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Generalised time-translation-invariance in
simple ageing

Malte Henkel

Abstract Generalised time-translation-invariance, together with dynamical scaling,
imply the entire known generic phenomenology of physical ageing.

1 Physical ageing

The physics of ageing was first studied in experiments on the mechanical relax-
ation in glasses [45]. Herein, the ageing process was started by rapidly quenching
the glass from its molten state to a temperature below the glass-transition temper-
ature where the glass solidifies. The sample response was measured and studied in
dependence of the ‘waiting time’ s before a mechanical stress had been applied.
Several reproducible properties, independent of the sample history or the detailed
microscopic structure of the glass, were identified [53, 3]. Subsequently, it became
apparent that very similar phenomenologies also arise in other situations of non-
equilibrium dynamics, for example in the relaxation of magnetic systems, quenched
to a low-temperature state from an initially disordered high-temperature state [7],
also observed experimentally [38, 2, 50]. Characteristics of physical ageing are:
Definition: A many-body system is said to undergo physical ageing when its relax-
ation dynamics from some initial state obeys the properties

1. it is slow (in contrast to ‘fast relaxations’ described in terms of exponentials
e−t/τr with a finite relaxation time τr)

2. dynamical scaling
3. broken time-translation-invariance
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Fig. 1 Schematic free ener-
gies. The circle represents the
disordered initial state.
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These three conditions require several comments. First, the insistence on slow dy-
namics distinguishes systems in a disordered state with a single equilibrium state
(when according to the general principles of thermodynamics, a fast relaxation
within a finite characteristic time τr towards that state should occur) from systems
either at a critical point or in a two-phase coexistence region. In figure 1, the equilib-
rium free energy F = F(M) (in the language of magnetic systems, where M denotes
the magnetisation) is shown.1 Before the quench (left panel), the system is prepared
in a disordered initial state and after a rapid relaxation, this state is found at the
unique minimum of the free energy, with gaussian fluctuations around it. Immedi-
ately after the quench (right panel), the system’s state has not yet evolved but is
no longer at a stable mininum. At criticality (T = Tc), critical fluctuations lead to a
wider form of F(M) and allow for larger and non-gaussian fluctuations which also
slow down any relaxation towards equilibrium. Below criticality (T < Tc), the sys-
tem now sits at an unstable maximum of F(M) and there are at least two equivalent,
but distinct equilibrium states at the new minima of F(M). In both cases, a rapid
relaxation towards equilibrium is impossible and the system becomes spatially in-
homogeneous, mathematically expressed through the relaxation time τr becoming
formally infinite. Hence only in the situations sketched in the right panel of fig-
ure 1 ageing is at all possible. Second, the requirement of dynamical scaling asserts
that the dynamics can be described in terms of a single time-dependent length scale
L = L(t). To be specific, we shall restrict throughout to systems where L(t) ∼ t1/z

grows algebraically for large times,2 which defines the dynamic exponent z . Third,
the breaking of time-translation-invariance implies that ageing is an intrisically non-
equilibrium phenomenon. The precise meaning of ‘breaking of time-translation-
invariance’ will be the central topic of this work.

1 For simplicity, we shall use the language of classical dynamics, although all considerations which
follow should apply to quantum quenches as well.
2 Hence glassy systems where L(t)∼

(
ln t
)1/ψ grows logarithmically [19, 53, 3] are not considered.
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The relaxation process is described via the time- and space-dependent order-
parameter φ = φ(t,r), conviently coarse-grained such that a continuum description
becomes feasible. Unless stated otherwise, we shall assume an initial disordered
state with vanishing initial order-parameter

〈
φini(r)

〉
=
〈
φ(0,r)

〉
= 0, where the

average
〈
·
〉

is taken over the initial configurations and thermal histories. The two-
time correlator C and the two-time response R are defined as [17, 32]

C(t,s;r) =
〈
φ(t,r)φ(s,0)

〉
, R(t,s;r) =

δ
〈
φ(t,r)

〉
δh(s,0)

∣∣∣∣∣
h=0

=
〈
φ(t,r)φ̃(s,0)

〉
(1)

Because of dynamical scaling, one expects,3 for sufficiently large times t,s→∞ and
y = t/s > 1 that

C(t,s;r) = s−bFC

(
t
s

;

∣∣r∣∣
s1/z

)
, R(t,s;r) = s−1−aFR

(
t
s

;

∣∣r∣∣
s1/z

)
(2)

where a,b are ageing exponents.4 This kind of dynamical scaling is often referred to
as simple ageing. Evidence for this kind of data collapse abounds in the literature,
e.g. [7, 16, 27, 47]. If one restricts to auto-correlations and auto-responses with
r = 0, one expects asymptotically for y� 1

fC(y) = FC(y,0)∼ y−λC/z , fR(y) = FR(y,0)∼ y−λR/z (3a)

where λC,λR are the auto-correlation and auto-response exponents, respectively.
Scale-invariance alone cannot account for such an algebraic asymptotic behaviour.
Furthermore, one generally finds the exponent equality5

λC = λR = λ (3b)

The universality of the values of λC,λR and of the form of the scaling functions
fC(y), fR(y) implies that they should be independent of the ‘microscopic details’
of any given model. In other words, we are looking for some as yet un-recognised
dynamical symmetry in order to explain the assertions eqs. (3). In what follows, we
shall generalise time-translation-invariance in such a way that it becomes applicable
to ageing phenomena. The hypothesis will be presented in section 2. In section 3
we shall show that not only the examples mentioned so far, but also several other
well-established facts of ageing phenomenology follow from this single symmetry.

3 This explicitly excludes multi-scaling as found e.g. in phase-separation kinetics at T < Tc with
conserved order-parameters [14, 9], as well as logarithmic sub-ageing [5, 18].
4 Spatial translation-invariance as well as spatial rotation-invariance such that r 7→ r = |r| will be
admitted throughout for notational simplicity.
5 At criticality, this may be argued from the finiteness of the limit fluctuation-dissipation ratio
[21] X∞ = limy→∞

(
lims→∞ X(ys,s)

)
with X(t,s) = TCR(t,s;0)

/
∂sC(t,s;0) . This argument does

not apply to T < Tc, but for short-ranged and gaussian initial correlators, (3b) still follows, either
from a comparison of the scaling form of correlators and responses [6, 7] or else, if in addition
z = 2, from local scale-invariance [41, 27].
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2 Generalised time-translation-invariance

Postulate: The Lie algebra generator Xequi
n of a time-space symmetry of an equilib-

rium system becomes a symmetry out of equilibrium by the change of representation

Xequi
n 7→ Xn = eξ ln tXequi

n e−ξ ln t (4)

where ξ is a parameter whose value characterises the scaling operator φ on which
Xn acts. When applied to a dilatation generator Xequi

0 = −t∂t − 1
z r∂r− δ , the pre-

scription (4) leads to a modified effective scaling dimension δeff = δ −ξ , since

Xequi
0 7→ X0 =−t∂t −

1
z r∂r−

(
δ −ξ

)
(5a)

However, the time-translation generator Xequi
−1 =−∂t becomes

Xequi
−1 7→ X−1 =−∂t +

ξ

t
(5b)

Whenever ξ 6= 0, time-translation-invariance is broken, but this is achieved here
through the choice of a different representation rather than changing the Lie alge-
bra of dynamical symmetries by suppressing X−1. In general, it does not seem to
be possible to require the presence of other symmetries, even if extended via the
prescription (4), i.e. following ideas of local scale-invariance [22, 23, 27]. Such
requirements, when applied to correlators, would in general imply that C = 0, be-
cause of certain Bargman superselection rules [41]. At most, one might hope that
certain response functions R might admit larger dynamical symmetry groups [27].
This subject however, must be postponed to a later date, since it is not the aim of
this work to restrain the form of certain correlators or responses as much as possible
by considering their co-variance under a maximal Lie algebra but rather to identify
the minimal requirements on dynamical symmetries needed for an understanding of
the general phenomenology of ageing. Generalised time-translations (5b) occurred
first as a by-product of studies of local-scale-invariance for systems with dynamical
exponent z = 2 [26]. They were advocated as a special case of much more gen-
eral representations [39] in the context of holographic geometry of ageing. Physical
examples arose only recently in the context of dynamical symmetries of biased sys-
tems [43, 30, 44].

The mathematical basis of the prescription (4) can be stated as follows.
Proposition 1: [39, 28] For the constant γ and the non-constant function g(z), the
generators

`n =−zn+1
∂z−nγzn−g(z)zn (6)

obey the conformal algebra [`n, `m] = (n−m)`n+m for n,m ∈ Z.
Physically, the relevance of ξ for non-equilibrium dynamics can be understood

from the kinetics of the spherical model [15, 21, 40, 44]. This exactly solvable
model can be formulated in terms of real-valued spin S(t,r) ∈ R subject to the con-
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straint ∑r
〈
S2(t,r)

〉
= N , where N is the number of sites of the lattice. With the

hamiltonian H [S] =−∑(r,r′) S(t,r)S(t,r′)−µ ∑r S2(t,r) the over-damped dynam-

ics is given by ∂tS(t,r) =− δH [S]
δS(t,r) + z(t)S(t,r)+η(t,r), where η is a thermal white

noise. Herein, the Lagrange multiplier z(t) is fixed from the spherical constraint.
Defining lng(t) := 2

∫ t
0dτ z(τ), it can be shown that this leads to a Volterra integral

equation

g(t) = A(t)+2T
∫ t

0
dτ f (t− τ)g(τ) (7)

for the temperature T where for nearest-neighbour interactions f (t) = e−4dt I0(4t)d

and I0 is a modified Bessel function. If d > 2, for a fully uncorrelated initial state
A(t) = f (t) such that at criticality with T = Tc(d) one finds that g(t) ∼ tz giving
ξ = z

2 = min(d/4− 1,0) [21]. Hence, for d > 4 the model is in the mean-field
universality class. On the other hand, whenever ξ 6= 0, fluctuation effects must be
invoked for the required change of representation (4). On the other hand, if one
prepares the system at T = Tc(d) at critical equilibrium, the model merely un-
dergoes equilibrium critical dynamics. Equilibrium initial conditions are spatially
long-ranged and modify A(t) such that g(t) = cste. [40] and ξ = 0 throughout, for
all d > 2. Therefore, representations with ξ 6= 0 constructed via eq. (4) should be
relevant for non-equilibrium critical dynamics (where ageing occurs) and by ex-
tension also for phase-separation or phase-ordering kinetics, depending on whether
the order-parameter is conserved or not, after a quench into the phase-coexistence
region with T < Tc.

Our main use of dynamical symmetries will concern the scaling form of two-
point functions. A scaling operator φa = φa(t,r) is characterised by the two param-
eters (δa,ξa). The co-variance of a two-point function

C = C (t,s;r) = 〈φ1(t,r)φ2(s,0)〉 (8)

under generalised time-translations (5b) and dilations (5a) leads to the conditions

X−1C =

(
−∂t −∂s +

ξ1

t
+

ξ2

s

)
C = 0 (9a)

X0C =

(
−t∂t − s∂s−

1
z r∂r−δ1 +ξ1−δ2 +ξ2

)
C = 0 (9b)

Eq. (9a) gives the meaning of ‘broken time-translation-invariance’ used in this work.
In what follows, all physical applications will taken from the following

Proposition 2: The general solution of the co-variance conditions (9) is

C (t,s;r) = s−δ1−δ2+ξ1+ξ2
( t

s

)−ξ1 ( t
s
−1
)−δ1−δ2+2ξ1

F

(
r

(t− s)1/z

)
(10)

where F is an undetermined scaling function.
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Proof: Clearly, (10) solves both eqs. (9a,9b). General theorems on linear partial dif-
ferential equations [35] guarantee the uniqueness of this form, since a normalisation
constant is absorbed into the undetermined function F . ut

3 Phenomenological consequences

3.1 Preliminaries: the ageing exponents b,a

For magnetic systems quenched from a disordered initial state to a temperature T ≤
Tc, the two-time correlation function should obey dynamical scaling [7]

C(t,s;r) = κ
bzC
(
κ

z t,κzs;κr
)
= s−bFC

(
t
s

;
|r|

s1/z

)
(11)

An important boundary condition is furnished by the equal-time correlator. If the
system is quenched into the phase-coexistence region where T < Tc, one expects

C(t, t;0)∼
{

1 discrete (e.g. Ising model)
M2

eq continuous (12)

whereas for a quench onto the critical point T = Tc, one should find

Ceq(r) =C(∞,∞;r)∼
∣∣r∣∣−(d−2+η) (13)

and where η is an equilibrium critical exponent. These are captured by the asymp-
totic scaling function, for u� 1

FC(1;u)∼ u−bz ; b =

{
0 if T < Tc
(d−2+η)/z if T = Tc

(14)

which furnishes the value of the ageing exponent b [7, 16]. For phase-ordering, with
a non-conserved order-parameter and short-ranged interactions, one has z = 2 [7, 8].
Similarly, for a response function one has [24, 25, 27]

R(t,s;r) = s−1−aFR

(
t
s

;
|r|

s1/z

)
; a =

{
1/z if class S
(d−2+η)/z if class L (15)

where class S are systems with short-ranged equilibrium correlators which fall
off exponentially fast and class L are systems with an algebraic long-range decay
Ceq(r) ∼ |r|−(d−2+η) and which includes all systems at criticality T = Tc. Eq. (15)
furnishes the value of the ageing exponent a [27].
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3.2 Auto-correlation function

The two-time auto-correlator C(t,s) =
〈
φ(t,r)φ(s,r)

〉
is built from two copies of

the magnetic order-parameter φ . Because of the identitiy of the scaling operators,
we have

δ = δ1 = δ2 , ξ = ξ1 = ξ2 (16)

such that the two-point function (10) becomes, in the limit of large separations y =
t/s� 1

C(t,s) = s−2δ+2ξ

( t
s

)−2δ+ξ

FC(0) (17)

This does indeed agree with the expections (2,3) and in particular proves the ex-
pected algebraic asymptotics (3a) of the scaling function fC(y). We can identify

if T = Tc: b = 2(δ −ξ ) =
d−2+η

z ,
λC

z = 2δ −ξ = ξ +
d−2+η

z (18a)

if T < Tc: b = 2(δ −ξ ) = 0 ,
λC

z = 2δ −ξ = ξ (18b)

where we used (14).

3.3 Auto-response function

The auto-response function R(t,s) =
〈
φ(t,r)φ̃(s,r)

〉
can be written as a correlator

of the order-parameter φ with the conjugate response scaling operator φ̃ . Further-
more, since responses are indeed co-variant under larger algebras of local scale-
transformations, notably conformal transformations which make up local scale-
invariance [22, 23, 27], we now have

δ = δ1 = δ2 , ξ = ξ1 , ξ̃ = ξ2 (19)

where the first identity is a consequence of local-scale invariance. However, the two
parameters ξ and ξ̃ are now independent. Then, for y = t/s� 1 we have from (10)

R(t,s) = s−2δ+ξ+ξ̃

( t
s

)−2δ+ξ

FR(0) (20)

once more in agreement with (2,3a). We can identify, for both classes S and L

1+a = 2δ −ξ − ξ̃ ,
λR

z = 2δ −ξ (21)

The results obtained so far can be summarised as follows.
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Fig. 2 Scaling of the autocor-
relator C(ys,s;N−1) in a finite
volume (with b = 0).
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Proposition 3: For systems obeying generalised time-translation-invariance and
dilation-invariance, the two-time auto-correlator C(t,s) = s−b fC(t/s) and two-time
auto-response R(t,s) = s−1−a fR(t/s) have the properties:

1. For large arguments y� 1, both scaling functions are algebraic

fC(y)∼ y−λC/z , fR(y)∼ y−λR/z (22)

2. Comparison of (18) and (21) implies the exponent equality λC = λR.

Hence both properties (3) find their natural explanation as a consequence of gen-
eralised time-translation-invariance (9a), combined with dynamical scaling.

3.4 Finite-size effects

If the ageing system is placed in a volume of linear size N, then the shape of the
auto-correlator C(t,s;N−1) is modified in a characteristic way which is schematised
in figure 2, here for the case of phase-ordering kinetics at T < Tc, where also b = 0.
For reasonably large, but not too large, values of y, the autocorrelator’s behaviour
is well approximated by the infinite-size behaviour C∞(ys,s) = C(ys,s;0) ∼ y−λ/z

(dashed line in figure 2). However, if y is increased further, the data first decay more
rapidly and then saturate at a y-independent plateau

C(2)
∞ = lim

y→∞
C
(

ys,s;
1
N

)
(23)

Can one understand this behaviour in terms of a scaling description based on (4) ?
How does the plateau height C(2)

∞ depend on either N or the waiting time s ? Finite-
size effects are also studied experimentally [51, 52].

According to the theory of finite-size scaling [20, 4, 46], in a finite volume the
inverse size 1/N becomes a further relevant variable. Therefore, the two-time auto-
correlator (with spatial separation r= 0) should obey the two co-variance conditions
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X−1C =

(
−∂t −∂s +

ξ

t
+

ξ

s

)
C = 0 (24a)

X0C =

(
−t∂t − s∂s−

1
z

1
N

∂1/N−2
(
δ −ξ

))
C = 0 (24b)

which have the unique solution (re-using eqs. (18) and (3b), of course) for t� s

C
(

t,s;
1
N

)
= s−b

( t
s

)−λ/z
FC

(
N

t1/z

)
(25)

The interpolation between systems of infinite and finite volume, respectively, is con-
troled by the finite-size scaling function FC(u), of the single argument u = Nt−1/z .
Clearly, for large arguments FC(∞) = cste., such that the infinite-size behaviour
(3) is recovered. On the other hand, for u � 1, one should have FC(u) ∼ u−λ

such that the plateau is indeed y-independent. This implies for the plateau height
C(2)

∞ ∼ sλ/z−bN−λ . The requirement (24a) is essential to reduce the scaling func-
tion FC to a function of a single variable on which the traditional finite-size scaling
arguments [20, 4] can be applied. Of course, one might as well assemble heuristic
arguments for the scaling C(2)

∞ ∼ N−λ for s fixed, see e.g. [29].

Proposition 4: For quenches to T ≤ Tc, the plateau height C(2)
∞ of the auto-

correlator in a finite volume of linear size N obeys the scalings

if the waiting time s is fixed: C(2)
∞ ∼ N−λ (26a)

if the system size N is fixed: C(2)
∞ ∼ sλ/z−b (26b)

where the values (18) must be used for the exponent b.
For a test of (26) in the spherical model at T < Tc, see [29]. Tests in the 2D

Glauber-Ising model are forthcoming [49]. In practise, the determination of λ from
simulations and/or experiments may become difficult through the need to study suf-
ficiently large waiting times and also y = t/s large enough such that the asymptotics
fC(y) ∼ y−λ/z can be observed. This requires to create data for a sufficiently wide
window. Eq. (26) rather suggests to let the auto-correlator relax to the plateau and
extract λ from the scaling of C(2)

∞ which may be the better computational tool [49].
Since in experiments [2], N is likely fixed from the sample preparation techniques,
eq. (26b) might be an useful alternative for the determination of λ/z .

Analogous results can be easily derived for instantaneous responses R(t,s;r), or
their time-integrated counterparts χ =

∫
du R(t,u), for systems in a finite volume.

Finally, the characteristic length scale L(t) may for example be extracted as a
second moment of the single-time correlator C(t;r), using (25) as follows

L2(t) =
∫

V dr r2C(t;r;N−1)∫
V drC(t;r;N−1)

= t2/zFL

(
N

t1/z

)
∼
{

t2/z volume infinite
N2 volume finite

(27)
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Fig. 3 Time-dependence of
the non-equilibrium magneti-
sation m(t).        t
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which gives a method to measure the dynamic exponent z . This finite-size cross-
over has been routinely observed in numerical simulations of lattice systems [10,
11, 12, 13, 31].

3.5 Magnetic initial states

For a quench onto criticality T = Tc, the magnetisation m(t) has a non-trivial time-
evolution [33] sketched in figure 3. If the system is prepared with an initial magneti-
sation m(0) = m0 6= 0 but is otherwise uncorrelated, there exists a short-time critical
regime where m(t) ∼ tΘ where the slip exponent Θ is independent6 of the equilib-
rium critical exponents and z . Its value can be found from deep field-theoretic con-
siderations based on the renormalisation group and short-time operator product ex-
pansions [33, 34]. This leads to the celebrated JANSSEN-SCHAUB-SCHMITTMANN
(JSS) scaling relation [33]

Θ =
d−λ

z (28)

In this formulation, the identity (3b) between auto-correlation and auto-response
exponents was used. After passing through a maximum, the magnetisation crosses
over into a regime of critical decay, according to m(t)∼ t−β/(νz), where β and ν are
standard equilibrium critical exponents [1, 47]. Can one understand this behaviour
and the existence of two distinct scaling regimes in figure 3, in terms of a scaling
description based on (4) ?

We shall first relate the behaviour of m(t) to a response function. In order to
see how this comes about, recall from Janssen-de Dominicis non-equilibrium field-
theory [17, 32, 34, 47] the calculation of averages of an observable A〈

A
〉
=
∫

DφD φ̃ A[φ ]e−J [φ ,φ̃ ] (29)

6 In mean-field theories, Θ = 0. Both Θ > 0 and Θ < 0 is seen in models, see [27].
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where the action J [φ , φ̃ ] =Jb[φ , φ̃ ]+Jini[φ̃ ] is decomposed into a bulk term and
an initial term

Jb[φ , φ̃ ] =
∫

dtdr
(

φ̃
(
∂t −∆r−V ′[φ ]

)
φ −T φ̃

2
)

(30a)

Jini[φ̃ ] =
∫

dr
(

1
2τ0

φ̃
2(0,r)−m0φ̃(0,r)

)
(30b)

(with the usual re-scalings) which describes in the bulk a thermal white noise of tem-
perature T , and an initially magnetised state of average magnetisation m0 together
with gaussian fluctuations of width τ0. Herein, ‘initial time’ means of course a time-
scale τmic at the beginning of the scaling regime. The bulk action at temperature
T = 0, J0[φ , φ̃ ] = limT→0 Jb[φ , φ̃ ] is called the deterministic action. Determinis-
tic averages

〈
·
〉

0 are obtained analogously to (29) where the action J is replaced
by its deterministic part J0. Either from causality considerations [33, 34] or local-
scale-invariance [41] one obtains the Bargman superselection rules

〈 n times︷ ︸︸ ︷
φ · · ·φ

m times︷ ︸︸ ︷
φ̃ · · · φ̃

〉
0

∼ δn,m (31)

for the deterministic averages. This means that only observables built from an equal
number of order-parameters φ and conjugate response operators φ̃ can have non-
vanishing averages.

Averages should now be computed from (29). They can be reduced to determinis-
tic averages by formally expanding in powers of T, 1

τ0
and m0 to all orders. It follows

that the time-dependent magnetisation can be obtained as

m(t) =
〈
φ(t,0)

〉
= m0

∫
Rd

dr
〈
φ(t,0)φ̃(0,r)

〉
0 = m0

∫
Rd

dr R(t,0;r) = m0R̂(t,0;0)
(32)

This follows from (29) and the form of the action J [φ , φ̃ ] detailed in (30). Namely,
the only term admissible, because of the Bargman rule (31), is the one linear in m0
as can be seen from (30b). By definition, this is a response function and in the last
step, we introduced the spatial Fourier transform

R̂(t,s;q) =
∫
Rd

dr e−iq·rR(t,s;r) (33)

Eq. (32) is the starting point of our scaling analysis. Again, the formally vanishing
waiting time s = 0 in (32) should be physically interpreted as a microscopically
small time smic� t at the beginning of the scaling regime.

In the physical situation at hand, the initial magnetisation m0 should be con-
sidered as a further dimensionful scaling variable, with scaling dimension x0. The
co-variance conditions of the global reponse function R̂ = R̂(t,s;0;m0) then read
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X−1R̂ =

(
−∂t −∂s +

ξ

t
+

ξ̃

s

)
R̂ = 0 (34a)

X0R̂ =

(
−t∂t − s∂s−

x0

z m0∂m0 −2δ +
d
z +ξ + ξ̃

)
R̂ = 0 (34b)

In analogy to what was done before, we have for t/s� 1 the asymptotics

R̂(t,s;0;m0) = s−2δ+d/z+ξ+ξ̃

( t
s

)−2δ+d/z+ξ

FR

(
m0t−x0/z

)
(35)

with the scaling function FR(u) of the single argument u=m0t−x0/z . Since we need
the response with respect to an ‘initial’ perturbation, we must now send s→ smic
and then can absorb it into the scaling function. Combination with (32) gives for the
sought time-dependent magnetisation

m(t) = m0 tΘ FR

(
m0 t−x0/z

)
, Θ =

d
z +ξ −2δ =

d−λ

z (36)

Herein, we identified the slip exponent and then observe that we indeed reproduce
the JSS scaling relation (28). The scaling function FR interpolates between the
two regimes of non-equilibrium critial scaling, through the assumed properties (i)
FR(0) = cste. which reproduces the short-time scaling regime and (ii) FR(u)∼ u−1

for u� 1 which makes the late-time scaling regime independent of m0 and which
also fixes x0.

Proposition 5: A critical system, with initial magnetisation m0 but otherwise uncor-
related, has the time-dependent magnetisation

m(t) = m0 tΘ FR

(
m0 tΘ+β/(νz)

)
(37)

where Θ is given by (28) and β ,ν are standard equilibrium critical exponents.
Hence the qualitative behaviour of figure 3 is reproduced. Given the generic re-

lationship (32), the derivation of the JSS scaling relation (28) reduces to a simple
Fourier transform. Since the scaling function stems from a response function, it is
conceivable that larger dynamical symmetries such as local scale-invariance might
be brought to furnish further details on its behaviour. We hope to return to this else-
where.

This result should only be applicable to critical quenches. Any attempt to prepare
an initially magnetised state should lead for T < Tc to a rapid relaxation towards one
of the several distinct equilibrium states in the phase-coexistence region such that
the system will leave the regions in parameter space where dynamical scaling holds.
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3.6 Global correlators

While all observables discussed so far have been local correlators or responses, we
now consider global quantities. For example, in an Ising model with spins σn =±1
at each site n of a lattice Λ ⊂ Zd , the global spin-spin correlator is defined as

Q(t,s) :=
1
|Λ |

〈
∑

n,m∈Λ

σn(t)σm(s)

〉
(38)

where
∣∣Λ ∣∣ is the number of sites of the lattice. Analogous definitions apply to other

spin models. What can be said on the long-time behaviour of such observables ?

Proposition 6: For a magnetic system quenched to T ≤ Tc, the global spin-spin
correlator (38) obeys for large observation times t

Q(t,0)∼ tΘ (39)

where the slip exponent Θ is given by (28).
Proof: At criticality, the result has been known since a long time [48]. It is derived
here for all T ≤ Tc as a further example of generalised time-translation-invariance
(5b). Taking into account spatial translation-invariance, in the continuum limit the
discrete sums over lattice sites are replaced by integrations over a spatial domain
V ⊂ Rd . Sending the integration volume |V | to infinity, one has

Q(t,s) = lim
|V |→∞

1
|V |

∫
V×V

drdr′
〈
φ(t,r)φ(s,r′)

〉
=
∫
Rd

dr C(t,s;r) = Ĉ(t,s;0)

where the definition (33) of the Fourier transform was used. Recall the scaling forms
(11,17) and carry out the spatial integration. This gives for the t� s asymptotics

Ĉ(t,s;0) = s−b+λ/z t−λ/z+d/z
∫
Rd

duFC(|u|)︸ ︷︷ ︸
= cste.

∼
{

s−Θ+(2−η)/z tΘ if T = Tc

s−Θ+d/z tΘ if T < Tc

(40)
where the scaling forms (2,17) and the identifications (18,36) were used, which
relate the slip exponent Θ with the autocorrelation exponent λ . We point out that
this establishes the validity of the identity (28) beyond the realm of non-equilibrium
critical dynamics for which it was originally derived [33]. Finally, the mathematical
limit s→ 0 corresponds physically to the limit s→ smic, where smic is a microscopic
time-scale for the onset of the dynamic scaling regime. Hence the dependence on
smic can be absorbed into the scaling function FC. Then Q(t,0)∼Q(t,smic)∼ tΘ as
asserted. ut

For non-equilibrium critical dynamics, eq. (39) has been routinely used to mea-
sure the exponents Θ (or, via (28), equivalently the autocorrelation exponent λ , if z
is known) [48, 1, 42]. The derivation given here makes it clear that eq. (39) along
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with the scaling relation (28) furnishes an alternative method to find λ from simula-
tions for quenches into the low-temperature phase T < Tc. We are not aware of any
numerical work along this line.

For estimating the dynamical exponent z , computing L(t) from a second moment
is tedious. An often-used alternative relies on the scaling of the single-time correla-
tor, e.g. for phase-ordering where b = 0 one may look for pairs (t,L(t)) by solving
numerically a scaling equation such as C(t,r) = FC(|r|/L(t)) = 0.5 [36, 37]. Yet
a further alternative studies the short-time dynamics of the squared magnetisation〈
m2(t)

〉
[31]. Repeating the above arguments, notably eq. (40), it is easily seen that

〈
m2(t)

〉
∼ Ĉ(t, t;0)∼ td/z−b ∼

{
td/z if T < Tc

t(2−η)/z if T = Tc
(41)

and in agreement with earlier heuristic arguments [48, 42, 31]. The numerical re-
quirements of this technique are somewhat smaller than in the other methods men-
tioned above. In recent applications to phase-ordering kinetics in the 2D Ising model
it was concluded that as a tool for numerical computation the accuracy of (41) is at
least equal to the one of other techniques [31].

Proposition 7: In magnetic systems quenched to T ≤ Tc, the time-dependent aver-
aged squared magnetisation scales as

〈
m2(t)

〉
∼ td/z−b =

{
td/z if T < Tc [31]
t(2−η)/z if T = Tc [48]

(42)

where η is a standard equilibrium critical exponent.

The extension of Propositions 6 and 7 to systems in a finite volume is obvious.

4 Conclusions

The phenomenology of simple physical ageing is based on several expectations
which are met in almost all systems and models under study. However, these aux-
iliary assumptions have always been presented as being independent of each other.
The point of this work is to provide an unifying perspective such that a single hy-
pothesis is sufficient from which the entire generic phenomenology of simple ageing
can be derived. As stated in eq. (4), non-equilibrium dynamics distinguishes itself
from equilibrium dynamics merely through a different choice of Lie algebra rep-
resentation. We have considered here an intertwining operator which only depends
on time such that merely the time-translation and dilation generators change their
form. In Propositions 3 to 7 we showed how the entire known phenomenology of
the simple ageing at T ≤ Tc of local and global correlators and responses can be
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reproduced: in spatially infinite or finite systems or in systems with or without an
initial magnetisation. Simple proofs of the JSS scaling relation (28) were given.

Exponent values are not predicted.
Herein, it is essential that time-translation-invariance is broken ‘softly’ through

time-dependent terms in its Lie algebra generator X−1, rather than leaving it out
altogether, as it was usually done up to now. In this way, the observables contain at
most a scaling function of a single variable, which allows the application of standard
phenomenological scaling arguments.

Complementary hypothesis needed to carry out this programme include:

1. simple ageing with an algebraically growing length scale L(t)∼ t1/z was admit-
ted throughout.

2. all initial correlations were assumed short-ranged. Otherwise, results such as
λC = λR need no longer hold true [7, 27].

3. attention was restricted to the sole intertwining operator W = e−ξ ln t , see eq. (4).

Future work should relax or further clarify at least some of these assumptions.
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