of the conduit equation preserv-
ing, in particular, invariance properties of the conduit equation (reversibility in
time and space) and approximating the solutions of the conduit equation with
good accuracy. The advantage of the hyperbolic approximation is that it allows
all the numerical tools developed for hyperbolic equation systems to be applied
to the study of dispersive equations.

We have constructed new solutions to the conduit equation representing an
assemblage of many waves of the same period linked to a constant solution by
the generalized Rankine-Hugonit relation, also taking into account the curvature
of periodic waves. The generalized shock linking the maximum of the lateral
periodic waves to a constant state has the same velocity as that of the periodic
wave train. Such a multi-hump solitary wave is stable if the wave velocity is
twice as great as u. This condition means that the phase velocity of such a
structure must be supercritical with respect to the homogeneous state u hav-
ing the characteristic slope 2u. The hyperbolic approximation of the conduit
equation also admits such stable solutions.
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A Numerical methods for the conduit equation

To find approximate solutions to the conduit equation (2), we use the hyperbolic-
elliptic splitting approach developed previously in [19, 11, 10]. This algorithm
consists of two steps. In the first step, the hyperbolic step, we employ the state-
of-the-art method for hyperbolic conservation laws for the numerical resolution
of the equation

Kt −
(
lnu2

)
x

= 0 (52a)

over a time step ∆t. In the second step, the elliptic step, using the approximate
solution K computed during the hyperbolic step, we invert numerically the
elliptic operator:

−uxx +Ku = 1 (52b)
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for u with prescribed boundary conditions based on a finite-difference scheme [21].
It should be mentioned that from (1) one can also find numerical solutions

to the conduit equation when we apply the algorithm to solve the following
hyperbolic-elliptic system:

ut +
(
u2 +$

)
x

= 0, (53a)

−
($x

u

)
x

+
$

u2
= 2uxx, (53b)

separately for u and $ during each time step.
More precisely, in the hyperbolic step, we use the semi-discrete finite volume

method written in a wave-propagation form as before [11], but employ a different
solution reconstruction technique, the BVD (boundary variation diminishing)
principle, which is more robust than the classical one for the interpolated states
(K for (52) or u for (53)) at cell boundaries (cf. [5] and the references cited
therein). These reconstructed variables form the basis for the initial data of
the Riemann problems, where the solutions of the Riemann problems are then
used to construct the fluctuations in the spatial discretization that gives the
right-hand side of the system of ODEs (cf. [20, 17, 18]). To integrate the ODE
system in time, the strong stability-preserving (SSP) multistage Runge-Kutta
scheme [15, 30] is used. In particular, for the numerical results presented in
this paper, the third–order SSP scheme was employed together with the pair of
third– and fifth–order WENO (weighted essentially non-oscillatory) scheme in
the BVD reconstruction process.
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